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CHAPTER 1

Introduction

This thesis is a collection of papers on auctions. Auctions are mechanisms allocating

goods (e.g. electric power, CO2 abatements, timber, and various asset auctions) to bidders

(e.g. individuals, �rms, and institutions). Auction theory is based on the game theoretical

models, which are successful in the laboratory (see Kagel, 1995) and in the �eld (see for

example Hendricks, Porter and Wilson, 1994). There are practical considerations (e.g.

the complexity of the auction, time constraints of the bidders) which have to be taken

into account when designing the auction. To satisfy these needs, complicated auctions

are often employed. In these auctions, there are tiny details which an economist needs

to carefully study to predict the �nal outcome. This thesis focuses on four dimensions of

auction design which are important for economic transactions: the ending rule, scheduling

of the auctions, transmission of the bids and information feedback.

The structure of the thesis is as follows. The remainder of this introduction introduces

the four dimensions of auction design studied in the thesis and outlines the chapters of

the thesis, the research questions they pose and their main conclusions. Part I of this

thesis, which deals with scheduling, the ending rule and transmission of bids in Internet

auctions, consists of chapters 2, 3 and 4. Part II of this thesis focuses on information

feedback in sealed-bid auctions (chapters 5 and 6).

1.1. Ending rule

When designing an auction, the auctioneer may choose between sealed-bid and open

mechanism. While a sealed-bid auction takes only one round, an open auction lasts for

longer. An open auction gives bidders time to discover their optimal strategies. On the

other hand side, there is a concern whether it would ever end. To solve the problem,

the auctioneer often introduces an activity rule that prevents a bidder from holding back

7



8 1. INTRODUCTION

by tying a bidder�s eligibility in future rounds to its activity in the current round (see

Milgrom, 2004). Clearly, such a solution is not desirable when it is hardly possible to

gather all the potential bidders in one place or time (e.g. in Internet auctions). In

those situations, the activity rule is not imposed and the problem of the possible in�nite

duration of the auction is solved by the introduction of an ending rule. This thesis studies

some of the possible ending rules and their impact on the bidding behavior.

1.2. Scheduling of the auctions

There are various ways of auctioning several goods. The goods may be auctioned

all at once or in separate sequential auctions. The choice of the schedule depends on

the auctioneer�s goal. Auctioning all the goods at once is attractive for an impatient

auctioneer. Sequential auctions may attract more bidders. Furthermore, they appear to

be easier to organize. There are also theoretical considerations which might be taken into

account when scheduling the auctions. In particular, di¤erent scheduling of the auctions

may result in di¤erent outcomes. This thesis investigates how the choice of the schedule

of Internet auctions in�uences the allocation of the goods.

1.3. Transmission of the bids

In most auctions, a submitted bid is received by the auctioneer for sure. In some

circumstances, there might be some random factor (e.g. imperfect Internet connections,

which bidders use to submit their bids) causing rejection of the bids. This thesis ad-

dresses a question whether a bidder might �nd it optimal to bid under uncertain bid

transmission, despite being given time to bid under certain bid transmission and if so,

what the consequences of such behavior are.

1.4. Information feedback

Di¤erent information feedback may be provided after the auction �nishes. For ex-

ample, after the auction ends, all the bidders might learn the identities of the winning

bidders and the prices; alternatively only the winning bidder might be informed about the
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price. Since the bidders learn the feedback after the auction ends, one may think that in

private-value auctions, the information feedback plays no role. On the other side, bidders

may engage in counterfactual thinking, which depends on the information feedback. This

thesis follows the latter approach and examines the impact of information feedback on

behavior of regretful bidders.

1.5. Summary of the chapters

1.5.1. Part I

Part I of this thesis consists of chapters 2, 3 and 4, all studying Internet auctions. On the

Internet, single sellers may independently run their auctions. Auctions o¤ering identical

goods are often run sequentially or simultaneously. A single auction is typically run for

seven days, during which bidders are free to submit their bids. It ends at a �xed point

of time that has been exogenously �xed in advance (e.g. on eBay) or at an endogenously

determined point of time which depends on the bidding activity (e.g. on Amazon). Under

the �xed ending rule, despite lots of bidding possibilities, bidders often bid just before

the �xed ending of the auction. Under the �exible ending rule, the distribution of the

bids is more spread out.

Part I of this thesis explains, the phenomenon of sniping, a common practice of plac-

ing a bid in the closing seconds of the auction with a �xed ending rule, in the context of

multiple auctions selling identical independent private-value goods. Alternative explana-

tions proposed in the literature suggested that sniping might be related to uncertainty of

a bid transmission in the last minute of the auction or uncertainty in the value of the good

(see Bajari and Hortacsu, 2004, for an overview). It is not obvious that with the current

Internet technology bidders might face problems with sending their bids just before the

end of the auction. Furthermore, many Internet auctions o¤er goods with the well-known

value to the bidders. Part I of this thesis focuses on such auctions and explains sniping

under certain transmission of all the bids.
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Besides focusing on sniping, part I addresses the following questions related to Internet

auctions. First, it compares di¤erent ending rules (chapter 2). Second, it studies the

impact of the scheduling of the auctions on the �nal allocation (chapter 2, 3 and 4).

Third, it investigates the relation between possible imperfections of the transmission of

the bids and bidding behavior (chapter 4).

Chapter 2 analyzes �xed and �exible ending rules in sequential Internet auctions.

There are two open consecutive second-price auctions. When bidders bid early in the

�rst auction, the information on the ordering of their independent private valuations is

revealed. Weak bidders (those with the third highest value or lower) conclude that, in an

e¢ cient equilibrium, they have no chance to win. Therefore, they bid their valuations in

the �rst auction, which increases the �nal price and makes the revelation of the informa-

tion unattractive. Under the �xed ending rule, in equilibrium, all the bidders bid at the

last stage of the �rst auction, which gives a rational for sniping. The �exible ending rule

leaves no space for sniping and hence, disables an e¢ cient outcome. Therefore, a �xed

ending time might be preferable.

Chapter 3 models simultaneous Internet auctions with certain bid transmission and

a �xed ending rule. There are two simultaneous dynamic auctions o¤ering the same

good. Bidders have lots of �exibility to submit their bids, but they are restricted by

the �xed ending rule. If bidders bid early, the strong bidder (the one with the highest

valuation) will become the current winner and the weak bidders (those with the third

highest valuation or lower) will infer that they have no chance to �ght against the strong

bidder and, hence, will be unwilling to bid any longer. If the weak bidders do not bid

any more, the strong bidder will also have no reason to submit more bids. But if the

strong bidder stops bidding, the weak bidders actually have a chance to win. All in all,

an equilibrium with early bidding cannot be reached. In equilibrium, bidders bid only in

the last round and an e¢ cient outcome is not guaranteed.

Chapter 4 compares simultaneous Internet auctions to overlapping Internet auctions,

assuming that the bid transmission is uncertain in the last minute of each auction. Two
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auctions selling identical goods overlap or coincide in time. Before the last stage, each

bid is accepted with certainty. At the last stage, a bid is rejected with some positive

probability. The chapter rationalizes both multiple bidding as well as sniping: there is

multiple bidding to allow coordination, and there is sniping when the coordination starts

late. In overlapping auctions, even if the coordination starts late, bidders always have

time to safely reallocate without engaging in risky sniping. Hence, overlapping auctions

may be better than simultaneous ones, as, in contrast to the former, the latter might

cause ine¢ ciencies related to risky sniping.

To conclude, part I argues that to sustain e¢ ciency, the auctioneer should opt for

sequential or overlapping auctions. Furthermore, chapter 2 shows that having a �xed

ending time instead of a �exible ending time is good for e¢ ciency. Finally, all the chapters

show that the phenomenon of sniping may be attributed to the multiplicity of auctions

with the same o¤erings.

1.5.2. Part II

Experiments investigating private-value sealed-bid auctions show that bidders bid more

aggressively than the auction theory predicts (see Kagel, 1995). To describe the observed

behavior, alternative models have been proposed in the literature. In these models,

bidders do not only care about their monetary payo¤s, but also experience emotions

(e.g. regret) a¤ecting their choices. An economist is often unable to directly observe

the emotions and has to take an indirect approach to make testable predictions. In

particular, one may indicate the factors important for the new models and irrelevant for

the standard models. Part II takes such an approach by investigating the role of the

information feedback on bidding behavior of regretful bidders in sealed-bid auctions.

Chapter 5 presents a theoretical study of the impact of information feedback on the

anticipated regret and rejoicing on bidding behavior in sealed-bid auctions. On learning

the outcome of the auction, a player may discover that another bid would have lead to a

higher payo¤. This knowledge may impart regret. Alternatively, he may realize that he
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has chosen the best possible bid, given the actions of his opponents. This knowledge may

impart rejoicing. Chapter 5 shows that a player who is prepared to trade-o¤ �nancial

return in order to avoid regret and to maximize rejoicing will bid more aggressively than

the standard theory suggests. The behavior depends on the information feedback, as a

bidder experiences regret or rejoicing only if he is aware of the foregone opportunities.

Chapter 6 reports on the results of an experiment on the relation between public

revelation on the price and bidders�behavior in private-value sealed-bid auctions. The

observed dynamic behavior is a¤ected by the experience of regret, which in turn is related

with the information feedback. A subject who experiences a material loss because of

bidding above the valuation tends to bid less aggressively in the next round. A subject

who loses when the price is below his valuation most often bids more aggressively in the

next round. When losing bidders are not provided feedback on the price, the regret driven

reactions are less popular. All in all, regret seems to be an important factor of bidders�

decisions.
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CHAPTER 2

On the Ending Rule in Sequential Internet Auctions

2.1. Introduction

In online auctions, buyers do not need to be available in the same time or place.

Instead, they can enter their bids whenever it is convenient to them. The possible bidding

time has its limit. The auction has an ending rule speci�ed in advance. Di¤erent ending

rules are used in Internet auctions. On eBay, the seller speci�es a �xed ending time for

the auction. All bids must be placed within the auction duration. It is possible to snipe,

that is to place a bid in the closing seconds of the auction, so that the other buyers

have no time to react. On Amazon, the seller determines the length of the auction, but

the ending time is �exible. Whenever a bid is submitted in the last 10 minutes of the

speci�ed auction duration, the auction is automatically extended for an additional 10

minutes from the time of the latest bid. It is always possible to react to the late bid. On

Yahoo, the seller can opt for the �exible ending time or choose to have the �xed ending

time.

The existing empirical studies show that under the �xed ending time, there is a great

deal of sniping in Internet auctions (see Bajari and Hortacsu, 2004, for an overview).

Sniping cannot be explained by bidders�preferences, as under the �exible ending time,

bidders submit their bids earlier. Bajari and Hortacsu (2003) and Roth and Ockenfels

(2006) rationalize sniping in single-unit common-value auctions. Roth and Ockenfels also

present a model of a single-unit private-value Internet auction with uncertain transmission

of the late bids. In their model, sniping is one of the possible equilibria and is driven

by the uncertain transmission of the late bids. Nowadays, Internet connections are very

fast and there are computerized agents that snipe on behalf of the bidders. Therefore, it

15



16 2. ON THE ENDING RULE IN SEQUENTIAL INTERNET AUCTIONS

is desirable to present an explanation of sniping in a model with certain transmission of

the late bids and private values.

This paper proves rationality of sniping in a sequential private-value Internet auction.

The proposed model is reminiscent of Peters and Severinov (forthcoming), who model

competing auctions selling private-value goods. In their model, all the auctions are run

simultaneously and the bidding lasts as long as there is someone interested in further

bidding. In the present paper, auctions are run sequentially. Peters and Severinov show

that incremental bidding is an equilibrium strategy. The present paper shows that under

the �xed ending time, sniping is an equilibrium strategy.

The paper is structured as follows. The next section studies sequential Internet auc-

tions with �xed ending times. Subsection 2.2.1 introduces the model of the Internet

auctions with the �xed ending times. Subsection 2.2.2 argues that sniping is the unique

equilibrium strategy. Section 2.3 analyzes sequential Internet auction with �exible end-

ing times. Subsection 2.3.1 re�nes the model de�ned in subsection 2.2.1 to allow for the

�exible ending time. Subsection 2.3.2 shows that there is no e¢ cient equilibrium under

the �exible ending time. Finally, section 2.4 concludes and suggests directions for the

future research.

2.2. Fixed ending rule

2.2.1. The model

There are two consecutive auctions (auction 1 and auction 2) and N > 2 buyers. After

auction 1 ends, auction 2 starts. Each buyer i (i = 1; :::; N) has an independent private

valuation of one (and only one) item of the good (vi), which is distributed according to

standard distribution F (vi) with density f(vi) > 0 and support on [0; 1]. vm:n denotes

the mth highest valuation out of n bidders. Fm:n(:) is distribution of vm:n. fm:n(:) is

corresponding density.

Since buyers have unit demands, a buyer who wins the good in auction 1 weakly

prefers not to bid in auction 2. For clarity purposes, I assume that he is not given that
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choice. A buyer i is allowed to bid in the auction 2, if he does not win the good in the

auction 1. Every buyer who is allowed to bid in a given auction is called a potential buyer

of this auction. There are N potential buyers in auction 1 and N � 1 potential buyers in

auction 2.

Each auction a (a = 1; 2) takes two rounds. In each round t (t = 1; 2) of auction a,

the following happens:

(1) The current price (pta) is announced.

(2) Bids are collected from the potential buyers.

(3) Active bidders, the identity of the buyer whose bid equals the price and the

current winner are indicated.

In round 1 of auction a, the current price is 0. In round 2 of auction a, the current

price equals the highest bid submitted by buyer who is not the current winner or 0, if

there is only one active bidder. In each round t of auction a, after the current price is

announced, each potential buyer i can submit a positive bid bta;i > 0 or not to bid at all

(bta;i = 0). I focus only on monotonic bidding functions, which is natural for auctions

(that is @
@vi
bta;i(:) > 0 or b

t
a;i(:) = 0). A bid of buyer i is accepted if it exceeds the current

price and his previous bids submitted in this auction. Each buyer whose bid is accepted

in auction a becomes an active bidder of auction a. He remains an active bidder until

the end of auction a. Buyer i who submits the highest bid in auction a as the �rst one

becomes a current winner. In case of a tie, the current winner is chosen randomly. In the

end of each round, the active bidders, the current winner and the buyer whose bid equals

the current price are indicated. After the last round of auction a, the current winner wins

the good. The �nal price (pa) is chosen on the same basis as the current price.

After auction 2 �nishes, the game ends. The utility of buyer i is given by:

ui(:) =

8><>: vi � pa if i is the �nal winner in auction a

0 if i does not win any good
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Let hta 2 H t
a be a history of the learned outcomes (i.e. current winners, current

prices, identity of buyers whose bids equal to current prices and identities of all other

active buyers) up to round t of auction a. Let sta;i 2 S denote a status (current winner,

losing bidder or a bidder who did not bid) of buyer i in round t of auction a. Then, an

action of buyer i in round t of auction a is given by bta;i(vi; h
t
a; s

t
a;i) 2 R+. The strategy

of buyer i is described by the function:

�i =

264 b11;i(vi; h11; s11;i) b21;i(vi; h
2
1; s

2
1;i)

b12;i(vi; h
1
2; s

1
2;i) b22;i(vi; h

2
2; s

2
2;i)

375 : [0; 1]�H � S4 ! R4+

where H is the space of all possible histories.

Let 
i be the space of all possible �i. The beliefs of buyer i on the valuations of

the opponents (v�i = fv1; :::; vi�1; vi+1; :::; vNg) are summarized by �i(v�ijvi; hta). The

prior belief is that each valuation is distributed according to F (:). The �nal outcome,

including �nal prices and �nal winners for all auctions, is given by o 2 O. The outcome

function is $ : 
 � [0; 1]N ! O, where 
 = 
1 � � � � � 
N . The game is de�ned by

�1 = f
1; :::
N ; o(:)g. The equilibrium concept is e¢ cient symmetric perfect Bayesian

equilibrium, where e¢ ciency means that buyers with the two highest valuations win the

goods, symmetry implies that �i = �j for every i; j 2 f1; :::; Ng and perfect Bayesian

equilibrium is de�ned in a standard way.

2.2.2. Results

Analyzing the behavior in auction 2 is not interesting, as each potential bidder weakly

prefers to bid the valuation in some round of auction 2. Therefore, I focus on the optimal

bidding behavior in auction 1. In particular, I wish to show that in auction 1, it is optimal

to snipe, where sniping is meant as not bidding in round 1 of auction 1 and bidding in

round 2 of auction 1. In order to do so, I need to prove that it is not in interest of a

bidder to bid early, where early bidding is de�ned as bidding in round 1 of auction 1, and

that an equilibrium with sniping exists.
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To solve the game, I focus only on strategies leading to an e¢ cient allocation. Note

that a bidder with valuation equal to 0 will not bid in any auction, as bidding above

the valuation is never in his interest. Hence, his expected utility is 0. By Revenue

Equivalence Theorem, if the allocation is e¢ cient and the bidder with valuation equal to

0 obtains utility of 0, the expected prices equal to the value of the third highest valuation

(E[p1] = E[p2] = E[v3:N ]) (see Krishna, 2002).

The optimal bidding behavior in round 2 of auction 1 depends on what happens in

auction 2. As I have already argued, in an e¢ cient equilibrium, bidders behave in such

a way in auction 2 that E[p2] = E[v3:N ]. In an e¢ cient equilibrium, when choosing his

optimal bid in auction 1, a bidder thus assumes that E[p2] = E[v3:N ]. His behavior in

auction 1 depends on his belief on the relation between his valuation and E[v3:N ]. His

prior beliefs are such that he expects that with a positive probability his valuation is

higher than E[v3:N ]. In round 2 of auction 1, he might have already updated his beliefs

in such a way that he knows that his valuation is not higher than E[v3:N ] with certainty.

In such a case, he realizes that in auction 2, where E[p2] = E[v3:N ], he has no chance for

a positive transaction. If so, he weakly prefers to bid his valuation in round 2 of auction

1. I make a behavioral assumption that despite the weak preference, he will do so.

A1 Suppose that in round t of auction 1 buyer i believes that vi � v3:N � E[p2], then

he bids vi in round t of auction 1.

When deciding what to bid in round 1 of auction 1, a bidder makes certain assumptions

about what happens till the end of the game. As I have already discussed, in an e¢ cient

equilibrium, he assumes that E[p2] = E[v3:N ]. Furthermore, I have assumed that he

behaves in such a way that A1 is satis�ed. Recall also that in an e¢ cient equilibrium,

E[p1] = E[v3:N ]. This implies that the expected value of the highest bid submitted in

round 1 of auction 1 cannot exceed the expected value of the third highest valuation

(E[maxfb11;i(:)gi2f1;:::;Ng] � E[v3:N ]). From the latter inequality it follows that if bidder i

bids at all in round 1 of auction 1, his bid is below the valuation (b11;i(:) < vi).
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Suppose that in round 1 of auction 1, each bidder i bids b11;i(:) = b(vi) < vi. Since

I only focus on monotonic bidding functions, b(vi) must be strictly increasing. If so,

the current price equals the second highest bid (p21 = b(v2:N)). From the current price

bidders infer the second highest valuation (v2:N = b�1(p21)). This makes N � 2 bidders

realize that in auction 2, where E[p2] = E[v3:N ], the price will be at least given by their

valuations. Then by A1, every bidder i with vi < v2:N bids vi in round 2 of auction 1. As

a result, in auction 1, the expected �nal price exceeds E[max[v3:N ; b(v2:N)] > E[v3:N ]. On

the other side, there is a Revenue Equivalence Theorem implying that this price should

equal E[v3:N ]. Hence, the described behavior cannot happen in equilibrium. In e¢ cient

equilibrium, bidders do not bid early.

To reriterate, early bidding leads to the revelation of the current price which makes

weak bidders (those with the valuation lower than v2:N) aware that if they are not ag-

gressive, they will not win any good. Therefore, after early bidding the weak bidders

start the bidding war (by increasing their bids up to their maximum willingness to pay).

This bidding war is undesirable, as it increases the �nal price. Bidders prefer not to

reveal any information in the �rst place so that the bidding war never starts. All in all,

in an e¢ cient equilibrium bidders do not bid early. In appendix, I present an e¢ cient

equilibrium in which all the bidders snipe. The following theorem summarizes the result.

Theorem 2.1. In e¢ cient symmetric perfect Bayesian equilibrium of �1, buyers al-

ways snipe.

To conclude, this section presents a model of two consecutive auctions to illustrate

multiple Internet auctions with the same o¤erings. I argue that bidder�s behavior in the

current auction depends on his expectations about possibility of a positive transaction in

the future auction. As long as he is optimistic and believes that he has a chance for a

positive transaction in the future auction, he bids relatively low in the current auction.

If the current price achieves certain level, he realizes that his valuation is so low that he

has to bid his maximal willingness to pay in the current auction to have any chance for a
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positive transaction. To prevent such a situation from happening, in the current auction,

all the bidders prefer to bid so late that after the increase in the current price there is no

chance to submit further bids. Then, weak bidders do not bid their maximal willingness

to pay in the current auction and the �nal price is sustained at the reasonable level. If

the current price was not revealed, no bidder would ever learn that his valuation is too

low to hope for a positive transaction in the future. The immediate implication is that if

the current price was hidden from the bidders, sniping would be less attractive.

2.3. Flexible ending rule

2.3.1. The model

This subsection re�nes the model presented in subsection 2.2.1 to allow for the �exible

ending time.

There are again two sequential auctions and N > 2 buyers. Each buyer i (i =

1; :::; N) has an independent private valuation vi that satis�es the condition imposed in

the subsection 2.2.1. Auctions are run in sequence. After auction 1 ends, auction 2 starts.

After auction 2 �nishes, the game ends. The utility of buyer i is given as in the subsection

2.2.1.

Each auction a (a = 1; 2) has Ta rounds. In each round t (t = 1; :::; Ta) of auction a,

�rst, the current price is announced; second, bids are collected from the potential buyers

and third, active bidders and the current winner are indicated, where the current price,

bids, potential buyers, active buyers and current winners are de�ned as in subsection

2.2.1. Round Ta is determined endogenously. If there are no bids in round 2 of auction a,

auction a ends (Ta = 2). If there is a bid in round 2, auction a is extended for one more

round (Ta > 2). The auction continues as long as there is at least one accepted bid. One

round without any bids imposes the end of the auction. In other words, if there is a bid

accepted in every round t 2 f2; :::; t� � 1g and there is no bid accepted in round t�, then

Ta = t
�.
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Let hta 2 H t
a be a history of the learned outcomes (i.e. current winners, current

prices, identity of buyers whose bids equal to current prices, identities of all other active

buyers and number of rounds) up to round t of auction a and sta;i 2 S be a status of

buyer i (current winner, losing bidder or bidder who did not bid).in round t of auction

a. Then, an action of buyer i in round t of auction a is given by bta;i(vi; h
t
a; s

t
a;i) 2 R+.

Let �a;i be a bidding strategy of bidder i in auction a. I de�ne strategy of bidder i to be

�i =

�
�1;i �2;i

�
2 
i. The beliefs are de�ned as in 2.2.1. o 2 O, $ and 
 have the

same meaning as in the subsection 2.2.1. The game is de�ned by �2 = f
1; :::
N ; o(:)g.

2.3.2. Results

This subsection studies optimal bidding behavior under a �exible ending time. Here,

after bids are accepted, there is at least one more round. Hence, the �exible ending rule

destroys all the modeled gains from the late bidding.

Suppose that bids are collected at some round t of auction 1. After bids are accepted,

the price is revealed. By symmetry and monotonicity the price is given by the bid sent

by the bidder with the second highest valuation. From the price, some bidders infer that

in contrast to their opponents they have low valuations (that is lower than v2:N). They

need to be aggressive to win the good. When they become aggressive, the expected �nal

price increases in auction 1. Strong bidders prefer to hide the information about their

valuations from the weak bidders, so that the weak bidders do not become aggressive

in auction 1. Under the �xed ending rule, they could do so by sniping. Under the

�exible ending rule, the weak bidders always have time to react to the bids of the strong

bidders. Then, the strong bidders never want to start informative bidding. As a result,

an equilibrium cannot be reached.

Theorem 2.2. There is no e¢ cient symmetric perfect Bayesian equilibrium of �2.

Proof. See the Appendix �
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To conclude, under the �exible ending time, there is no e¢ cient equilibrium. The

previous section showed that under the �xed ending time, there is an e¢ cient equilibrium.

I conclude that having the �xed ending time instead of the �exible ending time is better

for e¢ ciency.

2.4. Conclusions

More and more transactions take place on Internet auctions. Internet enables trade on

a longer distance. It does not require the seller and the potential buyers to be available in

the same moment. Therefore, Internet auctions are dynamic and have no activity rules1.

When having dynamic auctions without activity rules, auction platform needs to decide

upon the ending rule. However, they are o¤ered little guidelines from auction theory.

That is maybe the reason why they decided for di¤erent solutions. eBay chose the �xed

ending time, Amazon set the �exible ending time and Yahoo left the decision to the

seller. As noted in the introduction of the present chapter, di¤erent ending rules trigger

di¤erent bidding behavior. Under the �xed ending, bidders tend to postpone their bids

till the very end of auction. Under the �exible ending time, this is not the case.

The present paper studies the optimal ending rule from the perspective of auction

platform which is interested in e¢ ciency. It models sequential dynamic second-price

independent private-value auctions under �xed ending time and �exible ending time. In

the �rst auction, buyers wish to bid below their valuations to sustain an option of winning

the good in the later auctions. They do not wish to bid early, because early bidding makes

some of the bidders aware that they have no chance to win the good in the later auctions

and hence, makes them willing to bid their valuations in the �rst auction, which increases

the price in the �rst auction. Therefore, everyone prefers to bid in the last round of the

�rst auction. Under the �xed ending rule, this is possible. There is an e¢ cient equilibrium

with sniping. Under the �exible ending rule, there is no last round. Therefore, there is

1See chapter 1 for a discussion on the link between activity rule and ending rule.
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no e¢ cient equilibrium. All in all, the �xed ending time is more desirable for e¢ ciency

than the �exible ending time.

The present paper leaves space for the future research. Throughout the paper, the

major concern was about e¢ ciency. In the absence of a reserve price, an e¢ cient outcome

is of natural focus. In reality, Internet auctions might di¤er with respect to the starting

price. It is therefore interesting to check how di¤erent starting prices a¤ect the revenue.

Other assumption that could be modi�ed relates to the �xed number of bidders. In

auction theory, assuming that a bidder knows the number of his opponents is standard.

However, it is not obvious that it happens in Internet auctions. It would be interesting

to check how uncertainty about the actual size of the market a¤ects bidders�incentives.

Finally, the present paper could be empirically tested. It suggests that sniping should be

more prevalent in auctions facing �erce competition than those selling less popular goods.

It also predicts that sniping should be less prevalent in auctions which do not reveal the

current price. Testing these claims would be an interesting empirical contribution.

2.5. Appendix

Before proving theorem 2.1, I need to prove the following proposition.

Proposition 1: Let ��i be de�ned as follows:

(1) in round 2 of auction 1, if p12 = 0, buyer i bids b̂(vi) = E[v
3:N jv2:N = vi],

(2) in round 2 of auction 1, if p12 > 0, he bids vi,

(3) in round 1 of auction 2, if he is a potential buyer, he bids vi,

(4) otherwise, he does not bid,

Let ��i be as follows:

(1) if p12 = 0, buyer does not update his beliefs,

(2) if p12 > 0, buyer i believes that vi < v
2:N ,

(3) otherwise, he uses Bayes rule,
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Then, (��1; :::; ��N ; ��1; :::; ��N) is a perfect Bayesian equilibrium (in undominated strate-

gies) of �1. The equilibrium outcome is e¢ cient. The expected price equals to E[v3:N ] in

both auctions.

Proof. Beliefs are constructed so that on-equilibrium, bidders use the Bayes rule. O¤-

equilibrium, a perfect Bayesian equilibrium does not bind the beliefs. Hence, I can

assume that seeing bids in round 1 of auction 1, which happens only o¤-equilibrium,

buyer i believes that vi < v2:N .

Now, I prove that given the beliefs the behavior is sequentially rational. Clearly, in

auction 2, it is a dominant strategy to bid one�s valuations both on- and o¤-equilibrium.

This is for the same reason that it is a dominant strategy in a single-unit second-price

auction. Bidders are indi¤erent between bidding their valuations in round 1 of auction 2

and round 2 of auction 2. Hence, it is optimal for them to bid their valuations in round 1

of auction 2. Once they do so, they do not wish to bid any longer, as this would require

bidding above the valuation, which is a dominated strategy.

Suppose that there were no bids in round 1 of auction 1. Then, the situation becomes

equivalent two the �rst out of the two sequential second-price auctions. Hence, it must be

that E[p1] = E[p2] = E[v3:N ], which implies that b̂(vi) = E[v3:N jv2:N = vi] (see Milgrom

and Weber, 1982, and Weber,1983 for results on sequential second-price auctions). Note

that o¤-equilibrium, when p12 = 0, no information is revealed and hence, it is still optimal

to bid E[v3:N jv2:N = vi] in round 2 of auction 1.

It remains to prove that no-one has an incentive to bid in round 1 of auction 1 and

that, if p12 > 0, it is optimal for buyer i to bid vi in round 2 of auction 1. Suppose that

buyer j bids in round 1 of auction 1. If he is the only bidder in round 1 of auction 1, the

other buyers do not change their behavior and hence, buyer j does not gain anything. If

there is at least one other buyer in round 1 of auction 1, the situation of buyer j worsens,

as instead of bidding E[v3:N jv2:N = vi] < vi his opponents will bid their valuations in

round 2 of auction 1. Hence, he has no incentives to bid in round 1 of auction 1. Finally,

note that if p12 > 0, buyer i believes that vi < v2:N . Since all the potential buyers bid
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their valuations in auction 2, he will not win the good at a pro�table price in auction 2.

Hence, he weakly prefers to bid vi in round 2 of auction 1. �

Theorem 2.1: In e¢ cient symmetric perfect Bayesian equilibrium of �1, in auction

1, buyers always snipe.

Proof. Proposition 1 implies that there exists an e¢ cient equilibrium of �1 in which

bidders wait with bidding for round 2. Hence, it is su¢ cient to prove that there does

not exist an e¢ cient symmetric perfect Bayesian equilibrium in which every bidder i bids

in round 1 of auction 1. Suppose otherwise. By the Revenue Equivalence Theorem, in

e¢ cient Bayesian Nash equilibrium, E[p2] = E[v3:N ] (see Krishna, 2002). Let each buyer

i bid �b(vi) � 0 in round 1 of auction 1. By monotonicity, p21 = �b(v2:N). Since p21 is

revealed, all the bidders learn v2:N . Since identity of the current winner is indicated,

everyone knows who has the highest valuation. By A1, every bidder i with vi < v2:N

bids vi in round 2 of auction 1. As a result, E[p1] � E[max[�b(v2:N); v3:N ]]. Since there is

always a positive probability that �b(v2:N) > v3:N , E[max[�b(v2:N); v3:N ]] > E[v3:N ] and thus

E[p1] > E[v
3:N ]. But the Revenue Equivalence Theorem implies that E[p1] = E[v3:N ] in

an e¢ cient Bayesian Nash equilibrium (see Krishna, 2002). Hence, the described strategy

pro�le is not a Bayesian Nash equilibrium and as a consequence not a perfect Bayesian

equilibrium. A contradiction. �

Theorem 2.2: There is no e¢ cient symmetric perfect Bayesian equilibrium of �2.

Proof. Note that by the Revenue Equivalence Theorem, in an e¢ cient Bayesian Nash

equilibrium, E[p2] = E[v3:N ] (see Krishna, 2002). First, suppose that in round 1 of

auction 1, each bidder i bids b(vi), st. b(0) = 0 and b0(vi) > 0. Then, p21 = b(v
2:N) and

v2:N is revealed. By A1 every bidder i with vi < v2:N bids vi in round t + 1 of auction

1. Hence, E[p1] � E[max[b(v2:N); v3:N ]] > E[v3:N ], which by the Revenue Equivalence

Theorem is impossible in an e¢ cient Bayesian equilibrium in which bidder with vi = 0

obtains zero utility.
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Second, suppose that there is no bid submitted in round 1 of auction 1 and that

in round 2 of auction 1, each bidder i bids b(vi), st. b(0) = 0 and b0(vi) > 0. Then,

p31 = b(v
2:N) and v2:N is revealed. By A1 every bidder i with vi < v2:N bids vi in round

t+1 of auction 1. Hence, E[p1] � E[max[b(v2:N); v3:N ]] > E[v3:N ], which by the Revenue

Equivalence Theorem is impossible in an e¢ cient Bayesian equilibrium in which bidder

with vi = 0 obtains zero utility.

Hence, in a symmetric e¢ cient Bayesian equilibrium, there are no bids submitted in

rounds 1 and 2 of auction 1 and auction 1 ends without any bids. In auction 2, every

potential bidder weakly prefers to bid the valuation. Hence, the expected utility of bidder

i is:

(2.1)
Z vi

0

(vi � vj)dF 1:N�1(vj) = (N � 1)
Z vi

0

Z v2

0

(vi � v2)dF 1:N�2(v3)dF (v2)

Consider a deviation of bidder i by bidding vi in round 2 of auction 1. After his deviation,

his opponents will bid at most their valuations in auction 1 and in auction 2. Then, in

the worst scenario, in auction 1, the highest bid of his opponents will be given by v1:N�1

and in auction 2, the highest bid of his opponents will equal to v2:N�1. His expected

utility of bidder i will then amount to:

(2.2)

(N � 1)
Z vi

0

Z v2

0

(vi� v2)dF 1:N�2(v3)dF (v2) + (N � 1)
Z 1

vi

Z vi

0

(vi� v2)dF 1:N�2(v3)dF (v2)

where the �rst term describes the situation in which he wins the good in auction 1 and

the second term refers to the situation in which he wins the good in auction 2. Clearly,

(2.1) is smaller than (2.2). Hence, the deviation is pro�table, which contradicts the claim

that in a Bayesian equilibrium, there are no bids submitted in rounds 1 and 2 of auction

1 and auction 1 ends without any bids. I have already proven that there is no e¢ cient

perfect Bayesian equilibrium in which bidders bid in round 1 of auction 1 or round 2 of

auction 1. Hence, there is no symmetric e¢ cient perfect Bayesian equilibrium. �





CHAPTER 3

Coordination Failure in Simultaneous Internet Auctions

3.1. Introduction

eBay is a platform allowing sellers to run auctions and buyers to submit their bids.

Each auction is scheduled for a �xed period, so that on the one side, a bidder has plenty

of time to submit a bid and on the other side, he is able to snipe, that is to submit a

bid in the closing seconds of the auction. The same goods are o¤ered for sale in di¤erent

auctions. Since auctions are dynamic, it happens that the same goods are auctioned in

simultaneous auctions and that there are several auctions ending in the same point of

time. The present chapter asks a question whether such situation is desirable for the

seller and what the optimal behavior of the bidders is.

Internet auctions have been widely studied in the literature (see Bajari and Hortacsu

2004 for an overview of the literature on Internet auctions). Most of the models study

single-unit auctions, ignoring possible e¤ects of multiple o¤erings. Peters and Severinov

(forthcoming) focus on simultaneous Internet auctions. In their model, there is no strict

ending rule, which is the reason why they �nd an e¢ cient equilibrium in simultaneous

Internet auctions.

The present paper studies two simultaneous Internet auctions, which simultaneously

start and simultaneously end. Buyers have unit demand and wish to coordinate between

the auctions, so that no-one pays too high a price. On the other hand, they wish to post-

pone bidding to hide the information from the opponents. The willingness to wait with

bidding determines equilibrium. Bidders end up bidding so late, that they do not manage

to e¢ ciently split between the competing auctions. This rationalizes a phenomenon of

sniping, commonly observed in online auctions and suggests that simultaneous Internet

auctions are bad for e¢ ciency.

29
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The paper is structured as follows. The next section presents the model of dynamic

simultaneous auctions. Section 3.3 eliminates equilibrium candidates in which all the

buyers bid early. Section 3.4 presents equilibrium with sniping, which is unique. Section

3.5 concludes.

3.2. The model

There are two auctions and N > 3 buyers. Each auction a (a = 1; 2) o¤ers the same

indivisible good for sale. Each buyer i (i = 1; :::; N) has an independent private valuation

of one (and only one) item of the good (vi), which is distributed according to distribution

F (vi) with density f(vi) and support on [0; 1]. vm:n denotes the mth highest valuation

out of n bidders. Fm:n(:) is distribution of vm:n. fm:n(:) is corresponding density.

The games takes two stages1. In each stage t (t = 1; 2) in auction a the following

happens:

� The current price (pta) is derived.

� Buyers submit bids.

� The current winner is identi�ed.

After learning the current price (pta), each buyer i may submit a bid in auction a

(bta;i > 0) or not to bid at all (b
t
a;i = 0). I assume that only one bid per stage is allowed

(that is bt1;i = 0 or b
t
2;i = 0). I focus only on monotonic strategies (that is

@
@vi
bta;i > 0 or

bta;i = 0).

At t, buyer i becomes an active bidder in auction a, if he overbids the current

price in auction a (pta) and his previous bids submitted in auction a (i.e. if bta;i >

max[pta;maxfbka;igk<t]). He becomes a current winner in auction a, if (1) by t he submits

the highest bid in auction a as the �rst one or (2) he is randomly chosen from the set of

buyers who have simultaneously submitted the highest bid in auction a by t. Hence, for

each auction a, he can have three statuses: an inactive bidder, an active losing bidder

and a current winner.

1If there were more stages, e¢ cient equilibrium would be still impossible to reach.
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At the beginning of each stage t, the current prices are communicated to the bidders.

In stage 1, the current price equals zero in both auctions. In round 2 of auction a, the

current price remains zero, as long as the number of active bidders does not exceed one.

If there are at least two active bidders in round 1 of auction a, the current price (p2a)

equals to the highest bid submitted by the active losing bidder.

After the last stage, �nal winners and �nal prices are identi�ed. The current winner

of round 2 of auction a becomes the �nal winner. The �nal price of auction a is chosen

on the same basis as the current price.

After the last stage, the utility of buyer i is given by:

ui(:) =

8>>>><>>>>:
vi � p1 � p2 if i is the �nal winner in both auctions

vi � pa if i is the �nal winner only in auction a

0 otherwise

Let hti 2 H t
i be a history of the learned outcomes (i.e. current winners, current prices,

identity of buyers whose bids equal to current prices and identities of all other active

buyers) and statuses of buyer i in each auction a up to stage t (t = 1; 2). Then, an action

of buyer i in stage t is given by �ti = (b
t
1;i(vi; h

t
i); b

t
2;i(vi; h

t
i)). The strategy of buyer i is

described by the function:

�i =

�
�1i (vi; h

t
i) �2i (vi; h

t
i)

�
: [0; 1]�H1

i �H2
i ! R4+


i is the space of all possible �i and 
ti(:) is the space of all possible �
t
i(:). Let �i

be a system of beliefs of buyer i on the valuations of the opponents. The prior be-

lief is that each valuation is distributed according to F (:). Let � = (�i; :::; �N) and

� = (�1; :::; �N). I adopt standard notation of writing ��i = (�1; :::; �i�1; �i+1; :::; �N) and

��i = (�1; :::; �i�1; �i+1; :::; �N). The �nal outcome, including �nal prices and �nal win-

ners for both auctions, is denoted by o 2 O. The outcome function is $ : 
�[0; 1]N ! O,

where 
 = 
1 � � � � � 
N . The game is denoted by �1 = f
1; :::
N ; o(:)g. To solve the

game I impose the following assumptions on strategies.
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A1: Let uti(�̂
t
i(:)j�; �) be the expected utility over the �nal outcome of buyer i who in

stage t plays �̂ti(:), given h
t
i; � and �. If u

t
i((0; :)j�; �) � uti(�ti(:)j��i), then �ti(:) = (0; :).

If uti((:; 0)j�; �) � uti(�ti(:)j��i), then �ti(:) = (:; 0).

A2: At least two buyers follow the same strategies.

A3: If for some value vj bidder j 2 f1 ; :::;N g is supposed to submit a bid b(v i) > 0

in auction a in round t, then every buyer i 6= j with vi = vj is also supposed to submit

bid b(vj ) in auction a in round t.

A1 excludes all unnecessary bids (i.e. the ones that have no e¤ect on the expected

payo¤) and could be easily justi�ed by cost of bidding. A2 and A3 assure the minimal

level of symmetry.

3.3. Early bidding

The game has two interesting strategies: early bidding and sniping. The early bidding

is meant as bidding at stage 1. Sniping is de�ned as not bidding at stage 1 and bidding

at stage 2. To prove rationality of sniping, it is required to show that bidders do not bid

early.

Let each buyer i bid b(vi) (satisfying b0(vi) > 0) in auction 1 at stage 1 (that is

b11i = b(vi) for every i). The presence of two objects on sale implies the expected market

price of E[v3:N ]. In order not to pay more, bidders start with low bids. Therefore,

b(vi) < vi.

Suppose now that after each buyer i bids b(vi) < vi, buyer 1 becomes the current

winner and the current price in auction 1 is given by p21 = b(v2). From such an outcome,

every buyer learns that buyer 1 has the highest valuation (v1 = v1:N) and buyer 2 has

the second highest valuation (v2 = v2:N). Note that there is always positive probability

that b(v1) > v2, so that buyer 2 has no chance for a positive transaction in auction 1.

Therefore, to assure e¢ ciency, buyer 2 needs to win the good in auction 2. Then, no

buyer i 2 f3; :::; Ng has a chance to win the good in auction 2 at a reasonable price.

Hence, he will try to win the good in auction 1. He will have a chance to win the good
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in auction 1 at a price below vi, as long as buyer 1 does not increase his bid in auction 1.

If buyer 1 bids above v2 in auction 1 in stage 2, no buyer i 2 f3; :::; Ng has a chance to

make a positive transaction in auction 1. Not being able to win the good at a reasonable

price, buyer i 2 f3; :::; Ng is not interested in bidding in auction 1 in stage 2. But when

he is not interested, buyer 1 is also not interested in bidding in auction 1 in stage 2.

Hence, a pure equilibrium cannot be reached.

In other words, buyer with the highest valuation is willing to bid below the valuation

in auction 1 in stage 1 to avoid the situation in which he ends up paying v2:N . When he

does so, he sends an open invitation for weak buyers to bid in auction 1 in stage 2. He

must then bid aggressively in auction 1 in stage 2 to discourage weak buyers from bidding

in auction 1 in stage 2. Such aggressive behavior does not a¤ect the �nal outcome and

hence is excluded by A1. The coordination is impossible in the equilibrium.

Lemma 3.1. There does not exist an e¢ cient perfect Bayesian equilibrium in which

all the buyers bid in the same auction in stage 1.

Proof. See appendix. �

It is now natural to ask whether all the buyers bid in the �rst stage but in di¤erent

auctions. Suppose m > 1 buyers bid �b(vi) < vi (satisfying �b0(vi) > 0) in auction 1 in

stage 1 and N �m bid b̂(vi) < vi (satisfying b̂0(vi) > 0) in auction 2 in stage 2. Suppose

also that buyer 1 is a current winner in auction 1 in stage 1, buyer N is a current is a

current winner in auction 2, p11 = �b(v2), p
1
2 = b̂(v3) and �b

�1(v2) > b̂
�1(v3). Then, everyone

learns v2 and knows that v2 > vj for each j 2 f3; :::; N � 1g. Suppose in auction 2 in

stage 2, buyer 2 bids v2 and buyer N bids vN . Then, each buyer j 2 f3; :::; N �1g has no

chance for a pro�table transaction in auction 2. If so, he will consider bidding in auction

1. As long as buyer 1 does not bid above v2 in auction 1 in stage 2, there is a positive

probability that buyer j will win the good in auction 1 at a price below vj. Otherwise, he

has no reason to bid in auction 1 in stage 2. Since buyer 1 is interested in bidding only

when other buyers bid in auction 1 in stage 2, a pure equilibrium cannot be reached.
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In other words, buyer with the highest valuation aims at an e¢ cient allocation with

the expected �nal price of v3:N in both auctions. To coordinate for such an allocation,

he needs to �rst, bid low and second, to send an unnecessary bid. Since I exclude all the

unnecessary bids from the model, I can conclude that there is no e¢ cient equilibrium in

which all the buyers bid early.

Proposition 3.2. There does not exist an e¢ cient perfect Bayesian equilibrium in

which in stage 1, m < N buyers bid in auction 1 and N �m buyers bid in auction 2.

Proof. See appendix. �

3.4. Sniping

As already shown, there is no e¢ cient equilibrium with early bidding. It remains to

check whether there is an equilibrium with sniping.

Suppose no buyer i bids at stage 1. Then, it is optimal for each buyer i to bid the

valuation in the optimally chosen auction at stage 2. Buyers divide between the auctions,

so that the di¤erence between the number of active bidders in auction 1 and the number

of active bidders in auction 2 is smaller or equal to 1. This guarantees that no buyer is

willing to reallocate.

Theorem 3.3. In a perfect Bayesian equilibrium, each buyer i does not bid in stage 1

and bids vi in stage 2. m buyers (where m is N
2
, when N is even and N+1

2
when N is odd)

bid in one auction and N �m buyers bid in the other auction. The resulting outcome is

ine¢ cient.

Proof. See Appendix. �

To conclude, although the auction is dynamic, bidders do not make use of the time

to e¢ ciently allocate between the auctions. There is an equilibrium in which buyers

wait with bidding for the last stage. As a result, no information is revealed. Having

no information, buyers are unable to coordinate between the auctions and the resulting

outcome is ine¢ cient.
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3.5. Conclusions

The present paper demonstrates a stylized model of simultaneous Internet auctions.

Buyers want to optimally coordinate between the competing auctions. To do so, they

need to learn the information from the market. The revealed information does not only

enable a desired allocation, but also makes weak bidders aggressive. To avoid bidding war,

the strong bidder needs to bear unnecessary cost of sending an irrelevant bid. Since he is

unable to commit to bear it, the coordination is impossible. As a result, the phenomenon

of sniping takes place. The �nal allocation is ine¢ cient, which implies that simultaneous

auctions are bad for e¢ ciency.

3.6. Appendix

Proof. (lemma 3.1) Without loss of generality suppose that each buyer i 2 f1; :::; Ng bids

b11;i(:) = b(vi) (st. b
0(vi) > 0) in auction 1 in stage 1 and that buyer 1 is a current winner

of auction 1 in stage 1 and p21 = b(v2). Then, it is revealed that buyer 1 has the highest

valuation (v1 = v1:N) and that buyer 2 has the second highest valuation (v2 = v2:N).

Furthermore, from the price buyers learn v2. Suppose there is an e¢ cient equilibrium.

Then, by the Revenue Equivalence Theorem the expected �nal price of auction 1 is given

by E[v3:N ]. This implies that b(vi) < vi.

We now derive the optimal bidding behavior in stage 2. To have an e¢ cient allocation,

buyer 1 or buyer 2 has to bid in auction 2. Suppose that buyer 2 bids there. In order

to discourage others from bidding in auction 2, buyer 2 bids the valuation in auction 2.

Then, no-other buyer has interest in bidding in auction 2. If buyer 1 bids above v2 in

auction 1, no-one else bids in auction 1 by A1. If no buyer i 6= 1 bids in auction 1 in

stage 2, buyer 1 does not bid in stage 2 by A1. But when he does not bid, there is a

positive probability that b1a;i(v
1:N ; :) < vi for some vi < v2:N and hence there is a positive

probability that buyer with vi < v2:N has incentives to bid vi in auction 1 in stage 2. All

in all, a pure equilibrium cannot be reached.
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Suppose now buyer 1 bids in auction 2 in stage 2. In order to discourage others from

bidding in auction 2, buyer 1 bids at least v2 in auction 2. Then, no-one else has interest

to bid in auction 2. Buyer 2 prefers to bid v2 in auction 1 in round 2. Then, in auction

1, the expected price is at least given by E[min[b(v1); v2]] > E[v3], which by the Revenue

Equivalence Theorem is impossible in e¢ cient equilibrium in which bidder with vi = 0

obtains zero utility. �

Proof. (proposition 3.2)Without loss of generality suppose that each buyer i 2 f1; :::;mg,

where m > 2, bids b11;i(:) = �b(vi) in auction 1 in stage 1 and that each buyer i 2

fm + 1; :::; Ng bids b12;i(:) = b̂(vi) in auction 2 in stage 1. By A2, m < N � 1. Suppose

also that buyer 1 is a current winner of auction 1 in stage 1, buyer N is a current winner

of auction 2 in stage 2, p21 = �b(v2) and v2 > vj for all j 2 f1; :::; Ng=f1; 2; Ng. Then, it is

revealed that buyer 1 or buyer N has the highest valuation and that buyer 2 or buyer N

has the second highest valuation. Suppose there is an e¢ cient equilibrium. Then, by the

Revenue Equivalence Theorem the expected �nal price of auction 1 is given by E[v3:N ].

This implies that �b(vi) < vi.

We �rst derive optimal behavior in auction 2 in stage 2. Since buyer 2 has no chance

to pro�tably win against buyer 1 and has a positive chance of winning in auction 2, he

bids v2 in auction 2 in stage 2. In reply to this, buyer N bids vN in auction 2 in stage 2,

provided that b̂(vN) < v2 and v2 < vN . Otherwise, by A1 he does not bid. By A1 other

buyers do not bid in auction 2 in stage 2.

We now derive optimal bidding behavior in auction 1. Buyer 1 has incentives to bid

in auction 1 in stage 2, only if other buyer bids j in auction 1 in stage 2. But buyer j

has incentives to bid in auction 1 in stage 2, only if buyer 1 does not bid in auction 1 in

stage 2. All in all, a pure equilibrium cannot be reached. �

Proof. (theorem 3.3) Lemma 3.1 and proposition 3.2 imply that there is no equilibrium

with bidding at stage 1. If there is no bidding at stage 1, it is optimal for each buyer

i to bid vi in stage 2. It must be that m buyers bid in one auction and N �m buyers
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bid in the other auction, as otherwise there would be a buyer willing to reallocate. The

resulting outcome is ine¢ cient, as it can happen that buyer with v1:N and buyer with v2:N

bid in the same auction. The deviation is unpro�table, as a single bid does not a¤ect the

current price and hence, does not reveal any information. Not having new information,

bidders bid in the way that the payo¤ of the deviating bidder remains una¤ected. �





CHAPTER 4

Multiple and Late Bidding in Internet Auctions

4.1. Introduction

Imagine a seller who has several units of the same good for sale (e.g. several new

memory cards). He wishes to sell each unit separately using Internet auctions such as

that on eBay. He can decide for simultaneous, overlapping or sequential auctions.

Existing studies on Internet auctions mainly focus on single-unit auctions and hence,

have little to say whether the seller should schedule simultaneous, sequential or over-

lapping auctions and how bidders should behave in the presence of multiple auctions

o¤ering identical goods (see Lucking-Reiley (2000) for an overview of the existing In-

ternet auctions and Bajari and Hortacsu (2004) for an overview of the existing studies

on Internet auctions). Peters and Severinov (forthcoming) study simultaneous Internet

auctions without �xed ending time, which is not only one of the key characteristics of

auctions on eBay, but also an important factor a¤ecting strategic interactions. The em-

pirical studies indicate the popularity of sniping, which is placing a bid in the closing

seconds of an auction, and multiple bidding in Internet auctions on eBay (see Bajari and

Hortacsu (2003), Bajari and Hortacsu (2004), Roth and Ockenfels (2002)).

This paper focuses on the simultaneous and overlapping independent private value

Internet auctions with a �xed ending time. I provide a rational for the two empirically

observed strategies: late bidding and multiple bidding. I also argue that in contrast to

overlapping Internet auctions, simultaneous Internet auctions might be bad for e¢ ciency.

In present a model with a risky bid transmission in the last minute, which was previ-

ously modeled by Roth and Ockenfels (2006). The strategic interactions between bidders

are similar to the ones illustrated by Peters and Severinov (forthcoming), who model com-

peting Internet auctions without �xed ends. Bidders are willing to coordinate between

39
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the auctions so that no-one pays too much. Because of the presence of the �xed end

time, it is not any longer pro�table for them to use the algorithm proposed by Peters and

Severinov. The coordination is achieved by early bidding which reveals some information

on the ordering of their valuations. After learning the (partial) ordering of the valuations,

the strongest bidders bid in the opposite auctions. Then, the prices are sustained at a

reasonable level. When bidders learn the (partial) ordering of their valuations early, they

have time to safely reallocate before the last minute and the resulting outcome is e¢ cient.

When the reallocation takes place in the risky last-minute, the resulting outcome might

be ine¢ cient. Foreseeing that their bids might be rejected in the last minute, bidders

bid more aggressively when testing the ordering of their valuations. As a result, the

expected price in one auction increases as compared to the expected price in an e¢ cient

equilibrium. In the other auction, the price decreases, as it depends on the bid which is

submitted in the risky last minute. This situation happens only in simultaneous auctions.

When auctions are overlapping, there is always time to safely reallocate. The resulting

outcome is always e¢ cient.

The paper is structured as follows. Section 4.2 studies simultaneous auctions. Sub-

section 4.2.1 introduces the model of simultaneous Internet auctions. Subsection 4.2.2

establishes possible e¢ cient equilibria, each basing on the multiple bidding. Subsection

4.2.3 presents possible ine¢ cient equilibria, that incorporate last-minute bidding. Sub-

section 4.2.4 summarizes the possible equilibrium outcomes of the model of simultaneous

Internet auctions. Section 4.3 extends the model to allow for overlapping Internet auc-

tions and discusses the equilibria of the extended model. Finally, section 4.4 concludes.

4.2. Simultaneous Internet auctions

This paper focuses on the situation in which the seller has two units for sale and

can choose between simultaneous and overlapping Internet auctions. The situation is as

simple as possible. There is no competition from the outside world. The reserve prices

are �xed at zero. The set of bidders is �xed. The two schedules impose similar incentives
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for the bidders. Bidders are willing to learn some information on the ordering of their

valuations, so that they will be able to appropriately reallocate between the auctions.

Yet, the schedule of the auctions a¤ects the �nal allocation and the revenue. This section

studies what happens if auctions are run simultaneously.

4.2.1. The model

This subsection presents a simple model of simultaneous Internet auctions. There are

two second-price auctions selling one item of the same good (auction 1 and auction 2)

and 3 risk-neutral buyers1. Buyer i (i = 1; 2; 3) has an independent private valuation of

one (and only one) item of the good (vi), which is distributed according to distribution

F (vi) with density f(vi) and support on [0; 1]. vm:n denotes the mth highest valuation

out of n bidders. Fm:n(:) is distribution of vm:n. fm:n(:) is corresponding density.

There are three stages2. At every stage t (t = 1; 2; 3) the following happens:

(1) Each auction a 2 f1; 2g announces the current standing price ( pta).

(2) Each bidder i submits a bid biat � 0.

(3) Each auction a indicates all active bidders and chooses the current winner.

A bidder is allowed to submit only one bid per round3. At t < 3, he becomes an active

bidder in a given auction, if he overbids the current standing price and his previous

bids submitted in this auction (i.e. i is an active bidder in auction a at t < 3 , if

biat � max[pat;max~t<t b
i
a~t
]). At t = 3, he becomes an active bidder under the same

condition with probability � 2 (0; 1). � captures possible uncertainty which might occur

when a bidder bids in the last minute. It was originally proposed by Roth and Ockenfels

(2006).

Player i becomes a current winner in auction a, if (1) he submits the highest bid in

auction a as the �rst one or (2) he is randomly chosen from the set of players who have

1Subsection 2.4 discusses how a larger number of bidders and larger number of auctions a¤ects identi�ed
equilibria.
2The number of periods is chosen so that all the interesting trade-o¤s are incorporated and the picture
does not become too messy. All the equilibria could be found for any �nite number of periods (see
subsection 2.4 for details).
3Bidding simultaneously in several Internet auctions is rather technically impossible.
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simultaneously submitted the highest bid in auction a. The current standing price equals

the highest bid submitted by the player who is not the current winner. If there is only

one player, the current standing price is zero. After the last stage a current winner in

auction a becomes a �nal winner. He wins an object and pays the �nal price (pa), which

is chosen on the same basis as the current standing price. The utility of the player who

is awarded two objects is given by: ui(:) = vi � p1 � p2. If player i is only a �nal winner

in one auction a 2 f1; 2g, his utility equals to ui(:) = vi � pa. Finally, a player who does

not win any object receives a zero payo¤.

For any history hit 2 Hit an action of player i at time t is given byXit = fbiat(hit)ga2f1;2g.

The strategy of the player i is described by the function

�i =

�
�i1(hi1) �i2(hi2) �i3(hi3)

�
: Hi1 �Hi2 �Hi3 ! Xi1 �Xi2 �Xi3

which for every information set indicates the value of the bid that player i sends in each

auction at every stage t = 1; 2; 3. The �nal outcome is given by hT+1 2 HT+1. I de�ne

an outcome function o : 
 ! HT+1, where 
 = 
1 � 
2 � 
3.The game is denoted by

�1 = f
1;
2;
3; o(:)g.

To conclude, there are two identical objects for sale. The number of rounds is �nite.

At the last round transmission of a bid is uncertain. The �nal price is determined by

the value of the highest bid submitted by a bidder who is not a current winner in this

auction.

4.2.2. E¢ cient equilibria

When there are two auctions, bidders do not want to bid their valuations in one of

the available auctions without learning some information about the opponents. Suppose

they do so. Let each buyer bid in round 1 of auction 1. Then the buyer with the highest

valuation becomes the current winner and the current price is v2:3 in auction 1. The other

buyers have no chance to win the good in auction 1 and hence, they move to auction

2. Auction 2 is their last chance to win the good, so they weakly prefer to bid their
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valuations. The buyer with the second highest valuation becomes the current winner an

the current price is v3:3. The buyer with the lowest valuation then have no chance for a

positive transactions in both auctions, so he does not bid any longer. The buyer with the

highest valuation wins the good for the price of v2:3 and the buyer with the second highest

valuation wins the good for the price of v3:3. This is not incentive compatible. The buyer

i prefers to bid zero in auction 1 and to bid the valuation in auction 2. Then, if his

valuation is higher than v3:3, he always wins the good at the price of v3:3. Otherwise, his

utility is zero. This outcome guarantees the same (e¢ cient) allocation and lower prices

and hence, is more attractive. To have an e¢ cient equilibrium, one needs specify bidding

so that a bidder is indi¤erent between wining the good in auction 1 and auction 2. In

other words, the expected prices have to be equal in the two auctions.

In an equilibrium, buyers learn the (partial) ordering of their valuations and use this

information to appropriately reallocate between the auctions. This way, they assure that

player with the highest valuation and player with the second highest valuation do not

�ght against each other in one auction. Consider �rst a symmetric equilibrium. Let each

buyer i bid b(vi), st. b0(vi) > 0, in round 1 of auction 1. Then, at round 2 of auction 1,

the current price is b(v2:3). Since b0(:) > 0, bidders learn v2:3. They also know that the

current winner must have the highest valuation. In auction 2, the current price is 0. The

losing bidders �nd it attractive to reallocate to auction 2. The winning bidder wishes to

assure that no-one will �ght against him in auction 1. Therefore, he bids the valuation

in auction 1. Then, his opponents have no chance for a positive transaction in auction 1.

Therefore, they bid their valuations in auction 2. The resulting outcome is e¢ cient. The

price is given by b(v2:3) in auction 1 and by v3:3 in auction 2. The two prices must equal

in expectation, that is E[b(v2:3)] = E[v3:3]. The equality is satis�ed for:

(4.1) b(vi) = vi �
1

F (vi)

Z vi

0

F (v3)dv3

Proposition 4.1 presents the corresponding equilibrium.
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Proposition 4.1. A strategy pro�le (�̂1; �̂2; �̂3), where �̂i is de�ned as follows:

(1) at t = 1, bid according to (4.1) in auction 1,

(2) at t = 2, if you win, bid vi in auction 1,

(3) at t = 2, if you don�t win, bid vi in auction 2;

(4) otherwise, do not bid.

is a Bayesian Nash equilibrium of �1. The equilibrium outcome is e¢ cient. The

expected price equals to E[v3:N ] in both auctions.

Proof. See Appendix. �

Proposition 4.1 presents an equilibrium in which all the bidders bid according to the

monotonic bidding function in auction 1. After doing so, they learn the ordering of their

valuations. Having this information, they know how to allocate between the auctions, so

that the resulting outcome is e¢ cient. As I will argue now, bidders do not need to �rst

bid in one auction to achieve an e¢ cient allocation.

Suppose bidder 3 bids v3 in auction 2. Then, buyer 1 and buyer 2 prefer to bid in

the auction 1, so that they do not end up paying too much. They do not wish to bid

their valuations in auction 1, as one of them might end up paying v2:3, which is too

much. They prefer to use the strictly increasing bidding function (b(vi)) which for each

valuation assigns the bid below the valuation. Once they do so, the one who has the

highest valuation becomes the current winner. The current price is b(min[v1; v2]). The

losing buyer infers that he has no chance to win against the winning buyer: He prefers to

bid the valuation in auction 2. If his valuation is higher than v3, he wins the good at the

price equal to v3:3. Otherwise, buyer 3 wins the good at the price of v3:3. The allocation

is e¢ cient and the �nal prices are given by: b(min[v1; v2]) and v3:3. The two prices must

again equal in the expectation. That is: E[b(min[v1; v2])] = E[v3:3], which is satis�ed if:

(4.2) b(vi) = vi �
Z vi

0

F (vj)dvj

The next proposition speci�es the exact strategies of an asymmetric e¢ cient equilibrium.
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Proposition 4.2. De�ne ~�i as follows:

(1) at t = 1, bid according to (4.2) in auction 1,

(2) at t = 2, bid vi

(a) in auction 1, if you have not lost in auction 1 and have not won in auction

2,

(b) in auction 2, otherwise,

(3) at t = 3, do not bid,

and ��3 as follows:

(1) at t = 2 bid v3 in auction 2,

(2) at t 6= 2 do not bid.

Then, (~�1; ~�2; ��3) is a Bayesian Nash equilibrium of �1. The equilibrium outcome is

e¢ cient. The expected price equal to E[v3:3] in both auctions.

Proof. See appendix. �

Propositions 4.1 and 4.2 present two types of e¢ cient equilibria. In one of them, all

the three buyers test the ordering of their valuations and later appropriately reallocate.

In the other, only two bidders test the order of their valuations and later appropriately

reallocate. The allocation is e¢ cient, because the reallocation takes place before the risky

last stage. The immediate implication of the e¢ cient allocation is the equivalence of the

expected prices in the two auctions. By changing identities of the auctions and bidders,

adding some irrelevant bids and shifting bids in time, one can construct other e¢ cient

equilibria. The summary of the possible equilibrium outcomes will be presented in the

subsection 4.2.4.

4.2.3. Ine¢ cient equilibria

The previous subsection argued that it is not rational to bid one�s valuations, without

having some information on the valuations of the opponents. It is more reasonable to learn

a bit about the ordering of the valuations, so that the �nal choice of the auction is optimal.
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In the presented equilibria, after learning the (partial) ordering of the valuations, bidders

reallocated. The reallocation took place before the risky last stage. This subsection shows

what happens if bidders reallocate in the risky last stage.

Suppose �rst that all the bidders bid b(vi), st. b0(vi) > 0, in auction 1 in round 2. In

round 3, the losing bidders reallocate to auction 2. Because of the risky bid transmission

in the last minute, some of their bids might be rejected. Foreseeing it, buyers wish to bid

more aggressively in auction 1 as compared to what they bid in auction 1 in an e¢ cient

symmetric equilibrium presented in the previous subsection. As a result, the expected

price increases in auction 1 (E[p1] = E[b(v2:3)] > E[v3:3]). In the same time, because

of the risky bid transmission in the last stage, the expected price decreases in auction

2 (E[p2] = �E[v3:3] < E[v3:3]). But then, buyer i �nds it more attractive to bid the

valuation in the auction 2 in round 2. This way, he assures that his bid is never rejected

and he pays the lowest possible price. As a result, there is no symmetric equilibrium with

last-minute bidding (the formal argument is presented in lemma 4.8 in the appendix).

Suppose now that only two bidders (buyer 1 and buyer 2) bid b(vi), st. b0(vi) > 0, in

auction 1 in round 2 and later, the losing bidder bids the valuation in the auction 2 and

the winning bidder bids the valuation in the auction 1. Then, buyer 3 prefers to compete

against min[v1; v2] than against max[v1; v2], so he bids the valuation in auction 2 in round

2. Once, he does so, the other buyer prefers to stick to bidding b(vi), as otherwise they

would risk paying v2:3, which is too much. Because they risk their bids being rejected in

auction 2, the potential gain of winning the good in auction 2 decreases. Therefore, they

are willing to bid more aggressively in auction 1 as compared to equilibrium presented

in proposition 4.2. As a result, auction 1 �nishes with the expected price E[p1] > E[v3:3]

and auction 2 �nishes with the expected price E[p2] < E[v3:3]. The following proposition

presents a corresponding equilibrium.

Proposition 4.3. De�ne ~�i as follows:

(1) at t = 1 do not bid,
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(2) at t = 2 bid b(vi) = vi � �
R vi
0
F (vj)dvj in auction 1,

(3) at t = 3 bid vi

(a) in auction 1, if you have not lost in auction 1 and have not won in auction

2,

(b) in auction 2, otherwise,

and ��3 as follows:

(1) at t = 2 bid v3 in auction 2,

(2) at t 6= 2 do not bid,

Then, (~�1; ~�2; ��3) is a Bayesian Nash equilibrium of �1. The equilibrium outcome is

ine¢ cient. The expected price in auction 1 (E[b(v2:2)]) is higher than the expected price

in auction 2 (�E[v3:3]).

Proof. See appendix. �

To conclude, this subsection presents an ine¢ cient equilibrium with last-minute bid-

ding. In this equilibrium, buyers start the coordination late and might end up in an

ine¢ cient allocation. By changing identities of auctions or bidders, it is easy to construct

other equilibria. The next subsection discusses all the possible equilibrium outcomes.

4.2.4. Summary of possible equilibrium outcomes

The previous subsections concentrated on the strategic interactions in the dynamic frame-

work. All the presented equilibria can be easily changed to de�ne another equilibria. For

example, the identity of bidders and auctions could be changed. Some irrelevant bids

could be added. The important thing is that under some conditions the changes do not

lead to di¤erent equilibrium outcomes. These conditions are: (1) bidders bid according

to strictly increasing bidding functions or do not bid at all, (2) the current winner in one

auction does not bid in the other auctions and (3) at least two bidders follow the same

strategy. In other words, I concentrate on relatively simple quite symmetric monotonic
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equilibria. The following proposition gives an overview of the possible equilibrium out-

comes.

Proposition 4.4. Let (�1; �2; �3) be a pure Bayesian Nash equilibrium (of �1) in

undominated strategies in which:

(1) @
@vi
biat(vi) > 0 or b

i
at(vi) = 0 for all i, t and a,

(2) no current winner in one auction bids in the opposite auction,

(3) at least two bidders follow the same strategy.

De�ne the following outcomes:

(1) (outcome 1) e¢ cient outcome with the expected price of E[v3:3] in both auctions,

(2) (outcome 2) the highest value player always wins an object; the second highest

value bidder wins an object with probability 2
3
� and the lowest value bidder wins

an object with probability 1
3
(1 � �), expected �nal prices are given by E[v2:2 �

�
R v2:2
0

F (vj)dvj] and E[v3:3].

Then, (�1; �2; �3) leads to outcome 1 or outcome 2.

Proof. See Appendix. �

Having more periods would give more �exibility in the timing of the crucial bids and

add some space for irrelevant bids, but does not a¤ect the �nal outcome. In equilibrium,

some bidders would still test the ordering of their valuations and later appropriately

reallocate. There would be e¢ cient equilibria without last-minute bidding and ine¢ cient

equilibria with last-minute bidding. In an e¢ cient equilibrium, the expected price would

equal to the lowest valuation. In an ine¢ cient equilibrium, the expected prices would be

given by E[v2:2 � �
R v2:2
0

F (vj)dvj] and E[v3:3].

The logic behind presented equilibria can be easily applied to identify equilibria of the

model with a larger number of auctions and bidders. Suppose there are N bidders and

A auctions, satisfying 1 > N > A � 2. Then, it is possible to construct the following

equilibrium. First, every bidder bids bi11(vi) in auction 1. Second, the winning bidder

bids vi in auction 1 and losing bidders bid bi22(vi) in auction 2. Third, the winning bidder
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bids vi in auction 2 and losing bidders bid bi33(vi) in auction 3. The procedure repeats

until all auctions are �lled. The bidding functions are derived by solving EvM+1:N =

EbiAA(v
M+1:N) = EbiA�1A�1(v

M :N) = ::: = Ebi11(v
2:N). Bids of winners are important, as

they assure that no losing bidder has incentives to bid again in the same auction, which

allows to keep prices at reasonable level.

It is also possible to have an e¢ cient equilibrium in which N � 1 (where N > 3)

bidders test ordering of their valuations in auction 1 and one bidder (say buyer 1) bids

the valuation in auction 2. Since bidder 1 bids the valuation in auction, no-one is willing

to risk winning the good at the price of v2:N by bidding in auction 2. Each buyer i 6= 1

has incentives to bid b(vi) < vi in auction 1. If he loses, he learns that his valuation

is not higher than v2:N , so that he has no chance to win against the winning bidder.

Bidding in auction 2 is then his last chance to win the good. He weakly prefers to bid

his valuation there. By comparing the expected gain from winning the good in auction 1

and in auction 2, one derives optimal b(vi).

It is more di¢ cult to identify an equilibrium where N � x (where N > 3 and 1 <

x < N � 1) bidders test ordering of their valuations in auction 1 and the remaining x

buyers bid in auction 2. Since x > 1, bidders do not wish to bid their valuations in

auction 2 before learning some information on the ordering of the valuations. Hence, in

both auction bidders must test the ordering of their valuations. The losing bidders from

auction 1 want to bid their valuations in auction 2. Similarly, the losing bidders from

auction 2 want to bid their valuations in auction 1. The problem becomes complicated

and the optimal bidding function might be di¢ cult to identify.

Finding an asymmetric equilibrium with sniping is even more complicated. Beside

all the possible reallocations, bidders need to take care of the possible rejections of some

of their bids. Hence, checking for all the possible deviations might be quite demanding

process.

To conclude, this section shows that bidders wish to coordinate between the auctions

so that no-one will pay too much. They do so by testing the ordering of their valuations.
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If they do it early enough, they arrive at an e¢ cient outcome. Otherwise, they have to

send late risky bids and the outcome might be ine¢ cient. This subsection also provides

a discussion how the model extends with more bidders, auctions or rounds.

4.3. Overlapping Internet auctions

The previous section studied simultaneous Internet auctions. In this model, the pres-

ence of multiple rounds gives a lot of �exibility to the bidders. This �exibility gives arise

to multiple equilibria. All these equilibria have two components (1) test of the ordering

of the valuation and (2) reallocation of the losing bidders. When (1) happens at stage

1, (2) follows at stage 2. All the bids are accepted and the resulting outcome is e¢ cient.

When (1) takes place at stage 2, (3) is scheduled at stage 3. At stage 3, some of the bids

are rejected and the resulting outcome might be ine¢ cient. Ine¢ ciency is closely related

with the simultaneous schedule of the auctions. This section argues that if auctions are

overlapping, the reallocation always happens under the safe bid transmission.

4.3.1. The model

Consider overlapping Internet auctions. The model is modi�ed in the following way. All

the rules remain the same, but the schedule of the auctions changes. Let t (t = 1; ::4)

denote a period. Auction 1 lasts from t = 1 to t = 3 and auction 2 takes place from t = 2

to t = 4. Each bid exceeding the current standing price is accepted at t = 1 and t = 2 in

auction 1 and at t = 2 and t = 3 in auction 2. Each bid exceeding the current standing

price is accepted with probability � 2 (0; 1) at t = 3 in auction 1 and at t = 4 in auction

2. The rules de�ning possible bids, winners, prices and payo¤s remain unchanged. The

new game is denoted by �2.

4.3.2. Results

The trade-o¤s in the revised model are very similar to the trade-o¤s in the original model.

Bidders want to learn a little about the ordering of their valuations to appropriately
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coordinate between the auctions. The motives behind e¢ cient equilibria are the same.

Take the equilibrium presented in proposition 4.1. In this equilibrium buyers �rst bid

according to the bidding function given by (1) in auction 1. Afterwards, the winning

bidder bids the valuation in auction 1 and the losing bidders bid their valuations in

auction 2. All bids arrive under safe bid transmission. Clearly, this is still an equilibrium

of the modi�ed model, which the next proposition shows.

Proposition 4.5. De�ne ~�i as in proposition 4.1. Then, (�̂1; �̂2; �̂3) is a Bayesian

Nash equilibrium of �2. The equilibrium outcome is e¢ cient. The expected price in

auction 1 and the expected price in auction 2 equal to E[v3:3].

Proof. The proof easily follows from the proof of proposition 4.1. �

Take now the equilibrium presented in proposition 4.2. In this equilibrium, two bid-

ders test the ordering of their valuations in auction 1 and later appropriately reallocate.

Meanwhile, the third buyer bids the valuation in auction 2. All bids arrive under safe bid

transmission. Clearly, this is still an equilibrium of the modi�ed model, which the next

proposition shows.

Proposition 4.6. De�ne ~�i and ��3 as in proposition 4.2. Then, (~�1; ~�2; ��3) is a

Bayesian Nash equilibrium of �2. The equilibrium outcome is e¢ cient. The expected

price in auction 1 and the expected price in auction 2 equal to E[v3:3].

Proof. The proof easily follows from the proof of proposition 4.2. �

E¢ cient equilibria of �1 remain equilibria of �2. Now, the question is what happens

with ine¢ cient equilibria.

Take an equilibrium presented in proposition 4.3. In this equilibrium, two players test

the ordering of their valuations before the last stage and allocate in the risky period. I

check whether �2 has a similar equilibrium. There are two possibilities. First, the test of

the ordering of the valuations could be made at t = 3 and reallocation could take place at

t = 4. This is not optimal, as some player would have incentives to submit the �rst bid
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at t = 2. Second, the test could be made at t = 2 and the reallocation could take place

at t = 4. Again, this is not optimal. Some buyer would have incentives to reallocate at

t = 3 instead of t = 4.

All in all, in the presence of overlapping auctions only e¢ cient equilibria persist. The

next proposition gives the result.

Proposition 4.7. Let (�1; �2; �3) be a pure Bayesian Nash equilibrium (of �2) in

undominated strategies in which:

(1) @
@vi
biat(vi) > 0 or b

i
at(vi) = 0 for all i, t and a,

(2) no current winner in one auction bids in the opposite auction,

(3) at least two bidders follow the same strategy.

Then, (�1; �2; �3) leads to the e¢ cient outcome with expected price of E[v3:3] in both

auctions.

Proof. See Appendix. �

In contrast to simultaneous auctions, overlapping auctions have no ine¢ cient equi-

libria. The expected revenue from the two auctions is given by 2E[v3:3]. Simultaneous

auctions also have e¢ cient equilibria rising the revenue of 2E[v3:3]. What�s more, they

have ine¢ cient equilibria with the revenue of at least of (1+�)E[v3:3]. One auction yields

the price above E[v3:3] and the other auction has the expected price of �E[v3:3]. Hence,

when auctions are simultaneous, auction 1 bene�ts and auction 2 su¤ers a loss. The total

revenues are more di¢ cult to compare. For the uniform distribution, last-minute bidding

harms the total revenue.

To conclude, in competing auctions, buyers wish to coordinate. When they start the

coordination in simultaneous auctions, they might end up bidding late, so that some

of their bids are rejected. The resulting outcome is ine¢ cient. The revenue might be

harmed. The seller gains from simultaneous auction, when bidders test the ordering of

their valuations in his auction. In overlapping auctions, there is always time to safely

reallocate. The resulting outcome is e¢ cient and the two auctions have equal expected
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prices. Hence, overlapping auctions are better for e¢ ciency. The revenue from a given

auction is ambiguous.

4.4. Conclusions

The present paper demonstrates a dynamic model of independent private value simul-

taneous or overlapping Internet auctions. It shows how multiple and last-minute bidding

lead to the equilibrium outcomes.

One of the main achievement of this paper is to rationalize multiple bidding in Internet

auctions. Most of the existing studies show that sniping is a unique equilibrium strategy.

In some studies, in the presence of a �xed end time a bidder is indi¤erent between sending

one and several bids. In my model, multiple bidding is part of a strategic interaction and

is essential for sustaining some of the equilibrium outcomes. I show that in an equilibrium

players �rst bid less aggressively and afterwards the winning bidder bids the valuation in

the same auction and the losing bidder bids the valuation in the opposite auction.

I also compare simultaneous and overlapping Internet auctions. I observe that all the

ine¢ ciencies observed in the simultaneous auctions disappear in overlapping auctions.

Therefore, the planner interested in e¢ ciency should opt for overlapping auctions. The

seller who cares about the revenue should take into account that simultaneous auctions

can produce an equilibrium in which the revenue of one auction increases and the revenue

of the other auction decreases. This equilibrium is not present in overlapping auctions.

The seller who faces competition from the other sellers might lose when setting the

ending time equal to the competing auction, as his auction might be perceived as the

�nal destination of the bidders. He might be also lucky to increase his revenue, when

bidders notice his auction as the �rst one.

4.5. Appendix

Proof. (proposition 4.1) Suppose that each player j 6= i follows �̂j. Assume for a

moment that player i becomes the current winner in auction 1 at t = 2. Then, other
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players will not bid in auction 1 any more and he will remain a current winner there.

Hence, he weakly prefers to follow �̂i till the end of the game.

If player i does not become a current winner at auction 1 at t = 2, he knows that a

bid of maxj 6=i vj will be submitted in auction 1 and a bid of minj 6=i vj will be submitted

in auction 2. Clearly, he is weakly better o¤, when he bids his valuation in auction 2

before the last stage. Once he does so, his expected payo¤ cannot be further increased.

Hence, he also follows �̂i till the end of the game.

Concluding, when each player j 6= i follows �̂j during the whole game, then player i

cannot do better than to follow �̂i as from t = 2.

Now, suppose that as from t = 2 player i follows �̂i and that each player j 6= i follows

�̂j during the whole game. At t = 1, player i submits the bid '(vi) = c that maximizes

his expected payo¤:

2

Z b�1(c)

0

Z v2

0

(vi�b(v2))dF (v3)dF (v2) + 2
Z 1

b�1(c)

Z vi

0

(vi�v3)dF (v3)dF (v2)� I

where:

I =

8><>:
R vi
b�1(c)

R vi
b�1(c)(vi � v3)dF (v3)dF (v2) if b�1(c) < vi

0 otherwise

The �rst order condition implies:

db�1(c)

dc
�
 
2f(b�1(c))

 Z b�1(c)

0

(vi � c)dF (v3)�
Z vi

0

(vi�v3)dF (v3)
!
� dI
dc

!
= 0

By symmetry c = b(vi) and as a consequence, b�1(c) = vi. Hence, we obtain:

(4.3) b(vi) =
1

F (vi)

Z vi

0

v3f(v3)dv3

Using integration by parts, we rewrite (4.3) as:

b(vi) = vi �
R vi
0
F (v3)dv3

F (vi)
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Now, we prove that player i prefers to bid b(vi) instead of any bi. Clearly, it is

never optimal for player i to bi > b(1). As b is strictly increasing, and continuous, a bid

0 � bi � b(v) corresponds to a unique value x for which b(x) = bi. Suppose that x > vi.

Then, we can write bidder i�s expected pro�t from bidding bi as:

EU i(x; vi) = EU i(vi; vi) + 


where:


 = 2

Z x

vi

�Z v2

0

(vi � b(v2))dF (v3)�
Z vi

0

(vi � v3)dF (v3)
�
dF (v2)

By using b(v2) = 1
F (v2)

R v2
0
v1f(v1)dv1 and rearranging, we obtain:


 = 2

Z x

vi

�Z v2

vi

vidF (v3)�
Z v2

0

Z v2

0

v1
F (v2)

dF (v1)dF (v3) +

Z vi

0

v3dF (v3)

�
dF (v2)

Further rearranging gives:


 = 2

Z x

vi

Z v2

vi

(vi�v1)dF (v1)dF (v2)

Since x > vi:


 < 0

Hence, bidder i cannot pro�tably deviate by bidding more than b(vi):

Suppose now that x < vi. Then, we can write bidder i�s expected pro�t from bidding

bi as:

EUi(x; vi) = EUi(vi; vi) + 2

Z vi

x

	dF (v2)

where:

	 =

Z v2

0

�Z v2

0

v1
F (v2)

dF (v1)� vi
�
dF (v3) +

Z vi

0

(vi�v3)dF (v3)�
Z vi

x

vi�v3
2

dF (v3)

=

Z v2

0

Z v2

0

v1�vi
F (v2)

dF (v1)dF (v3) +

Z vi

0

Z v2

0

vi�v3
F (v2)

dF (v1)dF (v3)�
Z vi

x

vi�v3
2

dF (v3)
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By rearranging, one �nds that:

	 <

Z v2

0

Z v2

0

v1 � v3
F (v2)

dF (v1)dF (v3)�
Z vi

x

vi�v3
2

dF (v3)

=

Z vi

x

vi�v3
2

dF (v3)

< 0

Hence, bidder i cannot pro�tably deviate by bidding less than b(vi).

Concluding, I have shown that at every t a player i cannot pro�tably deviate from

following �̂i, if he knows that everybody else plays �̂i. Hence, (�̂1; �̂2; �̂3) is a Bayesian

Nash equilibrium.

Suppose now that everyone plays according to (�̂1; �̂2; �̂3). Then, clearly the resulting

outcome is e¢ cient. The expected price at auction 2 is given by:

E[p2] = E[v
3:3]

The expected price at auction 1 equals:

Z 1

0

b(v2)dF
2:3(v2) = 6

Z 1

0

Z vi

0

v3f(v3)dv3(1� F (v2))f(v2)dv2

= 3

Z 1

0

v3(1� F (v3))2f(v3)dv3

= E[v3:3]

where the �rst equality is found by using (4.3) and the second equality is found by

exchanging the order of integrals. �

Proof. (proposition 4.2) The optimally of the behavior of player 3 can be proven by

repeating the argument of the proposition 4.3 and plugging � = 1, where necessary.

Now, I prove that it is optimal for player 1 to follow ~�1, if other players follow strategies

de�ned in the proposition. If he wins in a given auction, then it is optimal for him not to

bid in the other auction, as he is already sure about winning the object. If he has not bid

before t = 2, it is then his weakly dominant strategy to bid v1 in auction 1 at t = 2. If he
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has bid #(v1) = � in auction 1 at t = 1 and has lost, he prefers to bid vi in auction 2 at

t = 2, as his expected payo¤ from bidding in auction 1 (
R v1
min[b�1(�);vi]

(v1 � v2)dF (v2);) is

lower than his expected payo¤ from bidding in auction 2 (
R v1
0
(v1� v3)dF (v3)). All in all,

I have shown that no matter what happens at t = 1, it is optimal for player 1 to follow

~�1 at t > 1.

The optimality of b(v1) can be proven by repeating the argument of lemma 4.2, plug-

ging � = 1, where necessary and appropriately changing the timing.

Concluding, I have shown that if player 2 and player 3 play according to ~�2 and ��3

respectively, it is optimal for player 1 to follow ~�1. Finally, note that due to symmetry

player 2 follows ~�2, if player 1 and player 3 follow ~�1 and ��3 respectively.

The expected price at auction 2 is given by:

Ep2 = Ev
3:3

The expected price at auction 1 is given by:

Ep1 = Eb(v2:2)

=

Z 1

0

�
v1 �

Z v1

0

(v1 � v3)f(v3)dv3
�
f 2:2(v1)dv1

=

Z 1

0

v1(1� F (v1))f 2:2(v1)dv1 +
Z 1

0

v3(1� F 2:2(v3))f(v3)dv3

= 2

Z 1

0

v1(1� F (v1))2f(v1)dv1 +
Z 1

0

v3(1� F (v3))2f(v3)dv3

= 3

Z 1

0

v1(1� F (v1))2f(v1)dv1

= E[v3:3]

= Ep2

The equilibrium outcome is e¢ cient, as the player with vi = max[v1; v2] wins the

object at auction 1 and the player with max[min[v1; v2]; v3] wins the object at auction

2. �
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Proof. (proposition 4.3) Suppose that player 1 and player 2 play according to ~�1 and

~�2 respectively. Then, player 3 prefers to bid in auction 2, as in auction 1 he would have

to compete against (1� �)f(max[v1; v2]) + �max[v1; v2], which is more than the highest

bid submitted by his opponents in auction 2 ((1� �)0 + �min[v1; v2]). Once he decides

for bidding in auction 2, bidding v3 at t = 2 weakly dominates all the other possible bids

in auction 2. All in all, it is optimal for player 3 to follow ��3.

Now suppose that player 2 and player 3 play according to ~�2 and ��3 respectively.

Note that if player 1 wins in a given auction, then it is optimal for him not to bid in

the other auction, as he is already sure about winning the object. Hence, he cannot do

better than to follow ~�1.

Now suppose that player 1 has not bid before t = 3. Then, he prefers to bid �rst in auc-

tion 1, as the expected value of the highest bid in auction 2 (given by E(v3)) is higher than

the expected value of the highest bid in auction 1
�
given by E

�
v2 � (1� �)�

R v2
0
F (vj)dvj

��
.

It is then his weakly dominant strategy to bid v1 in auction 1. In other words, he cannot

do better than to follow ~�1.

Now suppose that player 1 has lost in auction 1 before t = 3. Since he has lost, he

infers that v1 < v2. Furthermore, he has a weakly dominant strategy to bid v1 in the

optimally chosen auction. Suppose he bids in auction 1. Then, he will win the good in

auction 1 only if his bid is accepted, v1 > b(v2) and the bid of player 2 is rejected in

auction 1. Therefore, his expected payo¤ may be written as:

��1 = �(1� �)
Z b�1(v1)

v1

�
v1 � v2 + �

Z v2

0

F (v3)dv3

�
dF (v2)

By rearranging, one obtains:

��1 < �
2(1� �)

Z b�1(v1)

v1

Z v2

0

F (v3)dv3dF (v2)
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By changing the order of integrals, one �nds that the above expression is equal to:

�2(1� �)
Z v1

0

Z b�1(v1)

v3

dF (v2)F (v3)dv3

Further manipulation yields:

��1 < �2(1� �)
Z v1

0

(F (b�1(v1))� F (v3))F (v3)dv3

< �2(1� �)
Z v1

0

F (v3)dv3

< �

Z v1

0

F (v3)dv3

= �

Z v1

0

(v1 � v3)f(v3)dv3

= ��2

where ��2 is the payo¤ player 1 obtains when he bids the valuation in auction 2. �
�
2 is

shown to be smaller than ��1, which means that player 1 prefers to move to auction 2

after losing in auction 1. In other words, he cannot do better than follow ~�1.

All in all, I have shown that no matter what happens before t = 3, it is optimal for

player 1 to follow ~�1 at t = 3.

Suppose now that everyone follows the strategy speci�ed in the proposition, but player

1 bids #(v1) = � instead of b(v1). Then, his expected payo¤ is given by:

Z b�1(�)

0

(v1 � b(v2))f(v2)dv2 + �
Z 1

b�1(�)

Z v1

0

(v1 � v3)f(v3)dv3f(v2)dv2

The �rst order condition implies:

db�1(�)

d�

�
(v1 � b(b�1(�)))f(b�1(�))� �

Z v1

0

(v1 � v3)f(v3)dv3f(b�1(�))
�
= 0

By symmetry:

b(v1) = v1 � �
Z v1

0

(v1 � v3)f(v3)dv3
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Integrating by parts, I �nd:

b(v1) = v1 � �
Z v1

0

F (v3)dv3

Hence, b(vi) is a natural candidate for the equilibrium bidding function in auction 1 at

t = 2. I now show that player 1 cannot do better than to bid b(v1) in auction 1 at t = 2.

Imagine he bids b(x) instead of b(v1). Then, his expected payo¤ equals to:

U1(v1; x) =

Z x

0

(v1 � b(v2))f(v2)dv2 � �
Z 1

x

Z v1

0

(v1 � v3)f(v3)dv3f(v2)dv2

I di¤erentiate U1(v1; x) with respect to x:

@U1(v1; x)

@x

����
x=v1

= f(x)

�
v1 � b(x)� �

Z v1

0

(v1 � v3)f(v3)dv3
�

= 0

I check the second order condition:

@2U1(v1; x)

@x@x

����
x=v1

= f 0(x)

�
v1 � b(x)� �

Z v1

0

(v1 � v3)f(v3)dv3
�
� f(x)b0(x)

= �f(x)2(1� �F (x))

< 0

Hence, player 1 cannot do better than to set x = v1.

Concluding, I have shown that if player 2 and player 3 play according to ~�2 and ��3

respectively, it is optimal for player 1 to follow ~�1.Finally, note that due to symmetry

player 2 follows ~�2, if player 1 and player 3 follow ~�1 and ��3 respectively.

The expected price at auction 2 is given by:

Ep2 = �Ev
3:3
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The expected price at auction 1 is given by:

Ep1 = Eb(v2:2)

=

Z 1

0

�
v1 � �

Z v1

0

(v1 � v3)f(v3)dv3
�
f 2:2(v1)dv1

=

Z 1

0

v1(1� �F (v1))f 2:2(v1)dv1 + �
Z 1

0

v3(1� F 2:2(v3))f(v3)dv3

> 2�

Z 1

0

v1(1� F (v1))2f(v1)dv1 + �
Z 1

0

v3(1� F (v3))2f(v3)dv3

= 3�

Z 1

0

v1(1� F (v1))2f(v1)dv1

= �E[v3:3]

= Ep2

Since the bid of the player bidding in auction 2 at t = 3 the equilibrium outcome

might be ine¢ cient. �

The following two lemmas are needed for the proof of proposition 4.4.

Lemma 4.8. Let � < 1. De�ne ~�i by:

(1) at t < 2 do not bid

(2) at t = 2 bid b(vi), where b0(vi) > 0, in auction 1,

(3) at t = 3 bid vi at auction 2, if you are a current winner in auction 1 and in

auction 2, otherwise,

Then, (~�1; ~�2; ~�3) is not a Bayesian Nash equilibrium.

Proof. Suppose that (~�1; ~�2; ~�3) is a Bayesian Nash equilibrium. Then, the expected

payo¤of player 1 who deviates by bidding b(y) instead of b(v1), given by R = 2�+2�+I,

where:

� �
b�1(�)Z
0

v2Z
0

(v1 � b(v2))dF (v3)dF (v2)

� � �2
1Z

b�1(�)

v1Z
0

(v1 � v3)dF (v3)dF (v2) + �(1� �)
1Z

b�1(v1)

v2Z
0

v1dF (v3)dF (v2)
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I �

8><>: �2
R vi
b�1(�)

R vi
b�1(�)(vi � v3)dF (v3)dF (v2) if b�1(�) < vi

0 otherwise

The �rst order condition implies:

yZ
0

(v1 � b(y)dF (v3)� �2
v1Z
0

(v1 � v3)dF (v3)� �(1� �)
v2Z
0

v1dF (v3) +
dI

dy
= 0

Substituting y = vi, I �nd:

v1Z
0

((1� �)v1 � b(v1)dF (v3) + �2
v1Z
0

v3dF (v3) = 0

or equivalently:

b(v1) = (1� �)v1 +
�2

F (v1)

v1Z
0

v3dF (v3)

which using integration by parts can be written as:

(4.4) b(v1) = (1� �(1� �))v1 �
�2
R v1
0
F (v3)dv3

F (v1)

Now, I check whether it is pro�table for player 1 to deviate by bidding v1 at auction

2 at T � 1. Note that if v1 6= v1:3, player 1 would increase his expected payo¤ from

�E[(Pr[v1 > min[v2; v3](v2��v3)+Pr[v1 < min[v2; v3](1��)v2)] � RD to RD

�
. Therefore,

in order to arrive at a contradiction, it is enough to show that the proposed deviation is

pro�table, when v1 = v1:3. Note the following:

E[p1jv1 > v1:2] = E
�
b(v1:2)jv1 > v1:2

�
=

Z v1

0

�
(1� �(1� �))v2 �

�2
R v2
0
F (v3)dv3

F (v2)

�
dF 1:2(v2)

> �

Z v1

0

�
v2 �

R v2
0
F (v3)dv3

F (v2)

�
dF 1:2(v2)

= �E[v2:2jv1 > v1:2]

= E[p2jv1 > v1:2]
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A contradiction. �

Lemma 4.9. A strategy pro�le (�̂1; �̂2; �̂3) in which each player waits with bidding

until the last stage and never bids above the valuation is not a pure perfect Bayesian Nash

equilibrium.

Proof. Suppose that (�̂1; �̂2; �̂3) is a Bayesian Nash equilibrium. Then, �̂i must imply

that player i bids vi at t = 3. This is because bidding less only decreases a chance for a

pro�table transaction and bidding more is not allowed. Furthermore, it cannot happen

that all three bidders bid at the same auction, as one of them would be better o¤, if

he deviated and bid his valuation at the opposite auction at the last stage. Hence, two

players have to bid their valuations together in one auction and the third one has to

bid his valuation in the opposite auction. Take a player who is not the only bidder in

auction a. Without loss of generality assume that it is player 3 and that he bids against

player 1 at auction 1. Suppose that he deviates and bids in auction 1 before T . Note

that other players will not know the value of his bid then. Therefore, after seeing the

deviation, they can base their decision about punishing him only on the pure fact that his

bid was accepted. They could try to punish him by bidding their valuations in auction

1. This would not heart player 3, as he could set b̂312 very close to 0 and bid his valuation

at auction 2 at T . Hence, I need to look at other possible reactions to the opponent�s

deviation. There are three other possibilities: nobody bids at auction 1 again; player

1 bids v1 at auction 1 at and player 2 bids v2 at auction 2 and �nally player 1 bids

v1 at auction 2 at and player 2 bids v2 at auction 1. In the �rst two cases player 3 is

already better o¤, when he bids his valuation at auction 1 at t = 2 instead of waiting

with bidding for the last stage. Then, his bid is accepted with certainty and the expected

price he pays in case of winning does not increase. In case 1 it is even lower, as it equals

to zero. In case 3 his deviation does not decrease his expected as E[v2] = E[v1]. Hence,

a contradiction. �
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Proof. (proposition 4.4) Let (�1; �2; �3) satisfy the required properties. I start from

the last stage and ask if it could happen that no information was revealed before the last

stage. Since at least two players follow the same strategy and @
@vi
biat(vi) > 0 or b

i
at(vi) = 0

for all i, t and a, it must be the case that two bidders did not bid before the last stage.

Lemma 4.9 shows that it cannot be that all the bidders did not bid before the last stage.

Suppose then that buyer 1 bid b1 in auction 1 before the last stage and buyers 2 and 3

did not bid before the last stage. Since last stage are their last chance to win the good,

they will bid their valuations in the last stage. Then, player 1 prefers to bid his valuation

in auction 1 before the last stage. If so, buyers 2 and 3 prefer to bid their valuations in

auction 2. But then, buyer 2 could pro�tably deviate by bidding the valuation in auction

2 in stage 2. Hence, this cannot be an equilibrium. Buyers need to have some information

on the ordering of the valuations before the last stage.

Without loss of generality suppose that before t = 3 it has been revealed that player

1 has higher valuation than player 2. Since @
@vi
biat(vi) > 0 or b

i
at(vi) = 0 for all i, t and a,

it must be the case that player 1 and player 2 have bid in the same auction and player

2 has been overbid. Suppose no-one else has bid there. Then, it can happen that a

current winner in auction 1 bids the valuation in auction 1 and the other bidders bid the

valuations in auction 2, similarly as in proposition 4.2. The resulting outcome is e¢ cient

and the bidder with the lowest possible valuation always obtains payo¤ of zero. Hence,

the revenue equivalence theorem implies that expected prices are equal to E[v3:N ] in both

auctions. In other words, outcome 1 arises. It remains to explain what happens if player

1 bids in auction 2 at t = 3. This can happens only when at t = 2 he is overbid in auction

1 by player 3. Then, he weakly prefers to bid the valuation in auction 2 at t = 3. When

he does so, player 2 weakly prefers to bid v2 in auction 1 by t = 3. But this makes player

3 unwilling to outbid player 1 in auction 1 and hence, no such equilibrium is sustained.

If the ordering of the two valuations is revealed in auction 1 in stage 2, then the

current winner cannot bid in the auction 2. Hence, he prefers to bid the valuation in

auction 1. If so, the losing bidder prefers to bid the valuation in the opposite auction.
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The third bidder prefers to �ght against the losing bidder, so he also bids the valuation in

auction 2. As a result, the trade-o¤s are the same as in proposition 4.2. Hence, outcome

2 must arise.

Suppose now that the ordering of all valuations has been revealed before t = 3.

Lemma 4.8 shows that it cannot happen that the ordering was revealed at t = 2. Hence,

bidders must know the ordering at t = 1. Then, bidders who do not have the highest

valuation always bid in the other auction than the bidder with the highest valuation.

Furthermore, they weakly prefer to bid their valuations there. As a result, the resulting

outcome is e¢ cient and hence, by the revenue equivalence theorem expected price equals

to Ev3:N in both auctions. In other words, outcome 1 arises. �

Proof. (proposition 4.7) Let (�1; �2; �3) satisfy the required properties. First I prove

that there does not exist an equilibrium in which bidders bid under risky bid transmission.

Note that a buyer who bids only in auction 2 has no reason to bid at t = 4. He will

always bid under certain bid transmission. Additionally, he might send some irrelevant

bids at t = 4. A buyer who �rst bids in auction 1 will seriously bid in auction 2 at t = 4,

only if he is supposed to bid in auction 1 at t = 3. Suppose such equilibrium exists. Let

player i bid �rst b(vi) in auction 1 at t = 3. If he losses in auction 1, he has a weakly

dominant strategy to bid vi in auction 2 at t = 4. If he wins in auction 1, he weakly

prefers not to bid any more. His expected payo¤ can be written as:

� = ��1(b(:)) + �(1� �)�2

where �1(b(:)) denotes the expected payo¤of player i, when his bid is accepted in auction 1

and �2 is the expected payo¤of player i when his bid is rejected in auction 1 and accepted

in auction 2. Since b(vi) is the equilibrium bidding function, player i has no incentives to

deviate by bidding b(vi) in auction 1 at t = 2. Hence:

�1(b(:)) � �
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or equivalently:

(4.5) �1(b(:)) � ��2

Similarly, player i has no incentives to deviate by bidding vi in auction 2 at t = 3. Hence:

�2 � �

or equivalently:

(4.6)
1� �(1� �)

�
�2 � �1(b(:))

Subtracting (4.5) in (4.6) gives:

1� �(1� �)
�

�2 � ��2

or equivalently:

1� � � 0

Since I have assumed that � 2 (0; 1), the latter is impossible. Hence, I have found a

contradiction.

Suppose there is some other equilibrium. Then, there must be at least one buyer

bidding in auction 1 before t = 3. Let it be buyer 1. By assumption at least two bidders

follow the same strategy. Hence, there must be also some other buyer bidding in auction

1 before t = 3. Let it be buyer 2. Suppose that buyer 1 and buyer 2 bid according to

b(vi), where b0(vi) < vi in auction 1 at t < 3. Then, the ordering of two valuation is

revealed. Refer now to the proof of proposition 4.4. Then it immediately follows that

whenever the ordering of at least two valuations is revealed, the resulting outcome is

e¢ cient or equivalent to outcome 2 as de�ned in proposition 4.4. To �nish the proof, it

is enough to show that outcome 2 cannot arise. In the proof of proposition 4.4, outcome

2 arises only if the ordering of the two valuations is revealed at t = 2. Suppose then that

buyer 1 and buyer 2 bid according to b(vi), where b0(vi) < vi in auction 1 at t = 2. Then,
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by assumption the winning buyer cannot bid in auction 2. If so he weakly prefers to bid

the valuation in auction 1 at t = 3. Then, the losing bidder prefers to bid the valuation

in auction 2 at t = 3. Buyer 3 realizes that max[v1; v2] will be submitted in auction 1

and min[v1; v2] will be submitted in auction 2. Hence, he prefers to bid the valuation

in auction 2. All in all, the resulting outcome is e¢ cient. By the revenue equivalence

theorem, the expected prices are given by E[v3:3]. �





Part 2

Regret motive in auctions





CHAPTER 5

Regret in auctions - theory

5.1. Introduction

Experiments on independent private value sealed bid auctions show that human sub-

jects overbid as compared to standard (risk neutral) auction theory (see Kagel, 1995, for

a survey). Moreover, they do not learn the "optimal" behavior (see for example Kagel,

Harstad and Levin, 1987, Güth et al., 2003, and Harstad, 2000). In order to provide an

explanation for the aggressive bidding in a �rst price auction, the constant relative risk

aversion model (CRRAM) was developed (see for example Cox, Smith and Walker, 1988).

Harrison (1989) criticized the evidence supporting CRRAM by noting that observed de-

viations from the equilibrium prediction under risk neutrality would only generate very

small losses in expected payo¤s. Hence, despite �statistically signi�cant deviations in

terms of bids� there were no �statistically signi�cant deviations in terms of foregone

payo¤�. This ��at-maximum critique�gave the source of a polemic discussion, which re-

sulted in the conclusion that risk aversion could be one of the forces driving the aggressive

bidding, but not necessarily the only one. Following this stream, Cox, Smith and Walker

(1992) mentioned utility of winning as another source of overbidding. They suggested

that a bidder might like winning and therefore bid higher. Alternatively, Goeree et al.

(2002) showed that the Quantal Response model of risk averse bidders nicely �ts their

experimental data on overbidding in a �rst price sealed bid auction.

Overbidding in a second price sealed bid auction is more di¢ cult to justify than the

aggressive bidding in a �rst price sealed bid auction. A buyer who takes into account only

the monetary payo¤weakly prefers to bid the valuation, regardless of risk preferences. In

order to understand the aggressive bidding, one should thus extend the existing theory

71
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by incorporating factors that most likely a¤ect the behavior of experimental subjects1.

Following this path, Morgan, Steiglitz and Reis (2003) proposed a model in which spiteful

bidders compete against each other. They model spitefulness by assuming that loser�s

utility decreases in the winner�s surplus. Realizing that high bids make others su¤er, a

player is ready to sacri�ce a part of his expected monetary payo¤ to be compensated by

the decreased expected payo¤ of all his opponents. As Morgan, Steiglitz and Reis (2003)

noted, the spitefulness is a feeling that is experienced, when competing against people

and not machines. Hence, when playing against computerized players, spiteful subjects

should bid less. However, as Cox, Smith and Walker (1987) observed, the presence of

non-human opponents does not trigger a shift in bidders�behavior. Thus, spitefulness

rather does not drive overbidding.

The present paper explains how regret and rejoicing could rationalize overbidding. Re-

gret describes a negative, cognitively based feeling that we experience, when realizing that

the present situation would have been better, if we had decided di¤erently (see Connolly

and Zeelenberg (2002) as well as Gilovich and Medvec (1995) for overviews). Rejoicing is

a positive counterpart of regret and refers to a reaction that appears after having chosen

the action that is optimal in a given state of the world (see for example Landman (1993)).

Regret and rejoicing are not only experienced, but also anticipated. The anticipated re-

gret/rejoicing a¤ects decision making (see for example Zeleenberg (1999)). Regret theory

incorporates regret and rejoicing into the classical analysis of decision making under un-

certainty. It assumes that a decision-maker maximizes (modi�ed) expected utility, which

implies minimizing expected regret and maximizing expected rejoicing (see Bell (1982)

as well as Loomes and Sugden (1982)). Regret and rejoicing are closely related with in-

formation feedback. When given information about missed opportunities, we experience

regret or rejoicing. If by contrast the outcomes of unchosen actions are not revealed,

regret and rejoicing do not take place (see Camille et al. (2004) for an example).

1Clearly, incorporating utility of winning in the standard auction model is one of the possibilities.
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Engelbrecht-Wiggans (1989) introduced regret into the context of �rst price auctions.

He distinguished two types of regret in a �rst price sealed bid auction. First, an agent

regrets, when losing at a price below the valuation. Second, a positive di¤erence between

his bid and the second highest bid makes a winner regret. His results show that when the

two types of the regret are equally weighted, the classical solution is found. If the former

type of the regret matters less (more) than the latter, a buyers bids less (more) aggres-

sively. Furthermore, he suggested that regret of winning is more important than regret

of losing and therefore a �rst price auction should yield lower revenue than predicted by

the standard theory.

The present paper shows how, under di¤erent information feedbacks, regret and rejoic-

ing a¤ect optimal bidding in sealed bid auctions. As compared to Engelbrecht-Wiggans

(1989), it allows for a wider family of regret functions, incorporates rejoicing and also

studies a second price sealed bid auction. Furthermore, it mainly concentrates on sit-

uations in which bidder is more a¤ected by regret of losing than by regret of winning.

Finally, contrary to Engelbrecht-Wiggans (1989), it argues that a �rst price sealed bid

auction should yield higher revenue than predicted by the standard theory. The proposed

model explains the aggressive bidding observed in experimental sealed-bid auctions and

predicts some of the regularities observed in experimental sealed bid auctions. It shows

that the number of bidders has a positive impact on the equilibrium bidding function in

a �rst price sealed bid auction. In a second price sealed bid auction, the equilibrium bid-

ding function is independent of the number of bidders. An equilibrium price of a second

price sealed bid auction is higher than the equilibrium price of the �rst price sealed bid

auction. Finally, providing information about the price or hiding the value of the second

highest bid increases auction�s revenue.

The paper is structured as follows. The next section de�nes �rst- and second-price

sealed bid auctions as games in which bidder�s utility involves both monetary payo¤

and regret/rejoicing. Furthermore, it de�nes overbidding, underbidding and the classical

outcome. Section 5.3 reports the results. It starts from studying the general case of
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a �rst price sealed bid auction. Then, it proceeds with studying the role of the linear

regret function in optimal bidding in a �rst price sealed bid auction. Afterwards, it

explains how regret and rejoicing lead to overbidding in a second price sealed bid auction

and demonstrates implications of the linear regret function for a second price sealed

bid auction. Section 5.4 discusses experimental results supporting the proposed model.

Finally, section 5.5 concludes.

5.2. The Model

5.2.1. Preliminaries

There are n � 2 buyers competing in a single object auction. Each buyer i (i = 1; :::; n)

has an independent private valuation of the object vi, which is drawn from the increasing

distribution function F (vi) with density f(:) � F 0(:) and support on [0,1]. F (1)(:) and

f (1)(:) de�ne the cumulative distribution function and density function respectively of

v(1) � maxj 6=i vj.

I study a �rst price sealed bid auction (FPSB) and a second price sealed bid auction

(SPSB). In both of them each buyer i simultaneously submits a sealed bid (b(vi)) at

least equal zero. The one whose bid is the highest wins the auction. If several players

submit the highest bid, which, in equilibrium, is a zero probability event, one of them is

randomly selected to be the winner. The winner obtains the object at price p. The rest

of the players obtain zero monetary payo¤. In FPSB the price equals to the highest bid.

In SPSB the �nal price is given by the second highest bid, or if all bids equal to each

other, to the highest bid.

I consider di¤erent information feedbacks. The price is revealed to all players or only

to the winner. The value of the second highest bid (�b) is or is not be publicly announced.

In each auction format and for each information feedback, the monetary payo¤ of

buyer i is given by:

MPi =

8><>: vi � p

0

if i wins

otherwise
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5.2.2. Regret motive

Depending on the information feedback, each buyer appropriately transfers his monetary

payo¤ into the utility function. The utility of buyer i (ui) is given by:

(5.1) ui =

8><>: vi � p� I�bW (p� �b)

�IpL(vi � p)

if i wins

otherwise

where:

� �b denotes the value of the second highest bid,

� I�b =

8><>: 0 if �b is not known to the winning bidder

1 otherwise

� Ip =

8><>: 0 if p is not revealed to the losing bidder

1 otherwise

� W (p� �b) describes the regret of bidding too high,

� L(vi� p) measures the regret of bidding too low and rejoicing of not bidding too

high

If buyer i wins and does not learn �b, his utility is given by the monetary payo¤. When

he wins and learns �b, his utility equals the monetary payo¤ decreased by the regret of not

overbidding the second highest bid by the smallest available increment (W (:)). W (:) is

continuos and nonnegative for every p > �b. A buyer never regrets, when winning at the

price that exactly equals to the second highest bid, i.e. W (0) = 0. Since paying more is

presumably at least as harmful as paying less, W 0(:) � 0. In a second price sealed bid

auction, p = �b and hence winner�s utility (vi � p �W (0)) is only given by his monetary

payo¤ (vi � p).

If buyer i loses and does not learn p, his utility equals zero. If he loses and learns p,

his emotions are measured by L(:). I assume that L0(:) � 0 exists and is continuous. As

a result, the losing bidder is more disappointed with the lower price. When the price is

lower than the valuation, his utility is negative, i.e. L(vi�p) > 0, if vi�p > 0. I consider

two speci�cations of L(:):
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� "Pure Regret": L(vi � p) = 0, if vi � p � 0

� "Regret/rejoicing": L(vi � p) < 0, if vi � p < 0

"Pure regret" implies that in a �rst price sealed bid auction, an agent regrets bidding

too little, when he realizes that he would make a surplus, if he had overbid the highest

bid by a very small number. In a second price sealed bid auction, a losing bidder does

not know the exact value of the highest bid. When learning that the value of the second

highest bid is below his valuation, he anticipates that the value of the highest bid is below

his valuation with a positive probability. Hence, he realizes that if he had bid more, he

would make a surplus with a positive probability and that is the source of his regret.

"Regret/rejoicing" adds rejoicing to the previous speci�cation. In particular, a losing

bidder regrets bidding too low, when the price is below the valuation, and rejoices not

bidding too high, when the price is above the valuation. When the price is above the

valuation, a losing bidder is sure that the highest bid is higher than his valuation in

both FPSB and SPSB. He knows that if he had bid less, his situation would remained

unchanged, and if he had bid more, he could lose money. As a result, he concludes that

his choice of the bid was the best in the given state of the world and that causes his

rejoicing.

5.2.3. Possible strategies

In the equilibrium of the standard (risk neutral) model of the �rst price sealed bid auction,

a buyer bids:

(5.2) b�(1)(vi) = vi �
R vi
0
F (x)(n�1)dx

F (vi)(n�1)

(see Krishna (2002)). In the equilibrium of the standard model of the second price sealed

bid auction, a buyer bids:

(5.3) b�(2)(vi) = vi
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Let b̂(1)(vi) and b̂(2)(vi) to be a Bayesian Nash equilibrium strategy of FPSB and SPSB

respectively. Buyer i overbids in FPSB (SPSB), whenever b̂(1)(vi) � b�(1)(vi) (b̂(2)(vi) � vi)

for every vi 2 [0; 1] and b̂(1)(vi) > b�(1)(vi) (b̂(1)(vi) > vi) for some vi 2 [0; 1]. FPSB (SPSB)

leads to the classical outcome, when b̂(1)(vi) = b�(1)(vi) (b̂(2)(vi) = vi) for every vi 2 [0; 1].

Underbidding occurs in all the other cases.

5.2.4. Comparison with Engelbrecht-Wiggans (1989)

Engelbrecht-Wiggans (1989) studied the role of regret in a �rst price sealed bid auction.

In particular, he assumed that utility of buyer i is given by:

ui =

8><>: �0(vi � p)� �1(b(vi)� �b)) if i wins

min[��2(vi � p); 0] otherwise

and showed that: (1) if both regrets are equally weighted (�1 = �2), the classical outcome

arises and (2) increasing (decreasing) the importance of regret of winning (�1) leads to

the less (more) aggressive bidding. He also suggested that regret of winning is more

important than regret of losing2.

The present paper studies a wider family of regret functions. I also allow a bidder to

rejoice not bidding too high when the price is above his valuation. Furthermore, I study

both a �rst- and a second-price sealed bid auction. Finally, I mainly concentrate on the

case where regret of winning is less important than regret of losing3.

2When the paper was published, the law required all bids to be made public in US mineral lease auctions.
Therefore, for example Exxon knew that the second highest bid was only a few per cent of the many
millions of dollars that it had paid for one particular oil lease. Engelbrecht-Wiggans (1989) claimed
that those money left on the table was far more noticeable to stockholders and superiors than missed
opportunities to have won the object at a favorable price.
3I concentrate mainly on cases where regret of losing is more important than regret of winning, because,
in practise, many �rst price auctions do not reveal the value of the second highest bid and therefore
avoid regret of winning. In section 4 provides the evidence that regret of losing is more important than
regret of winning.
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5.3. Results

5.3.1. First Price Sealed Bid Auction

5.3.1.1. General results. According to standard auction theory a risk-neutral buyer

bids b�(1)(vi) = E[v(1)jv(1) < vi] in an equilibrium (see Krishna (2002)). This way, each

buyer assures that he will win the object and will not have to pay too much, whenever he

has the highest valuation. The presence of regret changes the classical reasoning twofold.

First, when bidding b(1)(vi) = E[v(1)jv(1) < vi], a buyer often loses at price lower than

his valuation and that may make him regret bidding too little. Anticipating the future

emotions, each agent may thus upwardly adjust the bid, so that losing is not so harmful.

Second, when bidding more than the strongest opponent, a buyer may regret bidding

too high. If being informed about the value of the highest bid of all competitors in the

end, a buyer anticipates the future regret of winning and bids less. Depending on the

information feedback, these two forces appropriately balance in an equilibrium.

Proposition 5.1. In a symmetric di¤erentiable pure Bayesian Nash equilibrium of

FPSB, the following holds:

� if I�b = 0 and Ip = 0, the classical outcome arises,

� if I�b = 0 and Ip = 1, a buyer overbids and b̂(1)(vi) < vi for every vi 2 (0; 1],

� if I�b = 1, Ip = 0 and W 0(0) > 0, a buyer underbids.

To conclude, in the absence of regret of winning, regret of losing leads to overbidding in

both "pure regret" and "regret/rejoicing". More regret of losing induces more aggressive

bidding. Since a winner has to pay what he bids, overbidding has its limit. In particular,

a buyer always bids below the valuation. Emotions experienced after losing at the price

exceeding one�s valuation do not a¤ect equilibrium bidding. In the presence of the regret

of winning, the incentives to overbid are reduced.
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5.3.1.2. Linear regret functions. To have a more detailed description of the equilib-

rium, I need to impose several assumptions. Suppose that:

(5.4) I�bW (p� �b) = �(p� �b)

(5.5) IpL(vi � p) = �(vi � p)

where � 2 [0; 1) and � 2 [0; 1). In this speci�cation � measures the degree of re-

gret/rejoicing of losing and � denotes the degree of regret of winning. Clearly, � = 0

corresponds to I�b = 0 and � = 0 to Ip = 0. Given this speci�cation, the equilibrium can

be de�ned as follows.

Proposition 5.2. Suppose that (5.4) and (5.5) hold. Then, the unique symmetric

di¤erentiable pure Bayesian Nash equilibrium of FPSB is characterized by:

(5.6) b̂(1)(vi) = E[v(1)jv(1) < vi] +

24R v0 F (t)(n�1)dt
F (vi)(n�1)

�
R vi
0
F (x)

(n�1)(1+�)
1+� dx

F (vi)
(n�1)(1+�)

1+�

35

The optimal bidding function given by (5.6) depends on � and �. The comparison of

these two parameters gives the prediction of the outcome resulting from the equilibrium.

Corollary 5.3. Suppose that (5.4) and (5.5) hold. Then, the unique symmetric dif-

ferentiable pure Bayesian Nash equilibrium of FPSB leads to:

� overbidding, i¤ � > �,

� classical outcome, i¤ � = �,

� underbidding, i¤ � < �.

The optimal bidding function also depends on the number of bidders. The appendix

shows that increasing the number of the bidders leads to more aggressive bidding. This

result is not surprising, as in the standard setting, without any type of regret, the optimal

bidding function is also increasing in n.
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Corollary 5.4. Suppose that (5.4) and (5.5) hold. Then, in the Bayesian Nash

equilibrium of FPSB the optimal bidding function is increasing in the number of bidders

In most of the experimental settings, uniform distribution is used. Given this distri-

bution, the optimal bidding function is given as follows.

Corollary 5.5. Suppose that (5.4) and (5.5) hold. Then, for the uniform distribution

the equilibrium bidding function simpli�es to:

(5.7) b̂(1)(vi) = vi

�
1� 1 + �

n+ �(n� 1) + �

�

For the uniform distribution, the optimal bidding function is increasing in the number

of bidders, increasing in �, decreasing in � and strictly smaller than vi. Hence, more

aggressive bidding comes from bidders facing more competitors or more regretful ones.

Even the most regretful subject with the very high number of opponents does not bid

above the valuation.

5.3.2. Second price sealed bid auction

5.3.2.1. General results. In the standard setting of a second price sealed bid auction,

it is a weakly dominant strategy to bid the valuation (see Krishna (2002)). Bidding less

leads to a risk of losing a positive transaction; bidding more increases chances of winning

the object but at an unpro�table price. In our model, equilibrium behavior is a¤ected

by the regret/rejoicing of losing; regret of winning plays no role. Bidding below the

valuation is still weakly dominated by bidding the valuation. In "pure regret", bidding

above the valuation is also dominated by bidding the valuation. In "regret/rejoicing",

however, bidding the valuation is not necessarily a dominant strategy. By bidding more

aggressively, an agent increases the expected price. Higher expected price implies higher

expected rejoicing when losing. As a result, overbidding may arise in an equilibrium,

which we show in the next proposition.
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Proposition 5.6. A symmetric di¤erentiable pure Bayesian Nash equilibrium of

SPSB leads to:

� classical outcome in the case of "pure regret",

� overbidding or the classical outcome in the case of "regret/rejoicing".

The proposition implies that overbidding may occur in many speci�cations of the

regret function. In the next subsection we study the implications of the linear regret

function on optimal bidding behavior.

5.3.2.2. Linear regret function. The present subsection studies equilibrium charac-

teristics for:

(5.8) IpL(vi � p) = �(vi � p)

where � 2 (0; 1). The next proposition characterizes the equilibrium.

Proposition 5.7. Suppose that (5.8) holds. Then, the unique symmetric di¤eren-

tiable pure Bayesian Nash equilibrium of SPSB is characterized by:

(5.9) b̂(2)(vi) = vi +

R 1
vi
(1� F (t))(1+�)=�dt
(1� F (vi))(1+�)=�

Since (5.9) equals to the optimal bidding function of a second price sealed bid auction

derived by Morgan et al. (2002)4 and (5.6) is lower or equal to their optimal bidding

function of a �rst price sealed bid auction, we use some of their �ndings:

Corollary 5.8. Suppose that (5.8) holds. Then, in the Bayesian Nash equilibrium a

second price sealed bid auction yields higher revenue than a �rst price sealed bid auction.

4Morgan, Steiglitz and Reis (2002) model the spiteful motive by means of the following utility function:

ui =

�
vi � p if i wins
��(vj � p) if j 6= i wins where � 2 (0; 1)

Although our model fundamentally di¤ers from their approach, the two models sometimes produce the
same predictions (e.g. when (5.8) holds in a second price sealed bid auction). The two models would
give di¤erent predictions for example for the �rst price sealed bid auction in which the raised revenue is
equally divided between all losers.
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Furthermore, in the Bayesian Nash Equilibrium of a second price sealed bid auction, the

following holds:

� @b̂(2)(vi)

@n
= 0,

� @b̂(2)(vi)

@�
> 0,

� if F (vi) = vi, then b̂(2)(vi) =
�
1+�
1+2�

�
vi +

�
1+2�

,

for every vi 2 [0; 1]

We conclude that �rst, our model predicts that a second price sealed bid auction

yields higher revenue than a �rst price sealed bid auction. Second, equilibrium bidding

strategies are independent of the number of bidders. Third, similarly as in a �rst price

sealed bid auction, people that are more emotional when losing (those with higher �),

bid more aggressively. Finally, for the uniform distribution, the optimal bidding function

is proportional to the valuation and includes a constant term.

5.4. Experimental evidence

Our model explains the overbidding that was found in experiments on sealed bid

auctions. It also predicts that a second price sealed bid auction yields higher revenue

than a �rst price sealed bid auction, just as observed in several experiments (see Kagel

(1995)). Furthermore, increasing the number of bidders was shown to lead to more

aggressive bids in a �rst price sealed bid auction and to have no e¤ect on bidding in

a second price sealed bid auction, which was experimentally found by Kagel and Levin

(1993). Moreover, our model indicates that for the uniform distribution, which is used in

most experiments (compare Kagel (1995)), the optimal bidding function does not include

a constant term and is proportional to one�s valuation in a �rst price sealed bid auction,

as experimentally observed by Holt and Sherman (2000). In a second price sealed bid

auction, for the uniform distribution, the optimal bidding function is proportional to the

valuation and includes the constant term, which was present in the experimental results

of Kagel and Levin (1993).
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The relation between regret/rejoicing and overbidding seems to be apparent in the

experiments run by Ockenfels and Selten (2005) as well as Neugebauer and Selten (2006).

Both studies tested the presence of learning in a �rst price sealed bid auction by varying

the information feedback. In the �rst experiment, two information feedbacks (NF and

F ) were tested. A subject competed with each time randomly matched opponent. His

valuation was drawn according to the uniform distribution from the interval [0,100]. After

learning the valuation, he was asked to submit the bid. If his bid was higher than the one

of the opponent, he won the auction. If his bid was lower than the bid of the opponent,

he lost. In case of a tie, the winner was chosen randomly. After submitting the bid,

each bidder was informed whether he won the auction, the price and his payment for the

auction. Under treatment NF, no additional feedback was given. Under F, the winner

was informed about the bid of his opponent. The two treatments stimulated di¤erent

bidding behavior. The overbidding that was observed in F was signi�cantly reduced in

NF.

In the experiment of Neugebauer and Selten (2006), having the same resale value,

a subject competed with randomly matched computerized bids5 in 100 consecutive �rst

price sealed bid auctions. The valuation of a given subject equalled the upper bound of

the uniform distribution from which the N � 1 competitors�bids6 were identically and

independently drawn7. Three di¤erent treatments (T0, T1 and T2) were considered. In

treatment T0 no information about the highest bid of the competitors was provided. In

treatment T1, as usual, a subject was informed about the highest bid of the competitors

only after losing. In treatment T2 the highest bid of competitors was always revealed.

If subjects�had behaved in accordance with the prediction of classical (risk neutral

or risk averse) auction theory, the three conditions would have not induced di¤ering

behavioral patterns. However, the overbidding was highly reduced in T0 and T2. In

5As Cox, Smith and Walker (1987) report, the presence of non-human competitors does not signi�cantly
a¤ect bidding behavior in a �rst price sealed bid auction.
6N was 3, 4, 5, 6 or 9 depending on the treatment.
7Under these conditions, a risk neutral buyer submits a bid as in a standard �rst price sealed bid auction
and a risk-averse buyer bids as in a constant relative risk aversion model of a �rst price sealed bid auction.
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particular, on average 75% of all subjects could be identi�ed as overbidding in T1. The

corresponding numbers for T0 and T2 amounted to 41% and 55% respectively.

The directions of changes of bids can be explained by our model. In T1 and NF the

loser knows what he would obtain, if he were a winner. Hence, anticipating future regret,

he overbids. In T0 the loser is not able to calculate the foregone payo¤ and hence does

not regret losing as much as in T1. Therefore, observed bids should be lower than in

T1. In T2 and F an agent has enough information to regret both losing and winning.

Therefore, he should bid less than in T1 and F.

Finally, it is interesting to note that the experimental results of Neugebauer and Selten

(2006) suggest that regret of winning has a weaker e¤ect than regret of losing. While

comparing T1 with T2 we can deduce that the presence of regret of winning reduced the

overbidding from the level of 75% to 55%. On the other hand, when confronting T1 and

T0 we can infer that reducing the regret of losing causes a decline in the overbidding

from 75% to 41%. Hence, although both regret of winning and regret of losing seem

to a¤ect bidding behavior, the e¤ect of regret of losing is presumably more important.

This supports our approach, in which we pay more attention to regret of losing than to

regret of winning, and is opposite to the approach of Engelbrecht-Wiggans (1989), who

suggested that regret of winning is more important than regret of losing.

5.5. Conclusions

The present paper shows that anticipated emotions could cause the aggressive bidding

observed in experiments. Our model enriches the classical auction model by claiming that

depending on the information feedback a loser is exposed to several emotions that have

been investigated by psychologists. Having no relevant information, the loser does not

experience any emotions. Learning the value of the price, the loser does not remain calm,

but reacts emotionally. He regrets having bid too low or rejoices not having bid too much.

The information about the value of the second bid makes him sad in a �rst price sealed

bid auction, because he does not like having to pay too much.
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In the presence of feedback about the price, incentives to overbid occur. Agents bid

high because of the anticipated negative emotions (regret of losing a chance for a positive

transaction) or due to anticipated positive emotions (rejoicing of not having to overpay).

The presence of the information about the second highest bid causes negative emotions

(regret of overpaying), which reduces the aggressive bidding.

One straightforward implication of our model is that reducing the availability of the

information about the price should reduce the overbidding. Furthermore, providing data

about the second highest bid should lead to less aggressive bidding in a �rst price sealed

bid auction. Both predictions have been found to be valid by Neugebauer and Selten

(2006).

Regret and rejoicing could have also further e¤ects on the bidding behavior. Since

regret of action is known to be a temporary pattern (see Gilovich and Medvec (1995)),

overbidding should decrease, when subjects are given more time to take the cognitive

e¤ort of reducing their emotions. That�s perhaps why, subjects do not tend to overbid in

open auction formats.

All in all, regret and rejoicing seem to a¤ect experimental subjects. To make starker

conclusions, more research is needed. First, it should be emphasized that the supporting

experimental evidence is also well explained by the learning model described by Ockenfels

and Selten (2005) as well as Neugebauer and Selten (2006). It is desirable to experimen-

tally distinguish between these two underlying motives of the bidders behavior. Second,

the proposed model is static. Bidders maximize their expected payo¤to derive an optimal

bidding function that does not depend on the experienced emotions. In the reality, not

only the anticipated emotions matter, but also the experienced emotions a¤ect the be-

havior. Hence, there is a need for a dynamic model of the bidding behavior incorporating

both anticipated and experienced emotions.
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5.6. Appendix

Proof. (proposition 5.1) A standard argument implies that a symmetric equilibrium

bidding function (b̂(1)(vi)) must be strictly increasing and continuous. Suppose that

every player j 6= i bids b(1)(vj) and that player i bids b(1)(y) that maximizes his expected

payo¤:

Z y

0

(vi � b(1)(y)� I�bW (b(1)(y)� b(1)(vj)))f (1)(vj)dvj �
Z 1

y

IpL(vi � b(1)(vj))f (1)(vj)dvj

The �rst term is the expected utility in case of winning and the second term describes

the expected regret of losing at the price b(1)(v(1)). The �rst derivative of the above

expression simpli�es to:

(vi � b(1)(y) + IpL(vi � b(1)(y)))f (1)(y)� b0(1)(vi)F (1)(y)(1 + I�bW 0(0))

Since in equilibrium y = vi:

(vi � b(1)(vi) + IpL(vi � b(1)(vi)))f (1)(vi)� b0(1)(vi)F (1)(vi)(1 + I�bW 0(0)) � �(b(1)(vi))

Now, it is straightforward to see that a buyer with vi = 0 bids 0 in an equilibrium (i.e.

b̂(1)(0) = 0). Therefore, we concentrate on vi 2 (0; 1] for the rest of the proof. Note

that: vi � b(1)(vi) + IpL(vi � b(1)(vi)) � � > 0 for b(1)(vi) < vi, � � 0 for b(1)(vi) � vi,

f (1)(vi) � 0, F (1)(vi) > 0, I�bW
0(0) � 0 and b0(1)(vi) > 0. Hence, �(b(1)(vi)) < 0 for

b(1)(vi) � vi. Therefore, optimal b(1)(vi) (b̂(1)(vi)) must be strictly lower than vi (i.e.

b̂(1)(vi) < vi for every vi 2 (0; 1]).

Note that in equilibrium �(b̂(1)(vi)) = 0. Hence:

(5.10)

	(vi+IpL(vi�b̂(1)(vi)))f (1)(vi)(F (1)(vi))	�1 = 	b̂(1)(vi)f (1)(vi)(F (1)(vi))	�1+b̂0(1)(vi)(F (1)(vi))	



5.6. APPENDIX 87

where 	 � 1
1+I�bW

0(0) . Integrating both sides yields:

(5.11) b̂(1)(vi) =
	

(F (1)(vi))	

Z vi

0

(x+ IpL(x� b̂(1)(x)))f (1)(x)(F (1)(x))	�1dx

where the condition that b̂(1)(0) is �nite is used to obtain the constant from integration.

Integrating by parts gives:

(5.12)

b̂(1)(vi) = vi+IpL(vi�b̂(1)(vi))�
1

(F (1)(vi))	

Z vi

0

(1+IpL
0(x�b̂(1)(x))(1�b̂0(1)(x)))(F (1)(x))	dx

After noting that @	
@�
= �I�b	2, where � � W 0(0), one di¤erentiates (5.12) with respect

to � to �nd:

@b̂(1)(vi)

@�
= �I�b	2

0@� 1

(F (1)(vi))	

viZ
0


(x;	)(ln
�
F (1)(x)

�
� ln

�
F (1)(vi)

�
)dx

1A
where 
(x;	) � (1+IpL0(x� b̂(1)(x))(1� b̂0(1)(x)))(F (1)(x))	. Note that: L0(x� b̂(1)(x)) �

0, F (1)(x) > 0 and b̂0(1)(x) < 1. Therefore,
@b̂(1)(vi)

@�
< 0, if I�b 6= 0, and

@b̂(1)(vi)

@�
= 0,

otherwise.

Suppose now that W 0(0) = 0 or I�b = 0. Rewrite (5.11) as:

b̂(1)(vi) = b
�
(1)(vi) +

Ip
F (1)(vi)

Z vi

0

L(x� b̂(1)(x))f (1)(x)dx

where b�(1)(vi) de�nes the solution that would be found, if L(x � b̂(1)(x)) = 0 for every

x 2 [0; vi] or Ip = 0. As already argued, b̂(1)(vi) < vi. Hence, if Ip = 1, L(x� b̂(1)(x)) > 0

for every x 2 [0; vi] and, as a result, b̂(1)(vi) > b�(1)(vi). �

Proof. (proposition 5.2) Suppose that (5.4) and (5.5) hold. Then, after rearranging,

(5.10) becomes:

1 + �

1 + �
vif

(1)(vi)F
(1)(vi)

���
1+� =

1 + �

1 + �
b̂(1)(vi)f

(1)(vi)F
(1)(vi)

���
1+� + b̂0(1)(vi)F

(1)(vi)
1+�
1+�
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Integrating both sides gives:

b̂(1)(vi) =
1 + �

(1 + �)F (1)(vi)

Z vi

0

xf (1)(x)

�
F (1)(x)

F (1)(vi)

����
1+�

dx

where the condition that b(1)(0) is �nite is used to obtain the constant from integration.

Now, using the integration by parts and F (1)(vi) = F (vi)
(n�1), one writes the above

expression as:

(5.13) b̂(1)(vi) = vi �
R vi
0
F (x)

(n�1)(1+�)
1+� dx

F (vi)
(n�1)(1+�)

1+�

or equivalently as (5.6). �

In order to check the e¤ect of the number of bidders on the optimal bidding function

we di¤erentiate (5.13) with respect to n:

@b̂(1)(vi)

@n
= �1 + �

1 + �

Z vi

0

F (x)
(n�1)(1+�)

1+�

F (vi)
(n�1)(1+�)

1+�

� (lnF (x)� lnF (vi))dx

> 0

where the fact that � � 0, � � 0, n > 1 and F (x) > 0 for every x > 0 was used to show

the inequality.

Proof. (proposition 5.3) As in the proof of proposition 5.1, a symmetric equilibrium

bidding function must be strictly increasing and continuous. Note that Ip = 0 describes

the classical setting, in which it is optimal to bid the valuation. Suppose now that Ip = 1,

every player j 6= i bids b(2)(vj) and that player i bids b(2)(y) that maximizes the expected

payo¤:

Z y

0

�
vi � b(2)(vj)

�
f (1)(vj)dvj � �(y)L(vi � b(2)(y))�

Z 1

y

(L(vi � b(2)(vj)))dF (2)(vj)

where �(y) denotes the probability that there is exactly one opponent with a valuation

larger than y and F (2)(vj) denotes the distribution function of the second highest valuation

of n� 1 buyers. The �rst term of the expected payo¤ corresponds to the event in which
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player i wins an object at the price equal to b(2)(v(1)), the second term is associated with

the event in which player i loses at the price equal to his bid and �nally the last term is

related to the event in which player i loses by bidding below the second highest bid.

The �rst derivative looks as follows:

(vi�b(2)(y))f (1)(y)��0(y)L(vi�b(2)(y))+�(y)L0(vi�b(2)(y))b0(2)(y)+L(vi�b(2)(y))f (2)(y)

After rearranging, using the equilibrium condition y = vi and noting that f (2)(vi) =

f (1)(vi) + �
0(vi), one �nds:

((vi � b(2)(vi)) + L(vi � b(2)(vi)))f (1)(vi) + �(y)b0(2)(vi)L0(vi � b(2)(vi)) � �(b(2)(vi))

Introduce:


(b(2)(vi)) � ((vi � b(2)(vi)) + L(vi � b(2)(vi)))f (1)(vi)

�(b(2)(vi)) � �(y)b0(2)(vi)L0(vi � b(2)(vi))

Note that by de�nition:

�(b(2)(vi)) = 
(b(2)(vi)) + �(b(2)(vi))

Furthermore, �(b(2)(vi)) � 0, 
(b(2)(vi)) > 0 for b(2)(vi) < vi and 
(b(2)(vi)) < 0 for

b(2)(vi) > vi. Hence, �(b(2)(vi)) > 0 for each b(2)(vi) < vi. On the other side, �(1) = �1.

Hence, the continuity of �(b(2)(vi)) implies b̂(2)(vi) � vi. Observe that when L(0) = 0 and

L0(0) = 0 (that is sometimes in "regret/rejoicing" and always in "pure regret"), �(vi) = 0.

Since, �(b(2)(vi)) < 0 for b(2)(vi) > vi in "pure regret", the other equilibrium candidate

does not exist for "pure regret". Hence, bidding one�s valuation becomes an equilibrium

strategy for all special cases of "pure regret" and some special cases of "regret/rejoicing".

Now, assume that L0(0) 6= 0 (which is sometimes true in "regret/rejoicing"). Then,

�(b(2)(vi)) > 0 for each b(2)(vi) 6 vi and hence b̂(2)(vi) has to be higher than vi. �
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Proof. (proposition 5.4) Substituting (5.8), f (1)(vi) = (n�1)F (vi)(n�2)f(vi) and �(vi) =

(n� 1)F (vi)(n�2)(1� F (vi)) in �(b̂(2)(vi)) = 0 yields:

�1 + �
�

f(vi)(1� F (vi))
1
� vi = �

1 + �

�
f(vi)(1� F (vi))

1
� b̂(2)(vi) + b̂

0
(2)(vi)(1� F (vi))

1+�
�

Integrating both sides gives:

b̂(2)(vi) = C �
1

(1� F (vi))

Z vi

0

1 + �

�
xf(x)

�
1� F (x)
1� F (vi)

� 1
�

dx

Since b̂(2)(1) is �nite:

b̂(2)(vi) =
1

(1� F (vi))

Z 1

vi

1 + �

�
xf(x)

�
1� F (x)
1� F (vi)

� 1
�

dx

Now, using integration by parts, one writes the above expression as (5.9). �



CHAPTER 6

Regret in auctions - experiment

6.1. Introduction

There is considerable diversity in information feedback following submission of sealed

bids in the �eld. Some of the auctioneers reveal all bids. Others only indicate the winner,

so that non-winners have only the (unveri�ed) information that their bids were lower.

According to the standard auction theory, di¤erences in the information feedback do not

a¤ect the optimal bidding behavior. In the reality, di¤erent information feedback may

trigger di¤erent emotions (e.g. regret, spite, rejoicing) and as a consequence, di¤erent

bidding patterns. This paper presents results of an experiment which varied the infor-

mation in a �rst-price sealed-bid auction and in a second-price sealed-bid auction and

discusses the e¤ect of regret on bidders�behavior.

Di¤erent models of regretful bidders were proposed in the literature (see chapter 5

of this thesis, Engelbrecht-Wiggans (1989) and Engelbrecht-Wiggans and Katok (2006)).

In the basic setting, a bidder maximizes his expected utility to derive an optimal bidding

function. The utility incorporates anticipated regret depending on the information feed-

back. In a �rst price auction, a bidder realizes that if he loses and learns that the price is

below his valuation, he will regret bidding too little. He also knows that if he learns that

he has overpaid, he will regret bidding too high. On the other side, if the losing bidder

does not learn the price, he will not be much concerned of bidding too little. Similarly, if

the winning bidder does not know the missed opportunity, he will not think much about

bidding too high. In equilibrium, all these forces balance so that expected feedback on

the value of the price triggers more aggressive behavior and expected feedback on the

value of the second highest bid results in less aggressive bidding.

91
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There is experimental evidence supporting regret motive in �rst price auctions. Feed-

back on the second highest bid makes bidders less aggressive (see Isaac and Walker, 1985,

Engelbrecht-Wiggans and Katok, 2006, Neugebauer and Selten, 2006 and Ockenfels and

Selten, 2005). Informing losing bidders about the price leads to more aggressive bidding

(see Neugebauer and Selten, 2006).

This paper studies regret motive in �rst price auctions and second price auctions. I

experimentally study the relation between feedback on the price and bidding behavior.

In contrast to Neugebauer and Selten (2006), I observe that providing feedback on the

price lowers the average bids in a �st price auction. I also �nd that bidders�behavior is

a¤ected by experience of regret, which is strongly related to the information feedback.

The paper is structured as follows. The next presents an experimental design. The

section 6.3 discusses the experimental results. Finally, the section 6.4 concludes.

6.2. Experimental design

The experiment was run in October 2004. The instructions are provided in the ap-

pendix. There were four treatments: SPnI, SPI, FPnI and FPI, where the �rst two

letters denote the type of the auction: second price (SP ) or �rst price (FP ) and the last

letters indicate whether losers learn the price (I) or do not (nI). Each treatment was

scheduled in one session. Each session had 35 rounds, including 5 practise rounds. The

practise rounds took place at the beginning of the experiment to let subjects understand

the design. During these rounds subjects did not earn money. In each session on average

19 students of Tilburg University were employed. Each student receives 2e of show-up

fee and the money earned in the experiment. The average earning was 9.15e. Each

session took about one hour. The experiment was programmed and conducted with the

software z-Tree (Fischbacher, 1999).

At the beginning of each round valuations were independently and uniformly drawn

from f0; 1; :::; 400g, where 1 unit equaled 1 eurocent. No arti�cial currency was introduced

to reduce confusion among bidders. Each subject was faced against two computerized
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bidders1. Subject were informed that computerized bidders bid as to maximize their

expected payo¤s, assuming that everybody else does the same.

After learning the valuation, a subject was asked to submit a bid. After placing the

bid, a subject learned whether he had won or not. In case of winning, he also learned

the price. In case of losing, he learned the price in SPI and FPI, but not in SPnI and

FPnI.

The payo¤ of the winner was given by his valuation decreased by the price, equal to

the second highest bid in a second price sealed bid auction and to the highest bid in a

�rst price sealed bid auction. The losing bidder received zero payo¤.

6.3. Results

6.3.1. First-price sealed-bid auction

Data generated from this experiment include bids, prices and pro�ts. Figure 6.1 depicts

the average relative bids in the trial periods (from period -4 to period 0) and in the paid

periods (from period 1 to period 30) for the treatment FPI and the treatment FPnI, as

well as the average bids predicted by risk neutral Nash equilibrium of a standard model of

a �rst price sealed bid auction (RNNE). The relative bid of a given subject is calculated

by dividing his actual bid by his valuation. The average relative bid in a given period is

the average of the relative bids submitted by all the subject in a given period under the

same period. In risk neutral Nash equilibrium of a standard model of a �rst price sealed

bid auction (RNNE), the relative bid is 2
3
regardless of the information feedback.

Figure 6.1 shows that in most of the paid periods2 the average relative bids under the

treatment FPnI are higher and less volatile than the average bids under the treatment

FPI. The Mann-Whitney U Test applied to subjects�average relative bids rejects the null

hypothesis of equal average relative bids at the one percent signi�cance level. Under both

treatments, the actual relative bids are signi�cantly higher than the RNNE predictions at

1Other studies have shown that in a �rst-price sealed-bid private-value auction, experimental subjects
do not change their behavior when faced against computerized bidders instead of human bidders (see
Cox et al., 1987, and Engelbrecht-Wiggans and Katok, 2006).
2Since the trial periods do not provide any incentives for the bidders, I focus only on the paid periods.
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Figure 6.1. Average relative bids in FPI and FPnI

the one percent signi�cance level. In other words, when given more information, subjects

bid less aggressively but still above the RNNE predictions. Observed overbidding is

common in the literature (see Kagel, 1995). The negative relation between the amount

of the information and the bids suggests that risk aversion is not the main motive of

the subjects. A risk-averse agent maximizes the utility over the expected payo¤, where

both the utility and the expected payo¤ do not depend on the information feedback. The

observed relation is also contrary to the regret theory and the results of Neugebauer and

Selten (2006). However, it is not clear that subjects reached an equilibrium. They might

have needed more time. In the experiment of Neugebauer and Selten (2006), subjects

participated in 100 auctions and had each time the same resale values, which made it

much easier to discover the optimal bidding behavior.

There are three situations a¤ecting the dynamic behavior:

� money left on the table: the subject wins the good at a price below his valuation,

� missed opportunity to win: the subject loses at a price below his valuation,

� losing at an unpro�table price: the subject loses at a price higher or equal to his

valuation.
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Treatment Experience condition bid increase
# (%)

no change
# (%)

bid
decrease #

(%)
row total

FPI Money left on the table 113 0 116 229
(49%) (0%) (51%) (40%)

Missed opportunity to win 68 0 9 77
(88%) (0%) (12%) (13%)

Losing at an unprofitable price 113 3 156 272
(42%) (1%) (57%) (47%)

Total 294 3 281 578
(50%) (1%) (49%)

FPnI Money left on the table 101 1 153 255
(40%) (0%) (60%) (49%)

Missed opportunity to win 31 0 10 41
(76%) (0%) (24%) (8%)

Losing at an unprofitable price 114 2 108 224
(51%) (1%) (48%) (43%)

Total 246 3 271 520
(47%) (1%) (52%)

Grand total 721 6 677 1404
(49%) (1%) (50%)

Figure 6.2. Bidders�reactions to di¤erent experiences in FPI and FPnI.

When there are "money left on the table", the winning bidder realizes that he could

have won at a lower price. When there is "missed opportunity to win", the losing bidder

realizes that he could have won at a pro�table price. When "losing at an unpro�table

price", the subject realizes that he could not improve his situation in any way.

Figure 6.2 depicts subjects�reactions to "money left on the table", "missed oppor-

tunity to win" and "losing at an unpro�table price". The reaction of a given bidder is

counted as a di¤erence between his current relative bid and the relative bid from the pre-

ceding period. When the di¤erence is positive, the reaction is counted as "bid increase".

No di¤erence is interpreted as "no change". Negative di¤erence is considered as "bid

decrease". The experienced conditions are taken for the preceding period. A subject falls

into "money left on the table" in the current period, if in the preceding periods he won

the good. He experiences "missed opportunity to win", if he has just lost at the price

below his valuation. "Losing at an unpro�table price" means that a subject has just lost

at the price at least given by his valuation.
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As �gure 6.2 shows, subjects change their bids a lot. Among all the observed bidders

reactions only 1% corresponds to "no change". On average, a subject is as likely to

increase as to decrease his bid. The reaction depends on the experienced situation.

Under "missed opportunity to win", a subject rather increases his bid and the reaction

is stronger when he is given more information. This behavior could be experienced by

regret motive. After losing at a price below the valuation, a subject regrets bidding too

little and hence bids more aggressively in the next auction. Having less information, he

is less conscious about regret of bidding too little and hence, is less aggressive in the next

round3.

The observed changes in the other experienced conditions are less structured. When

there are "money left on the table", around half of the subjects increase their bids and

about a half of the subjects decrease their bids. This behavior is not against the regret

motive, as a subject was not provided feedback on the second highest bid and hence, was

unable to calculate the foregone payo¤ and react to it. When losing at the price above

the valuation, about a half of the subjects increase their bids and about a half of the

subjects decrease their bids. This behavior is also not against the regret motive, as there

was no space for possible improvement of bidder�s situation.

Figure 6.3 summarizes the average reactions of the bidders. The di¤erences in the

reactions are even more striking than in �gure 6.2. Being given enough information

about the missed opportunity to win, a subject increases his bid by 12% on average. A

less informed subject has di¢ culties in distinguishing "missed opportunity to win" from

"losing at an unpro�table price". After losing at a pro�table price, he increases his bid

but by the smaller amount than a better informed subject. He also increases (by only

1%) his bid after losing at an unpro�table price. Hence, it seems that he is quite good

at predicting the price, but makes some mistakes.

3The presented reactions resulting from the regret motive are similar to the reactions resulting from
impulse balance theory. An interested reader is referred to Neugebauer and Selten (2006) and Ockenfels
and Selten (2005).
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FPI FPnI
Money left on the table 5% ­4%
Missed opportunity to win 12% 4%
Losing at an unprofitable price ­8% 1%

Figure 6.3. Average reactions of the bidders in FPI and FPnI
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Figure 6.4. Average relative bids in SPI and SPnI.

6.3.2. Second-price sealed-bid auction

Figure 6.4 presents the average relative bids in the treatment SPI and SPnI as well

as the average bid predicted by Nash equilibrium of a standard model of a second price

sealed bid auction (RNNE). The average bidders�behavior looks pretty the same in

both treatments. The results of the Mann-Whitney U Test applied to subjects�average

relative bids indicate that the two samples are not signi�cantly di¤erent. In both of them,

bidders used dominated strategy of biding above the valuation, which is consistent with

the other existing studies (see Kagel, 1995).

Regret theory, presented in chapter 5 of this thesis, predicts that subjects bid their

valuations in both treatments or overbid only in treatment SPI. This did not happen

in the experiment. I wish to emphasize that the theoretical model assumes that sub-

jects reached an equilibrium and this is not necessarily the case in the experiment. To

understand the role of regret motive, I will now focus on the dynamic behavior.



98 6. REGRET IN AUCTIONS - EXPERIMENT

In a second-price sealed-bid auction, a subject may experience two types of regret.

First, when he loses at a price below his valuation, he may regret bidding too little.

Second, when he wins at a price above his valuation, he may regretting bidding too high.

In all the other situations, there is no clear regret. If a subject wins a good at a price

below his valuation, there is nothing to regret. Similarly, a subject who loses at a price

above his valuation has no reason to regret.

Figure 6.5 presents bidders reactions to the experienced conditions. The focus is on

the following six conditions. First, a subject may win the auction at a price below his

valuation, after bidding at least the valuation. Second, he may win the auction at a price

below his valuation, after bidding below the valuation. Third, he can win at a price above

his valuation. Fourth, he can lose at the price below his valuation. Fifth, he can lose

at the price above the valuation, when bidding below the valuation. Sixth, he can lose

at the price above the valuation, when bidding above the valuation. In SPI, a subject

always knows which situation he faces. In SPnI, he does not distinguishes the last three

situations. The reactions are counted for the following period. That is, if a subject �nds

himself in one of the six conditions and increases his relative bid in the following period,

his reaction is counted as a "bid increase". If he experiences a given condition and he

does not change his relative bid in the following period, his reaction is denoted as "no

change". If he is in one of the six situations and decreases his relative bid, his reaction

falls into category "bid decrease".

Most of the subjects changed their relative bids, suggesting that they did not reached

equilibrium. Experienced regret a¤ected decisions of the subjects. In both treatments,

in above 70% experiences of winning at an unpro�table price leaded to a bid decrease.

Above 85% of the experiences of losing at a pro�table prices resulted in a bid increase.

The reactions in SPI are stronger than in SPnI. When experiencing situations in which

the role of regret is less clear, subjects�behavior was less consistent, but there seemed to

be some convergence toward a dominant strategy of bidding the valuation. After bidding

above the valuation and winning the good at the price below the valuation, most of the
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Treatment Experience condition bid increase
# (%)

no change
# (%)

bid decrease
# (%) row total

SPI Winning & p<vi≤bi 69 35 54 158
(44%) (22%) (34%) (27%)

Winning  p<vi & bi<vi 12 0 5 17
(70%) (0%) (30%) (3%)

Winning & p≥vi 15 0 46 61
(25%) (0%) (75%) (11%)

Losing & p<vi 30 0 3 33
(91%) (0%) (9%) (6%)

Losing & p≥vi>bi 27 0 8 35
(77%) (0%) (23%) (6%)

Losing, p≥vi & vi≤bi 85 75 114 274
(31%) (27%) (42%) (47%)

Total 238 110 230 578
(41%) (19%) (40%)

SPnI Winning & p<vi≤bi 79 21 51 151
(52%) (14%) (34%) (29%)

Winning  p<vi & bi<vi 6 0 5 11
(55%) (0%) (45%) (2%)

Winning & p≥vi 18 0 47 65
(28%) (0%) (72%) (13%)

Losing & p<vi 15 0 2 17
(88%) (0%) (12%) (3%)

Losing & p≥vi>bi 17 0 1 18
(94%) (0%) (6%) (3%)

Losing, p≥vi & vi≤bi 101 44 113 258
(39%) (17%) (44%) (50%)

Total 236 65 219 520
(44%) (13%) (43%)

Grand total 474 175 449 1098
(43%) (16%) (41%)

Figure 6.5. Bidders�reactions to di¤erent experiences in SPI and SPnI.

subjects even further increased their relative bids, which does not seem rational at all.

After bidding below the valuation and winning the good, most of the subjects increased

their relative bids, which might be explained by discovering a dominant strategy. After

bidding below the valuation and losing, most of the bidders increased their relative bids,

which might be also attributed to discovering a dominant strategy. After bidding at least

the valuation and losing, most of the subjects decreased their relative bids, which again

looks as a sign of discovering a dominant strategy.

Figure 6.6 summarizes average reactions of the bidders. It is evident that regret a¤ects

bidders�behavior. A subject who had to pay above the valuation decreased his relative
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SPI SPnI
Winning & p<vi≤bi 48% 15%
Winning  p<vi & bi<vi 26% 3%
Winning & p≥vi ­53% ­25%
Losing & p<vi 27% 39%
Losing & p≥vi>bi 30% 81%
Losing, p≥vi & vi≤bi ­29% ­18%

Figure 6.6. Average reactions of the bidders in SPI and SPnI

bid in the next round, so it seems that overpaying triggers regret which makes bidders less

aggressive in the next auction. Losing at the price below the valuation resulted in more

aggressive bidding in the next auction, so it looks like after bidding the valuation and

losing, a subject regrets bidding too little and as a result bids more in the next auction.

When experiencing situations in which the role of regret was less clear, subjects�behavior

was less consistent and there seemed to be some convergence toward a dominant strategy

of bidding the valuation. After bidding below the valuation, subjects rather decreased

their bids. After bidding above the valuation, they rather increased their bids. The only

unclear reaction was after bidding at least the valuation and winning the good for the

price below the valuation. When this situation occurred, subjects on average increased

their bids.

6.4. Conclusions

In standard auction theory, a bidder maximizes his monetary payo¤to �nd an optimal

bidding function. His behavior is una¤ected by information feedback revealed after the

auction. Regret theory extends the standard model by incorporating the anticipated

regret in the utility function. In this model, the information feedback a¤ects bidders�

behavior. This paper studies regret motive in auctions in the laboratory setting. The

experiment varies the information feedback in �rst- and second-price sealed bid auctions.

For each type of the auction (�rst-price and second-price), there is a treatment in which

the losing bidder learns the price and a treatment in which he does not. Changing

the information feedback results in di¤erent bids in �rst price auctions but not in second
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price auctions. In a �rst-price auction, better informed bidders bid less aggressively. This

behavior is not consistent with regret theory and is contrary to the results of Neugebauer

and Selten (2006), who test the same question but in a di¤erent design. Although static

behavior is not consistent with the regret motive, the dynamic behavior may be explained

by the regret motive. After bidding below the valuation and seeing the price below

the valuation, subjects increased their bids. After paying above the valuation, subjects

decreased their bids. There was also some convergence to a dominant strategy in a second

price auction.

6.5. Appendix - Instructions

Welcome to this experiment on decision-making. During the experiment, you and the

other participants are asked to make decisions. If you make good decisions, you may earn

money that will be paid o¤ in cash together with a show-up fee of 2 EURO.

During the experiment, we ask you not to talk to each other. If you have a question,

please raise your hand and an experimenter will assist you.

Description of periods

The experiment consists of 35 periods. The �rst �ve periods are trial periods. You

will not earn money then. The following 30 periods are paid periods.

In each period, one good is auctioned o¤. The computer will be the auctioneer.

There will be precisely three bidders: you and two automated bidders. You will only be

interacting with these two automated bidders, not with the other human bidders in the

room.

Each period consists of two phases:

- bidding phase

- outcome phase.

Bidding phase

Valuations



102 6. REGRET IN AUCTIONS - EXPERIMENT

At the beginning of the bidding phase, you will be informed about your valuation.

Your valuation represents the amount that we will pay to you if you win the auction.

It will be each time randomly drawn from the interval [0,400] Eurocents. Each auto-

mated bidder will also have its valuation independently drawn from the interval [0,400]

Eurocents.

Bids

After learning the valuation, you will be asked to submit a bid, which can be any

integer between 0 and 1000, inclusive. The automated bidders will also independently

and simultaneously submit their bids. Each automated bidder will bid so as to maximize

its expected payo¤, assuming that everyone else also maximizes the expected payo¤.

Once all bids are collected, the bidding phase ends.

Outcome phase

Information

(In the treatments FPI and SPI, the following instruction on the information was

provided:) In the outcome phase, you will get the following feedback on your screen:

your status (winner or loser), your valuation, your bid, the price and your payo¤.

(In the treatment FPnI and SPnI, the following instruction on the information was

provided:) In the outcome phase, you will get the following feedback on your screen: your

status (winner or loser), your valuation, your bid and your payo¤. Additionally, if you

win, you will learn the price.

Winners and losers

Your status (winner or loser) will depend on your bid. The bidder who submits the

highest bid will win the auction. The other bidders will become losers. In other words,

if your bid is higher than bids of the two automated bidders, you will win the good.

Otherwise, you will not.

Payo¤s

The payo¤ of the loser will be zero.
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The winner will have to pay the price for the object. In other words, the payo¤ of

the winner will be:

payo¤ = valuation �price.

(In the treatments FPI and FPnI, the following instruction was provided)

The price will equal the winner�s bid. For example, if the following bids are submitted:

250, 110 and 301, the bidder whose bid is 301 will win the auction and will pay 301.

(In the treatments SPI and SPnI, the following instruction was provided)

The price will equal the second highest bid. For example, if the following bids are

submitted: 250, 110 and 301, the bidder whose bid is 301 will win the auction and will

pay 250.

This is the end of the instructions. If you have questions, please raise your hand.
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Samenvatting (Dutch summary)

Deze thesis is een verzameling van documenten op het gebied van veilingen. Deel

I van deze thesis bestaat uit hoofdstukken 2, 3 en 4, die allen de veilingen op Internet

bestuderen. Ik verklaar het fenomeen van �sniping�, een gemeenschappelijke praktijk

van bieden op het laatste ogenblik. Andere auteurs stellen dat �sniping�door onzekere

bodtransmissie in het laatste deel van de veiling of onzekerheid in de waarde van het goed

wordt veroorzaakt (zie Bajari en Hortacsu, 2004). Echter, met de huidige technologie van

Internet, zien de bieders geen problemen met het verzenden van hun bod vlak vóór het

eind van de veiling. Verder bieden vele Internetveilingen goederen met de bekende waarde

aan de bieders aan.

Deel I richt zich ook op verdere vragen met betrekking tot de veilingen op Internet.

Hoofdstuk 2 vergelijkt de verschillende regels ten aanzien van het beëindigen van veilin-

gen op Internet. Hoofdstukken 2, 3 en 4 bestuderen het e¤ect van het plannen van de

veilingen op de de�nitieve toewijzing. Hoofdstuk 4 onderzoekt de relatie tussen mogelijke

onvolmaaktheden van de transmissie van het bod en het biedgedrag.

Deel I stelt dat, om e¢ ciency te ondersteunen, de openbare verkoper voor opeen-

volgende of overlappende veilingen zou moeten opteren. Hoofdstuk 2 toont verder aan

dat het hebben van een vaste tijd om de veiling te beëindigen in plaats van een �exi-

bele eindtijd goed voor de e¢ ciëncy is. Tot slot tonen alle hoofdstukken aan dat het

fenomeen van �sniping�aan de multipliciteit van veilingen met het zelfde dienstenaanbod

kan worden toegeschreven.

Deel II van deze thesis onderzoekt de rol van het terugkoppelen van informatie bij het

bieden op het van gedrag van teleurgestelde bieders in verzegelde-bodveilingen. Hoofdstuk

5 behandelt een theoretische studie van het e¤ect van informatieterugkoppeling op te

voorziene spijt en vreugde op het biedgedrag in verzegelden-bodveilingen. Ik toon aan

dat een speler die bereid is tot het inleveren van �nanciële garantie om spijt te vermijden

en vreugde te maximaliseren agressiever zal bieden dan de standaardtheorie voorstelt.



Het gedrag hangt van de terugkoppeling van informatie af, aangezien een bieder spijt of

vreugde slechts dàn ervaart als hij zich van de gemiste kansen bewust is.

Hoofdstuk 6 rapporteert over de resultaten van een experiment omtrent de relatie

tussen openbare bekendmaking op de prijs en het gedrag van bieders in de veilingen van

het privé-waarde ver*zegelde-bod. Het waargenomen dynamische gedrag wordt beïnvloed

door de ervaring van spijt, welke beurtelings met de teruggekoppelde informatie verwant

is.


