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ABSTRACT

The first objective of the present study is to devise
an analysis which simultaneocusly determines an equilibrium
price-quantity combination and industry structure. The
second objective is to study the éfficiency of the solution,
in particular the appliéability of the invisible hand.

We will meet our first objective by establishing a -
combination of a price vector, an output vector, a number
of firms and a cost of entry, such that for this price vector
and number of firms |

i) consumers demand the output vector supplied,

ii) production »df the output vector is financially
feasible,
iii) entry is rendered unprofitable.

We will find a solution given only a cost function with
U shaped average costs (properly generalized to the multi-
product case) and a demand function without restrictions.

Part of our objective--the determination of industry structure--



‘dictates the assumption of the U shape. The U shaée enables
us to calculate the equilibrfating number of firms which is
finite and not determined exogenously.

The cost of entry is calculated to render the solution
marginally sustainable. The magnitudes of this cost will be
shown to be inversely proportional to both the number of
firms and the degree of complementarity in production.

Qur secbnd objective~~analysis of the applicability of
the iﬁvisible hand--will yield a negative result. While the
invisible hand is known to guide pure competition and even
has some sway over monopoly; the extension of the érgument
to the intermediaté case of oligopoly will be shown to

break down.
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Chapter 1.

INTRODUCTION

Value theory has addressed with scrupulous detail the

determination of equilibrium allocations as well as their
efficiency properties for various industry structures.
Cournot (1838) analyzed monopoly and duopoly. Walras (1874)
set up a model for pure competition which was later solved
by Wald (1936). Edgeworth (1881l) initiated analysis of bi-
lateral monopoly and general market forms. Recently,
Hildenbrand (1974) and Novshek and Sonnenschein (1978)
showed how the different solutions merge if the number of
participants in the market becomes large. Many others have
clearly made other valuable contributions to the theory.
Since these contributions span all industry structures
ranging from monopoly to pure competition, it is time to ask
whether value theory has, in some sense, completely solved
the problems of determining equilibrium allocations and the
efficiency properties under general circumstances--say, given

technology and tastes. We argue that it has not.

The Role of Industry Structure in Value Theory.

To be sure, the approaches just mentioned analyze dif-
ferent industry structures, but they have the common limita-
tion of fixing industry structure in advance. Let us take a

simple example with one good and completely inelastic demand,



so that in equilibrium guantity supplied must be fixed at,
say, one hundred units. Then standard value theory must
solve the firm-output problem as follows. An average firm
produces one hundred units if the industry is a monopoly,
fifty units if the industry is a duopoly, and one unit if
the industry is purely competitive, consisting of, say,
one hundred firms! Next suppose we relax the inelasticity
assumption and carry out some welfare analysis. The results
are now more substantive but still cast in the same mold.
The eguilibrium allocation is inefficient 1f the industry
is a monopoly, more efficient if the industry is a duopoly,
and optimal if the industry is purely competitive. |
The precise solutions of the allocation and efficiency
problems depend on the prespecification of the industry
structure., But surely the industry structure is one of the
things determined by an allocation! Thus we are caught in
a vicious circle. This is especiallyntfﬁe for the efficiency
results. A pure competitive equilibrium may be optimal among
the allocations involving many firms, but it may be much more
efficient to have few firms because cost advantages may off-
set monopolistic pricing inefficieﬁcies. The proposition
that among monopoly solutions the equilibrium is inefficient
while among purely competitive solutions the equilibrium is
efficient has been misunderstood to imply that pﬁre competi-

. . - 1 . .
tion 1s more efficient than monopoly. The error is obvious:

15 .g., zinke (1959, p. 482).



intef~ and intrastructural comparisons are confused. The
idea seems to have stimulated small-is-beautiful ideologles,
with antitrust as their hallmark.

Determination of Industry Structure.

A refreshing alternative has been offered by Baumol
and Fischer (1978). Their approach is a straightforward
calculation of the cost-minimizing number of firms. However,
Baumol and Fischer fix the equilibrium prices and quantities
before solving the problem of determining industry structure.
They thus turn the aéproaches of Cournot, Walras and Edgeworth
upside down!

This shortcoming of the Baumol-Fischer theory is not
merely a limitation on its scope. It makes their solution
incomplete. For in determining the cost-minimizing number
of firms, there remains the problem of deciding on equilbrium
prices and quantities. We might turn to value theory, but
then we get an answer which depends on the iﬁdustry structure,
that is: the unknown.

As it stands now, value theory offers no complete solu-
tions for the allocation and efficiency probleﬁs because it
does not determine the industry structure, and the Baumol-
Fischer theory offers no complete determination of industry
structure for it cannot determine prices and quantities.
Synthesis.

The situation is like having one equation for x and one

for y, but to solve the first equation you must have the



solution of the second one, while to solve that second
equation you need the solution of the first one. A piece-
meal determination of x and y is impossible; we have to
solve them simultaneously.

The first objective of the present study is to devise
an analysis which simultaneously determines an equilibxrium
price-quantity combination and industry structure. The
second objective is to study the efficiency of the solution}
in particular the applicability of the invisible hand.

Novshek and Sonnenschein (1978) have come very close
to meeting the first objective. They constructed a model
which determines an equilibrium price-guantity combination
together with a number of firms which deters entry. However,
their solution exists only if the number of firms is suf-
ficiently large, i.e., i1f the industry is highly competitive.
Fér this reason, their theory cannot explain industry struc-
ture. We face the same complication,mbu% we shall overcome
it by introducing a barrier to entry.

We will meet our first objective by establishing 'a com-
bination of a price vector, an output vector, a number of
firms and a cost of entry, such that for this price vector
and number of firms

i) consumers demand the output vector supplied,

ii) production of the output vector is financially
feasible,

iii) entry is rendered unprofitable.



We will find a solution given only a cost function
with U shaped average costs (properly generalized to the
multi-product case) and a demand function without restric-~
tions. Part of our objective--the determination of industry
structure--dictates the assumpﬁion of the U shape. The U
shape enables us teo ealculate the equilibrating number of
fiims which is finite and not determined exogenously.

The cost of entry is calculated to render the solution
marginally sustainable. The size will be shown to be in-
versely proportional to both the number of firms and the de-
gree of complementarity in production.

Our second objective--analysis of the applicability of
the invisible hand--will yield a negative reéult. While the
invisible hand is known to guide pure competition and even
has some sway over monopoly according to Baumol, Bailey and
Willig (1977), the extension of the argument to the inter-
mediate case of oligopoly will be shown to break down.

Sustainable Equilibria.

Is a solution satisfying conditions i-iii above
a true eguilibrium? That depends on the rules of be-
havior we assume, On the side of consumers any rule is
perfect as long as it produces a demand function which
associates quantities with prices. Moreover, the formula-
tion of our results will be free of demand specifications:
The theorems will be put in terms of numbers of firms
which are determined by demand only to the extent that

the strength of demand relative to the efficient



scale of production puts a bound on the number of firms. The
producers' side is more delicate. A producer takes into
account two classes of competitors: other incumbent producers
and potential entrants. A novelty of this study is its de-
termination of indusﬁry structure as a part of wvalue theory.
For emphasis, we focus on the interaction with potential en-
trants. The interaction among incumbent producers is rele-
gated to the background by assuming that incumbents cooperate.
This assumption is justified if entry threats are all encom-
passing because, for example, the objective of a firm is "to
be in business". Alterhative assumptions which take into
account competition among incumbents will be discussed in a
separate chapter on incentives.

with regard to entry threats we assume that a potential
entrant takes the existing prices as given; an entrant must
beat these prices in order to be successful. This rule is
the safest for our analysis, in that it makes our results
robust. First, prices which deter entry even when believed
to be fixed must be low and will deter entry under alternative
rules of behavior as well.2 Second, parametrically fixed
prices elicit a strong invisible hand response because under
such a regime profits are a proxy for welfare--the gradient
of either total profit or welfare equals price minus marginal
2We shall find prices and a cost of entry which deter entry
even when prices are believed to be fixed. Thus, they con-
stitute sufficient conditions for entry deterrence under
general circumstances with no specific behavior patterns pre-
supposed. When, however, one is prepared to assume a definite
mode of behavior such as quantity taking or some rule which

takes into account responses, one may derive sharper results.
Then it may even be possible for some prices to render entry

unprofitable in the absence of entry costs, as in Novshek and
Sonnenschein (1978).



cost. And since we shall prove the inwvisible hand to fail
in oligopoly even under the price-taking rule, this negative
result can be expected to hold under alternative rules
governing entry which must be less favorable for the working
of the invisible hand.

Summing ﬁp, to focus on the determinants of the number
of firms--exit and entry--we assume cooperation among pro-
ducing firms; and for the sake of robustness of our results
we assume that potential entrants take prices as given. Our
behavioral framework is formally a price-Stackelberg game
with the industry as leader and potential entrants as
followers.

With these specifications, solutions satisfying condi-
tions i-iii in the preceding section are well defined.
Baumol, Bailey and Willig (1977) dubbed them "sustainable
equilibria”. For a formal definition, let pI be the price
vector, yi the output vector of the i-th firm, i = 1,...,m ,
C(yi) its cost, yI = ZT;i Y

the vector of quantities demanded and E the cost of entry.

* the industry output vector, DLpI)

(A detailed account of these relationships will be presented

in a separate chapter on the model.) -pI, yI, m and E

constitute a sustainable equilibrium if

i) D(pI) -

’

i) pIyI 2 I

H3 K

1 C(yk) for some yl's summing up to yI,
ii1) p < pT, y < D(p) implies py - C(y) < E.

Note that our assumption of cooperation is reflected in



the condition that the industry ;ather;thaﬁ'each and every
individual firm is financially viable. Firm profitability
will be considered later on (Chapter 7). 1In qondition iii,
the vector y represents the entrant's quantities supplied.
Outline.

The objectives of our study can now be described.
First, we wiéh to determine the nature of a sustainable
equilibrium and show how the entry cost can vary as a func-
tion of the industry structure.  Second, we wish to determine
whether the welfare optimum is a sustainable equilibrium.

The first problem involves difficulties not encountered
in existing value theory for two related reasons: the endo-
geneity pf industry structure and the U shape of average costs
(nonconvex production sets). To deal with these, Chapter 2
provides some new mathematical tools, including a generaliza-
tion of the fixed point theorem of Kakutani (1941). Chapter 3
presents the model and derives some analytical properties.
The Baumol-Fischer theorem on the cost-minimizing number of
firms will be a useful building block in our analysis. But
first Chapter 4 revises that theorem, eliminating an awkward
assumption. Then Chapter 5 determines an equilibrium, in-
cluding a specification of industry structure,and a cost of
entry which renders the configuration sustainable. The value
of this barrier to entry will be an explicit function of
industry structure. Chapter 6 sharpens the results for the

case of competitive industries with very many firms. The entry



cost can be lower, the nore regular the technology is in
terms of differentiability near minimum average costs
guantities. The implications of the assumption of inter-
nal competition are discussed in Chapter 7. Chapter 8 is
devoted to our second task, analysis of the applicability
of the invisible hand. Chapter 9 concludes this study.

Since the material is rather heavy, many readers will
prefer reading only a few chapters. Effort minimizers,
having reviewed the definition of a sustainable equilibrium
and the underlying notation, may confine themselves to
Chapter 5 and skip the proofs. Those interested in the as-
sumptions made and their limitations should also read
Chapters 3 and 7. Although Chapters 2 and 4 contain pre-
liminaries, those mathematically inclined, and, in particular,
studenfs of industrial organization, will find the results
of some interest in themselves. Chapter 6 addresses itself
to the subject of economics with very"maﬁy firms, while

those interested in welfare analysis are referred to Chapter 8.



Chapter 2.

SOME REAL ANALYSIS

How far can one go in the direction of generalizing
theories without ending up with nothing but empty gener-
alities? One of the inhibitions is imposed by the size
of the tool box--the body of mathematical results which
can serve us. Initially it seemed to us that it was this
constraint that prevented us from generalizing and synthe-
sizing current value theory and industry structure theory
in a way that overcomes each of their shortcomings. The
existing mathematical tools are insufficient for analysis
of a sustainable equilibrium. Fortunately, in the course
of the analysis it has been possible to design some new
tools which fit our requirements. These results are pres=
sented in this chapter. No attempt has been made to pro-
vide the sort of mathematical chapter which starts from
scratch. Only results believed to be new are included.

For background material we refer to Hildenbrand (1974).

Notation.

R" is the set of n-tuples of real numbers x =
(Xy/eearx)). xg and X gy are the vectors of x;'s for i €
respectively € S € {1,...,n} and vectors of zeros are sup-

pressed (e.g., x, is shorthand for (XS'O( ). u is the i-th

S S)
unit vector with the i-th component one and all others zero.

The inner product of two vectors x and y is simply written as

n . .
Xy = Zi=lxiyi' X <y if X, S Yy for all i = 1,...,n.
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x Ly if x; 2 ¥y for all i but X, <Yy for some 1i.
. . n n

x <y if x, <y, for all i. R _ = {x €eR |x > 0},

Rl = {x € ®'[x g 0} and:mi+ = {x € ®'|x > 0}.

The l-norm will be used exclusively and is simply written as

. %" » x denotes a sequence converging to X.

x| =250
For a real number x, the floor [x] is the largest integer
< x and the ceiling [x] is the smallest integer > x. A
function f::mﬁ + R is subhomogeneous if £(tx) < t f(x) for
all x E:Ri and scalars t > 1.

A correspondence F: g - Sl maps points of § to nonempty
subsets of S;. For § and Sy metric, F is upper semicontinuous

if x7 > x, yn e F(x"), yn +~ vy implies y € F(x) and upper hemi-

continuous if x° - X, yn e F(x") implies ynk ~ vy, ¥ € F(x)
for some subsequence. Finally, F has a fiwxed point if

X € F(x) for some x.

Nonlinear Programming.

Our first lemma concerns a function f defined on a set
of n-dimensional vectors x.3 f is taken to be "ray concave".
We can provide an economic interpretation of ray concavity by
letting x be an output vector and f the cost function. Then
ray concavity means that marginal cost declines along the ray

and the lemma proves that the optimal number of firms cannot

exceed n, the number of commodities. This result will enable

3A version of. the lemma ‘was first published as proposition 13
in Baumol (1977). The proof given there contains an error
(the assertion c; 2 0 is unjustified) and is corrected here.
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us later to establish a bound on the optimal number of firms
under the general cost assumption of our study. Since the
concavity assumed here need not be strict, the lemma applies
to homogeneous functions as well. In this form it will be
used to estimate the minimum cost of entry which renders a
configuration sustainable.

Lemma 1. Let c e:mi U {} and f a function on

{X(5P2|X < cl with £(0) 2 0. If f(tx) is (strictly) con-
cave in the scalar t for all 0 X< then for all

1 -.m 1 m
Xpeseex >0, XxX7+,..tx" < c, m > n, there are at most n

X, . 1 .m ky .
Yy 's, summing up to x+...¥Xx , such that Ekf(y ) is

(resp. strictly) less than f(xl)+...+f(xm)

Remark. Lemma 1 holds in the strict sense even if the con-
cavity is mot strict, provided there is no degeneracy in

the sense used in linear programming.

Proof of Lemma 1. Let xl,...,xm be as in the lemma. Since

m > n, they must be linearly dependent:
m

E c.xk = 0, c. not all zero - (1)
k=1 ¥ k

Without loss of generality,
£¢ S co all k (2)

Note that ¢y < 0 <c_ since otherwise ¢; > 0 or c_ £ 0 and
m 1= m =
by (2) all Cp 2 0 or < 0 which by (1) and the assumption all

k
x > 0 would imply ¢ = 0 violating (1l). Consequently,

-1

€1

S A< c_~. Then e, < 1 and

< 0 < c_l. .Let c <
m m 1=



...13._

Acm < 1. But by (2), Acu lies between‘)\‘cl and_xcm. Tt

follows that ACy 2 1. Consequently,for all k,O‘é (l—Ack)xk
k

< ZE=l(l~xck)x = Z£=1Xk < ¢ using (1) and the assumption

on xl,...,xm. Consequently, f[(l—Ack)xk] are well defined,

and, by assumption on £, (strictly) concave in ). Consequent-
ly, their sum is (resp. strictly) concave in A. Consequently,

the sum is (resp. strictly) minimal for a corner value of i,

1
(resp. strictly) less than the value for A = 0:

i.e., X = ¢ (case I) or A = c%l (case II)., The minimum is

Case I: Zg=lf[(l—c;lck)£k] is (resp. strictly) less than

k
Zg=lf[(l—00k)x'] = f(xl)+...+f(xm). In this case, let

1 -1 2 m-1 -1 ~1
y = (l—cl‘cz)x roaeryY = (l—cl cm)xm. Then yl+...+ym =
m _ -1 kK m ik o oome ko -1lm ok
Iep (I=ep 7o) xt = 2y g (1m0 o)™ = %7 = o)7Ly o % =
xl+...+xm by (1). Also, by the assumption £(0) ;‘0,

1 m-1, _ M pa_ 1 k m -1 k
f(y )+.,.+f(y  ) = Zk=2f[(l ¢y ck)x 1 ;'2k=lf[(l cq %{)x ]

which in this case is (resp. strictly) less than f(xl)+...+f(xm).

Case II: zE=lf[(l—c;lc )xk] is (resp. strictly) less than

k

z£=lf[(1—0ck)xk] = F(x})+...+E(xX™) . 1In this case, let

m-1 -1 m-1 m-1

1 -1 1
o cm_l)x . Then y*+...ty

yo o= (l—cm cl)xl,...,y = (l-c

= xl+...+xm and f(yl)+...+f(ym~l) is (resp. strictly) less

than f(xl)+...+f(xm) just as in case I.
If at most n jk's are > 0, then, by the assumption
1
£(0) > 0, are as desired, Otherwise the y*‘s~are linearly

dependent and we can again reduce the number of vectors by
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one. This can be repeated until there are at most n yk‘s,
as was desired. Q.E.D.
Funectione on.mﬁ.

The second lemma is also relevant for a particular
c¢lass of cost functions. It proves, surprisingly, that sub-
homogeneity implies continuity from below. This analytic
result will be used in establishing a sustainable equilibrium
later on.
Lemma 2. A subhomogeneous and nondecreasing function onimi
is continuous from below.

Proof. Let the function be f and letimﬁ 3 X » x.

r1.

m

=]

m m

> " ) ) . 0 - . « 0

imlmax n{l} u {xl/xllxlxl #0} 41. For large m, tmx > X
Ty e ey

H

This follows from tm's maximizing property for Xy # 0 and

otherwise from tm > 0. Consequently for all x, tmxm > X,

m large. Finally, by subhomogeneity and nondecreaﬁingness,‘

£z e TE(E X 2 £ TE(R) » £(x). Q.E.D.

Corollary. A subhomogeneous, nondecreasing and convex
function onimﬁ is continuous.

Proof. Theorem 10.2 of Rockafellar (1970, p. 84) implies

that a convex function onimi is continuous from above. Q.E.D.
Fized Pointe of Composite Correspondences.

The first task set out for our study is the determina-
tion of a sustainable equilibrium that, by definition, deters
entry and clears the market at the same time. We shall
accomplish this by finding a fixed point of the composition

of two mappings, one which goes from outputs to prices that
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deter entry, and one which goes from prices to output
quantities demanded. The fixed point prices deter entry
and clear the market, thus providing a solution. Now

the trouble is that existing fixed point theorems cover
particular correspondences, but not their compositions.
The following lemma fills the gap. Since the cere of the
proof is an inductive argument, the lemma is presented in
a form which applies to compositions of arbitrarily many
correspondences.4

Lemma 3., Let S be a convex compactum in a Euclidean space
and Sl""’sm metric spaces. If Fd S - Sl’ Ff Sl -+ 82,...,
Fﬁ Sm + § are upper hemicontinuous convex-valued corres—'
pondences, then F0°"‘°Fm has a fixed point.

Conjecture, Lemma 3 holds if convexity is replaced by
contractibility.

Remarks.

1. Since upper hemicontinuity carries over, F o..-oFm is

0
upper hemicontinuous and this, by the compactness of the
range, S, is equivalent to upper semicontinuity of the com-
‘position. However, since convexity does not carry over,

F ..oFm need not be convex-valued. BAs a result, lemma 3

0°°
is a proper generalization of the fixed point theorem of

Kakutani (1941). Similarly, the conjecture would properly
extend the fixed point theorem of Eilenberg and Montgomery

4 . : . .
Lemma 3 is dedicated to Anthony J. Small who discussed it
over lunch in such a delicate way.
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(1946) . Note that the strong version of their theorem
corresponds to our case M = 1 and Fl single-valued.

2. The following example illustrates that lemma 3 does
not hold for upper semicontinuous correspondences. Let

S +» 8

s =1[0,1], 8y = s = [0,), F be defined by

m 0 1
Fo(x) = {1/x} and FO(O) any closed convex nonempty subset
of [0,»), and Fi: §; » S by Fily) = {1/(1+y)}. Then F, and
F, are conveﬁfvalued and upper semicontinuocus. But
(FooFl)(x) = Fl{l/x} = {1/(1+1/x)} = {x/(x+1)} Z x for x # 0
while (FooFl)(O) C Fl[O,w) C (0,1] Z 0. Consequently, FOoFl
has no fixed point.
Proof of Lemma 8. For m = 0 the lemma becomes Kakutani's
fixed point theorem since FyS + 8 , 8 compact, is upper
hemicontinuous if and only ifvit is upper semicontinuous.
Suppose the lemma is valid for m-l. Then we shall prove
it for m by the technique of Kakutani (1941). In particular,
we may assume that § is an r—-dimensional closed simplex.

Let S(n) be the n-th barycentric simplicial subdivision

(n)

of S, TFor each vertex x" of S take an arbitrary point yn

from Fo(xn). Then the mapping inh yn thus defined on all
(n)

will define, when extended linearly inside

(n)

vertices of S
each simplex of S , a continuous point-to-point mapping
f,+8 + 8;. Consequently, by the upper hemicontinuity of
Fl’ fn°Fl is upper hemicontinuous. Since Fy is convex-valued,

SO 1is fnoFl. Consequently, by the induction hypothesis,

(fnoFl)ono--.oFm has a fixed point, say X, -



-~17-

. (n)

Let An be an r-dimensional simplex of S which

contains the point X - Let xg,xi,...,xﬁ be the vertices

of A_. Then we have x_=1- Anxp for suitable A" > 0 with
n n “i=0 1=

r n

- _ n s
Zi=OAi = 1. Let us further put yi = fn(xi) (i = 0,1,...,x).

n n
Then we have Yy = F (x.) and X € (Flono...aFm)[fn(xn)]n
. , . , . k
(F.o0es.0F )(Z A2 y ) Since lim x = x, ilmplies lim x, =X
l 10 k+oo nk‘ 0 k—)-oo L 0

for i = 0,1,...,r, and Fo is upper hemicontinuous, there ex-

ists a subsequence {npl} _ 1.2 such that, for k ~» «,
14 I

n n
k. k L 0 5 20k 0
§3x g Folx,7) 3 y,™ vy, € F,(x,) and [0,1] P Ai.

k
Clearly, Ag 2 0, Z§=OA2 = 1 and, by the upper hemicontinuity

0

e s & ‘ 0O « & &0 E 0!--.‘
of Fl, ’Fm and therefore Fl ame XO (Fl oFm)

r 0 0
lOl

0
L

(Z ) . yq € Fo(xo) implies, by the convexity of Fotxo),

r

Y
0 .
S € e a0 =
i= Ok i €F Consequently, x (F.o Fm)[FO(XO)]

Ly 0 1

V. O( o) -

(FOOFlO u!.o’E‘m) (XO). Q-EoD'



Chapter 3.

THE MODEL

In this chapter we construct our model, describe the
assumptions of our theory and derive some immediate properties.

We consider an economy with n commodities--including
those potential entrants may offer--and impose no particulér
time structure upon it. Two interpretations of this are
possible. First, the commodities may be considered to be
defined only by their physical characteristics while the
operation of the economy is considered only for a unit
period of time. The economy is then taken to be rerun in-
dependently over and over. Although this interpretation is
guite common, it can be very misleading, especially when
lags or other intertemporal effects are of some importance.
In the second interpretation, the commodities are also dated.
Goods at different points of time--whether their physical
characteristics are or are not the same--are defined to con-
stitute separate commodities. While this second interpreta-
tion is very general, it may be difficult to apply. We may
find solutions by abstract means or even by iterative pro-
cedures, but the latter are now unrelated to day-to-day
decision making on the basis of emerging developments,\or
trial and error. |
Cost Function.

In the model the production possibilities are repre-

sented by some cost function C which associates total
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production costs, say in dollars, with any bundle of com-
modities. Our theory will first be used in a partial
equilibrium analysis of individual industries. We will
also outline the extension of the argument to general
equilibrium analysis.

We assume that all firms, even potential entrants,
have access to the same productive techniques and there-
fore have the same cost function C. Although this sim-
plification may seem drastic, it is innocuous. If firms
use different techniques, then we define C as the cost
function of the "marginal" firm with the worst techniques.
The true costs of the other producing firms will be lower,
by differing amounts. These amounts are Ricardian rents
which we may include formally in the costs, ending up with
one C for all producing firms. It is also conceivable that
potential entrants do not have the techniques corresponding
to C. They may incur additional costs. We consider these
amounts as barriers to entry and can thus describe even
such potential entrants by means of C.5

The basic feature of C is its U shaped average costs.
Average costs iz a single output concept which is generalized
to the multi-output case by considering output bundles with
fixed proportions on any ray in output space. We assume that
the average cost profile on any ray is U shaped. 1In partic-
ular, on a portion of any ray nearest to the origin average
5This reduction to a common cost function is not possible in
the opposite case where a potential entrant has a cost advan-
tage over an incumbent. In fact, then no sustainable equi-

librium exists anyway. (Note that this is fortunate since it
is inefficient not to apply the best available technology.)
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costs must be strictly decreasing. This can be guaranteed
by imposing the slightly stronger condition that total
costs are strictly concave there. Thereafter, possibly at
‘one point, average costs must be minimal. On the remaining
third portion of the curve average costs must be strictly
increasing. All this is summed up in the following formal
assumption.6
(C) C is a continuous nonnegative function onimﬁ.
For all y E:RE’ |y| = 1, there are positive scalars

t_(y) and t_(v), t_(y) < t (y), such that

i) c(ty) is strictly concave for 0 < t < t_(y)

ii) C(ty)/t is constant for t_(y) < t 2 t+(y)

iii) C(ty)/t is strictly increasing for t+(y) < t < o,

C

-t

Y t_(V)y t+(Y)Y

Figure 1.

Cost behavior along a ray in output space.
In fact, the region of strict concavity includes its boundary
points:
Lemma 4. In (C), C(ty) is strictly concave for 0 £ t 2 t_{y).
Proof. It suffices to include equality on one side, say
t = 0. Suppose on the contrary that there are y, t < t_(y)
and A, 0 < A < 1, such that
6See Figure 1. It should be mentioned that the concavity as-

sumption introduces a kink in the cost function. Specifically,
C(ty) is not differentiable from the left in t az+ t_(y¥).
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Clity) £ (1-A)C(0) + AC(ty) (1)

_1-a _1-a . .
Now At = 1373 5 t+ (1 I:T7§)t' By the strict concavity
of (C), C(Aity) = I:T7§[C(2 ty) + 7] + (1 T:x7§)c(ty), § > 0.
Consequently,

A - 1-2/2 _ A2 _ 8

C(7 ty) = C(aty) Y C(ty) 5 (2)

Let € be positive and small. Then %~t= i{i ert + (l-—i{i)xt.

A

By the strict concavity, C(§~ty) > %é% Clexty) + (l-—%é%) C(aty) .

Rearranging and substituting (2) and (1),
Clerty) < 2(1-e)C(5ty) = (1-2¢)C(Aty) =

A
T=x

(1-e) (322 cOrty) - o5 Clty) - 8] - (1-2e) Claty) <

< [(1-e) 222 - (1-26) 10(1-1)C(0) + AC(ty) ] - (1-¢) [f2r Clty) + 6]
> (%}%& - D [(1=-1)C(0) + Ac(ty)] - 72— Clty) - 6 = C(0) = s

as € » 0. This violates the continuity of C in (C). Con-

sequently, (1) is impossible. Q.E.D.
-
c e
_______ [t
w’."”
' L. i Fl
L} . 5\ N 1
eAty -Ety Aty ty
Figure 2.

The situation in the proof of lemma 4.

The region of minimum average costs points is regular in the
following sense.
Lemma &. In (C), t_(*) is continuous from below and t (*)

is continuous from above.
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Proof. We shall prove that t_ is continuous from below.

The continuity from above of t+ can be proved in the same

way. Suppose t_ is discontinuous from below at some y.

I.e., there is a positive & such that for all positive §

there is a z with |z-y| < 6 and yet t_(z) < t_(y) - &. By

(C), C(tz)/t is increasing for t_(z) <t <. In particu-

lar, C{[t_(y)-elz}/[t_(y)-el < Clt_(v)zl/t_(y). By (C),

lemma 4 and the fact that strict ray concavity implies

strict decreasing ray average costs, y =

5 Cllt () -e1¥}/[e_(v)-c] - F Clt_(y)y]/t_(y) is positive.

By the continuity in (C) we can take § so small that

clt_(v)zl/t_(y) < clt_(y)yl/t_(y) + y. Taking all (in)equal-

ities together: C{[t_(y)-elz}/[t_(y)~el < C[t_(Y)Z]/t_(Y) <

cle_ () yl/t_(v) + v = c{lt_(y)-ely}/lt_(y) -]l - y. Letting

6'vanish, z goes to y and we have a discontinuity of C at

[t_(y)=-ely, contradicting (c). Q:iE.D.

Corollary. In (C), the points of minimum average costs form

a compactum.

Proof. The set of points of minimum average costs is the

range of the correspondence M:{y e:mi lyl = 1} +2R2 defined

by M(y) = {ty|t_(y) <ts t+(y)}. M has a compact domain

and is, by lemma 5, upper semicontinuous. Consequently, M

has a compact range. Q.E.D.
The unigue attribute of (C) is that it pertains only

to scale effects. Consequently, it is in principle very

easy to test. ©No other analogous construct of which I am
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aware has this feature. This is particularly true for

the traditional assumption of a convex technology which is
also characterized by economies of scope. Even the model

of Baumol and Fischer (1978) does not confine itself to
scale effects for their C is subadditive in the region of
decreasing ray average costs. We have freed C from this
non-scale assumption. The price is very low: the assumption
of decreasing ray average costs is strengthened to ray
concavity.

Another feature of (C) is its flexibility. It includes
many familiar cases. First, if t_ = t+, then each ray in
output space contains a unique point at which ray average
costs are minimal as assumed by Baumol-Fischer. Second, if
t+ + o, then average costs--after initially decreasing--
become and remain minimal, which is the case encountered in
applied industrial organization. Third, if t_ -+ 0 and t+ + oo,
then we are everywhere in the region of minimum ray average
costs; ray average costs must then be constant; so that we
have the case of constant returns to scale. Fourth, if
t_+ «, then we are everywhere in the region of strictly de-
creasing ray average costs; this is the case of economies
to scale. Fifth, if t+ + 0, then we are everywhere in the
region of strictly increasing ray average costs--the case of
diseconomies to scale.

The only further restriction we will impose on the

cost function is the technical assumption that the marginal

costs are bounded away from zero:
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(MC) There is a positive ¢ such that for all

Yy GZRS, i=1,.../n, and scalars t > 0:

C(y+tui) - C(y) > ct.
Preliminary calculations indicate that (MC) can be dispensed
with. But that would be at the expense of tremendous mathe-
matical complications which will be outlined in chapter 5.
Industry Cost Functions.

Our first task is to determine a sustainable equilib-
rium, It is clear that.for this purpose we must confine
ourselves to allocations in which the number of firms is
optimal in the sense that total output is produced at mini-

mum cost. This minimum cost defines the industry cost function:

CI(y) = min | Z?zlc(yl)

m, ZIFL; 5 yiw.:y s
i=1

This definition is justified by the following lemma which
also derives the important property of continuity.
Lemma 6, Under (C), CI exists and is continuous.
Proof. Baumol and Fischer (1978) bounded the cost-minimizing
number of firms and theorem 1 (Chapter 4) will show that a
bound holds under (C). Thus, in the definition of CI(y) only
finitely many m's need to be considered. Consequently, the
decompositions of y into yi's form a compactum. Since C is
continuous by (C), the minimum is attained, i.e., CI(y) exists.

In fact, the cost-minimizing number is bounded uniformly for

uniformly bounded output vectors, as a remark preceding




































































































































































































































