A Lower Bound for the Laplacian Eigenvalues of a Graph-Proof of a Conjecture by Guo
Brouwer, A.E.; Haemers, W.H.

Publication date:
2008

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 27. Dec. 2020
A LOWER BOUND FOR THE LAPLACIAN EIGENVALUES OF A GRAPH-PROOF OF A CONJECTURE BY GUO

By A.E. Brouwer, W.H. Haemers

March 2008
A lower bound for the Laplacian eigenvalues of a graph—proof of a conjecture by Guo

A. E. Brouwer & W. H. Haemers

Abstract

We show that if \(\mu_j \) is the \(j \)-th largest Laplacian eigenvalue, and \(d_j \) is the \(j \)-th largest degree (\(1 \leq j \leq n \)) of a connected graph \(\Gamma \) on \(n \) vertices, then \(\mu_j \geq d_j - j + 2 \) (\(1 \leq j \leq n - 1 \)). This settles a conjecture due to Guo.

Keywords: Graphs, Laplacian eigenvalues. JEL-code C0.

1 Introduction

Let \(\Gamma \) be a finite simple (undirected, without loops) graph on \(n \) vertices. Let \(X = \mathcal{V} \) be the vertex set of \(\Gamma \). Write \(x \sim y \) to denote that the vertices \(x \) and \(y \) are adjacent. Let \(d_x \) be the degree (number of neighbors) of \(x \).

The adjacency matrix \(A \) of \(\Gamma \) is the 0-1 matrix indexed by \(X \) with \(A_{xy} = 1 \) when \(x \sim y \) and \(A_{xy} = 0 \) otherwise. The Laplacian matrix of \(\Gamma \) is \(L = D - A \), where \(D \) is the diagonal matrix given by \(D_{xx} = d_x \), so that \(L \) has zero row and column sums.

The eigenvalues of \(A \) are called eigenvalues of \(\Gamma \). The eigenvalues of \(L \) are called Laplacian eigenvalues of \(\Gamma \). Since \(A \) and \(L \) are symmetric, these eigenvalues are real. Since \(L \) is positive semidefinite (indeed, for any vector \(u \) indexed by \(X \) one has \(u^T L u = \sum (u_x - u_y)^2 \) where the sum is over all edges \(xy \)), it follows that the Laplacian eigenvalues are nonnegative. Since \(L \) has zero row sums, 0 is a Laplacian eigenvalue. In fact the multiplicity of 0 as eigenvalue of \(L \) equals the number of connected components of \(\Gamma \).

Let \(\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n = 0 \) be the Laplacian eigenvalues. Let \(d_1 \geq d_2 \geq \ldots \geq d_n \) be the degrees, ordered nonincreasingly. We will prove that \(\mu_i \geq d_i - i + 2 \) with basically one exception.

2 Exception

Suppose \(\mu_m = 0 < d_m - m + 2 \). Then \(d_m \geq m - 1 \), and we find a connected component with at least \(m \) vertices, hence with at least \(m - 1 \) nonzero Laplacian eigenvalues. It follows that this component has size precisely \(m \), and hence \(d_1 = \ldots = d_m = m - 1 \), and the component is \(K_m \). Now \(\Gamma = K_m + (n - m)K_1 \) is the disjoint union of a complete graph on \(m \) vertices and \(n - m \) isolated points. We'll see that this is the only exception.
3 Interlacing

Suppose M and N are real symmetric matrices of order n and m with eigenvalues $\lambda_1(M) \geq \ldots \geq \lambda_n(M)$ and $\lambda_1(N) \geq \ldots \geq \lambda_m(N)$, respectively. If M is a principal submatrix of N, then it is well known that the eigenvalues of M interlace those of N, that is,

$$\lambda_i(N) \geq \lambda_i(M) \geq \lambda_{n-m+i}(N) \text{ for } i = 1, \ldots, m.$$

Less well-known, (see for example [3]) is that the interlacing inequalities also hold if M is the quotient matrix of N with respect to some partition X_1, \ldots, X_m of $\{1, \ldots, n\}$. This means that $(M_{i,j})$ equals the average row sum of the block of N with rows indexed by X_i and columns indexed by X_j.

4 The lower bound

Theorem 1 Let Γ be a finite simple graph on n vertices, with vertex degrees $d_1 \geq d_2 \geq \ldots \geq d_n$, and Laplacian eigenvalues $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$. If Γ is not $K_m + (n-m)K_1$, then $\mu_m \geq d_m - m + 2$.

The case $m = 1$ of this theorem ($\mu_1 \geq d_1 + 1$ if there is an edge) is due to Grone & Merris [1]. The case $m = 2$ ($\mu_2 \geq d_2$ if the number of edges is not 1) is due to Li & Pan [4]. The case $m = 3$ is due to Guo [2], and he also conjectured the general result.

Let us separate out part of the proof as a lemma.

Lemma 2 Let S be a set of vertices in the graph Γ such that each vertex in S has at least e neighbors outside S. Let $m = |S|$, $m > 0$. Then $\mu_m \geq e$. If S contains a vertex adjacent to all other vertices of S, and $e > 0$, then $\mu_m \geq e + 1$.

Proof Consider the principal submatrix L_S of L with rows and columns indexed by S. Let $L(S)$ be the Laplacian of the subgraph induced on S. Then $L_S = L(S) + D$ where D is the diagonal matrix such that D_{ss} is the number of neighbors of s outside S. Since $L(S)$ is positive semidefinite and $D \geq eI$, all eigenvalues of L_S are not smaller than e, and by interlacing $\mu_m \geq e$.

Now suppose that $S = \{s_0\} \cup T$, where s_0 is adjacent to all vertices of T. Throw away all edges entirely outside S, and possibly also some edges leaving S, so that each vertex of S has precisely e neighbours outside S. Also throw away all vertices outside S that now are isolated. Since these operations do not increase μ_m, it suffices to prove the claim for the resulting situation.

Consider the quotient matrix Q of L for the partition of the vertex set X into the $m+1$ parts $\{s\}$ for $s \in S$ and $X \setminus S$. We find, with $r = |X \setminus S|$,

$$Q = \begin{pmatrix}
 e + m - 1 & -1 & \ldots & -1 & -e \\
 -1 & -e & \ddots & \ddots & \ddots \\
 \vdots & \ddots & L_T & \ddots & \ddots \\
 -1 & \ddots & -e & \ddots & \ddots \\
 -e/r & -e/r & \ldots & -e/r & em/r
\end{pmatrix}.$$
Consider the quotient matrix R of Q for the partition of the vertex set X into the 3 parts $\{s_0\}$, T, $X \setminus S$. Then

$$R = \begin{pmatrix} e + m - 1 & 1 - m & -e \\ -1 & e + 1 & -e \\ -e/r & -e(m - 1)/r & em/r \end{pmatrix}. $$

The eigenvalues of R are 0, $e + m$, and $e + me/r$, and these three numbers are also the eigenvalues of Q for (right) eigenvectors that are constant on (left) eigenvectors perpendicular to these, so of the form $(0, u^\top, 0)$ with $\sum u = 0$. Now $LTu = \theta u$, but $LT = L(T) + (e + 1)I$ and $L(T)$ is positive semidefinite, so $\theta \geq e + 1$.

Since $me/r \geq 1$ (each vertex in S has e neighbors outside S and $|S| = m$, so at most me vertices in $X \setminus S$ have a neighbor in S), it follows that all eigenvalues of Q except for the smallest are not less than $e + 1$.

By interlacing, $\mu_m \geq e + 1$.

Proof (of the theorem). Since $\mu_m \geq 0$ we are done if $d_m \leq m - 2$. So, suppose that $d_m \geq m - 1$.

Let Γ have vertex set X, and let x_i have degree d_i ($1 \leq i \leq n$). Put $S = \{x_1, \ldots, x_m\}$. Put $e = d_m - m + 1$, then we have to show $\mu_m \geq e + 1$.

Each point of S has at least e neighbours outside. If each point of S has at least $e + 1$ neighbours outside, then we are done by the lemma. And if not, then a point in S with only e neighbours outside is adjacent to all other vertices in S, and we are done by the lemma, unless $e = 0$.

Suppose first that Γ is K_m with a pending edge attached, possibly together with some isolated vertices. Then Γ has Laplacian spectrum $m + 1$, m^{m-2}, 1, 0^{n-m}, with exponents denoting multiplicities, and equality holds. And if Γ is $K_m + K_2 + (n - m - 2)K_1$, it has spectrum m^{m-1}, 2, 0^{n-m}, and the inequality holds.

Let T be the subset of S whose vertices have at most $m - 2$ neighbours in S. The case $T = \emptyset$ has been treated above. For all $s \in T$ with fewer than $m - 2$ neighbours in S, delete edges between s and $X \setminus S$ such that the row of L_S, indexed by s gets row sum 1. Since $d_m = m - 1$ we can always do so. Also delete possible isolated vertices. By interlacing, μ_i has not been increased, so it suffices to show that for the remaining graph $\mu_m \geq 1$. Again consider the partition of X into $m + 1$ parts consisting of $\{s\}$ for each $s \in S$, and $X \setminus S$, and let Q be the corresponding quotient matrix of L. By interlacing it suffices to show that the second smallest eigenvalue of Q is at least 1. Put $r = |X \setminus S|$ and $t = |T|$, then $0 < r \leq t$, and

$$Q = \begin{pmatrix} mI & J & 0 \\ -J & L_T + (m - t + 1)I & -1 \\ 0^\top & -1/r & t/r \end{pmatrix} $$

(J is the all-ones matrix, and 0 and 1 denote the all-zeros and the all-ones vector, respectively). Now Q has a 3×3 quotient matrix

$$R = \begin{pmatrix} t & -t & 0 \\ t - m & m - t + 1 & -1 \\ 0 & -t/r & t/r \end{pmatrix} $$

The three eigenvalues of R are $0 \leq x \leq y$ (say). We easily have that

$$(1 - x)(1 - y) = \det(I - R) = t - 1 + (m - 1)(t/r - 1) \geq 0, $$

3
which implies that $x \geq 1$ (since $x \leq y \leq 1$ contradicts $x + y = \text{trace } R > m + 1$). These three values are also eigenvalues of Q with (right) eigenvectors constant over the partition. The remaining eigenvalues have (left) eigenvectors that are orthogonal to the characteristic vectors of the partition, and these eigenvalues remain unchanged if a multiple of J is added to a block of the partition of Q. So they are also eigenvalues of

$$Q' = \begin{pmatrix} mI & O & 0 \\ O & L_{\mathcal{T}} + (m - t + 1)I & 0 \\ 0^\top & 0^\top & 1 \end{pmatrix},$$

which are clearly at least 1. So we can conclude that $\mu_m \geq 1$.

\section{Equality}

There are many cases of equality (that is, $\mu_m = d_m - m + 2$), and we do not have a complete description.

For $m = 1$ we have equality, i.e., $\mu_1 = d_1 + 1$, if and only if Γ has a vertex adjacent to all other vertices.

For $m = n$ we have equality, i.e., $0 = \mu_n = d_n - m + 2$, if and only if the complement of Γ has maximum degree 1.

The path $P_3 = K_{1,2}$ has Laplacian eigenvalues 3, 1, 0 and degrees 2, 1, 1 with equality for $m = 0, 1, 2$, and is the only graph with equality for all m.

The complete graph K_m with a pending edges attached at the same vertex has spectrum $a + m, m^{m-2}, 1^m, 0$, with exponents denoting multiplicities. Here $d_m = m - 1$, with equality for m (and also for $m = 1$).

The complete graph K_m with a pending edges attached at each vertex has spectrum $\frac{1}{2}(m + a + 1 \pm \sqrt{(m + a + 1)^2 - 4m})^{m-1}, a + 1, 1^{m(a-1)}, 0$, with $\mu_m = a + 1 = d_m - m + 2$.

The complete bipartite graph $K_{a,b}$ has spectrum $a + b, a^{b-1}, b^{a-1}, 0$. For $(a = 1$ or $a \geq b$) and $b \geq 2$ we have $d_2 = a = \mu_2$. This means that all graphs $K_{1,b}$, and all graphs between $K_{2,a}$ and $K_{a,a}$ have equality for $m = 2$.

The following describes the edge-minimal cases of equality.

\textbf{Proposition 3} Let Γ be a graph satisfying $\mu_m = d_m - m + 2$ for some m, and such that for each edge e the graph $\Gamma \setminus e$ has a different m-th largest degree or a different m-th largest eigenvalue. Then one of the following holds.

(i) Γ is a complete graph K_m with a single pending edge.

(ii) $m = 2$ and Γ is a complete bipartite graph $K_{2,d}$.

(iii) Γ is a complete graph K_m with a pending edges attached at each vertex. Here $d_m = m + a - 1$.

\textbf{Proof} This is a direct consequence of the proof of the main result. \hfill \Box

Many further examples arise in the following way. Any eigenvector u of $L = L(\Gamma)$ remains eigenvector with the same eigenvalue if one adds an edge between two vertices x and y for which $u_x = u_y$. If Γ had equality,
and adding the edge does not change d_m or the index of the eigenvalue μ_m, then the graph Γ' obtained by adding the edge has equality again.

The eigenvector for the eigenvalue $a + 1$ for K_m with a pending edges attached at each vertex, is given by: 1 on the vertices of degree 1, and $-a$ on the vertices in the K_m. So, equality will persist when arbitrary edges between the outside vertices are added to this graph, as long as the eigenvalue keeps its index and d_m does not change.

The eigenspace of $K_{a,b}$ for the eigenvalue a is given by: values summing to 0 on the b-side, and 0 on the a-side. Again we can add edges.

For example, the graphs $K_{2,d}$ with $d \geq 2$ have $d_2 = d = \mu_2$ with equality for $m = 2$. Adding an edge on the 3-side of $K_{2,3}$ gives a graph with spectrum 5, 4, 3, 2, 0, and the eigenvalue 3 is no longer 2nd largest. Adding an edge on the 4-side of $K_{2,4}$ gives a graph with spectrum 6, 4, 4, 2, 2, 0, and adding two disjoint edges gives 6, 4, 4, 4, 2, 0, and in both cases we still have equality for $m = 2$.

References

