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ABSTRACT

This paper investigates regression analysis of experi-
mental designs with replications, assuming variance hetero-
geneity, possibly combined with nonnormality. These repli-
cations yield variance estimators which result in Estimated
Weighted Least Squares (EWLS). Jackknifing yields confidence

intervals for these nonlinear EWLS estimators. The validity
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748 KLEIJNEN ET AL.

of these confidence intervals is examined in a Monte Carlo
experiment, Jackknifed EWLS estimators result in bhetter con—

fidence intervals than simple EWLS,

1. INTRODUCTION

Although jackknifing is an "old" idea, introduced by
Quenouille in 1949, the technique could not become popular
until computers became widely available. And even nowadays
jackknifing is not much applied. In this paper we apply
jackknifing to the linear regression model with unequal er-
ror variances. If these variances were known, then Weighted
Least Squares (WLS) would yield the Best (minimum variance)
Linear Unbiased Estimator (BLUE). In practice these varian-
ces are unknown. However, we can easily estimate the error
varlances in experimental designs with replication (as is
the case in simulation experiments in which we are particu—
larly interested)., These estimated variances result in the
Estimated Weighted Least Squares (EWLS) estimator, say B.
This nonlinear estimator is unbiased under mild conditions;
see Schmidt (1976, p. 71). And although the EWLS estimator
has smaller variance than the Ordinary Least Squares (OLS)
estimator é, the EWLS confidence intervals hold only for
large samples, i.e., for more than 25 replications per com—
bination; see Kleijnen et al., (1985). Therefore we shall in-
vestigate whether Jackknifed ©Estimated Weighted Least
Sduares (JEWLS) is a "jewel" indeed, i.e., yields valid con—

fidence intervals.

2, DEFINITION OF JEWLS

Consider the linear regression model

y=%8+e (2.1)
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where the underscore ~ denotes matrices (including vectors),
and y = (yl,...,yN)’, X = (Xi'q) with 1" = 1,...,N and q =
l,...,Q, §,= (81"")BQ)' and e = (el;-a')en)'- In experi-
mental designs with replication, each combination i (i =

l,e404,n) is replicated m; times so that
N= % m,. (2.2)

We assume that mi » 2 so that we have unbiased estimators

~

of the error variances 02:

O'i i
m
i - 2
(. =yy)
~2 =1 M .
o'i =—-——-E1-i—-_—_——1———- (l=1,.--,n) (2-3)

where we rearrange the N elements of the vector y into a
table with n rows and m; elements in row i; if my =m (see

Table 1 above eq. 2.9) we rearrange vy into an n x m matrix

with elements Vi 45 obviously §i = ? yij/mi° Consequently,
the EWLS estimator is

~ e TS B |

e SR < (2.4)

where Q is a diagonal matrix with main-diagonal elements
Gi,...,ci,...,oi,...,ci where c% occurs m, times,...,ci
occurs m_ times. Using simple (but tedious) linear algebra

we can prove that eq. (2.4) reduces to

B I R
e e R (2.5)
where y = (§1""’§i""’;n)" D is an n x n diagonal matrix
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with main diagonal elements of/ml,...,ci/mn and E is ob-
tained from X by eliminating identical rows. The n diffe-
rent rows of X are specified by the experimental design (for

Zk in a full factorial design with k fac-

example, n equals
tors; the Zk design yilelds an n x Q matrix of independent
variables g with Q@ > k + 1 » n)., The asymptotic covariance
matrix of E (see Schmidt, 1976) is

- =] = -
-@ ™! (2.6)

~

2
where D is diagonal with elements oi/mi. To obtain confi-
fence intervals for Bq we might replace D in eq. (2.6) by

D (also see eq. 4.5). However, for a small number of repli-
cations this heuristic does not yield valid confidence in-
tervals; see Kleijnen et al., (1985). Therefore we investi-

gate jackknifing.

In general, jackknifing means that an estimator of some
parameter is recomputed after deleting one or more observa-
tions; mnext those observations are again added and a dif-
ferent group of observations (with group size » 1) is dele-
ted, which results in a new value for the estimator, and so

on; see Miller (1974), Weber (1986).

We restrict our study to experimental designs with an

equal number of replications: my = M. (If we permitted vary-

ing my;, then it would be wise to replicate combinations with
high variances more often; such an approach is investigated
in Kleijnen and Van Groendendaal, 1986.,) To apply jackkni-
fing we delete replication j (where j=1,...,m) of each com—

bination i (i=1,...,n); see column j in Table 1 or element
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Table 1: Experimental data

Combination Independent varilables Dependent variable
1 eue Q 1 eve J veem
1 ces
k xll le Yll..-ylj.-.YIm
i Xil P xiQ yil...yij...yim
n an Py an ynl...ynj...ynm

(i-1)m + j of y. Next we compute the variance estimator ana-

logously to eq. (2.3):

~9 m _ )2 ,
Ui(~j) = jF=1 (yijl~ yi(_j) /(m—Z) (20 )
J'#]
where
yi(—j) = g,yij/(m—l) (2.8)

J

These variance estimators vield m different n x n diagonal

matrices D 3 with main - diagonal elements ;i( .)/(m—l),
~ -l

~

...,Un(_j)/(m—l) where j=1,...,m. We also have m vectors

with averaged responses y ., = —, .
4 P L (ylc_J)
is not affected by this jackknifing. Hence eq. (2.5) becomes

Y. The n x Q matrix X

-~ -~

F.= .0 %o Ly Geleeem) (229)
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Obviously these m estimators are dependent. Jackknifing pro-
ceeds as follows; see Miller (1974), Weber (1986). The ori-
ginal estimator and the m jackknifed estimators are linearly

combined in the so-called pseudovalues

I=m B - (m-1) E_j (3=1,..0,m) (2.10)
where we suppress the index q of the Q parameters B. Ob-
viously, 1if the estimators B and E;j are unblased (as EWLS
estimators are, under mild conditioms), then the Jj remain
unbiased. To derive a confidence interval we compute the

traditional variance estimator of the pseudovalues:

M3
~
[
I
[
N

- . b
var(g) = L (2.11)

with J = I Jj/m, and use the Student approximation

J

J-8
T (2-12)
m-l {var(J)/m}7

Whether 1t is correct to use this t approximation, we in-
vestigate in the following Monte Carlo experiment. (We shall
also briefly discuss a JEWLS variant with only two, instead

of m pseudovalues; see the end of Section 4.)

3. MONTE CARLO INPUTS

We use the following g. Case 1 is a 23 full factorial

design with main effects only besides the grand mean,i.e.,

g is an orthogonal 8 x 4 matrix with elements +1 and -1, The
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values for the effects B are taken from a simulation study

of the Rotterdam harbor (see Kleijnen et al,, 1979): B' = (-
1.42, -0.769, 13,4, —-11.508). We quantify the degree of va-

riance heterogeneity through

2 2
max Ui - min Gi
H = 5 (3.1)
min oi

and fix H at 0, 10.83 and 1455 taken from Kleijnen et al.
(1985). (If H = O then we take o; = 1; if R = 10.83 then o’
equals 1, 2, 4, 5, 6, 7, 9, 11.83 respectively; if H = 1455
then ci equals 93, 228.38, 821,78, 2809.64, 2567.11, 177.78,
15129, 576 respectively,) An increasing H means decreasing
relative effects B/(: ci/n). The number of replications m
equals 4, 9 and 25 respectively. We study not only normally
distributed errors terms but also asymmetric distributions.
Erlang distributions have standardized skewness Ny = u3/c3
equal to 2 (exponential distribution), 0.8944 (sum of 5 ex~-
ponentials) and 0.6325 (sum of 10 exponentials); see Has-
tings and Peacock (1975)., The lognormal distribution has a
standardized skewness which varies with the variance; so

if H # 0 then n, varies with 1 where i=1,...,n; in Table 2

we shall disp1a3 the standardized skewness averaged over the
n combinations of independent variables g. We make all asym~
metric distributions have means and variances equal to the
means and variances of the corresponding normal distribu-

tions.

Case 2 concerns a 22 factorial design with g' = (1,1,1).

If H = 0 then gi = 1; if H = 10.38 then ¢ equals 1, 4, 8,

11.38; if H = 1289 then 02 is 1, 200, 600, 1290.15.
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Table 2: Testing the t-tail

a = 5% o= 1%

EWLS JEWLS

EWLS JEWLS EWLS JEWLS

Hy Hé Hy Hé HO Hé Hy

Case 1

m=4  H=0
10
1455

10
1455

m=25 H=0
10
1455

Case 2

10
1289

m=9 =0
10
1289

m=25 H=0
10
1289

Normal distribution




JACKKNIFING ESTIMATED WEIGHTED LEAST SQUARES: JEWLS 755

o = 10% a = 5% o= 17

EWLS JEWLS EWLS JEWLS EWLS JEWLS

Hy H) Hy HY Hg Y Hy By Hy R OHp

m=4

m=25

m=9

m=25

Case 1

=0
10
1455

10
1455

=0
10
1455

Case 2

10
1289

10
1289

1289

Erlang; u3/03 = 00,6325

* % *
* %
® %
&
% % L * %

(continued)
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a = 10% a = 5% a = 1%
EWLS JEWLS EWLS JEWLS EWLS JEWLS
HO Hb Ho Hb HO Hb HO Hé HO Hé HO
Case 1 Erlang; u3/03 = 0,8944
m=4  H=0 x % % & * K
10 * %
1455 * % * %
m=9 H=0 *
10 * % * %
1455 * *
m=25 =0
10
1455
Case 2
m=4 =0
10 * %
1289 X 0k 0k %k * ok x & K %
m=9  H=0
10 * %
1289 x % X k% k % % ok %k
m=25 =0 * ok
10

1289
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a = 10% o = 57 a = 17
EWLS JEWLS EWLS JEWLS EWLS JEWLS
1
By Hy Hy HY Hy H) Hg HY  Hy HY Hy
3
Case 1 Erlang u3/c = 2
m=4 =0 * %k ek R % * % Kk Kk
10 * * x *x Kk %k % % * ok A %
1455 * Kk K % X Kk % % * % k%
m=9 =0 L S . * Ok * L
10 X &k k% I T S x % * %
1455 K % K * Kk kK * k 0k %
m=25 =0 ® % % % ® %
10 %k X & * %
1455 * K * x %
Case 2
n=4 =0 k% K * kK K % ok % %
10 * k % % * % % & * & Kk %
1289 X 0k Kk % X k K %k * Kk x  *
m=9 H=0 * * * * *
10 * ok
1289 * % X Kk k& % x Kk Kk
m=25 H=0
10 ® kK ok & * % K K
1289 * * & % % x K k%

(continued)
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Table 2 (continued)

o= 10% o = 5% a = 1%
EWLS JEWLS EWLS JEWLS EWLS JEWLS

Hy By Hg HY Hy HY Hy HY Hy HY I

Case 1 Lognormal (average skewness: n)

m=4  H=0 (n =0.6080)
10 ( 1,4878) * % % % * ok k% * %
1455 ( 30691.2) * * % % * ok k% kX k%

m=9  H=0 (n=0.6080)
10 ( 1.4878) * * * & x &
1455 ( 30691.2) * % % % & & x * X *x % %

m=25 H=0 (n=0.6080)
10 ( 1.4878) * * * ok
1455 ( 30691,2) * * * % * X k% L T

Case 2
m=4 H=0 (n=0.608) *
10 ( 1.5203) * * x % Xk Kk * %

1289 ( 139.067) * * * % * K Kk % * Kk Kk 0k

m=9 H=0 (n=0.608) *
10 ( 1.5203) * % % % & % & &
1289 ( 139.,067) * * x % % % % % Kk k & *

m=25 B=0 (n= 0.608)
10 ( 1.5203) * * -
]_289 ( ]_39.067) * * * * * E3 % % % * * *
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We wuse a multiplicative random number generator with
multiplier 1313 and modulus 259, developed by NAG (Numerical
Algorithms Group) in the United Kingdom. We never reset the
vrandom number seed. Consequently all results are indepen-
dent, except for results on the same line in Tables 2 and 3;
Tables 2 and 3 use the same responses b4 (hence these two

tables have 1dentical EWLS estimates).

4 ,MONTE CARLO OUTPUTS

Each Monte Carlo observation requires n x m independent
samples from the error distribution (again see Table 1),
These nm observations yield one EWLS estimate E (see eq.
2.5) and m estimates :@:_ (with j=1,..,m; see eq. 2.9) resul-
ting in one JEWLS estimate J (see eq. 2.10), The nm respon-
ses Vi4 finally yield one set of  confidence intervals for
Bq (where q = 1,...,Q), using eq.*(2.12).

Now we test if it 1is correct to base two-sided confi-
dence intervals for the individual parameters 8 on the t
statistic. Since we use only the tails of the t distribu-

tion, we estimate

P{_l_-j_—_s.l__,_ > t
= I
{var (3)/m}*

*
m1, a/2} = ° (4-1)

*
where we still suppress the index q and we estimate o
through (say) a, using Monte Carlo experimentation (see be-
low). We formulate two related null-hypotheses:

~

HO: E(a) = o versus Hl: E(a) # o (4.2)

and
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Hé: F(a) < o versus H'- E(a) > Q. (4.3)
- *
where o 1s an unbilased estimator of a 1in eq. (4.1), and o
is defined by

>t (4.4)

n-1, a/Z} -

Obviously Hy and Hé require a two-sided and a one-sided test

respectively,

The test statistic for Hy and dé is the binomial vari-
able g based on 150 Monte Carlo ohservations '"per situa-—
tion", i.e., per combination of Case 1 or 2 (23 or 2% de-
sign) with a specific varilance heterogeneity H, number of

replications m, and distribution type; see Table 2.

We could approximate the binomial variable a through the
normal distribution N(a a(l a)/lSO) A problem arises if

= 0 (which may occur especially if o in eq. 4.l is small,
say, 1%); if a = 0 then var(a) = 0 and Hy of eq. (4.2) is

automatically rejected (not H' of eq. 4.3). Therefore we use

0
the normal approximation N(a,a(l-0)/150) where o is speci-

fied by Hj, (or Hb).

For o (the error rate used to derive a two-sided confi-
dence interval per parameters B ) we select the traditional
values 1%, 5% and 10%. Because there are Q parameters B we
apply the Bonferroni inequality, i.e., we test Hy and Hb
with a type I error rate of 0.05/Q so that the experiment-
wise error rate is 0,05 at most; see Miller (1981). So a

"situation" yields significantly bad results if at least one
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of the Q parameters Bq results in tail behavior significant-
ly deviating from the t distribution.

To compute the JEWLS estimate we also have to compute
the EWLS estimate (see eqs. 2.10 and 2.5). So without much
extra effort we can test the tail behavior of FWLS; eq.
(4.1) becomes |

P{__.L’é'_:__BJ_>

<o .1 =0 (405)
[var(®)}?

tm—l,a/Z}

th element of E in

where we suppress the index ¢; B is the q
eq. (2.5); v;r(ﬁ) follows from the asymptotic covariance
matrix in eq. (2.6) where we replace D by é.
N

The above reasoning yields Table 2 where an asterisk (%)
means that we reject Hy or Hb (using an experimentwise error
rate of 5%). We interpret Table 2 as follows. In case of
normality, JEWLS gives excellent results if there are more
than 4 replications (m = 9 or 25). The fact that in case 1
(23 design) with m = 4 RH! is rejected more often than Hy,

0
suggests that if the a error is not realized, then the ac-

tual error rate tends to be highergzﬁan the nominal a value.

Table 2 clearly shows that as the asymmetry increases,
JEWLS yields poorer confidence intervals, JEWLS remains bet-—
ter than EWLS.

We also investigate a less computer-intensive JEWLS va-
riant. Instead of deleting a single replication resulting in
m pseudovalues (see eq. 2.10) we now delete half the repli-

cations (if m is odd we round m/2 downwards) which results
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Table 3: JEWLS with only two pseudovalues

o
EWLS

o = 57 o= 1%

EWLS JEWLS EWLS  JEWLS

H

HI

Hy H! Hy Hf

: 4 Hy HY Hy

0

B
1

=]
]

=
[

8
]

g
[

Case 1

4 H =20
10 *
1455 *

9

==}
n

o
*

10
1455

25 H =0
10
1455

Case 2

4 H=0
10

1289

1289 *

251 =0
10
1289

%

*

Normal distribution
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in only two pseudovalues (m = 2 in eqs. 2.9 through 2.12).
Consequently the confidence intervals for Sq are based on a
single degre? of freedom, So tm—l; /2 is high. It is pos-
sible that var(J) compensates; also see eq. (4.1), Actually
our results (not displayed) show longer confidence intervals
for Bq (when compared to JEWLS based on m pseudovalues). And
these longer confidence intervals do not improve the validi-

ty of the t statistic; see Table 3.

5. CONCLUSIONS

JEWLS requires more computing than FEWLS, but JEWLS
yields better confidence intervals. More specifically, in
case of normality EWLS yields valid confidence intervals
only if the number of replications is "high'" (also see
Kleijnen et al., 1985); JFWLS requires fewer replications.
In case of severe asymmetry, JEWLS performs better than

EWLS, but not well enough.
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