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A NEW STRATEGY~-ADJUSTMENT PROCESS FOR COMPUTING A NASH EQUI-
LIBRIUM IN A NONCOOPERATIVE MORE~PERSON GAME

Antoon VAN DEN ELZEN, Tilburg
Dolf TALMAN, Tilburg

ABSTRACT

In this paper we present a strategy-adjustment process for
finding a Nash equilibrium in a noncooperative N-person game.
The adjustment consists of increasing the probabilities with
which profitable strategies are played, while probabilities
belonging to the unprofitable strategies are decreased. These
increases and decreases are relative to the initial probabi-
lities. This memorizing of the starting point is such that it
prevents the process from both cycling and leaving the stra-
tegy space. Besides, the process converges under very weak
conditions and can be followed discretely by a so-called sim-
plicial algorithm. Finally, the process is compared with
other adjustment processes on the strategy space.

1. Introduction

Recently, van der Laan and Talman (4) developed several ad-
justment processes for solving the nonlinear complementarity

problem (NLCP) on the n-dimensional unit simplex. This pro-

; +
blem concerns the search for a vector «* in 8" = {x E:Rz ll

n+l

L %y = 1} for which z(x*) <« 0, where z is a continuous func~
i=1

tion from Sn to Rn+l

The processes mentioned can start anywhere and converge to a

satisfying x'z(x) = 0 for all x in s".

solution when z is continuously differentiable., Besides, the
processes can be followed discretely and arbitrary close by
so-called simplicial algorithms. The latter feature provides
the possibility of calculating a solution vector.
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One of the main applications of the NLCP on s" is the problem
of finding an equilibrium price vector in a pure exchange
economy. In that case sP is regarded as the price space of
the economy and the adjustment process can be interpreted as
a price-adjustment process. In this way we can compare the
adjustment processes on s" of van der Laan and Talman with
other price-adjustment processes like the Walras tatonne-
ment process and the gquasi-Newton processes of Smale (5).
The Walras process only converges under very strong condi-~
tions, such as revealed preferences or gross-substitutability,
while the Smale processes only converge locally. Besides, it
is difficult to follow these processes discretely. All this
gives reason to prefer the processes described in (4). This
the meore because the latter processes also posses an attrac-
tive economic interpretation. One of these processes gene~
rates a path of prices by decreasing initially the prices
corresponding to goods with excess supply while those of the
goods with excess demand are increased. Contrary to the Wal-
ras tatonnement process both the increases and decreases
are relative to the initial price vector. This memorizing of
the starting vector during the process prevents the process
from both cyeling and leaving the price simplex. The other
processes in (4) only adapt the prices of the goods with a
maximal excess supply or demand. Again the memorizing of the
initial price vector guarantees convergency.

The generalization of these processes in order to solve the
NLCP on the product space S of N unit simplices has been gi-
ven by van den Elzen, van der Laan and Talman in (2). Let

N ns .
S$= I 8§ “ so that x in § is equal to x = (x;,...,xé){ with
j=1
n-
xj € 8 3, j € IN = {1,2,...,N}. In the NLCP on S we search
for a vector x* in S for which z(xx) <« 0, where z: S - RN+M,

N z
T nj, is a continuous function satisfying x;zj(x) =0

j=1

for all x € § and j € IN' In (2) three processes were intro-

duced, the sum-, the product~ and the exponent~process. The

M=
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latter process can be considered as the generalization of

the Walrasian type adjustment process in (4) while the sum-
and the product-process are based on the other two processes
on s™. Furthexrmore, these processes on S posses the same nice
properties as their counterparts on sm,

Problems which can be transformed into an NLCP on S are the
problem of finding a Nash equilibrium in a noncooperative
game and the search for an equilibrium price vector in an in-
ternational trade model with internationally traded common
goods and domestic goods traded only in one country. The
first problem can be found in (1) and the second one in (3).
When applied to a noncooperative game the processes become
strategy-adjustment processes while in case of an economy we
can interprete them as price-adjustment processes. The main
subject of this paper concerns the interpretation of the ex-
ponent-process as a strategy-adjustment process. This inter-
pretation is given in section 4. In that section we also com-
pare the exponent-process with the sum- and the product~pro-
cess when these processes are applied to a noncooperative
game. Section 2 deals with the transformation of the problem
of finding a Nash eguilibrium in a noncooperative N~-person
game into an NLCP on S. A mathematical treatment of the ex-
ponent-process for solving the general NLCP on S is given in
section 3.

2. The noncooperative N-person game in NLCP-form

In this section we transform the problem of finding a Nash
equilibrium strategy vector in a noncooperative game into an
NLCP on S. We follow the description as given in (1). The
noncooperative N-person game consists of N players indexed
with j, J € IN’ where player j possesses n.+l1 pure strategies

denoted by (j,k), k = l,...,nj+1. In the sequel the set of
pure strategies of player j is denoted by I(j), i.e. I(J) =
{(3,1), (j,2),...,(j,nj+l)} while I = U I(j) is the set of

j=1



472

all pure strategies in the game. The pure strategy vector

k = «l,kl), (2,k2),...,(N,kN))T € 1 I(j) denotes that player
j=1

j plays his kj—th pure strategy. The set J is the collection

of all pure strategy vectors. Further, for each j € IN there

is a loss-function al: J + R where aJ (k) is the loss to

player j if the pure strategy vector k € J is played. A vec-

T _ Ny
N in 8§= 18 is the mixed strategy
=1
vector indicating that player j plays his h-th strategy with
probability xjh' (j,h) € I(j4) and j € I . We call S the stra-

tegy space of the game. Notice thatlﬁ . = 1 and iy 2 0
hl Jh ] -

for all h € {1,...,n.+1} so that xj is indeed a probability
vector for all j € IN. Furthermore, each pure strategy vec-
tor coincides with a vertex of S.

tor x = (x1 e X

The expected loss to player j when strategy vector x in S is
played is equal to

plx) = 1 al(x)
_156
We call a strategy vector a Nash equilibrium if no player has
iqcentives to change his strategy. Therefore we consider
mg(x), being the marginal loss to player j if he plays his
h-th pure strategy while the other players do not change
their strategy Xy i# 3, i.e.

] -

ml(x) = § al (k) Jig K,y .

h j_h 1% 1ki
ked iEIN

In these terms a.mixed strategy vector x* in S is a Nash
equilibrium 1£ pJ (x*)- w) %) < 0 for all (§,h) € I. when the
latter holds no change in a strategy of a player causes a de-
crease in his expected loss. With respect to the NLCP on § it
is natural to take as the function =z the continuous function
from S to rM defined by Zjh (x) p (%) nh(x), (i,h) € I.
In the sequel we often refer to this function as the excess~
profit-function, Note that when zjh(x) > 0 it is profitable
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for player j to play his h-th pure strategy. Therefore we
call a strategy (j,h) in I profitable to player j when stra-
tegy vector x in S8 is wvalid if zjh(x) > 0, and unprofitable
to player j if Zjh(x) < 0. Further, a strategy (j,h) in I is
said to be in equilibrium at vector x when z.h(x) =0,
while a player j, j € IN’ is defined to be in equilibrium at
x if zj(x} < 0. nj+1 .

Because pJ (x) = hil X3p mg(x), we can derive that x;zj(x) =0
for all j € IN and x € S. So, the problem of finding a Nash
eguilibrium in a noncooperative N-person game has been trans-
formed into a problem of searching for a vector x* in § for
which z(xx) < 0, where z is a continuous function from S to
RN+M satisfying x;zj(x) =0, x€ S8 and j € IN' Note that the
excess-profit-function is multi-linear and therefore continu=-
ously differentiable, which will guarantee the convergence of

the sum-, product- and exponent-process.
3. Mathematical exposure of the exponent-process on 8

Here we present the exponent-process for solving the general
NLCP on S, For a thorough treatment we refer the reader to
(2).

The process is completely governed by the sign pattern of the
function values and the location in 8 of the starting point.
In fact the process generates vectors x in 8 such that for
some 0 < b < 1 and Aj >0, JEI

N/
Xjk = (1+>\j)vjk if vjk > 0 and zjk(x) >0
Xy = Aj if Vig = 0 and zjk(x) > 0

Xy = bvjk if zjk(x) < 0
bvjk < Xy L (1+A§)vjk if Vik 2 0 and ij(x) =0
0 < X4 52y if Vig T 0 and z., . (x) =0,

J



where v
vector in 5.

To describe the process in more detail, let the vector s
. . +
(sI, s;,...,s;)T be a sign vector in R

{-1,0,+1} for al

T T
("1' v
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Ty T

..,VN) is the arb

2"

1 (j,k) € I. For each

we define for j = 1,2,...,N,

[}

and

where the union
all j € INI

vj={(

For each sign vector s we define the set A(s)

A(s) {x € 8|x.

X,
]

Ik =

jk

{(3,k) € I(j)\sjk

((3.%) € T(3) sy, =

{(3,k) € 1(3) s,

ik

U Ig(s), 1°(s)

Ul
3 j

is over all j € I oy

N

3,k) € I(j)lvjk 0)

(l+)\j)vjk if sjk

k Aj if Sjk

bvjk if sjk

{A

1+, . i
( Xj)vjk if Sy

A

if s,
j if s

jk

itrarily chosen starting

N+M i.e. s., €
Kk N-+M
sign vector s in R

’ S

-1}

0}

= +1},

?(s) and 17 (s) v Ig(SL

3

urthermore we denote for

TGNV,

C
nd V.
and vy j

by

+1 and v,

ik

0

= +1 and v,

jk 0

~1

0 and v, 0

ik

>

0 and vjk

0

with 0 < b < 1 and xj > 0 for all 3 € 1

N}'

Note that the sets A(s) are related to the position of x in §

with respect to the starting vector. Related to the sign pat-
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tern of the function values we define for each sign vector s
the region C(s) by

C(s) = Ca{x € Slsgn 2(x) = s},

where CL (W) denotes the closure of the set W. The exponent-
process now generates for varying s, vectors x in S lying in
both A(s) and C(s). In (2} it is proved that only intersec-
tions related to sign vectors in the set T3 are relevant,

where
= (s e &Y i € I, either I;T(s) = ¢ or
- c +
I.{(s) n VvV and 9. € I with I.(s) 3 .
e 0 VS # g, 5 € Iy HEEY
For s € T3, each nonempty B(s) = A(s) N C(s) consists, under

some regularity conditions, of a disjoint union of smooth
loops and paths with two endpoints. Each endpoint of a path
in B(s) is either an endpoint of a path in B(sl) for some

sl € 13, or a solution point of the NLCP, or is equal to the
initial point v. The point v is only an endpoint of a path

in B(so), where s0 = ggn z(v). Notice that if an endpoint of
a path in B(g) lies in C(s') with s' & 13 this point is a
solution to the NLCP. The set B = sgT3B(s) therefore consists,
under some regularity conditions and if z is continuously
differentiable, of a disjoint union of piecewise smooth paths
and loops. One path in B connects v with a solution x*. The
latter path is generated by the exponent-process. The other

paths in B connect two solution points.

4., The interpretation of the exponent-process in strategic
terms.

To become more familiar with the matter we start this section

with an example concerning a noncooperative game with two
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Figure 1. The areas C((+l,-l,+l,—l)T), C((+l,—1,—1,+l)T),
C((=1,+1,+1,~1)") and C((-1,+1,-1,+1) ) are denoted by I, II,
IIT and IV, respectively. The path generated by the exponent-
process is heavily drawn.

1
0 1
0

The process starts from the strategy vector v, where the se-
cond strategy of each player is profitable while their respec~-
tive first strategies are unprofitable. The process then en-
ters A((-l,+l,—l,+1)T) by increasing proportionally the pro-
babilities of the profitable strategies of each player and

by decreasing proportionally all the probabilities belonging
to the unprofitable ones till a strategy vector for which
player 2 isin equilibrium is generated. The process now pro-
ceeds in A((-1,+1,0,0)"7) by increasing the probability of the
first strategy of player 2 relatively away from the probabili-
ty of player one's first strategy while keeping player 2 in
equilibrium. Then the process reaches A((~1,+1,+1,—1)T)
where the probability of the second strategy of player 2 be-
comes, relatively to the initial probability vector, equal to
the probability belonging to the first strategy of player 1.
Then player 2 is got out of equilibrium and the process enters
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B((-l,+1,+l,—l)T) by making the second strategy of player 2
unprofitable and his first one profitable. In B((—l,+1,+l,~l)T)
the process reaches a vector at which player 1 is in equili-
brium. Via a curve in B((O,O,+l,-1)T) the Nash equilibrium x*
is reached.

An important feature of the exponent-process is that probabi-
lities belonging to profitable strategies are initially in-~
creased while those of unprofitable strategies are decreased.
When initially strategy (3j,h) is profitable, the expected
loss to player j if he plays strategy h is less than the ex-—
pected loss when playing his strategy vectox vj. S0, his ex~
pected profit will increase when xjh becomes larger. Similax
arguments can be given for the treatment of initially unpro-
fitable strategies.

Now we present the interpretation of the exponent-process
when applied to a noncooperative N-~person game. From the ar-
bitrarily chosen initial strategy vector v, the exponent~pro-
cess decreases proportionally the probabilities of all the
unprofitable strategies of the game with the same rate and
increases for each player the probabilities belonging to the
profitable strategies. For each player the amount of increase
of a probability belonging to a profitable strategy initially
not used is equal to the rate with which the probabilities of
all his profitable strategies having positive initial proba-
bility are increased.

In general, the exponent-process generates strategy vectors

x for which the probabilities of the unprofitable strategies
in the game are relatively (to v} equal to each other but re-
latively smaller than the probabilities of all the other
strategies. Moreover, for each player the probabilities of
his initially not used profitable strategies are kept positive
and equal to each other and equal to the rate with which the
probabilities belonging to his other profitable strategies

are equally increased. Finally, the probabilities correspond-
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ing to the profitable strategies of a player are always kept
relatively (absolutely) larger than those of all his other
strategies. In principle the strategy of a player which be-
comes in equilibrium, i.e. for which the excess profit be-~
comes equal to zero, is kept in equilibrium,

If this strategy was unprofitable its probability is relati-
vely increased away from the probabilities of the unprofit-
able strategies in the game while if this strategy was pro-
fitable its probability is relatively decreased away from
the probabilities belonging to his profitable strategies., It
might happen that a player becomes in equilibrium so that he
does not have any profitable strategy left. In this case the
probabilities of his (nonprofitable) strategies are changed
in order to keep him in equilibrium.

If for a player the probability of a strategy in equilibrium
becomes relatively equal to the probabilities of the unpro-
fitable strategies in the game, then the first probability is
kept relatively equal to the latter ones and the correspond-
ing strategy is made unprofitable. In this way a player might
get out of equilibrium in which case also the strategy with
the relative (absolute) largest probability is made profit-
able. Although it seems somewhat peculiar to disturb the equi-
librium position of a player he can now only be kept in equi-
librium by decreasing the probability of one of his strategies
in equilibrium under the level of the unprofitable strategies
in the game. But then cycling or leaving the strategy space
might occur. Finally, if for a player the probability of a
strategy in equilibrium becomes relatively equal to the pro-
babilities of his profitable strategies (if any), then the
first probability is kept relatively equal to the latter ones
and the corresponding strategy is made profitable. The pro-
cess stops when all players are in equilibrium, i.e. when no
player has a profitable strategy anymore.

To conclude we want to make a short comparison between the
interpretation of the sum~, product- and exponent-process as
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adjustment processes when applied to the problem of finding a
Nash equilibrium in a noncooperative N-person game. The sum-
process follows a path of strategy vectors x such that for

all § € I., X, > b.v., 1if z., (x}) = max z,, {x) and x., =
N k =
] j ik ik (1,n)ET ih jk

ijjk if ij(X) #(??ﬁ)EI zih(x), where 0 < bj

this memorizing of the starting vector guarantees convergency.

< 1. Also here,

When we observe the sum~process more precisely we see that it
increases initially the probability of the most profitable
strategy in the game while the probabilities corresponding to
the other strategies of that player are decreasedall with the
same rate. The strategy vectors of the other players are not
changed., In general the sum-process follows a path of stra-
tegy vectors such that for each player the probabilities of
his strategies not having maximal excess profit in the game
are kept relatively equal to each other and relatively small-
er than the probabilities belonging to the most profitable
strategies of the game handled by that player. If a strategy
of a player becomes one of the most profitable in the game,
the corresponding probability is relatively increased while
keeping this strategy most profitable. When for a player the
probability of a most profitable strategy becomes relatively
equal to the probabilities of his strategies not having maxi-
mal excess profit, the first probability is kept relatively
equal to the latter probabilities and its excess profit is
decreased away from the maximal excess profit. The sum-pro-—
cess stops when the maximal excess profit in the game is zero.
The path of the product-process follows strategy vectors x

for which for all j € I, x., > bv, 1if z. (x) = max z., (%)
NIk = Tk KT e M
and %x., = bv.,, if z., (x) # max z,, (x), where 0 < b < 1.
ik kT Tk (3,mez(y)

So, the product-process initially increases the probabilities
belonging to the most profitable strategies of each player,
whereas the probabilities of all the other strategies in the

game are decreased with the same rate. In general the product-
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process follows a path of strategy vectors such that all the
probabilities of the strategies, not having maximal excess
profit for a player,are relatively equal to each other and
relatively smaller than those belonging to one's most profit-~
able strategies. If a strategy of a certain player becomes
one of his most profitable strategies, the probability of
this strategy is relatively increased while keeping this
strategy most profitable for him. When for a player the pro-
bability of one of his most profitable strategies becomes re-
latively equal to the probabilities belonging to his less
profitable strategies, the first probability is kept relative-
ly equal to the latter ones and its excess profit is decreas-
ed away from the excess profit of his most profitable stra-
tegies.

When overlooking the foregoing we see that the sum-process
focusses its attention only to the most profitable strategies
in the game. The corresponding probabilities are relatively
increased while all the others are decreased. By successive
extensions of the set of most profitable strategies in the
game a solution with a maximal excess profit equal to zero is
reached. Observe that during this process the probabilities
corresponding to profitable (but not the most profitable)
strategies might decrease. This intuitively seems to be un-
realistic. The product-process considers only the most profit-
able strategies of each separate player. This yields a simi-
lar unrealistic interpretation as for the sum-process. The
exponent-process however takes all the strategies into account.
Probabilities belonging to profitable strategies are relative-
ly increased while those corresponding to unprofitable stra-
tegies are relatively decreased. The exponent-process sear-
ches for an equilibrium by adapting all the probabilities at
once and in a direct manner, i.e. till a strategy has become
in equilibrium. The sum~ and product-process however generate
a path by only considering part of the strategies. The Nash
equilibrium is reached in an indirect manner, i.e. when the
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set of most profitable strategies is such that the correspon-
ding excess-profit is zero. Besides, the exponent-process
possesses the most appealing strategicinterpretation. Why
should only the probabilities of the most profitable strate-
gy be increased and not those of other profitable strategies?
All this makes the exponent-process to the theoretically most
interesting strategy-adjustment process. Moreover, we may ex-
pect that the exponent-process converges quicker than the
other processes. A simplicial algorithm to approximately fol-
low the path of points generated by the process will be des-
cribed in a subsequent paper.
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