Non-invasive physical plasma for preventing radiation dermatitis in breast cancer: Results from an intrapatient-randomised double-blind placebo-controlled trial

Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium
Department of Medical and Clinical Psychology, Tilburg School of Social and Behavioural Sciences, 5037 Tilburg, the Netherlands
Department of Neuroradiology, University Hospital Bonn, 53127 Bonn, Germany
Department of Gynaecology, Division of Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
Department of Neurosurgery, Division of Neurosurgical Oncology, University Hospital Bonn, 53127 Bonn, Germany
Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
Department of Medical and Clinical Psychology, Tilburg School of Social and Behavioural Sciences, 5037 Tilburg, the Netherlands

*Corresponding author at: Department of Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
E-mail address: christopher.schmeel@ukbonn.de (L.C. Schmeel).

https://doi.org/10.1016/j.ctro.2023.100699
Received 31 October 2023; Accepted 2 November 2023
Available online 4 November 2023

ABSTRACT

Background and Purpose: To investigate the effect of topical non-invasive physical plasma (NIPP), a volatile mix generated out of ambient air, on prevention of acute radiation dermatitis (RD) during and after whole-breast irradiation (WBI).

Materials and Methods: Lateral and medial breast halves were randomised within each patient to receive either 120 s of NIPP or sham treatment daily during WBI. Standard skin care with urea lotion was applied to the whole breast. Blinded acute skin toxicity was assessed weekly for each breast half separately and included clinician-reported (CTCAE) and patient-reported (modified RISRAS), and objective (spectrophotometry) assessments. As an additional external control, a comparable standard of care (SoC) patient collective from a previous prospective trial was used.

Results: Sixty-four patients were included. There were no significant differences between breast halves. Post-hoc comparison with a similar SoC control collective revealed OR = 0.28 (95% CI 0.11–0.76; p = 0.014) for grade ≥ 2 RD upon WBI completion, along with less hyperpigmentation (p < 0.001), oedema (p = 0.020), dry (p < 0.001) and moist desquamation (p = 0.017), pain, itching, and burning (p < 0.001 for each). Tolerability of NIPP was excellent and side effects were not observed.

Conclusion: Even though there were no differences between intrapatient-randomised breast halves, the overall incidence and severity of acute radiation-induced skin toxicity were considerably lower when compared to a prospectively collected SoC cohort. Our data suggest the potential benefit of NIPP in RD prevention. A randomised trial with a physical control group is warranted to confirm these promising results (DRKS00026225).
Introduction

Early breast cancer, one of the most common cancer diagnoses worldwide, involves surgical therapy followed by adjuvant whole-breast irradiation (WBI) in about 70% of cases [1,2]. The most frequent acute side effect of WBI is radiation dermatitis (RD), characterised by erythema, pruritus, pain, and dry or moist desquamation, which occur in up to 85% of patients [3,4]. Severe cases requiring radiation treatment interruption have become rare following advancements in radiation treatment technique (e.g. intensity-modulated radiation therapy (IMRT)) and the exploration of new fractionation regimens (e.g. hypofractionation); however, even mild symptoms are known to impact quality of life and self-image [5-7]. Continuous research efforts are being made, yet potent preventative and therapeutic options are limited, resulting in substantial variation in RD management amongst practitioners and institutions [8-10]. Due to insufficient and sometimes even contradictory evidence, a recommendation can currently only be made for a handful of interventions [11].

Non-invasive physical plasma (NIPP) is an emerging treatment modality for various skin conditions, such as psoriasis, eczema, diabetic ulcers, and different types of dermatitis [12,13]. Physical plasma, the fourth state of matter, is characterised by free electrons and derived from the other states of matter (gas, liquid, solid) by altering temperature or pressure [14]. Contrary to thermal plasma, NIPP is created using a high-frequency alternating field under atmospheric pressure, thereby only reaching body temperatures, rendering it safe for clinical use. Dielectric barrier discharges (DBD) are a type of NIPP, generated out of air without the need for a carrier gas [15]. The reactive mix of electrons, ions, excited atoms, reactive oxygen species (ROS), and ultraviolet radiation has been shown to positively affect tissue healing in a dose-dependent manner [16]. NIPP treatment is well-tolerated and multiple trials have confirmed its safety [17-19].

ROS play a crucial role in tissue damage mediated by ionising radiation, yet are also significantly involved in NIPP-associated tissue healing and regeneration [20]. A first-in-human benchmarking trial previously reported safety and feasibility of a topical DBD-generated NIPP-based prevention of acute RD [21]. In the current prospective, intrapatient-randomised, double-blind, placebo-controlled trial, we evaluate the effect of NIPP on the incidence and severity of RD and associated symptoms in breast cancer patients undergoing WBI.

Materials and methods

Participants

From March 2022 through September 2023, we conducted a monocentric phase 2 study enrolling breast cancer patients that were scheduled for adjuvant WBI. Inclusion criteria were age ≥ 18 years, breast-conserving surgery, and a moderately hypofractionated radiation regimen. A normofractionated sequential boost to the tumour bed was allowed. To avoid bias in RD grading, the following exclusion criteria were defined: synchronous metastatic disease, mastectomy, reconstruction with breast implant, alternative fractionation regimens, history of ipsilateral breast irradiation, any pre-existing dermatological disorder, active dermatitis, current treatment with topical or oral corticosteroids, and patient refusal to participate. Written informed consent was obtained from all included patients. This study was conducted in accordance with the Declaration of Helsinki and the protocol was approved by the Institutional Review Board of the University Bonn in September 2021 (210/21).

Radiation protocol

All patients received 40.05 Gy in 15 fractions of 2.67 Gy each. Patients ≤ 50 years or those with risk factors (≥pT2, HER2/neu positive, triple-negative, or poor cell differentiation) regardless of age received a sequential boost to the tumour bed of 16 Gy in 8 fractions of 2 Gy. Target volume delineation followed international standards [22]. The treatment technique used was 6 MV sliding window IMRT or hybrid 6 and 10 MV volumetric modulated (partial) arc therapy and the International Commission on Radiation Units and Measurements recommendations for dose limits of 95–107% were followed. All patients were treated on a TrueBeam STx (Varian Medical Systems, Palo Alto, CA, USA) linear accelerator in a supine position on a breast board. Left-sided WBI was performed in deep inspiration breath-hold (DIBH) for compliant patients. Post-hoc assessment of skin dose to lateral and medial breast halves is described in Supplementary Fig. 1.

Intrapatient control and standard skin care

The irradiated breast of each patient was evenly divided into a lateral and medial half. Using computer-generated random permuted blocks with sequentially numbered containers, one half was randomly assigned to receive NIPP treatment, while the other half served as an intrapatient control and received placebo. This design omits the need for stratification based on established risk factors influencing RD incidence and severity, such as breast size or Fitzpatrick skin type [23]. In those requiring a sequential boost, another acknowledged risk factor, breast halves were stratified accordingly (i.e. based on the primary breast half in which the boost area was located). Patients were blinded to their breast half assignment.

Institutional standard skin care with urea-based lotion (UreaRepair PLUS 5%, Eucerin, Beiersdorf, Hamburg, Germany) was applied to the whole breast. All patients were given oral and written information to apply it twice daily from the first day of treatment onwards and were encouraged not to use any complementary topical treatments. Compliance was checked on the scheduled patient visits. At the discretion of the principal investigator, those presenting with grade ≥ 2 RD, moist desquamation, or intense pain could be prescribed topical corticosteroids until symptoms resolved.

NIPP protocol

To generate and apply the NIPP, a wireless topical physical plasma device (plasma care, terraplasm medical, Garching, Germany) was employed. The device was pressed loosely on the patient’s breast skin with a separate 4 × 4 cm spacer for each patient and each visit, to achieve an optimal and reproducible distance to the skin (Fig. 1). Based on the initial feasibility trial, the treatment time was set at 120 s, balancing the dose-dependent effect of NIPP with treatment time and using the device’s preset program to ensure a constant dose of NIPP. This process was repeated until the entire assigned breast half had received treatment [24]. This process was repeated for the other (control) breast half, using an identical yet non-functional sham device. NIPP was applied daily following every radiation fraction by a trained radiation oncology nurse.

Patient evaluation

a Clinician-reported outcome

Patients were evaluated during the standard weekly on-treatment visits and any additional visits requested by the participants were also documented. RD was assessed for each breast half separately, according to the National Cancer Institute’s Common Terminology Criteria for Adverse Events (CTCAE; version 5.0) [25]. Furthermore, hyperpigmentation, breast oedema, and desquamation (dry or moist) were assessed and recorded (yes–no) for each breast half separately. Upon radiation treatment completion, as well as two and six weeks later, acute toxicity was reassessed. The experienced breast radiation oncologists who performed the clinical assessments were blinded to the initial breast half assignment.
Patient-reported outcome

At the end of the radiation course and during the two follow-up visits, the patient-assessed modified Radiation-Induced Skin Reaction Assessment Scale (RISRAS) was recorded [26]. All patients reported their maximum breast-related experience of pain, itching, burning, and limitations in daily activities, for each breast half separately. All items were scored on a 4-point Likert scale: 0 = not at all; 1 = a little; 2 = quite a bit; 3 = very much. During the last follow-up visit, patient-reported experiences were captured with four yes-no statements (Supplementary Table 1).

Objective assessment

At baseline, during every visit, on the last day of radiation treatment, as well as during both follow-up visits, five erythema readings were performed with a reflectance spectrophotometer (CR-10 Plus, Konica Minolta, Tokyo, Japan), across both the NIPP-treated and control breast half (Supplementary Fig. 2). This compact device has previously been validated to objectively assess acute and chronic RD [23,27–29]. Its automatically performed measurements are based on the Commission Internationale de l’Eclairage system of tristimulus values and describe a measured colour in three coordinates using the L*a*b* system: lower L* indicates redness (RD), whereas b* values describe the position on a scale from blue to yellow (of secondary importance in the acute setting).

Trial endpoints

The primary endpoint was the difference in clinician-assessed RD between NIPP and placebo breast halves upon treatment completion. Secondary endpoints were differences in grade ≥ 2 RD, hyperpigmentation, oedema, dry and moist desquamation, patient-reported outcomes, and spectrophotometric values. The evaluation of said endpoints compared to an identical standard of care (SoC) control collective from a previously published prospective trial on acute toxicity was added as a secondary endpoint upon completion of the study [4]. The latter trial had very similar inclusion and exclusion criteria, identical fractionation and radiation treatment technique, and outcome assessment.

Statistical analysis and visualisation of results

As prior studies on this topic are lacking, we estimated a meaningful reduction in clinician-assessed RD severity upon radiation treatment completion of 33%. Assuming at least 80% statistical power and a type I error rate of 5% for the two-tailed t-test, a minimum sample size of n = 63 was needed for this intrapatient-randomised trial design. Mean, median, standard deviation (SD), and range were calculated for all applicable clinical data. For the pairwise comparison of categorical variables (clinician- and patient-assessed outcomes), the Mann-Whitney-U test was used and odds ratios (OR) with 95% confidence intervals (CI) were calculated. Objective spectrophotometric data were compared with Welch’s t-test, after ensuring homoscedasticity with Levene’s test. The statistical significance level was defined as p < 0.05. Microsoft Excel (version 16; Microsoft, Redmond, WA, USA), SPSS Statistics (version 27; IBM, Armonk, NY, USA), and GraphPad Prism (version 10; GraphPad Software, San Diego, CA, USA) were used to perform the analyses. GraphPad Prism and Adobe Illustrator 2023 (Adobe Inc., Mountain View, CA, USA) were used to generate graphs. The graphical abstract was created with BioRender.com.

Results

Patient and treatment characteristics

A Consolidated Standards of Reporting Trials (CONSORT) flowchart of patient selection and inclusion is shown in Fig. 2. Sixty-four patients completed the trial per protocol, with a median age (range) of 58 (29–83) years. All patients were female, 97% Caucasian, and Fitzpatrick II was the most common skin type (70%). A sequential boost to the tumour bed was delivered in 59% and 9% received topical corticosteroids to alleviate RD-induced symptoms. The generalised equivalent uniform dose (gEUD) to NIPP and placebo breast skin was similar (p = 0.734), implying a homogeneous dose distribution with a subsequent similar probability to develop acute RD.

When compared to the SoC collective, baseline characteristics were very similar. In the SoC collective, fewer patients received a sequential boost (44% versus 59%; p = 0.081), the mean breast size was significantly smaller (p = 0.007), and fewer patients received neoadjuvant systemic therapy (p < 0.001), implying that these patients were at an overall lower risk of developing RD. Patient and radiation treatment characteristics for both collectives are presented in Table 1.

Clinician-reported outcome

Mean ± SD graded severity of RD upon radiation treatment completion was 0.79 ± 0.60 for NIPP halves versus 0.83 ± 0.52 for placebo halves (p = 0.644). There were no statistically significant differences between NIPP and placebo halves in terms of physician-assessed RD, hyperpigmentation, oedema, and dry and moist desquamation over the course of treatment and follow-up.

The mean ± SD RD severity upon radiation treatment completion was 1.06 ± 0.71 in the SoC control collective (p = 0.004; OR = 0.28 [95% CI 0.11–0.76; p = 0.014] for grade ≥ 2 RD). After two weeks, this had dropped to 0.27 ± 0.55 in NIPP patients, however, remained at 1.05 ± 0.70 in SoC controls (p < 0.001). At six weeks, there was no significant difference (0.04 ± 0.19 versus 0.10 ± 0.30; p = 0.156). Upon treatment completion, there was an overall lower maximum toxicity (p < 0.001) with less hyperpigmentation (p < 0.001), oedema (p = 0.020), and dry and moist desquamation (p < 0.001 and p = 0.017, respectively) in patients receiving NIPP. Results are summarised in Fig. 3a and Fig. 4a–c.
There were no statistically significant differences between NIPP and placebo breast halves in terms of the maximum patient-assessed RD symptoms. In comparison with the SoC control collective, however, NIPP patients reported significantly less pain, itching, and burning ($p < 0.001$). There was no difference in limitations in daily activities ($p = 0.130$). Results are summarised in Fig. 3b and Fig. 4d.

Objective assessment

Fig. 5a–b shows the evolution of L^* and a^* values of the irradiated skin over the course of treatment and follow-up. There were no statistically significant differences between NIPP and placebo halves.

On comparison with the SoC control collective, the differences in clinician-reported RD assessment were confirmed: lower a^* values for NIPP patients upon treatment completion and at two weeks ($p < 0.001$), indicating less erythema.

Safety and satisfaction

In accordance with the initial feasibility trial, the tolerability of NIPP was excellent and no adverse events or discontinuations due to side effects of NIPP or its combination with WBI were recorded. This was reflected by the positive patient-reported experiences, as shown in Supplementary Table 1.

Discussion

Progress in the development of new RD prophylactic and therapeutic agents has been slow, leading to a considerable physical and psychological impact on numerous patients. Topical corticosteroids (mometasone, betamethasone) are effective in reducing RD-related symptoms, however, their widespread and prolonged use remains limited due to the associated side effect profile [30–32]. Care should also be taken if moist desquamation is present, as topical corticosteroids might delay wound healing or promote infection.

Despite some experimental products showing promise in the context of RD prevention or management, few of them proved consistently useful in sufficiently powered randomised trials [11,33]. Furthermore, such trials often recruit heterogeneous patient collectives with varying dose-fractionation regimens and treatment sites, and most lack a uniform control group or adequate placebo control. Another issue is the subjectivity of physician-assessed RD gradings such as CTC, with considerable inter- and intra-observer variability, accompanied by significant discrepancies with patient-reported outcomes [34,35]. To accurately investigate prevention and treatment strategies, there is a...
need for objective RD assessment methods and inclusion of the patient’s perspective into clinical trial protocols.

In this prospective, double-blind, placebo-controlled trial, we evaluated the effect of topical NIPP on the incidence and severity of acute RD in a homogeneous patient collective undergoing WBI for breast cancer, using clinician- and patient-reported as well as objective assessment methods.

NIPP shows promising results in the context of several skin conditions and positively affects tissue healing without side effects. In vitro and in vivo studies have revealed that its application to human skin cells does not result in any impairment of cell physiology, cytology, nor DNA integrity, making it safe for clinical use [19,36–39]. A preclinical placebo-controlled trial in irradiated mice showed delayed onset and reduced severity of RD and the only case report published so far showed successful treatment of acute RD following head and neck irradiation [40,41].

When comparing NIPP and placebo breast halves, no significant differences in either clinician- or patient-reported outcomes nor objective assessments were observed. However, the overall incidence and severity of acute skin toxicity were low. A comparison with a very similar patient collective in terms of radiation dose and treatment technique as well as identical SoC supports this: even though patients in the NIPP cohort were at an overall higher risk of developing RD (more sequential boosts and larger breast volumes; both risk factors for RD development), they still developed less frequent and milder acute toxicity [23,42]. An additional comparison with international landmark trials on acute radiation-induced toxicity following hypofractionated WBI with modern treatment techniques further supports the apparent benefit of NIPP in this context (Supplementary Table 2). Also in accordance with previous reports on the use of NIPP in comparable clinical settings, side effects were not reported and patient tolerability and acceptance were excellent [18,19]. Treatment time and cost are discussed in more detail in the initial feasibility trial [21].

We reason that the trial design with an intrapatient control breast half may be responsible for the discrepancy between the placebo and SoC controls. Although NIPP was applied to one breast half only, diffusion to the other (placebo) breast half cannot be ruled out, which is the main limitation of this trial. Said design proved useful in previous trials investigating topical therapies for RD prevention [43–45]: each patient acting as their own control promotes patient accrual and omits the need for stratification based on other risk factors for RD development such as breast volume or skin type, limiting confounding in RD grading [23]. To confirm this hypothesis and to accurately investigate the effect of NIPP on RD development (or radiation injury in general), an interpatient-randomised design with a physical control group receiving SoC and sham treatment will be needed [46].

The pathophysiology of RD is complex and the signalling pathways and mechanisms through which NIPP positively affects tissue healing are not yet fully understood. We reason that its primary mode of action in the context of RD mainly involves a reduction of the bacterial load on the irradiated breast skin. Ionising radiation disrupts the skin barrier function and microorganisms or microbial antigens may subsequently trigger an inflammatory response, enhancing the clinical appearance of RD through an increased immune reaction [47]. In this context, patients with *Staphylococcus aureus* colonisation before initiation of radiotherapy are more prone to severe RD development [48]. A recent study supporting these findings investigated the use of chlorhexidine body wash once daily in patients undergoing WBI and observed a significant reduction of RD incidence and severity when compared to standard skin care [49]. NIPP also achieves bacterial decolonisation, both on working surfaces and humans, among other by promoting macrophage ability to eliminate internalised *Staphylococcus* [18,50–52]. Its beneficial effects on diabetic foot ulcers is, among other factors, attributed to the observed immediate reduction of the bacterial load on the damaged skin [13,19,53].

A proposed additional mechanism is that NIPP promotes proliferation and migration of keratinocytes, fibroblasts, and endothelial cells, which facilitates tissue recovery [54]. Accelerated endothelial tube formation improves vascular shear stress which contributes to angiogenesis, in turn enhancing capillary blood flow and increasing local

Table 1

Overview of patient and radiation treatment characteristics (n = 64) and comparison of baseline characteristics between the current trial (NIPP + SoC) and a similar control trial (identical SoC) [4]. NIPP = non-invasive physical plasma; SoC = standard of care; BMI = body mass index; pT = pathological stage of the primary tumour; Tis = carcinoma in situ; pN = pathological stage of the regional lymph nodes; PTV = planning target volume; SD = standard deviation; gEUD = generalised equivalent uniform dose.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Current trial</th>
<th>Control trial *</th>
<th>p b</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (patients)</td>
<td>64</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Median age (range) in years</td>
<td>58 (29–83)</td>
<td>59 (37–84)</td>
<td>0.592</td>
</tr>
<tr>
<td>Female</td>
<td>64 (100)</td>
<td>70 (100)</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>62 (97)</td>
<td>70 (100)</td>
<td>0.136</td>
</tr>
<tr>
<td>Fitzpatrick skin type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>12 (19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>45 (70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>7 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median BMI (range) in kg/m²</td>
<td>25 (18–35)</td>
<td>27 (18–40)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>4 (6)</td>
<td>2 (3)</td>
<td>0.343</td>
</tr>
<tr>
<td>Active smoking</td>
<td>3 (5)</td>
<td>0 (0)</td>
<td>0.067</td>
</tr>
<tr>
<td>Neoadjuvant chemotherapy and immunotherapy</td>
<td>24 (38)</td>
<td>0 (0)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>pT-stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tis</td>
<td>20 (31)</td>
<td>6 (9)</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>29 (45)</td>
<td>48 (69)</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>14 (22)</td>
<td>16 (23)</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>1 (2)</td>
<td>0 (0)</td>
<td>0.004</td>
</tr>
<tr>
<td>pN-stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>55 (86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>8 (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>1 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequential boost to the tumour bed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost compartment = NIPP half</td>
<td>38 (59)</td>
<td>31 (44)</td>
<td>0.081</td>
</tr>
<tr>
<td>Boost compartment = placebo half</td>
<td>19 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median PTV Breast (range) in mL</td>
<td>892 (303–2154)</td>
<td>720 (134–1771)</td>
<td>< 0.007</td>
</tr>
<tr>
<td>Median PTV Boost (range) in mL</td>
<td>110 (46–291)</td>
<td>192 (50–413)</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD gEUD in %</td>
<td></td>
<td></td>
<td>0.734</td>
</tr>
<tr>
<td>NIPP halves</td>
<td>74.1 ± 4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo halves</td>
<td>74.4 ± 4.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Patients in the moderately hypofractionated trial arm.
b Difference assessed using Fisher’s exact test, Pearson’s χ², or Student’s unpaired t-test, as appropriate.
c Comparison between NIPP and placebo halves in the current trial.
The expression of wound healing gene signatures alongside significant changes to the human skin barrier lipid stoichiometry are two additional modes of action, which are, however, still poorly understood [57,58].

The main limitation of the current trial is its intrapatient-randomised design, which cannot rule out diffusion of NIPP to the other (placebo) breast half. In order to unequivocally assess the benefit of NIPP in the context of adjuvant WBI, an interpatient-randomised design with a...
Fig. 4. a–d. Maximum clinician- and patient-reported toxicity. Frequency of radiation dermatitis CTCAE gradings (a), overall maximum observed toxicity grade (b), clinician-reported (c) and patient-reported (d) outcomes, with NIPP (blue; left) and in a comparable SoC control collective (purple; right). Mann-Whitney-U test: * p < 0.05; *** p < 0.001; n.s. = not significant. CTCAE = Common Terminology Criteria for Adverse Events; NIPP = non-invasive physical plasma; SoC = standard of care; ADL = activities of daily living. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
physical control group receiving placebo will be needed. Furthermore, an additional NIPP dose-escalation should be investigated, as it might yield an even better outcome. Longer treatment times generate more ozone, enabling bacterial decolonisation and increasing the secretion of anti-inflammatory and regenerative signalling molecules, which might improve outcome even further [13,49,59]. The subsequent additional treatment time and costs generated with the device used in this trial might delineate a subset of high-risk patients (i.e. those with risk factors for RD development), in which NIPP is most cost-effective. Lastly, the long-term effects of daily NIPP application will have to be investigated in future trials.

Conclusion

Even though there were no significant differences between intrapatient-randomised breast halves receiving NIPP versus placebo, the overall incidence and severity of acute radiation-induced skin toxicity was considerably lower in comparison with an independent, prospectively-recruited control collective receiving identical SoC. Diffusion of the volatile NIPP towards the placebo half is the most likely explanation for this discrepancy. We provide first evidence supporting the benefits of NIPP as an add-on RD prevention method in the context of adjuvant WBI for breast cancer, while confirming the excellent safety and tolerability from the feasibility trial. A randomised controlled trial with a physical control group is needed to further investigate this promising approach for RD prevention.

Author Contributions

Patient Consent Statement

Written informed consent was obtained from all included patients. This study was conducted in accordance with the Declaration of Helsinki and the protocol was approved by the Institutional Review Board of the University Bonn in September 2021 (210/21).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank Katja Klever and Monika Brügge- mann for their technical expertise and assistance in conducting this trial, as well as Jens Kirsch, Stefanie Ascher, Lisa Gebhardt, Ute Gratzfeld, and Mara Murgia from terraplasma medical for kindly providing the plasma care device free of charge.

Funding and Conflict of Interest

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. There are no relevant financial or non-financial interests to disclose.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ctro.2023.100699.

References

