Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution
Einmahl, J.H.J.; Segers, J.J.J.

Publication date: 2008

Link to publication

Citation for published version (APA):
MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATION OF THE SPECTRAL MEASURE OF AN EXTREME VALUE DISTRIBUTION

By John H.J. Einmahl, Johan Segers

April 2008
MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATION OF THE SPECTRAL MEASURE OF AN EXTREME VALUE DISTRIBUTION

BY JOHN H.J. EINMAHL AND JOHAN SEGERS*

Tilburg University and Université catholique de Louvain

Consider a random sample from a bivariate distribution function F in the max-domain of attraction of an extreme value distribution function G. This G is characterized by the two extreme value indices and its spectral measure, which determines the tail dependence structure of F. A major issue in multivariate extreme value theory is the estimation of Φ_p, the spectral measure obtained by using the L_p norm in the definition. For every $p \in [1, \infty]$, a nonparametric maximum empirical likelihood estimator is proposed for Φ_p. The main novelty is that these estimators are guaranteed to satisfy the moment constraints by which spectral measures are characterized. Asymptotic normality of the estimators is proved under easily verifiable conditions that allow for tail independence. Some examples are discussed and a simulation study shows substantially improved performance of the new estimators.

1. Introduction. Let F be a continuous bivariate distribution function in the max-domain of attraction of an extreme value distribution function G. Up to location and scale, the marginals of G are determined by the extreme value indices of the marginals of F. The dependence structure of G can be described in various equivalent ways; in this paper we focus on the spectral measure Φ introduced in de Haan and Resnick (1977). The spectral or angular measure is a finite Borel measure on a compact interval, here taken to be $[0, \pi/2]$. It depends on F only through its copula.

Given a random sample from F, statistical inference on the upper tail of F falls apart into two pieces: estimation of the upper tails of its marginal distributions, which is well understood, and estimation of Φ, which we will consider in this paper. The actual representation of the spectral measure

*Supported by the Netherlands Organization for Scientific Research (NWO) in the form of a VENI grant and by the IAP research network grant nr. P6/03 of the Belgian government (Belgian Science Policy).

AMS 2000 subject classifications: Primary 62G05, 62G30, 62G32; secondary 60G70, 60F05, 60F17, JEL: C13, C14.

Keywords and phrases: functional central limit theorem, local empirical process, moment constraint, multivariate extremes, nonparametric maximum likelihood estimator, tail dependence
depends on the norm used on \mathbb{R}^2; here we will consider the L_p norm for every $p \in [1, \infty]$, with Φ_p denoting the corresponding spectral measure. The most common choices in the literature are $p = 1, 2, \infty$.

It is the aim of this paper to derive a nonparametric estimator of the spectral measure, superior to its predecessors, and to establish its asymptotic normality. In Einmahl et al. (2001), a nonparametric estimator $\hat{\Phi}_\infty$ was proposed for Φ_∞. This estimator, which we will refer to as the empirical spectral measure, was shown to be asymptotically normal under the assumption that Φ_∞ has a density, excluding thereby the case of asymptotic independence. Moreover the empirical spectral measure is itself not a proper spectral measure because it violates the moment constraints characterizing the class of spectral measures. A related estimator in a more restrictive framework was proposed in Einmahl et al. (1997).

The contributions of our paper are threefold: first, to propose a nonparametric estimator for the spectral measure which itself satisfies the moment constraints; second, to allow for arbitrary L_p norms, $p \in [1, \infty]$; third, to prove asymptotic normality under flexible and easily verifiable conditions that allow for spectral measures with atoms at 0 or $\pi/2$, including thereby the case of asymptotic independence. We do this in two steps: first we define for every $p \in [1, \infty]$ the empirical spectral measure $\hat{\Phi}_p$ and extend the results in Einmahl et al. (2001) under the weaker conditions mentioned above; second, we use a nonparametric maximum empirical likelihood approach to enforce the moment constraints, thereby obtaining an estimator $\tilde{\Phi}_p$ that is itself a genuine spectral measure. A small simulation study shows that the new estimator $\tilde{\Phi}_p$ is substantially more efficient than the empirical spectral measure $\hat{\Phi}_p$.

As the new estimator takes values in the class of spectral measures, it can be easily transformed into estimators for the aforementioned other objects that can be used to describe the dependence structure of G. This holds in particular for the Pickands (1981) dependence function and the stable tail dependence function (Drees and Huang, 1998; Einmahl et al., 2006; Huang, 1992). For a general background on spectral measures and these dependence functions as well as results for the corresponding estimators, see for instance the monographs Coles (2001), Beirlant et al. (2004), and de Haan and Ferreira (2006).

An alternative to the nonparametric approach in this paper is the parametric one (Coles and Tawn, 1991; Joe et al., 1992). Parametric models for the spectral measure are usually defined for $p = 1$ because this choice tends to lead to simpler formulae. Many parametric models, such as the asymmetric (negative) logistic and the asymmetric mixed models, allow the spectral
measure to have atoms at 0 and \(\pi/2 \). Even within a parametric context, our estimator can serve as a kind of gold standard against which to test the goodness-of-fit of a certain parametric model.

The paper is organized as follows. In Section 2 we review the general probabilistic theory for spectral measures. The asymptotic normality results for \(\hat{\Phi}_p \) and \(\tilde{\Phi}_p \) are presented in Sections 3 and 4, respectively. In Section 5 some examples are discussed and used in a small simulation study. Sections 6 and 7 contain the proofs of the results in Sections 3 and 4, respectively.

2. Spectral measures. Let \((X_1, X_2)\) be a bivariate random vector with continuous distribution function \(F\) and marginal distribution functions \(F_1\) and \(F_2\). Put

\[
Z_j = \frac{1}{1 - F_j(X_j)}, \quad j = 1, 2.
\]

Define \(\Xi = [0, \infty]^2 \setminus \{(0, 0)\}\). Assume that

\[
\lim_{s \to \infty} s \Pr[s^{-1}(Z_1, Z_2) \in \cdot \sim \mu(\cdot), \quad s \to \infty,
\]

where \(\sim\) stands for vague convergence of measures (in \(\Xi\)): for every continuous \(f : \Xi \to \mathbb{R}\) with compact support, \(\lim_{s \to \infty} s\mathbb{E}[f(s^{-1}(Z_1, Z_2))] = \int_{\Xi} f \, d\mu\).

The exponent measure \(\mu\) enjoys two crucial properties: homogeneity,

\[
\mu(c \cdot) = c^{-1} \mu(\cdot), \quad 0 < c < \infty,
\]

and standardized marginals,

\[
\mu([z, \infty] \times [0, \infty]) = \mu([0, \infty] \times [z, \infty]) = 1/z, \quad 0 < z \leq \infty.
\]

Note that \(\mu\) is concentrated on \([0, \infty)^2 \setminus \{(0, 0)\}\), i.e., \(\mu([0, \infty]^2 \setminus [0, \infty)^2) = 0\).

Let \(\| \cdot \|\) be an arbitrary norm on \(\mathbb{R}^2\); for convenience, assume that \(\|(1, 0)\| = 1 = \|(0, 1)\|\). Consider the following polar coordinates, \((r, \theta)\), of \((z_1, z_2) \in [0, \infty)^2 \setminus \{(0, 0)\}):

\[
r = \|(z_1, z_2)\| \in (0, \infty),
\]

\[
\theta = \arctan(z_1/z_2) \in [0, \pi/2].
\]

As we will see later, the choice of radial coordinate \(r\) through the norm has important implications; the choice of the angular coordinate \(\theta\) is unimportant, that is, we could just as well have used \(z_1/(z_1 + z_2) \in [0, 1]\) or \(z_1/\|(z_1, z_2)\|\).
Given the exponent measure μ and using polar coordinates (r, θ) as in (2.5), define a Borel measure Φ on $[0, \pi/2]$ by

\[(2.6) \quad \Phi(\cdot) = \mu(\{(z_1, z_2) \in [0, \infty)^2 : r \geq 1, \theta \in \cdot\}).\]

The spectral measure Φ admits the following interpretation in terms of (Z_1, Z_2) in (2.1):

\[(2.7) \quad s \Pr[\|Z_1, Z_2\| \geq s, \arctan(Z_1/Z_2) \in \cdot] \overset{\mu}{\to} \Phi(\cdot), \quad s \to \infty.\]

By homogeneity of μ, see (2.3), for every μ-integrable $f : \mathbb{E} \to \mathbb{R}$,

\[(2.8) \quad \int_{\mathbb{E}} f \, d\mu = \int_{[0,\pi/2]} \int_0^\infty f(z_1(r, \theta), z_2(r, \theta)) r^{-2} \, dr \, \Phi(d\theta)\]

where $z_1(r, \theta) = r \sin \theta/\|(\sin \theta, \cos \theta)\|$ and $z_2(r, \theta) = r \cos \theta/\|(\sin \theta, \cos \theta)\|$ form the inverse of the polar transformation (2.5). By (2.8), in the polar coordinate system (r, θ), the exponent measure μ is a product measure $r^{-2} \, dr \, \Phi(d\theta)$. In particular, the exponent measure μ is completely determined by its spectral measure Φ. The standardization constraints (2.4) on μ translate into moment constraints on Φ:

\[(2.9) \quad \int_{[0,\pi/2]} \frac{\sin \theta}{\|(\sin \theta, \cos \theta)\|} \Phi(d\theta) = 1 = \int_{[0,\pi/2]} \frac{\cos \theta}{\|(\sin \theta, \cos \theta)\|} \Phi(d\theta).\]

Note that X_1 and X_2 are tail independent, i.e., $s \Pr[Z_1 \geq s, Z_2 \geq s] \to 0$ as $s \to \infty$, if and only if μ is concentrated on the coordinate axes, or, equivalently, Φ is concentrated on $\{0, \pi/2\}$; in that case, $\Phi(\{0\}) = 1 = \Phi(\{\pi/2\})$. The total mass $\Phi([0, \pi/2])$ of a spectral measure is finite but even for a fixed norm it can vary for different exponent measures μ, with one exception: in case of the L_1 norm, by addition of the two constraints in (2.9), $\Phi([0, \pi/2]) = 2$ for every exponent measure μ. The spectral measure was introduced in de Haan and Resnick (1977); for more details on the results in this section see Beirlant et al. (2004) and de Haan and Ferreira (2006).

Dividing the spectral measure Φ by its total mass yields a probability measure Q on $[0, \pi/2]$:

\[(2.10) \quad Q(\cdot) = \Phi(\cdot)/\Phi([0, \pi/2]),\]

which we coin the spectral probability measure. By (2.7)

\[(2.11) \quad Pr[\arctan(Z_1/Z_2) \in \cdot | \|Z_1, Z_2\| \geq s] \overset{d}{\to} Q(\cdot), \quad s \to \infty.\]
In words, \(Q \) is the limit distribution of the angle \(\arctan(Z_1/Z_2) \) when the radius \(\| (Z_1, Z_2) \| \) is large. The moment constraints (2.9) on \(\Phi \) are equivalent to the following moment constraint on \(Q \):

\[
\int_{[0,\pi/2]} \frac{\sin \theta}{\| (\sin \theta, \cos \theta) \|} Q(d\theta) = \int_{[0,\pi/2]} \frac{\cos \theta}{\| (\sin \theta, \cos \theta) \|} Q(d\theta) =: m(Q).
\]

Conversely, we can reconstruct \(\Phi \) from \(Q \) by

\[
\Phi(\cdot) = \frac{Q(\cdot)}{m(Q)}.
\]

The spectral probability measure \(Q \) allows nonparametric maximum likelihood estimation, see Section 4. The estimator of \(\Phi \) then follows through (2.13).

In Einmahl et al. (2001), tail dependence is described via the measure \(\Lambda \) arising as the vague limit in \([0, \infty]^2 \setminus \{(\infty, \infty)\} \) of

\[
s \Pr((s(1 - F_1(X_1)), s(1 - F_2(X_2))) \in \cdot) \xrightarrow{v} \Lambda(\cdot), \quad s \to \infty.
\]

Let \(P \) the probability measure on \([0, 1]^2 \) induced by the random vector \((U_1, U_2) := (1 - F_1(X_1), 1 - F_2(X_2))\). Then (2.14) can be written as

\[
t^{-1}P(t \cdot) \xrightarrow{v} \Lambda(\cdot), \quad t \downarrow 0.
\]

Comparing (2.14) with (2.2), we find that \(\mu \) and \(\Lambda \) are connected through a simple change-of-variables formula: for Borel sets \(B \subset [0, \infty]^2 \setminus \{(\infty, \infty)\}, \)

\[
\Lambda(B) = \mu\{(z_1, z_2) \in E : (1/z_1, 1/z_2) \in B\}.
\]

From (2.14) or also from (2.3) and (2.4), it follows that

\[
\Lambda(c \cdot) = c \Lambda(\cdot), \quad 0 < c < \infty,
\]

\[
\Lambda([0, u] \times [0, \infty]) = \Lambda([0, \infty] \times [0, u]) = u, \quad 0 \leq u < \infty.
\]

The equality above with \(u = 0 \) shows that \(\Lambda \) does not put any mass on the coordinate axes. Combining (2.6) and (2.16), we find

\[
\Phi(\cdot) = \Lambda\{(u_1, u_2) \in (0, \infty)^2 : \|(u_1^{-1}, u_2^{-1})\| \geq 1, \arctan(u_2/u_1) \in \cdot\}\).
\]

In particular, for \(u \in [0, \infty) \),

\[
\Lambda(\{\infty\} \times (0, u]) = u \Phi(\{0\}),
\]

\[
\Lambda((0, u] \times \{\infty\}) = u \Phi(\{\pi/2\}).
\]
The spectral measure corresponding to the L_p norm,
\[
\| (z_1, z_2) \|_p = \begin{cases} \left(|z_1|^p + |z_2|^p \right)^{1/p}, & \text{if } p \in [1, \infty), \\ |z_1| \vee |z_2|, & \text{if } p = \infty, \end{cases}
\]
will be denoted by Φ_p. Write
\[
y_p(x) = \begin{cases} \infty, & \text{if } x \in [0, 1), \\ \left(1 + \frac{1}{x^p - 1} \right)^{1/p} & \text{if } x \in [1, \infty] \text{ and } p \in [1, \infty), \\ 1 & \text{if } x \in [1, \infty] \text{ and } p = \infty. \end{cases}
\]
Note that for $x \geq 1$, $y_p(x)$ is the (smallest) value of $y \in [1, \infty]$ that solves the equation $\| (x^{-1}, y^{-1}) \|_p = 1$. Now by (2.18),
\[
\Phi_p([0, \theta]) = \Lambda(C_{p, \theta}), \quad \theta \in [0, \pi/2],
\]
where
\[
(2.20) \quad C_{p, \theta} = \begin{cases} (0, \infty) \times \{0\} \cup \{\infty\} \times [0, 1], & \text{if } \theta = 0, \\ \{(x, y) : 0 \leq x \leq \infty, 0 \leq y \leq (x \tan \theta) \wedge y_p(x)\}, & \text{if } 0 < \theta < \pi/2, \\ \{(x, y) : 0 \leq x \leq \infty, 0 \leq y \leq y_p(x)\}, & \text{if } \theta = \pi/2. \end{cases}
\]
Further, note that $x \tan \theta < y_p(x)$ if and only if $x < x_p(\theta)$, where for $\theta \in [0, \pi/2]$,
\[
(2.21) \quad x_p(\theta) = \| (1, \cot \theta) \|_p = \begin{cases} \left(1 + \cot^p \theta \right)^{1/p} & \text{if } p \in [1, \infty), \\ 1 \vee \cot \theta & \text{if } p = \infty. \end{cases}
\]
The relation between \(y_p(x), x_p(\theta) \) and \(C_{p,\theta} \) is depicted in Figure 1.

Remark 2.1. Condition (2.2) can be rephrased in terms of the copula \(C \) of \((X_1, X_2)\) as follows: the limit

\[
\lim_{t \to 0} t^{-1} \{1 - C(1 - tx_1, 1 - tx_2)\} = l(x_1, x_2)
\]

exists for all \(x_1, x_2 \in [0, \infty) \). The stable tail dependence function \(l \) can be expressed in terms of \(\Lambda, \mu, \) and \(\Phi \) through

\[
l(x_1, x_2) = \Lambda(\{(u_1, u_2) \in [0, \infty]^2 : u_1 \leq x_1 \text{ or } u_2 \leq x_2\})
\]

\[
= \mu(\{(z_1, z_2) \in [0, \infty]^2 : z_1 \geq x_1^{-1} \text{ or } z_2 \geq x_2^{-1}\})
\]

\[
= \int_{[0, \pi/2]} \max(x_1 \sin \theta, x_2 \cos \theta) \|\|\sin \theta, \cos \theta\|\|^\Phi(d\theta),
\]

where we used (2.8) for the final step. The Pickands dependence function \(A : [0, 1] \to [1/2, 1] \) is defined by \(A(v) = l(1 - v, v) \) for \(v \in [0, 1] \). It admits the following expression in terms of the spectral measure for the \(L_1 \) norm: for \(v \in [0, 1] \),

\[
(2.22) \quad A(v) = 1 - v + \int_0^v \Phi_1(\{0, \arctan\{w/(1 - w)\}\}) \, dw.
\]

Remark 2.2. If in addition to (2.2) the marginal distribution functions \(F_1 \) and \(F_2 \) are in the max-domains of attraction of extreme value distribution functions \(G_1 \) and \(G_2 \), that is, if there exist normalizing sequences \(a_n, c_n > 0, b_n, d_n \in \mathbb{R} \) such that \(F_1^n(a_n \cdot + b_n) \overset{d}{\to} G_1(\cdot) \) and \(F_2^n(c_n \cdot + d_n) \overset{d}{\to} G_2(\cdot) \) as \(n \to \infty \), then actually

\[
F^n(a_n x + b_n, c_n y + d_n) \to G(x, y) = \exp[-l\{-\log G_1(x), -\log G_2(y)\}],
\]

for all \(x, y \in \mathbb{R} \), with \(l \) as in Remark 2.1, that is, \(F \) is in the max-domain of attraction of a bivariate extreme value distribution function \(G \) with marginals \(G_1 \) and \(G_2 \) and spectral measure \(\Phi \). However, in this paper we shall make no assumptions on the marginal distribution functions \(F_1 \) and \(F_2 \) whatsoever except for continuity.

3. Empirical spectral measures. Let \((X_{i1}, X_{i2}), i = 1, \ldots, n, \) be independent bivariate random vectors from a common distribution function \(F \) satisfying (2.2). Our aim is to estimate the spectral measure \(\Phi_p \) corresponding to the \(L_p \) norm for arbitrary \(p \in [1, \infty] \). For convenience, write \(\Phi_p(\theta) = \Phi_p([0, \theta]) \) for \(\theta \in [0, \pi/2] \).
Consider the left-continuous marginal empirical distribution functions:

\[(3.1) \hat{F}_j(x_j) = \frac{1}{n} \sum_{i=1}^{n} 1(X_{ij} < x_j), \quad x_j \in \mathbb{R}, \quad j = 1, 2.\]

Define

\[(3.2) \hat{U}_{ij} = 1 - \hat{F}_j(X_{ij}) = \frac{n+1-R_{ij}}{n}, \quad i = 1, \ldots, n; \quad j = 1, 2;\]

where \(R_{ij} = \sum_{l=1}^{n} 1(X_{lj} \leq X_{ij})\) is the rank of \(X_{ij}\) among \(X_{1j}, \ldots, X_{nj}\). Let \(\hat{P}_n\) be the empirical measure of \((\hat{U}_{i1}, \hat{U}_{i2})\), \(i = 1, \ldots, n\), i.e.,

\[\hat{P}_n(\cdot) = \frac{1}{n} \sum_{i=1}^{n} 1\{(\hat{U}_{i1}, \hat{U}_{i2}) \in \cdot\}.\]

Observe that the transformed data \((\hat{U}_{i1}, \hat{U}_{i2})\), \(i = 1, \ldots, n\), are no longer independent. This dependence will contribute to the limiting distribution of the estimators to be considered.

Let \(k = k_n \in (0, n]\) be an intermediate sequence, i.e. \(k \to \infty\) and \(k/n \to 0\) as \(n \to \infty\). We find our estimator \(\hat{\Phi}_p\) by using (2.15) and (2.18) with \(t = k/n\) and \(P\) replaced by \(\hat{P}_n\). In terms of distribution functions, this becomes

\[\hat{\Phi}_p(\theta) = \frac{n}{k} \hat{P}_n\left(\frac{k}{n} C_{p,\theta}\right) = \frac{1}{k} \sum_{i=1}^{n} 1\{(n+1-R_{i1})^{-p} + (n+1-R_{i2})^{-p} \geq k^{-p},\]

\[n+1-R_{i2} \leq (n+1-R_{i1}) \tan \theta\},\]

for \(\theta \in [0, \pi/2]\) and with \(C_{p,\theta}\) as in (2.20).

In Einmahl et al. (2001), the limiting behavior of \(\hat{\Phi}_p\) has been derived in case \(p = \infty\). We now present a generalization to all \(L_p\) norms for \(p \in [1, \infty]\). More precisely, we will study the asymptotic behavior of the process

\[\sqrt{k}\{\hat{\Phi}_p(\theta) - \Phi_p(\theta)\}, \quad \theta \in [0, \pi/2].\]

We will assume that

\[(3.3) \Lambda = \Lambda_c + \Lambda_d,\]

where \(\Lambda_c\) is absolutely continuous with a density \(\lambda\), which is continuous on \([0, \infty)^2 \setminus \{(0, 0)\}\), and with \(\Lambda_d\) such that \(\Lambda_d([0, \infty)^2) = 0, \Lambda_d(\{\infty\} \times [0, u]) = \)
$u\Phi_p(\{0\})$ and $\Lambda_d([0,u] \times \{\infty\}) = u\Phi_p(\{\pi/2\})$ for $u \in [0,\infty)$. In contrast to in Einmahl et al. (2001), Φ_p is allowed to have atoms at 0 and $\pi/2$; in particular tail independence is allowed. Also, the restriction of Φ_p to $(0,\pi/2)$ is absolutely continuous with a continuous density. This excludes complete tail dependence, i.e. Φ_p being degenerate at $\pi/4$, in which case Λ is concentrated on the diagonal. The homogeneity of Λ in (2.17) implies that $\lambda(cu_1, cu_2) = c^{-1}\lambda(u_1, u_2)$ for all $c > 0$ and $(u_1, u_2) \in [0,\infty)^2 \setminus \{(0,0)\}$.

Let P_n be the empirical measure of $(U_{i1}, U_{i2}) = (1 - F_1(X_{i1}), 1 - F_2(X_{i2}))$, $i = 1, \ldots, n$, and let $\Gamma_{jn}(u) = n^{-1}\sum_{i=1}^n 1(U_{ij} \leq u)$, $u \in [0,1]$ and $j \in \{1,2\}$, be the corresponding marginal empirical distribution functions; for $u \in (1,\infty)$, we set $\Gamma_{jn}(u) = u$. Furthermore, for $\theta \in [0,\pi/2]$, define the set

$$\hat{C}_{p,\theta} = \frac{n}{k}\left\{(u_1, u_2) \in [0,\infty)^2 \setminus \{(\infty,\infty)\} : (\Gamma_{1n}(u_1), \Gamma_{2n}(u_2)) \in \left[\frac{k}{n} C_{p,\theta}\right]\right\}.$$

From the identity $\Gamma_{jn}(u) = 1 - \hat{F}_j(F_j^{-1}(1 - u))$ for $u \in (0,1)$ it follows that

$$\hat{P}_n\left(\frac{k}{n} C_{p,\theta}\right) = P_n\left(\frac{k}{n} \hat{C}_{p,\theta}\right).$$

This representation yields the following crucial decomposition: for $\theta \in [0,\pi/2]$,

$$\sqrt{k}\{\hat{\Phi}_p(\theta) - \Phi_p(\theta)\} = \sqrt{k}\left\{\frac{n}{k} P_n\left(\frac{k}{n} \hat{C}_{p,\theta}\right) - \frac{n}{k} P\left(\frac{k}{n} \hat{C}_{p,\theta}\right)\right\}$$

$$+ \sqrt{k}\left\{P\left(\frac{k}{n} \hat{C}_{p,\theta}\right) - \Lambda(\hat{C}_{p,\theta})\right\}$$

$$+ \sqrt{k}\{\Lambda(\hat{C}_{p,\theta}) - \Lambda(C_{p,\theta})\}$$

$$= V_{n,p}(\theta) + r_{n,p}(\theta) + Y_{n,p}(\theta).$$

The first term, $V_{n,p}$, features a local empirical process evaluated in a random set $\hat{C}_{p,\theta}$. The second term, $r_{n,p}$, is a bias term, which will vanish in the limit under our assumptions. The third term, $Y_{n,p}$, is due to the fact that the marginal distributions are unknown and captures the effect of the rank transformation in (3.1)–(3.2).

Next we will define the processes that will arise as the weak limits of the processes $V_{n,p}$ and $Y_{n,p}$ in (3.4). Define W_Λ to be a Wiener process indexed by the Borel sets of $[0,\infty]^2 \setminus \{(\infty,\infty)\}$ and with ‘time’ Λ, i.e. a centered Gaussian process with covariance function $E[W_\Lambda(C)W_\Lambda(C')] = \Lambda(C \cap C')$. We can write, in the obvious notation, $W_\Lambda = W_{\Lambda_e} + W_{\Lambda_d}$, where the two processes on the right are independent. Note that

$$\{W_\Lambda(C_{p,\theta})\}_{\theta \in [0,\pi/2]} \overset{d}{=} \{W(\Phi_p(\theta))\}_{\theta \in [0,\pi/2]}.$$
with W a standard Wiener process on $[0, \infty)$. Define $W_1(x) = W_\Lambda([0,x] \times [0,\infty])$ and $W_2(y) = W_\Lambda([0,\infty] \times [0,y])$ for $x, y \in [0,\infty)$. Note that W_1 and W_2 are standard Wiener processes as well. For $p \in [1, \infty)$, define the process $Z_{c,p}$ on $[0, \pi/2]$ by

$$Z_{c,p}(\theta) = \begin{cases} 1(\theta < \pi/2) \int_0^{x_p(\theta)} \lambda(x, x \tan \theta) \{W_1(x) \tan \theta - W_2(x \tan \theta)\} \, dx \\ + \int_{x_p(\theta)}^\infty \lambda(x, y_p(x)) \{W_1(x)y_p'(x) - W_2(y_p(x))\} \, dx, \quad \text{if } p < \infty, \\ - W_1(1) \int_1^{1/\tan \theta} \lambda(1, y) \, dy - W_2(1) \int_{1/\cot \theta}^\infty \lambda(x, 1) \, dx, \quad \text{if } p = \infty, \end{cases}$$

with y_p' the derivative of y_p. Define Z_d by

$$Z_d(\theta) = -\Phi_p(\{0\}) W_2(1), \quad \theta \in [0, \pi/2],$$

and write $Z_p = Z_{c,p} + Z_d$. It is our aim to show that

$$(V_{n,p}, r_{n,p}, Y_{n,p}) \xrightarrow{d} (W_\Lambda(C_p, \cdot), 0, Z_p), \quad n \to \infty.$$

This convergence and the decomposition in (3.4) then will yield the asymptotic behavior of $\sqrt{k}(\hat{\Phi}_p - \Phi_p)$.

Assume that P is absolutely continuous with density p. Then the measure $t^{-1}P(t \cdot)$, for $t > 0$, is absolutely continuous as well with density $tp(tu_1, tu_2)$. For $1 \leq T < \infty$ and $t > 0$, define

$$(3.5) \quad D_T(t) := \iint_{L_T} \left| tp(tu_1, tu_2) - \lambda(u_1, u_2) \right| \, du_1 \, du_2,$$

where $L_T = \{(u_1, u_2) : 0 \leq u_1 \wedge u_2 \leq 1, u_1 \vee u_2 \leq T\}$.

Theorem 3.1. Assume the framework of Section 2 and suppose Λ is as in (3.3). Then, if $D_{1/t}(t) \to 0$ as $t \downarrow 0$ and if the intermediate sequence k is such that

$$(3.6) \quad \sqrt{k} D_{n/k}(k/n) \to 0, \quad n \to \infty,$$

then in $D[0, \pi/2]$ and as $n \to \infty$,

$$(3.7) \quad \sqrt{k}(\hat{\Phi}_p - \Phi_p) \xrightarrow{d} W_\Lambda(C_p, \cdot) + Z_p =: \alpha_p.$$
The condition \(\lim_{t \downarrow 0} D_{1/t}(t) = 0 \) in Theorem 3.1 implies \(\Phi_p(\{0, \pi/2\}) = 0 \) and thus \(\Lambda_d = 0 \). Indeed, in case \(\Lambda_d \neq 0 \), the convergence in (3.7) cannot hold: when e.g. \(\Phi_p(\{0\}) > 0 \), we have, since \(\hat{\Phi}_p(0) = 0 \), \(\sqrt{k} \{\hat{\Phi}_p(0) - \Phi_p(0)\} \to -\infty \). In contrast, the following result does allow \(\Phi_p \) to have atoms at 0 or \(\pi/2 \). Recall \(D_T(t) \) in (3.5) and \(\alpha_p \) in (3.7).

Theorem 3.2. Let \(\eta \in (0, \pi/4) \). Assume the framework of Section 2 and suppose \(\Lambda \) is as in (3.3). Then, if \(D_1(t) \to 0 \) as \(t \downarrow 0 \) and if the intermediate sequence \(k \) is such that

\[
\sqrt{k} \inf_{T > 0} \{D_T(k/n) + 1/T\} \to 0, \quad n \to \infty,
\]

then in \(D[\eta, \pi/2 - \eta] \) and as \(n \to \infty \),

\[
\sqrt{k}(\hat{\Phi}_p - \Phi_p) \to^d \alpha_p.
\]

In case of tail independence, i.e. \(\Phi_p(\{0\}) = \Phi_p(\{\pi/2\}) = 1 \) and \(\lambda = 0 \), we have \(\alpha_p = 0 \).

Under a stronger condition on the sequence \(k \), the convergence of the process \(\sqrt{k}(\hat{\Phi}_p - \Phi_p) \) holds on the whole interval \([0, \pi/2]\), provided that we flatten the process on intervals \([0, \eta_n]\) and \([\pi/2 - \eta_n, \pi/2]\), with \(\eta_n \in (0, \pi/4) \) tending to zero sufficiently slowly. Define the transformation \(\tau_n : [0, \pi/2] \to [0, \pi/2] \) by

\[
\tau_n(\theta) = \begin{cases}
\eta_n & \text{if } 0 \leq \theta < \eta_n, \\
\theta & \text{if } \eta_n \leq \theta \leq \pi/2 - \eta_n, \\
\pi/2 - \eta_n & \text{if } \eta_n < \theta < \pi/2, \\
\pi/2 & \text{if } \theta = \pi/2.
\end{cases}
\]

Theorem 3.3. Let \(k \) be an intermediate sequence and let \(\eta_n = (k/n)^a \) for some fixed \(a \in (0, 1) \). Assume the framework of Section 2 and suppose \(\Lambda \) is as in (3.3). If

\[
\sqrt{k} \inf_{T \geq 2/\eta_n} \{D_T(k/n) + 1/T\} \to 0, \quad n \to \infty,
\]

then in \(D[0, \pi/2] \) and as \(n \to \infty \),

\[
\sqrt{k}(\hat{\Phi}_p - \Phi_p) \circ \tau_n \to^d \alpha_p.
\]

Theorems 3.1 and 3.3 will be instrumental when establishing our main results in the next section.
4. Enforcing the moment constraints. Fix $p \in [1, \infty]$ and let Q_p be the class of probability measures Q_p on $[0, \pi/2]$ such that

$$
\int_{[0, \pi/2]} f(\theta)Q_p(d\theta) = 0
$$

where

$$f(\theta) = f_p(\theta) = \frac{\sin \theta - \cos \theta}{\|(\sin \theta, \cos \theta)\|_p}, \quad \theta \in [0, \pi/2].
$$

If Q_p is the spectral probability measure of some exponent measure μ with respect to the L_p norm, then $Q_p \in Q_p$ by (2.12). Conversely, if $Q_p \in Q_p$, then we can define an exponent measure μ through (2.8) and (2.13) which has Q_p as its spectral probability measure with respect to the L_p norm.

As before, denote distribution functions of measures under consideration by $Q_p(\cdot), \ldots, \Theta_{in} = \text{arctan}(\hat{U}_{i2}/\hat{U}_{i1}), \ i = 1, \ldots, n$; $I_n = \{i = 1, \ldots, n : \|(\hat{U}_{i1}^{-1}, \hat{U}_{i2}^{-1})\|_p \geq n/k\}$.

In view of (2.10), we define the empirical spectral probability measure \hat{Q}_p by

$$
\hat{Q}_p(\cdot) = \frac{\hat{\Phi}(\cdot)}{\hat{\Phi}(\pi/2)} = \frac{1}{N_n} \sum_{i \in I_n} 1(\Theta_{in} \in \cdot),
$$

where $N_n = |I_n|$ and

$$
\Theta_{in} = \text{arctan}(\hat{U}_{i2}/\hat{U}_{i1}), \quad i = 1, \ldots, n;
$$

$$I_n = \{i = 1, \ldots, n : \|(\hat{U}_{i1}^{-1}, \hat{U}_{i2}^{-1})\|_p \geq n/k\}.
$$

Typically, $\frac{\int f \, d\hat{Q}_p}{\sum_{i \in I_n} f(\Theta_{in})}$ is different from zero, in which case \hat{Q}_p does not belong to Q_p, that is, \hat{Q}_p is itself not a spectral probability measure.

Therefore, we propose to modify \hat{Q}_p such that the moment constraint (4.1) is fulfilled and the new estimator does belong to Q_p: define

$$
\tilde{Q}_p(\cdot) := \sum_{i \in I_n} \tilde{p}_{in} 1(\Theta_{in} \in \cdot)
$$

where the weight vector $(\tilde{p}_{in} : i \in I_n)$ solves the following optimization problem:

$$
\text{maximize} \quad \prod_i p_{in},
$$

$$\text{constraints} \quad p_{in} \geq 0 \text{ for all } i \in I_n,$$

$$\sum_i p_{in} = 1,$$

$$\sum_i p_{in} f(\Theta_{in}) = 0.$$
The thus obtained estimator \(\hat{Q}_p \) can be viewed as a maximum empirical likelihood estimator (MELE) based on the sample \(\{ \Theta_{in} : i \in I_n \} \), see the monograph Owen (2001). Actually, the optimization problem in (4.4) can be readily solved by the method of Lagrange multipliers (see, e.g., Owen (2001), p.22): let \(\tilde{\mu}_n \) be the solution in \((−1,1)\) to the nonlinear equation
\[
\sum_{i \in I_n} \frac{f(\Theta_{in})}{1 + \tilde{\mu}_n f(\Theta_{in})} = 0;
\]
and define
\[
\hat{\rho}_{in} = \frac{1}{N_n} \frac{1}{1 + \tilde{\mu}_n f(\Theta_{in})}, \quad i \in I_n,
\]
then the vector \((\hat{\rho}_{in} : i \in I_n) \) is the solution to (4.4). Observe that the original estimator \(\hat{Q}_p \) corresponds to \(\tilde{\mu}_n = 0 \) and is the solution to (4.4) without the final constraint \(\sum i_n f(\Theta_{in}) = 0 \).

Since \(\hat{Q}_p \in Q_p \), we can exploit the transformation formulas in Section 2 to define estimators of the spectral measure \(\Phi_p \): as in (2.13),
\[
\hat{\Phi}_p(\cdot) := \hat{Q}_p(\cdot)/m_p(\hat{Q}_p)
\]
where for a bounded, measurable function \(h : [0, \pi/2] \to \mathbb{R} \),
\[
m_p(h) := -\int_0^{\pi/2} h(\theta) d\left(\frac{\cos \theta}{\| (\sin \theta, \cos \theta) \|_p}\right),
\]
cf. (2.12). Further, for \(\theta \in [0, \pi/2] \), define \(I(\theta) = \int_{[0,\theta]} f(\vartheta) dQ_p(\vartheta) \) and
\[
\beta_p(\theta) = \frac{\Phi_p(\pi/2)\alpha_p(\theta) - \alpha_p(\pi/2)\Phi_p(\theta)}{\Phi_p^2(\pi/2)},
\gamma_p(\theta) = \beta_p(\theta) + \int_{[0,\pi/2]} \beta_p df Q_p I(\theta),
\delta_p(\theta) = \frac{m_p(Q_p)\gamma_p(\theta) - m_p(\gamma_p)Q_p(\theta)}{m_p^2(Q_p)}.
\]

Note that under the assumptions of Theorem 4.1 below, \(Q_p(\{\pi/4\}) < 1 \) and thus \(\int f^2 dQ_p > 0 \), so that \(\gamma_p(\theta) \) is well-defined.

The next two theorems, providing asymptotic normality of \(\hat{\Phi}_p \), are the main results of this paper.
Theorem 4.1. Let the assumptions of Theorem 3.1 be fulfilled. Then with probability tending to one, equation (4.5) admits a unique solution \(\hat{\mu}_n \) and hence in this case the vector \((\hat{p}_n : i \in I_n) \) in (4.6) is the unique solution to (4.4). Also, in \(D[0, \pi/2] \) and as \(n \to \infty \),

\[
\sqrt{k}(Q_p - \hat{Q}_p) \xrightarrow{d} \gamma_p, \tag{4.8}
\]

\[
\sqrt{k}(\Phi_p - \hat{\Phi}_p) \xrightarrow{d} \delta_p. \tag{4.9}
\]

Since Theorem 4.1 is based on Theorem 3.1, the spectral measure cannot have atoms at 0 or \(\pi/2 \). The following result, based on Theorem 3.3, does allow for such atoms.

Theorem 4.2. Fix \(\eta \in (0, \pi/4) \) and let \(\eta_n = (k/n)^a \) for some \(0 < a < 1 \). Assume the framework of Section 2 and suppose \(\Lambda \) is as in (3.3). If

\[
\sqrt{k}D_{2\eta_n}(k/n) + \sqrt{k}\eta_n \to 0, \quad n \to \infty, \tag{4.10}
\]

then in \(D[\eta, \pi/2 - \eta] \) and as \(n \to \infty \), the convergence in (4.8) and (4.9) holds.

Remark 4.3. From (4.7), it is straightforward to express the limit process \(\delta_p \) in terms of the process \(\alpha_p \) and thus of \(W_\Lambda \). However, because of the presence of the process \(Z_p \), no major simplification occurs. As a consequence, we were not able to show that \(\hat{\Phi}_p \) is asymptotically more efficient than \(\Phi_p \). However, the simulation study in Section 5 does indicate that enforcing the moment constraints leads to a sizeable improvement of the estimator’s performance.

Remark 4.4. Replacing \(\Phi_1 \) by \(\hat{\Phi}_1 \) in (2.22) yields an estimator \(\hat{A} \) of the Pickands dependence function \(A \) that is itself a genuine Pickands dependence function. The weak limit of the process \(\sqrt{k}(\hat{A} - A) \) in the function space \(C[0,1] \) can be easily derived from the one of \(\sqrt{k}(\hat{\Phi}_1 - \Phi_1) \). Nonparametric estimation of a Pickands dependence function in the domain-of-attraction context was also studied in Capéraà and Fougères (2000) and Abdous and Ghoui (2005).

5. Examples and simulations.

Example 5.1 (Mixture). For \(r \in [0,1] \), consider the bivariate distribution function

\[
F(x, y) = \left(1 - \frac{1}{x}\right)\left(1 - \frac{1}{y}\right)\left(1 + \frac{r}{x+y}\right), \quad x, y \geq 1;
\]
cf. de Haan and Resnick (1977, Example 3). Its density can be written as a mixture of two densities, \((1 - r)f_1(x, y) + rf_2(x, y)\), where
\[
f_1(x, y) = \frac{1}{x^2y^2}, \quad f_2(x, y) = \frac{2}{(x + y)^3} \left(1 + \frac{x^2 + 3xy + y^2}{x^2y^2}\right), \quad x, y \geq 1.
\]
Note that \(f_1\) is the density of two independent Pareto(1) random variables. Obviously for \(r = 0\) we have (tail) independence. The law \(P\) of \((1 - F_1(X), 1 - F_2(Y)) = (1/X, 1/Y)\) is determined by
\[
P([0, u] \times [0, v]) = uv\left(1 + r\frac{(1 - u)(1 - v)}{u + v}\right), \quad 0 < u, v < 1,
\]
and hence
\[
\Lambda([0, x] \times [0, y]) = r\frac{xy}{x + y}, \quad 0 < x, y < \infty.
\]
For \(p \in [1, \infty]\), the corresponding spectral measure \(\Phi_p\) satisfies \(\Phi_p([0]) = \Phi_p(\{\pi/2\}) = 1 - r\) and
\[
\Phi_p(\theta) = 1 - r + 2r \int_0^\theta \|(\sin \vartheta, \cos \vartheta)\|_p d\vartheta + (1 - r)1(\theta = \pi/2)
\]
for \(\theta \in [0, \pi/2]\). It can be shown that \(D_T(t) = O(t)\) as \(t \downarrow 0\), uniformly in \(T > 0\). As a consequence, conditions (3.11) and (4.10) in Theorems 3.3 and 4.2 hold for \(a = 1/2\) provided \(k = o(n^{1/2})\) as \(n \to \infty\). If \(r = 1\), the spectral measure \(\Phi_p\) has no atoms. Then \(D_{1/t}(t) = O(t)\) as \(t \downarrow 0\), so that condition (3.6) in Theorems 3.1 and 4.1 holds provided \(k = o(n^{2/3})\) as \(n \to \infty\).

Example 5.2 (Cauchy). Consider the bivariate Cauchy distribution on \((0, \infty)^2\) with density \((2/\pi)(1 + x^2 + y^2)^{-3/2}\) for \(x, y > 0\). It follows that
\[
\Lambda([0, x] \times [0, y]) = x + y - (x^2 + y^2)^{1/2}, \quad 0 \leq x, y < \infty.
\]
and
\[
\Phi_p(\theta) = \int_0^\theta \|(\sin \vartheta, \cos \vartheta)\|_p d\vartheta
\]
for \(\theta \in [0, \pi/2]\). It can be shown that \(D_{1/t}(t) = O(t)\) as \(t \downarrow 0\). Therefore, Theorems 3.1 and 4.1 hold when \(k = o(n^{2/3})\) as \(n \to \infty\).

We will also consider the bivariate Cauchy distribution on \(\mathbb{R}^2\) with density \((2\pi)^{-1}(1 + x^2 + y^2)^{-3/2}\) for \(x, y \in \mathbb{R}\). This time, the spectral measure is
\[
\Phi_p(\theta) = \frac{1}{2} \left(1 + \int_0^\theta \|(\sin \vartheta, \cos \vartheta)\|_p d\vartheta + 1(\theta = \pi/2)\right).
\]
In particular, \(\Phi_p(\{0\}) = \Phi_p(\{\pi/2\}) = 1/2 \). For every \(0 < a < 1 \) and \(\eta_n = (k/n)^a \), we find \(D_{2,\eta_n}(k/n) = O((k/n)^{2-a}) \) as \(n \to \infty \). Hence the conclusions of Theorems 3.3 and 4.2 hold provided \(k = o(n^{2a/(2a+1)}) \) as \(n \to \infty \). In fact, the results of Theorem 4.2 can be shown to hold when \(k = o(n^{2/3}) \) as \(n \to \infty \).

In Figure 2, we depict the empirical spectral measure \(\hat{\Phi}_p \) and the MELE \(\tilde{\Phi}_p \) for \(p \in \{1, 2\} \) computed from a single sample of size \(n = 1000 \) from the mixture distribution with \(r = 0.5 \), for \(k = 50 \). The true spectral measure is depicted too. For this sample the MELE is more accurate. Also note that the true spectral measure has atoms at 0 and \(\pi/2 \), so that near these values, the estimators and the true spectral measure cannot be close. Nevertheless, for \(p = 1 \), the total mass of the MELE is equal to 2, the true value, as follows from the moment constraints.

![Figure 2. Empirical spectral measure (dashed) and MELE (solid) for one sample of size \(n = 1000 \) of the mixture distribution with \(r = 0.5 \) and for \(k = 50 \). Left: \(p = 1 \), right: \(p = 2 \).](image)

We also performed a simulation study to compare the finite-sample performance of the two estimators. From each of the following four distributions we generated 1000 samples of size \(n = 1000 \): the mixture distribution in Example 5.1 with \(r \in \{0.5, 1\} \) and the two Cauchy distributions in Example 5.2. For each sample, we computed the empirical spectral measure and the MELE for various ranges of \(k \) and for \(p = 1 \) (mixture distribution) and \(p = 2 \) (Cauchy distribution). For each such estimate we computed the Integrated Squared Errors \(\int_{\eta}^{\pi/2-\eta} (\hat{\Phi}_p - \Phi_p)^2 \) and \(\int_{\eta}^{\pi/2-\eta} (\tilde{\Phi}_p - \Phi_p)^2 \); here \(\eta = 0 \).
for the two distributions with spectral measures without atoms [mixture distribution with $r = 1$ and Cauchy on $(0, \infty)^2$] whereas $\eta = 0.05\pi/2$ for the two other distributions. Next, these Integrated Squared Errors were averaged out over the 1000 samples, yielding empirical Mean Integrated Squared Errors. The thus obtained MISEs are displayed as a function of k in Figure 3.

In all cases and for all k, the MELE outperforms the empirical spectral
measure. In particular for the mixture distribution the improvement is substantial. Moreover, for the MELE the choice of \(k \) is less of an issue because the graph of the MISE is much more flat than for the empirical spectral measure; this is a great advantage in practice. For both estimators, it holds that in case the true spectral measure has atoms at the endpoints, the MISE is larger and the feasible values of \(k \) have a smaller range and are closer to zero than when there are no atoms.

6. Proofs of Theorems 3.1–3.3.

Proof of Theorem 3.1. A. We first prove weak convergence of the process \(\sqrt{k}(\hat{\Phi}_p - \Phi_p) \) in \(D[0, \pi/4] \). More precisely, with \(\Delta \in \{1, \frac{1}{2}, \frac{1}{3}, \ldots\} \), we will show that for probabilistically equivalent versions of the processes involved and any \(\varepsilon > 0 \),

\[
\lim_{\Delta \downarrow 0} \limsup_{n \to \infty} \Pr \left\{ \sup_{\theta \in [0, \pi/4]} \sqrt{k} \left| \hat{\Phi}_p(\theta) - \Phi_p(\theta) \right| - \left(W_{\Lambda}(C_{p,\theta}) + Z_p(\theta) \right) \geq 3\varepsilon \right\} = 0,
\]

where \(\hat{\Phi}_p = \hat{\Phi}_{p,\Delta} \) and \(W_\Lambda = W_{\Lambda,\Delta} \). In part B below, we will prove weak convergence in \(D[0, \pi/2] \).

Fix \(\Delta \in \{1, \frac{1}{2}, \frac{1}{3}, \ldots\} \) and \(M > 1 \); later on, \(M \) will be taken large. Let \(\mathcal{A}' = \{ A \cap A' : A, A' \in \mathcal{A} \} \), where \(\mathcal{A} = \mathcal{A}(\Delta, M) \) is a Vapnik–Červonenkis (VC) class of sets defined as follows. For \(m = 0, 1, 2, \ldots, \frac{1}{\Delta} - 1 \) define

\[
I_\Delta(m, \theta) = \begin{cases}
[m\Delta x_p(\theta), (m + 1)\Delta x_p(\theta)] & \text{if } \theta \in (0, \pi/4], \\
[0, \infty) & \text{if } \theta = 0 \text{ and } m = 0, \\
\emptyset & \text{if } \theta = 0 \text{ and } m > 0;
\end{cases}
\]

\[
J_\Delta(m) = [y_p(1 + (2^{1/p} - 1)(m + 1)\Delta), y_p(1 + (2^{1/p} - 1)m\Delta)].
\]

Set \(\tilde{A} \) to be the class containing all the following sets:

\[
\bigcup_{m=0}^{\frac{1}{\Delta} - 1} \left\{ (x, y) : x \in I_\Delta(m), \ 0 \leq y \leq x \tan \theta + B_m(x \tan \theta)^{\frac{1}{p}} \right\},
\]

for some \(\theta \in [0, \pi/4] \) and \(B_0, B_1, \ldots, B_{\frac{1}{\Delta} - 1} \in [-1, 1] \),

\[
\bigcup_{m=0}^{\frac{1}{\Delta} - 1} \left\{ (x, y) : x \geq x_p(\theta), \ 0 \leq y \leq y_p(x(1 + K_m)) \right\},
\]

for some \(\theta \in [0, \pi/4] \) and \(K_0, K_1, \ldots, K_{\frac{1}{\Delta} - 1} \in [-\frac{1}{2}, \frac{1}{2}] \),

\[
\left\{ (x, y) : x \leq a \right\}, \ \left\{ (x, y) : y \leq a \right\}, \ \text{and}
\]

\[
\left\{ (x, y) : x \leq a \text{ or } y \leq a \right\}, \ \text{for some } a \in [0, M].
\]
Next define $\tilde{A}_s = \{ A_s : A \in \tilde{A} \}$, where, for $A \in \tilde{A}$, $A_s = \{ (x, y) : (y, x) \in A \}$. Finally define $A = \tilde{A} \cup \tilde{A}_s$.

From $\lim_{t \downarrow 0} d_{1/t}(t) = 0$, $t^{-1} P([0, \infty] \times [0, t]) = \Lambda([0, \infty] \times [0, 1]) = 1$ $(0 < t \leq 1)$, and the homogeneity of λ we obtain

$$\lim_{t \downarrow 0} \sup_{A \in A} \left| t^{-1} P(tA) - \Lambda(A) \right| = 0,$$

for all $\Delta \in \{1, \frac{1}{2}, \frac{1}{3}, \ldots \}$ and $M > 1$. Theorem 3.1 in Einmahl (1997) now yields our basic convergence result: for a special construction (but keeping the same notation) we have

$$\sup_{A \in A} \left| \sqrt{k} \left\{ \frac{n}{k} P_n \left(\frac{k}{n} A \right) - \frac{1}{k} P \left(\frac{k}{n} A \right) \right\} - W_\Lambda(A) \right| \overset{a.s.}{\longrightarrow} 0, \quad n \to \infty.$$

Throughout, we will work within this special construction.

In the sequel we can and will redefine $\hat{C}_{p, \theta}$, $\theta \in [0, \pi/4]$, by

$$\left\{ (x, y) : 0 \leq x \leq \infty, \ y \geq 0, \ y \leq \frac{n}{k} Q_{2n} \left((\tan \theta) \Gamma_{1n} \left(\frac{k}{n} x \right) \right), \right.$$

$$y \leq \frac{n}{k} Q_{2n} \left(\frac{n}{k} y_p \left(\frac{n}{k} \Gamma_{1n} \left(\frac{k}{n} x \right) \right) \right) \right\},$$

where Q_{jn} is the quantile function corresponding to Γ_{jn}, $j = 1, 2$, with $Q_{jn}(y) := 0$ for $0 \leq y \leq (2n)^{-1}$ by convention. Define the marginal tail empirical processes by

$$w_{jn}(x) = \sqrt{k} \left\{ \frac{n}{k} \Gamma_{jn} \left(\frac{k}{n} x \right) - x \right\}, \quad x \geq 0, \ j = 1, 2,$n

and the marginal tail quantile processes by

$$v_{jn}(x) = \sqrt{k} \left\{ \frac{n}{k} Q_{jn} \left(\frac{k}{n} x \right) - x \right\}, \quad x \geq 0, \ j = 1, 2.$$n

Note that w_{jn} and v_{jn} converge almost surely to W_j and $-W_j$, respectively, for $j = 1, 2$, uniformly on $[0, M]$. Observe that for $x \geq 0$,

$$\frac{n}{k} Q_{2n} \left((\tan \theta) \Gamma_{1n} \left(\frac{k}{n} x \right) \right) = x \tan \theta + \frac{z_{n, \theta}(x)}{\sqrt{k}}$$

where

$$z_{n, \theta}(x) = w_{1n}(x) \tan \theta + v_{2n} \left(x \tan \theta + \frac{w_{1n}(x)}{\sqrt{k}} \tan \theta \right).$$
Also

\begin{equation}
\frac{2}{k} Q_{2n} \left(\frac{k}{n} y_p \left(\frac{k}{n} \Gamma_{1n} \left(\frac{k}{n} x \right) \right) \right)
= y_p \left(x + \frac{w_{1n}(x)}{\sqrt{k}} \right) + \frac{1}{\sqrt{k}} v_{2n} \left(y_p \left(x + \frac{w_{1n}(x)}{\sqrt{k}} \right) \right).
\end{equation}

We will treat the terms \(V_{n,p}(\theta) \), \(Y_{n,p}(\theta) \), and \(r_{n,p}(\theta) \) from (3.4) in paragraphs A.1–3 respectively.

A.1. First we deal with \(V_{n,p}(\theta) \) in (3.4). Set

\[\hat{C}_{p,\theta,1} = \{(x, y) \in \hat{C}_{p,\theta} : x < x_p(\theta) \} \quad \text{and} \quad \hat{C}_{p,\theta,2} = \hat{C}_{p,\theta} \setminus \hat{C}_{p,\theta,1}. \]

We focus on both sets separately when considering \(V_{n,p}(\theta) \). For \(p = \infty \), \(\hat{C}_{p,\theta,1} \) has been dealt with in Einmahl et al. (2001). We will omit the small modifications that are needed for general \(p \in [1, \infty] \). However for \(\hat{C}_{p,\theta,2} \), the case \(p = \infty \) is trivial compared to \(p \in [1, \infty) \). Therefore we will consider

\[V_{n,\infty,2}(\theta) := \sqrt{k} \left\{ \frac{n}{k} P_n \left(\frac{k}{n} \hat{C}_{p,\theta,2} \right) - \frac{n}{k} P \left(\frac{k}{n} \hat{C}_{p,\theta,2} \right) \right\} \]

in detail now.

Recall \(z_{n,\theta}(x) \) in (6.5) and define \(s_n(x) \) through

\[y_p \left(x + \frac{w_{1n}(x)}{\sqrt{k}} \right) + \frac{1}{\sqrt{k}} v_{2n} \left(y_p \left(x + \frac{w_{1n}(x)}{\sqrt{k}} \right) \right) = y_p(x) \left(1 + \frac{s_n(x)}{\sqrt{k}} \right). \]

Further, put

\[W_{m,\Delta,\theta}^+ = \sup_{x \in J_\Delta(m), x \geq x_p(\theta)} \left\{ s_n(x) \wedge \left(\frac{z_{n,\theta}(x)}{y_p(x)} + \sqrt{k} \left(\frac{x \tan \theta}{y_p(x)} - 1 \right) \right) \right\}, \]

\[W_{m,\Delta,\theta}^- = \inf_{x \in J_\Delta(m), x \geq x_p(\theta)} \left\{ s_n(x) \wedge \left(\frac{z_{n,\theta}(x)}{y_p(x)} + \sqrt{k} \left(\frac{x \tan \theta}{y_p(x)} - 1 \right) \right) \right\}. \]

Set, for either choice of sign,

\[R_{m,\Delta,\theta}^\pm = \left\{ (x, y) : x \in J_\Delta(m), x \geq x_p(\theta), 0 \leq y \leq y_p(x) \left(1 + \frac{W_{m,\Delta,\theta}^\pm}{\sqrt{k}} \right) \right\}, \]

and

\[N_{\Delta,\theta}^\pm = \bigcup_{m=0}^{\frac{\Delta}{2} - 1} R_{m,\Delta,\theta}^\pm. \]
We have
\begin{equation}
(6.7) \quad V_{n,p,2}(\theta) \leq \sqrt{k} \left\{ \frac{\gamma}{n} P_n \left(\frac{k}{n} N_{\Delta,\theta}^+ \right) - \frac{\gamma}{n} P \left(\frac{k}{n} N_{\Delta,\theta}^+ \right) \right\} + \sqrt{k} \frac{n}{\kappa} P \left(\frac{k}{n} N_{\Delta,\theta}^+ \setminus N_{\Delta,\theta}^- \right)
\end{equation}

\begin{equation}
=: V_{n,p,2}^+(\theta) + r_{n,p,2}(\theta);
\end{equation}

similarly
\begin{equation}
(6.8) \quad V_{n,p,2}(\theta) \geq \sqrt{k} \left\{ \frac{\gamma}{n} P_n \left(\frac{k}{n} N_{\Delta,\theta}^+ \right) - \frac{\gamma}{n} P \left(\frac{k}{n} N_{\Delta,\theta}^+ \right) \right\} - \sqrt{k} \frac{n}{\kappa} P \left(\frac{k}{n} N_{\Delta,\theta}^+ \setminus N_{\Delta,\theta}^- \right)
\end{equation}

\begin{equation}
=: V_{n,p,2}^-(\theta) - r_{n,p,2}(\theta).
\end{equation}

We first deal with \(r_{n,p,2}(\theta) \) and next with \(V_{n,p,2}^\pm(\theta) \). Using (3.6) and well-known results on tail empirical and tail quantile processes (see, e.g., Csörgő and Horváth (1993) and Einmahl (1997)) we can show that, as \(n \to \infty \),
\begin{equation}
(6.9) \quad \sup_{\theta \in [0, \pi/4]} \left| r_{n,p,2}(\theta) - \sqrt{k} \Lambda \left(N_{\Delta,\theta}^+ \setminus N_{\Delta,\theta}^- \right) \right| \overset{P}{\to} 0.
\end{equation}

Now consider
\begin{equation}
\sup_{\theta \in [0, \pi/4]} \sqrt{k} \Lambda \left(N_{\Delta,\theta}^+ \setminus N_{\Delta,\theta}^- \right).
\end{equation}

Set \(c_m = \gamma_p (1 + (2^{1/p} - 1)m\Delta) \vee x_p(\theta) \) and note that
\begin{equation}
\sqrt{k} \Lambda \left(N_{\Delta,\theta}^+ \setminus N_{\Delta,\theta}^- \right) \leq \sqrt{k} \sum_{m=0}^{\lambda - 1} \int_{c_m}^{c_{m+1}} \int_{W_{m,\Delta,\theta}^+ \setminus \sqrt{k}} y_p(x) (1 + W_{m,\Delta,\theta}^+/\sqrt{k}) \lambda(x, y) \, dy \, dx.
\end{equation}

Setting \(y = y_p(x)(1 + z/\sqrt{k}) \), we can rewrite the right-hand side of the previous display as
\begin{align*}
\sum_{m=0}^{\lambda - 1} \int_{c_m}^{c_{m+1}} y_p(x) \int_{W_{m,\Delta,\theta}^+} \lambda \left(x, y_p(x) \left(1 + \frac{z}{\sqrt{k}} \right) \right) dz \, dx \\
= \sum_{m=0}^{\lambda - 1} \int_{c_m}^{c_{m+1}} \int_{W_{m,\Delta,\theta}^+} \frac{1}{1 + \frac{x}{\sqrt{k}}} \lambda \left(\frac{x^p - 1}{1 + \frac{z}{\sqrt{k}}}, 1 \right) dz \, dx \\
= \sum_{m=0}^{\lambda - 1} \int_{W_{m,\Delta,\theta}^+} \int_{c_m}^{c_{m+1}} \frac{1}{1 + \frac{z}{\sqrt{k}}} \lambda \left(\frac{x^p - 1}{1 + \frac{z}{\sqrt{k}}}, 1 \right) dz \, dx \\
= \sum_{m=0}^{\lambda - 1} \int_{W_{m,\Delta,\theta}^+} \int_{c_m}^{c_{m+1}} \frac{(y_p(x))^p}{1 + \frac{z}{\sqrt{k}}} \lambda \left(\frac{1 + \frac{z}{\sqrt{k}}}{1 + \frac{(1 + \frac{z}{\sqrt{k}})^p}{1 + \frac{z}{\sqrt{k}}}}, 1 \right) dz \, dx.
\end{align*}
The integrand is bounded by \(\lambda(v, 1) \), whence

\[
\sqrt{k} \Lambda \left(N_{\Delta,\theta}^+ \setminus N_{\Delta,\theta}^- \right) \leq \max_{m \in \{0, 1, \ldots, \frac{\Delta}{2} - 1\}} \left(W_{m,\Delta,\theta}^+ - W_{m,\Delta,\theta}^- \right)
\]

\[
\frac{1}{\frac{\Delta}{2} - 1} \sum_{m=0}^{\frac{\Delta}{2} - 1} \frac{(\frac{2m}{\Delta} - 1)^{1/p}}{1 + W_{m,\Delta,\theta}^+} \lambda(v, 1) dv.
\]

We have

\[
s_n(x) = \frac{1}{y_p(x)} \sqrt{\frac{k}{p}} \left\{ y_p \left(x + \frac{w_{1n}(x)}{\sqrt{k}} \right) - y_p(x) \right\}
\]

\[
+ \frac{1}{y_p(x)} v_{2n} \left(y_p \left(x + \frac{w_{1n}(x)}{\sqrt{k}} \right) \right).
\]

Now from the behavior of \(s_n \) it readily follows that \(\sup_{x \in [2^{1/p}, \infty)} |s_n(x)| = O_p(1) \). Hence the right-hand side of (6.10) can be bounded, with probability tending to one, by

\[
3 \max_{m \in \{0, 1, \ldots, \frac{\Delta}{2} - 1\}} \left(W_{m,\Delta,\theta}^+ - W_{m,\Delta,\theta}^- \right) \int_0^{\infty} \lambda(v, 1) dv.
\]

As \(\Lambda \) has uniform marginals, necessarily \(\int_0^{\infty} \lambda(v, 1) dv \leq 1 \). So in summary we have for fixed \(\Delta \) and with probability tending to one,

\[
\sup_{\theta \in [0, \pi/4]} \sqrt{k} \Lambda \left(N_{\Delta,\theta}^+ \setminus N_{\Delta,\theta}^- \right) \leq 3 \\sup_{\theta \in [0, \pi/4]} \max_{m \in \{0, 1, \ldots, \frac{\Delta}{2} - 1\}} \left(W_{m,\Delta,\theta}^+ - W_{m,\Delta,\theta}^- \right).
\]

From the behavior of \(s_n \) it follows that for any \(\delta > 0 \),

\[
\lim_{\Delta \to 0} \limsup_{n \to \infty} \Pr \left\{ \sup_{\theta \in [0, \pi/4]} \max_{m \in \{0, 1, \ldots, \frac{\Delta}{2} - 1\}} \left(W_{m,\Delta,\theta}^+ - W_{m,\Delta,\theta}^- \right) \geq \delta \right\} = 0,
\]

and hence, by (6.9),

\[
\lim_{\Delta \to 0} \limsup_{n \to \infty} \Pr \left\{ \sup_{\theta \in [0, \pi/4]} r_{n,p,2}(\theta) \geq \frac{\varepsilon}{2} \right\} = 0.
\]
Next consider $V_{n,p,2}^{\pm}(\theta)$, for either choice of sign. Since
\[
\lim_{n \to \infty} \Pr\{N_{\Delta,\theta}^{\pm} \in \tilde{A}, \text{ for all } \theta \in [0, \pi/4]\} = 1,
\]
we have, using (6.3),
\[
(6.14) \sup_{\theta \in [0, \pi/4]} \left| V_{n,p,2}^{\pm}(\theta) - W_\Lambda \left(N_{\Delta,\theta}^{\pm} \right) \right| \overset{p}{\to} 0, \quad n \to \infty.
\]
But with similar calculations as for (6.12) we obtain
\[
\Lambda \left(N_{\Delta,\theta}^{\pm} \triangle C_{p,\theta,2} \right) \leq \frac{3}{\sqrt{k}} \max_{m \in \{0, 1, \ldots, \frac{1}{\Delta} - 1\}} \left| W_{m,\Delta,\theta}^{\pm} \right|
\]
with $C_{p,\theta,2} = \{(x, y) \in C_{p,\theta} : x \geq x_p(\theta)\}$. Since
\[
\sup_{\theta \in [0, \pi/4]} \max_{m \in \{0, 1, \ldots, \frac{1}{\Delta} - 1\}} \left| W_{m,\Delta,\theta}^{\pm} \right| = O_p(1), \quad n \to \infty,
\]
we have for any $\Delta \in \{1, \frac{1}{2}, \frac{1}{3}, \ldots\}$,
\[
\sup_{\theta \in [0, \pi/4]} \Lambda \left(N_{\Delta,\theta}^{\pm} \triangle C_{p,\theta,2} \right) \overset{p}{\to} 0, \quad n \to \infty.
\]
Hence, since W_Λ is uniformly continuous on \mathcal{A} with respect to the pseudo-metric $\Lambda(A \triangle A')$ for $A, A' \in \mathcal{A}$,
\[
(6.15) \sup_{\theta \in [0, \pi/4]} \left| W_\Lambda \left(N_{\Delta,\theta}^{\pm} \right) - W_\Lambda \left(C_{p,\theta,2} \right) \right| \overset{p}{\to} 0, \quad n \to \infty.
\]
Combining (6.7), (6.8), (6.13), (6.14) and (6.15), we now have proven
\[
\lim_{\Delta \downarrow 0} \limsup_{n \to \infty} \Pr \left\{ \sup_{\theta \in [0, \pi/4]} \left| V_{n,p,2}(\theta) - W_\Lambda \left(C_{p,\theta,2} \right) \right| \geq \varepsilon \right\} = 0.
\]
This, in conjunction with the aforementioned result for $\hat{C}_{p,\theta,1}$, yields
\[
(6.16) \lim_{\Delta \downarrow 0} \limsup_{n \to \infty} \Pr \left\{ \sup_{\theta \in [0, \pi/4]} \left| V_{n,p}(\theta) - W_\Lambda \left(C_{p,\theta} \right) \right| \geq 2\varepsilon \right\} = 0.
\]
A.2. Next we consider $Y_{n,p}(\theta) = \sqrt{k} \{ \Lambda(\hat{C}_{p,\theta}) - \Lambda(C_{p,\theta}) \}$. We will show that
\[
(6.17) \sup_{\theta \in [0, \pi/4]} \left| Y_{n,p}(\theta) - Z_{p}(\theta) \right| \overset{p}{\to} 0, \quad n \to \infty.
\]
Again, we will only consider $\hat{C}_{p,\theta,2}$. The other part, $\hat{C}_{p,\theta,1}$, can be handled as in Einmahl et al. (2001); only minor modifications are needed.

So we will need to show that, as $n \to \infty$,

$$
\sup_{\theta \in [0, \pi/4]} \left| \frac{1}{\sqrt{k}} \{ \Lambda(\hat{C}_{p,\theta,2}) - \Lambda(C_{p,\theta,2}) \} \right|
$$

(6.18)

$$
- \int_{x_p(\theta)}^{\infty} \lambda(x, y_p(x)) \{ W_1(x)y'_p(x) - W_2(y_p(x)) \} \, dx \xrightarrow{p} 0.
$$

Observe, with $z_{n,\theta}$ and s_n as in (6.5) and (6.11), respectively, that

$$
\sqrt{k} \{ \Lambda(\hat{C}_{p,\theta,2}) - \Lambda(C_{p,\theta,2}) \} = \sqrt{k} \int_{x_p(\theta)}^{\infty} y_p(x) \lambda(x, y) \, dy \, dx,
$$

(6.19)

where

$$
\bar{s}_n(x) = s_n(x) \Lambda \left\{ \frac{z_{n,\theta}(x)}{y_p(x)} + \sqrt{k} \left(\frac{x \tan \theta}{y_p(x)} - 1 \right) \right\}.
$$

Since for fixed $x > x_p(\theta)$ the expression $\sqrt{k} \left(\frac{x \tan \theta}{y_p(x)} - 1 \right)$ tends to infinity, it follows that we can (and will) replace $\bar{s}_n(x)$ by $s_n(x)$ in the integral on the right-hand side of (6.19). Write

$$
s(x) = \frac{1}{y_p(x)} \{ W_1(x)y'_p(x) - W_2(y_p(x)) \}.
$$

Now

$$
\sup_{\theta \in [0, \pi/4]} \left| \frac{1}{\sqrt{k}} \int_{x_p(\theta)}^{\infty} y_p(x) \lambda(x, y) \, dy \, dx \right|
$$

$$
- \int_{x_p(\theta)}^{\infty} y_p(x) \lambda(x, y_p(x)) \, s(x) \, dx \right| \leq \sup_{\theta \in [0, \pi/4]} \left| \sqrt{k} \int_{x_p(\theta)}^{\infty} y_p(x) \lambda(x, y) \, dy \, dx \right|
$$

$$
+ \sqrt{k} \int_{x_p(\theta)}^{\infty} y_p(x) \lambda(x, y) \, dy \, dx - \int_{x_p(\theta)}^{\infty} y_p(x) \lambda(x, y_p(x)) \, s(x) \, dx \right|.
$$
\[
\begin{align*}
&\leq \sup_{\theta \in [0, \pi/4]} \left| \int_{x_{\rho}}^{\infty} \int_{s(x)}^{s_n(x)} y_{p}(x) \lambda \left(x, y_{p}(x) \left(1 + \frac{z}{\sqrt{k}} \right) \right) \, dz \, dx \right| \\
&\quad + \sup_{\theta \in [0, \pi/4]} \left| \int_{x_{\rho}}^{\infty} \int_{0}^{s(x)} y_{p}(x) \left[\lambda \left(x, y_{p}(x) \left(1 + \frac{z}{\sqrt{k}} \right) \right) - \lambda (x, y_{p}(x)) \right] \, dz \, dx \right| \\
&=: T_1 + T_2.
\end{align*}
\]

Since \(\lambda(v, 1) = v^{-1} \lambda(1, 1/v) \) and by continuity of \(\lambda \) on \([0, \infty)^2 \setminus \{(0, 0)\}\), we have \(\lim_{v \to \infty} \lambda(v, 1) = 0 \) and thus \(\sup_{v \geq 0} \lambda(v, 1) < \infty \). For some (large) \(M > 2 \)
\[
T_1 \leq \sup_{\theta \in [0, \pi/4]} \left| \int_{x_{\rho}}^{M \vee x_{\rho}(\theta)} \int_{x_{\rho}(\theta)}^{s_n(x)} \frac{1}{1 + \frac{z}{\sqrt{k}}} \lambda \left(\left(x_{p}^p - 1 \right)^{1/p}, 1 + \frac{z}{\sqrt{k}} \right) \, dz \, dx \right|
\]

Define
\[
\tilde{s}_n(x) = \frac{y_{p}(x)}{y_{p}(x)} w_{1n}(x) + \frac{1}{y_{p}(x)} v_{2n} \left(y_{p} \left(x + \frac{w_{1n}(x)}{\sqrt{k}} \right) \right).
\]

Then it follows from the mean-value theorem and the almost sure convergence of \(w_{1n} \) to \(W_1 \), uniformly on \([0, M] \), that
\[
\sup_{2^{1/p} \leq x \leq M} |s_n(x) - s_n(x)| \overset{p}{\to} 0, \quad n \to \infty.
\]

It also follows easily that
\[
\sup_{2^{1/p} \leq x \leq M} |\tilde{s}_n(x) - s(x)| \overset{p}{\to} 0, \quad n \to \infty,
\]
whence (6.20). We have with probability tending to one,
\[
T_{1,1} \leq 2M \sup_{v \geq 0} \lambda(v, 1) \sup_{2^{1/p} \leq x \leq M} |s_n(x) - s(x)|,
\]
which, because of (6.20), tends to 0 in probability (for any \(M > 2 \)). Let \(\kappa > 0 \) and set \(\delta = \sqrt{\kappa}/2 \). Using again (6.20) and the behavior of \(W_1 \) near
infinity, we see that for large enough M and with probability tending to one,

$$T_{1,2} \leq \int_{M}^{\infty} \int_{-W_{2}(1)-\delta}^{W_{2}(1)+\delta} \lambda \left((x^{p} - 1)^{1/p}, 1 + \frac{z}{\sqrt{k}}\right) \frac{1}{1 + \frac{z}{\sqrt{k}}} dx dz$$

$$\leq \int_{-W_{2}(1)-\delta}^{W_{2}(1)+\delta} \int_{M}^{\infty} \lambda \left((x^{p} - 1)^{1/p}, 1 + \frac{z}{\sqrt{k}}\right) dx dz$$

$$\leq \int_{-W_{2}(1)-\delta}^{W_{2}(1)+\delta} \delta dz = 2\delta^2 = \kappa/2,$$

whence

(6.21) $$\lim_{M \to \infty} \limsup_{n \to \infty} \Pr\{T_{1} \geq \kappa\} = 0.$$

Now consider T_{2}. Write $\|s\| = \sup_{2^{1/p} \leq x \leq \infty} |s(x)|$ and

$$D_{n} = \sup_{x \geq 2^{1/p}, -\|s\| \leq z \leq \|s\|} \left| \lambda \left((x^{p} - 1)^{1/p}, 1 + \frac{z}{\sqrt{k}}\right) - \lambda \left((x^{p} - 1)^{1/p}, 1\right) \right|.$$

For $M > 2^{1/p}$,

$$T_{2} = \sup_{\theta \in [0, \pi/4]} \left| \int_{\theta_{p}(\theta)}^{\infty} \int_{0}^{s(x)} \lambda \left((x^{p} - 1)^{1/p}, 1 + \frac{z}{\sqrt{k}}\right) - \lambda \left((x^{p} - 1)^{1/p}, 1\right) \right| dz dx$$

$$\leq \int_{2^{1/p}}^{M} \int_{-\|s\|}^{\|s\|} D_{n} dz dx$$

$$+ \int_{M}^{\infty} \int_{-\|s\|}^{\|s\|} \left\{ \lambda \left((x^{p} - 1)^{1/p}, 1 + \frac{z}{\sqrt{k}}\right) + \lambda \left((x^{p} - 1)^{1/p}, 1\right) \right\} dz dx.$$

Clearly, as $n \to \infty$,

$$\int_{2^{1/p}}^{M} \int_{-\|s\|}^{\|s\|} D_{n} dz dx \leq 2M\|s\|D_{n} \overset{p}{\to} 0,$$
and also, with probability tending to one,
\[
\int_M \int_{-||s||}^\infty \left\{ \lambda \left((x^p - 1)^{1/p}, 1 + \frac{z}{\sqrt{k}} \right) + \lambda \left((x^p - 1)^{1/p}, 1 \right) \right\} \, dz \, dx \\
= \int_M \int_{-||s||}^\infty \frac{1}{1 + \frac{z}{\sqrt{k}}} \lambda \left((x^p - 1)^{1/p}, 1 + \frac{z}{\sqrt{k}} \right) \, dz \, dx \\
+ \int_M \int_{-||s||}^\infty \lambda \left((x^p - 1)^{1/p}, 1 \right) \, dz \, dx \\
\leq \int_{-||s||}^{||s||} \int_{\frac{1}{2}(M^p - 1)^{1/p}}^\infty \lambda(v, 1) \, dv \, dz + \int_{-||s||}^{||s||} \int_{\frac{1}{2}(M^p - 1)^{1/p}}^\infty \lambda(u, 1) \, du \, dz \\
\leq 4||s|| \int_{\frac{1}{2}(M^p - 1)^{1/p}}^\infty \lambda(v, 1) \, dv.
\]
As a result,
\[(6.22) \quad \lim_{M \to \infty} \limsup_{n \to \infty} \Pr\{T_2 \geq \kappa\} = 0.\]

Combining (6.21) and (6.22) yields (6.18), which, in conjunction with the aforementioned result for \(\Lambda(C_p, \theta, 1)\), yields (6.17).

A.3. We now consider \(r_{n,p}(\theta)\) in (3.4). From (6.4), (6.6), (3.6), and the behavior of tail empirical and tail quantile processes, it follows that
\[(6.23) \quad \sup_{\theta \in [0, \pi/4]} |r_{n,p}(\theta)| \overset{p}{\to} 0 \quad \text{as } n \to \infty.\]
Combining (6.16), (6.17) and (6.23) yields (6.1). So actually we proved the theorem for \(\theta \in [0, \pi/4]\).

B. Observe that, using a symmetry argument, it rather easily follows from (6.1) with \(\theta = \pi/4\) that
\[
\lim_{\Delta \downarrow 0} \limsup_{n \to \infty} \Pr \left[\left| \sqrt{k} \{ \Phi_p(\pi/2) - \Phi_p(\pi/2) \} \right. \right. \\
- \left. \left. \{ W_{\Lambda}(C_p, \pi/2) + Z_p(\pi/2) \} \right| \geq 6\varepsilon \right] = 0.
\]
Observe in particular that the first term of \(Z_{c,p}(\pi/4)\) cancels out with the similar term coming from the mirror image (with respect to the line \(y = x\)) of \(C_p, \pi/4\). By a similar symmetry argument, observing that for \(\theta \in (\pi/4, \pi/2)\)
(the closure of) $C_{p,\frac{\pi}{4}} \setminus C_{p,\theta}$ is the mirror image of $C_{p,\frac{\pi}{4}-\theta}$, it follows that

\begin{equation}
\lim_{\Delta \downarrow 0} \limsup_{n \to \infty} \Pr \left[\sup_{\theta \in \left(\pi/4, \pi/2\right]} \left| \sqrt{k} \left\{ \hat{\Phi}_p(\theta) - \Phi_p(\theta) \right\} - \left\{ W_\Lambda(C_{p,\theta}) + Z_p(\theta) \right\} \right| \geq 9\varepsilon \right] = 0.
\end{equation}

Combining (6.1) and (6.24) completes the proof. \hfill \Box

Proof of Theorem 3.2. The proof of this theorem follows in the same way as that of Theorem 3.1; only small adaptations are needed, including the obvious adaptation of the VC class \mathcal{A}. The main difference between both results is the weaker condition (3.8) which allows Λ to put mass on $\{\infty\} \times [0, \infty)$ or $[0, \infty) \times \{\infty\}$; on the other hand θ is bounded away from 0 and $\pi/2$ in the present result. In the limit process, the term $W_\Lambda(C_{p,\theta})$ stays the same as in Theorem 3.1 but with weaker conditions on Λ; the term $Z_p(\theta) = Z_{c,p}(\theta) + Z_d(\theta)$ may now be different from that in Theorem 3.1, since there $Z_d = 0$, which might not be the case here. Therefore, we confine ourselves to explaining how condition (3.8) is set to use and to the adaptation of that part of the proof that deals with Z_d.

Condition (3.8) implies that for some sequence T_n

\begin{equation}
\sqrt{k}D_{\ell_n}(k/n) + \sqrt{k}/T_n + 1/T_n^{1/2} \to 0, \quad n \to \infty.
\end{equation}

We focus on the bias term $\sup_{\theta \in [\eta, \pi/4]} |r_{n,p}(\theta)|$, see (3.4). For $\theta \in [\eta, \pi/4]$, write $\hat{C}_{p,\theta} = C_1 \cup C_2 \cup C_3$, where

\begin{align*}
C_1 &= \hat{C}_{p,\theta} \cap ([0, T_n] \times [0, \infty]), \\
C_2 &= \hat{C}_{p,\theta} \cap ([T_n, \infty] \times \left[0, \frac{n}{k}Q_{2n}\left(\frac{k}{n}\right)\right]), \\
C_3 &= \hat{C}_{p,\theta} \cap ([T_n, \infty] \times \left[\frac{n}{k}Q_{2n}\left(\frac{k}{n}\right), \infty\right)).
\end{align*}

By the triangle inequality the bias term can be split up into three terms, based on C_1, C_2, and C_3, respectively. The first one of these terms converges to zero in probability, because the first term in (6.25) tends to 0. Using

$$
\frac{n}{k}P\left([0, \infty] \times \left[0, Q_{2n}\left(\frac{k}{n}\right)\right]\right) = \frac{n}{k}Q_{2n}\left(\frac{k}{n}\right) = \Lambda\left([0, \infty] \times \left[0, \frac{n}{k}Q_{2n}\left(\frac{k}{n}\right)\right]\right),
$$

the second one can be handled similarly. For the third term we replace the difference in the definition of $r_{n,p}(\theta)$ by a sum and deal with both terms.
obtained from this sum separately. Using the behavior of tail empirical and tail quantile processes we obtain the convergence of both these terms from the convergence to 0 of the second and third term in (6.25).

Recall that $Z_d(\theta) = -\Phi_p(\{0\})W_2(1)$. We have to show the following analogue of (6.18):

\[
(6.26) \quad \sup_{\theta \in [\eta, \pi/4]} \left| \sqrt{k} \{ \Lambda(\hat{C}_p,\theta,2) - \Lambda(C_p,\theta,2) \} - \int^{\infty}_{x_p(\theta)} \lambda(x, y_p(x)) \{ W_1(x) y_p(x) - W_2(y_p(x)) \} \, dx + \Phi_p(\{0\})W_2(1) \right| \overset{P}{\rightarrow} 0.
\]

In view of the proof of (6.18), the proof of (6.26) is complete if we show that, as $n \rightarrow \infty$,

\[
\sup_{\theta \in [\eta, \pi/4]} |\Phi_p(\{0\})v_{2n}(1) + \Phi_p(\{0\})W_2(1)| = \Phi_p(\{0\})|v_{2n}(1) + W_2(1)| \overset{P}{\rightarrow} 0.
\]

But this immediately follows from (6.3).

Proof of Theorem 3.3. The proof of Theorem 3.3 goes along the same lines of those of Theorems 3.1–3.2. Observe that we only have to consider the process $\sqrt{k}(\Phi_p - \Phi_p)$ on $[\eta_n, \pi/2 - \eta_n]$ and at $\pi/2$, since on $[0, \eta_n)$ and $(\pi/2 - \eta_n, \pi/2)$ the process is constant and the limit process is continuous on $[0, \pi/2)$. Then we are in a similar situation as in Theorem 3.2, but now the interval under consideration depends on n and converges to $(0, \pi/2)$.

The essential difference lies in the VC class \mathcal{A}. If we would adapt the VC class in the proof of Theorem 3.1 in the obvious way, i.e. restrict θ to $[\eta_n, \pi/2 - \eta_n]$, the VC class would depend on n and hence Theorem 3.1 in Einmahl (1997) would not be applicable. We will, however, consider the VC class that is obtained from \mathcal{A} of our Theorem 3.1 by omitting $\theta = 0$. Of course, (6.2) does not necessarily hold for this new class, but it can be shown to hold when we replace $\frac{2}{k}P(\frac{k}{n} \cdot)$ by $P(n)$, the measure that is obtained from $\frac{2}{k}P(\frac{k}{n} \cdot)$ by projecting the probability mass of

\[
(6.27) \quad \frac{k}{n}([T_n, n/k] \times ([0, 1 - k^{-1/4}] \cup [1 + k^{-1/4}, 3]))
\]

on the axis $\{\infty\} \times [0, \infty)$, and by projecting the probability mass of

\[
(6.28) \quad \frac{k}{n}(((0, 1 - k^{-1/4}] \cup [1 + k^{-1/4}, 3]) \times [T_n, n/k])
\]
on the axis \([0, \infty) \times \{\infty\}\); here \(T_n \geq 2/\eta_n\) is a sequence of \(T\)s for which (3.11) holds. The points \(\frac{m}{n}(U_{i1}, U_{i2})\), \(i = 1, \ldots, n\), in the region (6.27) or (6.28) are projected on \(\{\infty\} \times [0, \infty)\) or \([0, \infty) \times \{\infty\}\) in a similar way, i.e. are replaced by \((\infty, \frac{m}{n}U_{i2})\) or \((\frac{m}{n}U_{i1}, \infty)\), respectively. It is easily seen that, with probability tending to one, this projection does not change the processes involved in the result. \(\square\)

7. Proofs of Theorems 4.1–4.2.

Proof of Theorem 4.1. Equation (4.9) is an immediate consequence of (4.8), so we focus on (4.8).

Similarly it is immediate from Theorem 3.1 that, in \(D[0, \pi/2]\) and as \(n \to \infty\),

\[
\sqrt{k}(\tilde{Q}_p - Q_p) \overset{d}{\to} \frac{\Phi_p(\pi/2)\alpha_p - \alpha_p(\pi/2)\Phi_p}{\Phi_p^2(\pi/2)} = \beta_p.
\]

Recall the definition of \(f\) in (4.2) and observe that \(\sup_{0 \leq \theta \leq \pi/2} |f(\theta)| = 1\).

Put \(A_{in} = f(\Theta_{in})\) for \(i \in I_n\). By (7.1) and since \(Q_p(\{\pi/4\}) < 1\), necessarily \(\Pr[\exists i \in I_n : A_{in} \neq 0] \to 1\) as \(n \to \infty\).

Consider the random function

\[
\Psi_n(\mu) = \frac{1}{N_n} \sum_{i \in I_n} \frac{A_{in}}{1 + \mu A_{in}}, \quad -1 < \mu < 1.
\]

The derivative of \(\Psi_n\) is

\[
\Psi_n'(\mu) = \frac{1}{N_n} \sum_{i \in I_n} \frac{A_{in}^2}{(1 + \mu A_{in})^2}.
\]

Hence, on the event \(\{\exists i \in I_n : A_{in} \neq 0\}\), the function \(\Psi_n\) is decreasing and there can be at most one \(\tilde{\mu}_n \in (-1, 1)\) with \(\Psi_n(\tilde{\mu}_n) = 0\).

If \(g : [0, \pi/2] \to \mathbb{R}\) is absolutely continuous with Radon-Nikodym derivative \(g'\), then by Fubini’s theorem,

\[
\frac{1}{N_n} \sum_{i \in I_n} g(\Theta_{in}) = \int_{[0, \pi/2]} g(\theta)\tilde{Q}_p(d\theta)
= g(\pi/2) - \int_{[0, \pi/2]} \int_{\theta}^{\pi/2} g'(\vartheta) d\vartheta \tilde{Q}_p(d\theta)
= g(\pi/2) - \int_{0}^{\pi/2} \tilde{Q}_p(\vartheta)g'(\vartheta) d\vartheta.
\]
Since similarly \(\int g \, dQ_p = g(\pi/2) - \int_0^{\pi/2} Q_p(\theta)g'(\theta) \, d\theta \), by (7.1),
\[
\sqrt{k} \left(\frac{1}{Nn} \sum_{i \in I_n} g(\Theta_{in}) - \int_{[0,\pi/2]} g \, dQ_p \right) = - \int_0^{\pi/2} \sqrt{k}(\hat{Q}_p(\theta) - Q_p(\theta)) \, g'(\theta) \, d\theta \to - \int_0^1 \beta_p(\theta) g'(\theta) \, d\theta, \quad n \to \infty.
\]

(7.2)

Here we used the fact that the linear functional sending \(x \in D[0, \pi/2] \) to \(\int_0^{\pi/2} x(\theta) \, g'(\theta) \, d\theta \) is bounded.

Since \(1/(1 + x) = 1 - x + x^2/(1 + x) \) for \(x \neq -1 \), we have
\[
\Psi_n(\mu) = \frac{1}{Nn} \sum_{i \in I_n} A_{in} \left(1 - \mu A_{in} + \frac{\mu^2 A_{in}^2}{1 + \mu A_{in}} \right) = \frac{1}{Nn} \sum_{i \in I_n} A_{in} - \mu \frac{1}{Nn} \sum_{i \in I_n} A_{in}^2 + \mu^2 \frac{1}{Nn} \sum_{i \in I_n} A_{in}^3.
\]

Define
\[
\bar{\mu}_n = \frac{1}{Nn} \sum_{i \in I_n} A_{in} / \frac{1}{Nn} \sum_{i \in I_n} A_{in}^2 = \int f \, d\hat{Q}_p / \int f^2 \, d\hat{Q}_p.
\]

Since \(\int f \, dQ_p = 0 \) and \(\int f^2 \, dQ_p > 0 \), by (7.2), \(\bar{\mu}_n = O_p(k^{-1/2}) \) as \(n \to \infty \).

We have
\[
\Psi_n(0) = \frac{1}{Nn} \sum_{i \in I_n} A_{in}
\]
as well as
\[
\Psi_n(2\bar{\mu}_n) = - \frac{1}{Nn} \sum_{i \in I_n} A_{in} + 4\bar{\mu}_n^2 \frac{1}{Nn} \sum_{i \in I_n} A_{in}^3 / (1 + 2\bar{\mu}_n A_{in}) \cdot \left(1 - 4\bar{\mu}_n \frac{\sum_{i \in I_n} A_{in}^3 / (1 + 2\bar{\mu}_n A_{in})}{\sum_{i \in I_n} A_{in}^2} \right).
\]

Because \(\bar{\mu}_n = o_p(1) \), \(|A_{in}| \leq 1 \) and \(Nn^{-1} \sum_{i \in I_n} A_{in}^2 \overset{p}{\to} \int f^2 \, dQ_p > 0 \), we obtain
\[
\lim_{n \to \infty} \Pr[|2\bar{\mu}_n| < 1, \Psi_n(0)\Psi_n(2\bar{\mu}_n) \leq 0] = 1.
\]

Since moreover, with probability tending to one, \(\Psi_n \) is continuous and decreasing,
\[
\lim_{n \to \infty} \Pr[\text{there exists a unique } \bar{\mu}_n \in (-1, 1) \text{ such that } \Psi_n(\bar{\mu}_n) = 0] = 1.
\]
Also, \(\Pr(|\tilde{\mu}_n| \leq 2|\tilde{\mu}_n|) \to 1 \) and thus \(\tilde{\mu}_n = O_p(k^{-1/2}) \) as \(n \to \infty \). We have
\[
0 = \Psi_n(\tilde{\mu}_n) = \frac{1}{N_n} \sum_{i \in I_n} A_{in} - \tilde{\mu}_n \frac{1}{N_n} \sum_{i \in I_n} A_{in}^2 + \tilde{\mu}_n^2 \frac{1}{N_n} \sum_{i \in I_n} A_{in}^3, \\
whence
\]
\[
\tilde{\mu}_n = \bar{\mu}_n + \tilde{\mu}_n^2 \frac{\sum_{i \in I_n} A_{in}^3/(1 + \tilde{\mu}_n A_{in})}{\sum_{i \in I_n} A_{in}^2} = \bar{\mu}_n + O_p(k^{-1}), \quad n \to \infty.
\]
Define
\[
\tilde{\mu}_n := \frac{1}{N_n} \sum_{i \in I_n} A_{in} / \int_{[0,\pi/2]} f^2(\vartheta)Q(\vartheta) \, d\vartheta.
\]
Since \(N_n^{-1} \sum_i A_{in} = O_p(k^{-1/2}) \) and \(N_n^{-1} \sum_i A_{in}^2 = \int f^2 \, dQ_p + O_p(k^{-1/2}) \), we have \(\bar{\mu}_n = \tilde{\mu}_n + O_p(k^{-1}) \) and thus
\[
\tilde{\mu}_n = \bar{\mu}_n + O_p(k^{-1}), \quad n \to \infty.
\]
Put
\[
\tilde{p}_m := \frac{1}{N_n} (1 - \tilde{\mu}_n A_{in}), \quad i \in I_n;
\]
\[
Q_p(\vartheta) := \sum_{i \in I_n} \tilde{p}_m \mathbf{1}(\Theta_{in} \leq \vartheta), \quad \vartheta \in [0, \pi/2].
\]
Then
\[
\tilde{Q}_p(\vartheta) - \bar{Q}_p(\vartheta) = \frac{1}{N_n} \sum_{i \in I_n} \left(\frac{1}{1 + \tilde{\mu}_n A_{in}} - (1 - \tilde{\mu}_n A_{in}) \right) \mathbf{1}(\Theta_{in} \leq \vartheta)
\]
\[
= \frac{1}{N_n} \sum_{i \in I_n} \left(\tilde{\mu}_n - \tilde{\mu}_n \right) A_{in} + \tilde{\mu}_n \tilde{\mu}_n A_{in}^2 / (1 + \tilde{\mu}_n A_{in}) \mathbf{1}(\Theta_{in} \leq \vartheta).
\]
Since both \(\tilde{\mu}_n - \bar{\mu}_n \) and \(\tilde{\mu}_n \tilde{\mu}_n A_{in}^2 \) are \(O_p(k^{-1}) \),
\[
\sup_{\vartheta \in [0, \pi/2]} |\tilde{Q}_p(\vartheta) - \bar{Q}_p(\vartheta)| = O_p(k^{-1}), \quad n \to \infty.
\]
Therefore, as \(n \to \infty \) and uniformly in \(\vartheta \in [0, \pi/2] \),
\[
\sqrt{k} \{ \tilde{Q}_p(\vartheta) - Q_p(\vartheta) \} = \sqrt{k} \{ \tilde{Q}_p(\vartheta) - Q_p(\vartheta) \} + O_p(k^{-1/2})
\]
\[
\sup_{\vartheta \in [0, \pi/2]} \sqrt{k} \{ \tilde{Q}_p(\vartheta) - Q_p(\vartheta) \} = \sqrt{k} \tilde{I}(\vartheta) + O_p(k^{-1/2}), \quad \vartheta \in [0, \pi/2].
\]
The function f is absolutely continuous; denote its Radon-Nikodym derivative by f'. By Fubini’s theorem, for $\theta \in [0, \pi/2]$,
\[
\hat{I}(\theta) = \int_{[0,\theta]} f \, d\hat{Q}_p = f(\theta)\hat{Q}_p(\theta) - \int_0^\theta \hat{Q}_p(\theta) f'(\vartheta) \, d\theta,
\]
\[
I(\theta) = \int_{[0,\theta]} f \, dQ_p = f(\theta)Q_p(\theta) - \int_{\theta}^0 Q_p(\theta) f'(\vartheta) \, d\theta.
\]
As a result,
\[
(7.5) \quad \sup_{\theta \in [0, \pi/2]} |\hat{I}(\theta) - I(\theta)| = O_p(k^{-1/2}), \quad n \to \infty.
\]
Moreover, by (7.2) with $f = g$,
\[
(7.6) \quad \sqrt{k}\beta_n = -\frac{1}{\int f^2 \, dQ_p} \int_0^{\pi/2} \sqrt{k} \{\hat{Q}_p(\theta) - Q_p(\theta)\} f'(\theta) \, d\theta.
\]
Write $\beta_{n,p} = \sqrt{k}(\hat{Q}_p - Q_p)$. Combine (7.4), (7.5), and (7.6) to see that
\[
(7.7) \quad \sqrt{k}(\hat{Q}_p - Q_p) = \beta_{n,p} + \frac{\int \beta_{n,p} \, df}{\int f^2 \, dQ_p} I + O_p(k^{-1/2})
\]
as $n \to \infty$. Since the linear operator
\[
D[0, \pi/2] \to D[0, \pi/2] : x \mapsto x + \frac{\int x \, df}{\int f^2 \, dQ_p} I
\]
is bounded, (7.1) and (7.7) imply (4.8).

Proof of Theorem 4.2. It is immediate from Theorem 3.3 that, in $D[0, \pi/2]$ and as $n \to \infty$,
\[
\sqrt{k}(\hat{Q}_p - Q_p) \circ \tau_n \overset{d}{\to} \beta_p.
\]
Now the proof of Theorem 4.1 applies here as well, except for one change: we have to check that (7.2) still holds. But this follows from the fact that
\[
\left| \int_0^{\pi/2} \sqrt{k}(\hat{Q}_p - Q_p)(\theta) g'(\theta) \, d\theta - \int_0^{\pi/2} \sqrt{k}(\hat{Q}_p - Q_p)(\tau_n(\theta)) g'(\theta) \, d\theta \right|
\]
is bounded by
\[
2\sqrt{k}\eta_n \sup_{\theta \in [0,\eta_n] \cup [\pi/2 - \eta_n, \pi/2]} |g'(\theta)|,
\]
which by assumption tends to zero as $n \to \infty$ provided that g' is bounded in the neighborhood of 0 and $\pi/2$. This is the case for $g = f$ and $g = f^2$, the only functions to which (7.2) is to be applied. \qed
References.

Tilburg University
DEPARTMENT OF ECONOMETRICS & OR AND CENTER
PO BOX 90153
NL-5000 LE TILBURG
THE NETHERLANDS
E-MAIL: j.h.j.einmahl@uvt.nl

Université catholique de Louvain
INSTITUT DE STATISTIQUE
VOIE DU ROMAN PAYS, 20
B-1348 LOUVAIN-LA-NEUVE
BELGIUM
E-MAIL: johan.segers@uclouvain.be