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A DIRECT APPROACH TO COMPENSATOR DESIGN
FOR DISTRIBUTED PARAMETER SYSTEMS*

J. M. SCHUMACHERT

Abstract. We present a direct approach to finite-order compensator design for distributed parameter
systems, i.e., one that is not based on reduced order modelling. Instead, we use a parametrization around
an initial compensator which displays both controller order and closed-loop stability in a convenient way.
The main result is an existence theorem which holds for a wide class of linear time-invariant systems
(parabolic, delay, damped hyperbolic). The most important assumptions are: bounded inputs and outputs,
finitely many unstable modes, completeness of eigenvectors. An example is included to illustrate the
feasibility of our method for purposes of design.

1. Introduction. In the context of systems described by linear partial differential
equations or functional differential equations, the problem of stabilization by feedback
gains some challenging features that are not present in the finite-dimensional situation.
For instance, it is no longer easy to establish necessary and sufficient conditions for
the existence of a finite-dimensional compensator that will produce a closed-loop
system with a prescribed stability margin. It is an important practical problem to find
at least sufficient conditions which will hold for a wide class of interesting systems,
since implementation of state feedback [1], [2] or of controllers of infinite order
[3], [4], [5] is often not possible. The most popular approach consists of replacing
the infinite-dimensional system by a finite-dimensional “reduced order model” and
applying standard techniques to obtain a finite-dimensional compensator for this
model. The pertinent question is, of course, how we can be sure that the compensator
will also stabilize the original, infinite-dimensional system. It has been shown by
examples that, under unfavorable circumstances, the interaction of the controller with
the unmodelled part of the system (sometimes termed “spillover’’) may be such as to
destabilize the closed-loop system as a whole [6]. Existence results for finite-
dimensional compensators have been established recently on the basis of a ‘“zero
spillover” assumption [5], [7], [8], but this assumption is severely restrictive. Also,
existence results can be based on a suitable concept of “‘closeness’ of the reduced-order
model and the actual system. This approach is taken in [9], where the results are still
limited in nature. At this point, it should be emphasized that a concept of ‘““closeness”
is also crucial in any study of parameter uncertainty. This aspect is, as well as order
reduction, inherent in many discussions of modelling. For the sake of theoretical
clarity, we shall keep these two issues apart. In the present paper, we shall assume
that the infinite-dimensional system to be controlled is known precisely, and we shall
construct a finite-dimensional compensator under this assumption. It is expected that
this result can then be used in a further study of what can be done under conditions
of parameter uncertainty.

Our approach is not based on reduced-order modelling, and therefore we call it
a “direct approach”. The core of our method is a certain parametrization of com-
pensators for a given system, which displays both the stability properties of the
closed-loop system and the order of the compensator in a convenient way. We shall
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try to explain the basic idea in § 2. In § 3, the set-up is described in a more rigorous
fashion. The main result, which establishes the existence of finite dimensional com-
pensators for a wide class of time-invariant linear systems (including parabolic systems,
delay systems and damped hyperbolic systems), will be given in § 4. The method of
proof is constructive and can be turned into an actual design method, as will be shown
by an example in § 5. Some final remarks follow in § 6.

2. Heuristics. The purpose of this section is to describe the main idea behind
the development in the rest of the paper, without entering into technical details. A
rigorous set-up will be described in the next section; here, we just want to give a
heuristic discussion.

So let us consider a linear system in its standard state-space form

x'(t)=Ax(t)+Bu(t),
y(t)=Cx(t),

where we assume that the pair (A, B) is stabilizable and the pair (C, A) is detectable.
We can then choose F such that A + BF is stable and G such that A +GC is stable,
and the standard full-order compensator (see, for instance, [10]) is then formed by

2(t)=(A+GC)X(t)—Gy(t)+Bu(t),

2.1)

(2.2)
u(t)=Fi(t).

In the finite dimensional situation, it is well known that the closed-loop system obtained

by combining (2.1) and (2.2) is described by a system matrix whose eigenvalues are
those of A+BF and A+ GC taken together [10,5.2]. Let us examine the com-
pensator (2.2) a little more closely. We can rewrite the compensator equations as

£'(t)=(A+BF+GC)Z(t)-Gy(t),

@.3) u(t)=Fz(t)

and hence the compensator transfer matrix is
(2.4) ¢.(s)=—F(sI~A—BF -GC)"'G.

Now, there is no reason why (2.3) should represent a minimal realization of this
transfer function. If it is not, then the compensator order can be reduced. Even if the
McMillan degree of ¢. coincides with the order of the system (2.3), there may be
transfer matrices with considerably lower McMillan degree that are close enough to
¢. to guarantee that they as well will stabilize (2.1). In order to find such transfer
matrices, one possible strategy would be to take ¢. and to change it a little bit by
turning near-cancellations into actual cancellations, thereby decreasing the order of
its minimal realization.

The question is, of course, under what conditions we can be sure that such a
procedure will lead to a finite-dimensional compensator, if the original system (2.1)
is infinite-dimensional. To get at least a partial answer to this, let us return to the
state-space setting. The realization (2.3) is nonminimal if the pair (A + BF +GC, G)
is not reachable or the pair (F, A + BF + GC) is not observable. We shall concentrate
on the reachable set of the pair (A +BF + GC, G), which is of course the same as the
reachable set of the pair (A + BF, G). This set is characterized as the smallest subspace
¥ such that(A + BF)¥ < ¥ and im G < ¥ The basic idea which underlies the present
paper is the observation that, by manipulation of G alone, we can implement a strategy
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of slightly perturbing the compensator transfer matrix to decrease its McMillan degree
Even if the original im G is not contained in any (A +BF)-invariant subspace oé
inter~esting dimension, it may very well be true that close to G there is a ¢ such that
im G does fitintoa low-dimensional (A + BF)-invariant subspace. Then the reachable
set of the pair (A +BF +GC, G) will also be low-dimensional, say equal to k, and it
will be possible to construct a compensator of order k based on F and G. The stability
of the closed-loop system will then depend on A +BF and A + GC. We didn’t change
A +BF, so there is no problem for that part, and it follows from the theorem on
continuity of eigenvalues that the stability of A +GC follows from that of A + GC it
G is close enough to G. (Actually, we shall use another theorem below, which gives
us a ball around G where stability of A + GC is guaranteed: see Lemma 4.3.)

It can also be seen directly from the differential equations (2.2) that a reduction
of compensator order is possible if there is a nontrivial subspace ¥ with (4 + BF)V' < ¥
and im G < ¥ For this purpose, rewrite (2.2) as

£'(t)=(A+BF)£(t)+G(CE(t)—y(2)),
u(t)=Fx().

The equation for £(¢) is seen to be given by the evolution operator A +BF together
with a driving input which enters through G. Since the stabilization action of the
compensator should take place for any initial value of £(-), we may as well suppose
that £(0)=0. Then it is clear that x(¢) will be in ¥ for all time. Consequently, no
larger state space than 7 is necessary for £.

As a third possible interpretation, consider the following matrix argument. Again,
if 7" is a subspace such that (A +BF)¥ =7 and im G < ¥, then we obviously have
the following matrix representations for A + BF and G, with respect to a suitable basis.

0 A+ BoF,)’ 0/

As is easily established from (2.1) and (2.2), the equation describing the closed-loop
system is

@7 %(;Eg) =A(;gi) A= (-—gc A +B€~i GC)'

Using the special forms in (2.6) to describe the compensator dynamics, we see that
the evolution operator A, in (2.7) can be given as a three-by-three block matrix:

(2.5)

(2.6) A +BF=(

A BF1 BFZ
2.8) A, =|-G.C Ai1+BiF1+G1C, Ap+BiFa+GiCa.
0 0 A+ Bk,

It is evident from this representation that if A, is stable, then the two-by-two left
upper block in A, must also be stable. This means that we are able to build a stabilizing
compensator (of order dim ¥’) based on Gy, F; and Ay; +B1F1+G1Ch. Technically
speaking, this is perhaps the cleanest way to describe the situation, and we shall use
basically this approach in the rigorous development of later sections.

In summary, the proposed method is the following. We start by selecting 2
full-order compensator that stabilizes the original system. Then, we parametrize a se.t
of nearby compensators on the basis of the “injection mapping” G. This parametri-
zation is not necessarily complete, but the stability of the resulting closed-loop systems
is easily monitored, and, in particular, there is a ball around the original injection
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mapping where stability is guaranteed. Moreover, the points in the parameter space
where the compensator order is reduced to a given number k are easily spotted,
because they correspond to the k-dimensional invariant subspaces of A +BF, which
are, at least theoretically speaking, known. So this parametrization allows us to do
an effective search for low-order stabilizing compensators. In the infinite-dimensional
case, we expect that it will be possible to prove the existence of a finite-dimensional
stabilizing compensator if there are finite-dimensional (A + BF)-invariant subspaces
arbitrarily close to any given subspace, i.e., if we have completeness of eigenvectors.
No further essential restrictions will be required. We shall now proceed to make this
precise. It should be emphasized that the procedure we have sketched is meant for
theoretical purposes; several alterations may be made to advantage, when a similar
method is to be used for practical design purposes. This will be illustrated in the
example of § 5.

3. Assumptions and preliminaries. We shall consider systems of the form
x't)=Ax(t)+But), x@)e&Z, u(t)ed,
y(O)=Cx(1), y@)ed,

under the following basic assumptions: _

(A1) A is the generator of a strongly continuous semigroup T'(-) of bounded
linear operators on the Banach space Z. ‘

(A2) B is a bounded linear mapping from the finite dimensional input space %
into Z.

(A3) C is a bounded linear mapping from & into the finite dimensional output
space ¥.

For the general theory of semigroups, we refer to [11]. The condition (A2)
requires that the control enters the system in a ‘“‘distributed’’ way, i.e., as a forcing
term, rather than via the boundary conditions. The condition (A3) excludes, for
instance, taking point observations on an L,-space. The case of unbounded input and
output operators has been considered in [29], where an approach is used that is similar
to ours.

Following [12, p. 181], we shall say that the spectrum of an operator is discrete
if it consists only of isolated eigenvalues with finite multiplicities. We shall make the
following assumption because it is convenient and also because it covers the commonly
encountered cases.

(A4) The spectrum of A is discrete.

As a measure of stability, we shall use the growth constant. This constant is
obtained for every semigroup T'(¢) (from now on, we shall use the term ‘‘semigroup”
as a synonym for ‘“‘strongly continuous semigroup of bounded linear operators on a
Banach space”) by the following formula [11, p. 306]:

(3.1)

NP | .
3.2) wo'= glf )710g IT@®)||=1lim —i—log 1T ()| < oco.
te(0, oo t->C0

The semigroup is said to be asymptotically stable if its growth constant is negative,
and the absolute value of the growth constant is then also called the stability margin.
Obtaining a reasonable stability margin is a primary purpose of feedback control, and
we shall suppose that a desired minimum degree of stability has been specified by a
growth constant w <0 which will be fixed from now on. A semigroup will be called
simply stable if its growth constant is smaller than or equal to w. We shall assume
that there are only finitely many unstable or nearly unstable modes.
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(AS) There exists § >0 such that the half-plane {A € C|[Re A > —§8} contains
only finitely many eigenvalues of A.

Under this assumption, we can draw a simple closed curve enclosing precisely
those eigenvalues of A that have real parts larger than w. From this, we obtain a
decomposition of the state space & as in [12, p. 178]. We shall write £ =&, D&
where £, is called the unstable modal subspace and %; is the stable modal subspace.
Correspondingly, the following notation will be used with respect to this decompo-
sition:

A, 0 B,
(3.3) A (0 As), B—(Bs), Cc=(C. GC).
As in the finite-dimensional case, we shall need assumptions on the stabilizability of
the pair (A, B) and the detectability of the pair (C, A). In the present context, these
are most easily expressed in the following way.

(A6) The pair (A,, B,) is controllable.

(A7) The pair (C,, A,) is observable.

Note that both pairs involve only operators between finite-dimensional spaces,
so that we can rely on the familiar finite-dimensional concepts.

Next, we need an assumption of a somewhat more technical nature. Let § >0
satisfy the condition of (AS). Then it is clear that one can also do a decomposition
of & with respect to the eigenvalues of A that have real parts larger than w — & (rather
than w). Let A2™° denote the operator that is obtained in this way, similarly to A,.
It has been shown in [2, App. 2] that A*~° generates a semigroup. We shall assume
the following.

(A8) The growth constant of the semigroup generated by A2~ is smaller than w.

We know, of course, that the eigenvalues of A7 all have real parts smaller than
or equal to w — &, but counterexamples [11, p. 665], [13] show that this in itself does
not guarantee that the growth constant of the semigroup will be bounded by w —§& or
by w. One solution, then, is to introduce a “‘spectrum determined growth assumption”
like (A8). This solution has been proposed in [2], where it has also been argued that
the assumption holds for various important classes of semigroups.

For an alternative, we should consider our ultimate purposes. To the system (3.1),
we want to add a finite dimensional compensator of the form

W) =Aw(B)+Gay(0), wneW, dimW <o,
u(@t)=F.w(t)+Ky().

Doing so, we obtain a closed-loop system which looks like

(3.4)

d x) x
. Ll =A,,( ) ),
3.5) Z(Fo=a(])o
where the closed-loop system mapping A, is given by
A+BKC BF,
(3.6) A “( G.C A, )
This operator generates a semigroup on & @ %/, since it is a bounded perturbation of
. A 0
3.7) A=, o)

[11, p. 389]. For our purposes, it will be easily sufficient if we know the following.
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(A8)" For any choice of the matrices K, F,, G, and A, in (3.6), the growth constant
of the semigroup generated by A, is equal to sup {Re A|A € o(A.)}.

We shall primarily use (A8), because this assumption is probably in most cases
more directly verifiable (see [2]). However, in some instances it may be easy to check
that (A8)' is true, and then (A8) can be dispensed with. In engineering contexts, (A8)
is often assumed without mentioning.

For our final assumption, we point out that we shall call any non-zero vector in
the range of the eigenprojection associated with a given eigenvalue [12, p. 181] an
eigenvector, so this includes “‘generalized eigenvectors”. A set of elements of & is
called complete (in &) if the finite linear combinations of these elements form a dense
set in . We assume the following.

(A9) The eigenvectors of A form a complete set in Z.

Completeness of eigenvectors is a common property for diffusion operators, delay
operators and wave operators as well; see, for instance, [14, p. 3251, [15, pp. 465-470],
[16, pp. 278-289], [17], [18] and [19, p. 250]. Under the stated assumptions, it will
be shown below (Lemma 4.5) that there exists a feedback mapping F :Z - U such
that the spectrum of A +BF is discrete and contained in {A e C|Re A =w} and such
that the eigenvectors of A + BF form a complete set in &. We could use this statement
to replace both (A6) and (A9), but since these assumptions are stated directly in terms
of A, we prefer to use them, rather than an indirect (be it weaker) expression.

For easy reference, we shall state here the following lemma, which will be used
repeatedly. The proof presents no basic difficulties and will be omitted.

LeMMA 3.1. Suppose that A1; and A, are generators of semigroups on the Banach
spaces %1 and %, respectively, with growth constants w1, and w,. Suppose also that
Ao : %1 %> is a bounded linear mapping. Then the operator on 1 ® %, defined by

A1l 0
3.8 A =( )
( ) A21 A22

generates a semigroup whose growth constant equals max (w1, wz).

4. Existence result. Our aim in this section is to prove the following result.

THEOREM 4.1. Consider the system (3.1) and suppose that the assumptions (Al)-
(A8) hold for some given growth constant w. Then there exists a compensator of finite
order such that the evolution of the controlled system is described by a strongly continuous
semigroup with growth constant smaller than or equal to w.

For convenience, we shall break up the proof of this theorem into four separate
lemmas.

LeMMA 4.2. Consider the system (3.1) under the assumptions (A1)—(A3). Let w
be a given growth constant and suppose that there exist a finite dimensional subspace
V' <D(A) and linear mappings F: V' - U and G : ¥ - Z with the following properties :

4.1) imGc?,

4.2) the semigroup generated by A +GC has growth constant w1 = w,
(4.3) (A+BF)xeV forallx ¥,
(4.4) " the (finite-dimensional) semigroup generated by A + BF |y

has growth constant w; = .

Then there exists a compensator of the form (3.4), which has (finite) order equal to
dim V" and which is such that the evolution of the controlled system is described by a
semigroup with growth constant max (w1, w2) < w.



























