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Semiparametric Duration Models

Feike C. DROST and Bas J. M. WERKER
CentER, Department of Econometrics, and Department of Finance, Tilburg University, P.O. Box 90153, 5000 LE,
Tilburg, The Netherlands

In this article we consider semiparametric duration models and efficient estimation of the parameters in
a non-iid environment. In contrast to classical time series models where innovations are assumed to be
iid we show that in, for example, the often-used autoregressive conditional duration (ACD) model, the
assumption of independent innovations is too restrictive to describe financial durations accurately. There-
fore, we consider semiparametric extensions of the standard specification that allow for arbitrary kinds
of dependencies between the innovations. The exact nonparametric specification of these dependencies
determines the flexibility of the semiparametric model. We calculate semiparametric efficiency bounds
for the ACD parameters, discuss the construction of efficient estimators, and study the efficiency loss of
the exponential pseudolikelihood procedure. This efficiency loss proves to be sizeable in applications.
For durations observed on the Paris Bourse for the Alcatel stock in July and August 1996, the proposed
semiparametric procedures clearly outperform pseudolikelihood procedures. We analyze these efficiency
gains using a simulation study confirming that, at least at the Paris Bourse, dependencies among rescaled
durations can be exploited.

KEY WORDS: Adaptiveness; Durations; One-step improvement; Semiparametric efficiency.

1. INTRODUCTION

Over the last decade, the availability of financial data at a
tick-by-tick level has greatly increased. The irregularly spaced
data require new econometric techniques to extract the eco-
nomic information contained in such data. This article concen-
trates on the durations between transactions on financial mar-
kets. To that extent, we base ourselves on the autoregressive
conditional duration (ACD) model of Engle and Russell (1998).
For the data at hand, the traditional assumption of indepen-
dently and identically distributed (iid) innovations seems to
be inappropriate. Therefore, we need to extend the traditional
semiparametric time series models in which innovations are iid.
We consider a sequence of semiparametric models imposing
less and less structure on the innovations (with iid innovations
on the one end of the specification and martingale innovations
on the other end). To obtain efficient estimators in these semi-
parametric models, we must extend the semiparametric results
available from the emerging literature on semiparametrics.

During recent years, enormous progress has been made in
the area of semiparametric estimation. Starting with the work
of Stein (1956) on the possibility of adaptiveness in the sym-
metric location model, the techniques have been further devel-
oped ever since. The work by Hájek and Le Cam is especially
worth mentioning here. Traditionally, the models considered
are based on iid observations. A fairly complete account on the
state of the art in iid models can be found in the monograph
by Bickel, Klaassen, Ritov, and Wellner (1993). Newey (1990)
provided an overview from an econometric perspective. Semi-
parametric efficiency considerations and adaptiveness in time
series have also been discussed, beginning with Kreiss (1987a,
1987b) for autoregressive moving average–type models. In this
stream of literature, the innovations are assumed to be iid. Koul
and Schick (1997) discussed nonlinear autoregressive location
models, with special emphasis on the initial value problem.
Drost, Klaassen, and Werker (1997) considered so-called group
models, covering nonlinear location-scale time series. Steiger-
wald (1992) studied linear regression models in a time series
context. Linton (1993) discussed linear models with autore-
gressive conditional hetero-scedasticity (ARCH) errors. Drost

and Klaassen (1997) particularized to the generalized ARCH
(GARCH) model, and Wefelmeyer (1996) calculated efficiency
bounds in models with general Markov-type transitions. In this
article we discuss the ACD model, which is, probabilistically,
closely related to the ARCH-type models. However, all pre-
vious work on semiparametric efficient estimation for ARCH-
type models assumed the innovations to be iid, an assumption
that we relax significantly.

In this article we drop the iid assumption on the innovations.
The semiparametric techniques mentioned earhier are used and
extended to build an adequate model for durations between
transactions on financial markets. Therefore, we consider semi-
parametric specifications in which the innovations may have de-
pendencies of unknown functional form. As shown in Section 2,
such a specification leads to a nontrivial analysis of semipara-
metric efficiency. The empirical results in Section 4 show that
the gains from considering these more complicated semipara-
metric procedures may be important, at least for the present
dataset and under the imposed hypotheses. Whether sizeable
gains are available in other situations remains an empirical is-
sue. Possible efficiency gains are important because they allow
for much more precise parameter estimates and predictions.
Also, in financial applications, where the number of observa-
tions is typically large, this may lead to a more precise empiri-
cal analysis.

The crucial ingredient in semiparametric efficiency calcula-
tions is the efficient score function. Let us recall this concept
here. (For a rigorous treatment, consult, e.g., Bickel et al. 1993
or Drost et al. 1997.) Consider a setup where i denotes the ob-
servation number and θ ∈ � is a finite-dimensional parameter
of interest. Denote (conditional) expectations under θ by Eθ .
In general, a score function si(·) is a random function of the
parameter θ , such that

Eθ0{si(θ0)} = 0, θ0 ∈�, i = 1, . . . ,n. (1)
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Generally, the expectation in (1) must be conditional on “the
past” to get a martingale structure allowing for the deriva-
tion of limiting distributional results of estimators based on si.
A Z-estimator θ̂ based on the score function si is subsequently
defined as the solution of

1

n

n∑
i=1

si(θ̂ )= 0.

In parametric settings, the optimal score function is given by
the derivative of the conditional log-likelihood for θ . An es-
timator based on the parametric score function is clearly in-
feasible in a semiparametric situation. However, the key idea
in a semiparametric setting is to reduce the problem to a spe-
cific well-chosen parametric one. This special parametric model
is called the least-favorable parametric submodel (cf. Newey
1990). For completeness, we repeat the argument here. First,
consider an arbitrary parametric submodel of the semiparamet-
ric model under consideration. Obviously, because the informa-
tion for statistical inference decreases if one enlarges the model,
a lower bound (evaluated at distributions within the paramet-
ric submodel) on the asymptotic variance of estimators in the
parametric submodel is also a lower bound for the behavior of
estimators in the semiparametric model. Because this holds for
any parametric submodel, the lower bound on the asymptotic
variance of semiparametric estimators must be larger than each
of these parametric lower bounds. Thus the supremum of the
lower bounds over the class of all parametric submodels also
gives a lower bound for the semiparametric model. The particu-
lar parametric submodel for which this supremum is attained (if
it exists) is called the least-favorable parametric submodel. The
second problem is to prove that a given lower bound is sharp.
Usually, sharpness of a given bound is proved by providing a
semiparametric estimator attaining this bound. Hence, if one
finds a parametric submodel and an estimator in the semipara-
metric model such that the bound of the parametric submodel
is attained by the semiparametric estimator, then the bound is
sharp and the estimator is efficient.

To find the least-favorable submodel, a technique based on
tangent spaces has proved to be very useful (see, e.g., Bickel et
al. 1993; Van der Vaart 1998). If one passes from a parametric
model (say a model in which the density f of the innovations is
completely known) to a semiparametric model where one sup-
poses that f is unknown, then there is usually an efficiency loss.
This efficiency loss is caused by local changes in the density
f that cannot be distinguished from local changes in the pa-
rameter of interest θ . Let l̇ denote the score function for θ in
the parametric model. The tangent space for f is defined as the
space generated by all possible score functions for the nuisance
parameter, that is, those score functions that can be obtained by
changes in the nonparametric nuisance parameter, f . The least-
favorable parametric submodel induces a nuisance score (i.e.,
an element of the tangent space) that is closest to the score l̇
induced by θ . This nuisance element is, by construction, the
projection of l̇ onto the tangent space. The residual of this pro-
jection defines the information left for estimating θ once f is
unknown. This residual is called the efficient score function. In
this article we extend this idea to the situation where innova-
tions are not likely to be iid (as in duration models). The known
procedure for time series models with iid innovations is adapted

to cover several forms of dependencies. In Section 2 we develop
the necessary theory leading to the relevant tangent spaces and
efficient score functions of the parameters of interest.

The article is organized as follows. In Section 2 we discuss
duration models in their general form and develop the semipara-
metric theory as discussed earlier for the non-iid setting at hand.
Examples (Sec. 2.3) show how common specifications may
be obtained. These specifications include different assumptions
on the innovations, like iid-ness or a Markov-type assumption.
We consider the estimation problem in Section 3. We consider
the consistency and efficiency of pseudolikelihood procedures
and a construction generally leading to efficient semiparamet-
ric estimators. These semiparametric procedures prove superior
to pseudolikelihood procedures. In Section 4 we discuss the
properties of the durations observed on the Paris Bourse for
the Alcatel stock in July–August 1996. We choose this sam-
ple because it has been considered previously in the literature
(see, e.g., Ghysels, Gourieroux, and Jasiak 2001; Gourieroux
and Jasiak 2000). To give a possible explanation for the semi-
parametric efficiency gains observed in Section 4, we study
some parametric extensions of the basic ACD model in Sec-
tion 5. These extensions are chosen such that they exhibit sim-
ilar dependencies as we find in the Alcatel data. The simu-
lation study in Section 5 confirms the empirical findings of
Section 4. Finally, in Section 6 we provide some concluding
remarks.

2. THE AUTOREGRESSIVE CONDITIONAL
DURATION MODEL

2.1 The Parametric Autoregressive Conditional
Duration Model

In this article we focus on the autoregressive conditional du-
ration (ACD) model as introduced by Engle and Russell (1998).
Suppose that we observe durations x1, . . . , xn. These x’s repre-
sent the time elapsed between two events, for example, transac-
tions of some asset. Let Fi denote the information available for
modeling xi+1, xi+2, . . . . We set Fi = σ(xi, xi−1, . . . , x0), but it
is very well possible to include exogenous variables in Fi. This
is because the derivations that follow are independent of the
parametric form of the conditional durationψi−1 defined in (2).
Such extra exogenous variables would allow other observable
factors to influence the distribution of future durations.

The key ingredient in the ACD model is the (conditional)
mean duration time,

E{xi|Fi−1} =ψi−1. (2)

In its simplest form, the formulation of the ACD model is com-
pleted by stipulating, for example,

P{xi ≤ x|Fi−1} = F(x/ψi−1) (3)

and

ψi = α + βxi + γψi−1, (4)

where F denotes a particular distribution function (or a para-
metric set of distribution functions) on the positive half-line. In
this case, the parameter of prime interest is θ = (α,β, γ )T . In
its original parametric setting, standard choices of F include the
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exponential distribution and, as an extension, the gamma and
lognormal or Weibull distributions. The distribution F has to
be normalized to have expectation one to identify the constant
in the specification of ψi. If F is not specified parametrically,
we obtain a semiparametric model. The model (3) is implic-
itly based on underlying iid innovations. It is not difficult to see
that (3) is equivalent to saying that

εi = xi/ψi−1 (5)

defines a sequence of iid-positive random variables, each with
distribution function F. Moreover, note that the ACD model
is closely related to ARCH-type models. Rewriting (5), with
η2

i = εi, y2
i = xi, and σ 2

i−1 = ψi−1, yields yi = σi−1ηi, the stan-
dard ARCH formulation. Our results are thus easily adapted to
ARCH-type models. Finally, note that all of our results rely on
the assumption that the conditional mean equation is correctly
specified, as in other works in the literature.

The foregoing ACD model, including various extensions,
was introduced by Engle and Russell (1998) and also studied
by Engle (2000) together with a modeling of prices. These au-
thors explicitly recognized the fact that the independence as-
sumption in (3) implies that all temporal dependence between
durations is supposed to be captured by the conditional mean
duration function ψi. In that case, several parametric and non-
parametric specifications of the distribution of the innovations
F have been studied. Zhang, Russell, and Tsay (2001) relaxed
the independence assumption on the innovations by introduc-
ing a parametric regime-switching model. In this article we re-
lax the assumption of independent innovations to semiparamet-
ric alternatives. We specify the general model in the next sec-
tion.

2.2 The Semiparametric ACD Model

Often, the strong iid assumption (3) is considered to be un-
suitable and one would like to relax it. In our specification, this
is equivalent to allowing F to be dependent on the past as well.
If it is unknown in what way F should depend on the past, a
semiparametric approach seems to be the most reasonable one.
We assume that one is willing to define a set of variables that
may influence F, and we see that the actual choice of these
variables influences the semiparametric analysis. In complete
generality, we assume that P {εi ≤ ε|Fi−1} is Hi−1 measurable,
where Hi−1 ⊂ Fi−1. So the restricted information set Hi−1 (of
the full information set Fi−1) defines the relevant past variables
to be used as parameters in the conditional distribution of the
innovations εi. As we show, the situation where Hi−1 is strictly
smaller than Fi−1 is both common and relevant. We do not as-
sume that (Hi) forms a filtration; that is, Hi−1 is not necessarily
included in Hi. This allows for, for example, semiparametric
Markov models, see below.

Formally, our semiparametric model is now described by (2)
and

L(xi/ψi−1|Fi−1)= L(xi/ψi−1|Hi−1), a.s. (6)

One may choose the specification (4) of ψi, but other choices
(like the ones in Engle 2000) do not change the arguments pre-
sented later. Writing εi = xi/ψi−1, we clearly have from (2)
that E{εi|Fi−1} = 1. We do not make other assumptions on

the innovation’s distribution, although later some assumptions
are needed for the nonparametric estimation. It is known that
symmetry of the density sometimes helps in semiparametric
estimation. In the present case, given the positiveness of du-
ration, symmetry could be imposed for the distribution of the
log-innovations. We do not make such an assumption, because
its empirical foundation is unclear at the moment. Note that in
our specification (6), the choice of the restricted information set
Hi formalizes the dependence among the innovations εi.

A model with independent innovations can be obtained by
taking Hi equal to the trivial sigma field, that is, Hi = {∅,�}.
There are two other important cases. By choosing Hi = Fi,
one leaves the dependence structure of the εi completely un-
restricted. In more familiar terms, this would lead to a model
characterized solely by the moment condition (2). One could
also set Hi = σ(εi). In that case, the conditional distribution
of εi, given the past, may only depend on εi−1. This induces
a first-order Markov assumption on the innovations. In a sim-
ilar manner, one can study the effect of a K-order Markov as-
sumption by taking Hi = σ(εi, . . . , εi+1−K). Of course, there
are many more possibilities. The theoretical derivations in the
rest of this article are based on a general specification with an
arbitrary choice of Hi, and we specialize to the abovementioned
choices to point out their differences from an estimation stand-
point in Section 2.3.

To derive efficiency bounds in the semiparametric model de-
scribed by (2) and (6) with an arbitrary specification of the con-
ditional expected duration ψi−1 and Hi−1, we follow the steps
as set out in Section 1. Let θ denote the Euclidean parameter of
interest describing the functional form of the conditional mean
duration ψi−1, for example θ = (α,β, γ )T in (4). Write fi−1 for
the density associated with L(εi|Hi−1). We assume that fi−1 ad-
mits a Radon–Nikodym derivative f ′

i−1, i.e. fi−1 can be written
as

fi−1(ε)=
∫ ε

0
f ′
i−1(u)du.

Note that this rules out, for instance, a uniform innovation dis-
tribution. Regularity conditions under which the results pre-
sented later hold are standard in the semiparametric literature
(see, e.g., Bickel et al. 1993, sec. 2.1; Drost et al. 1997, sec. 2).

The score function for θ can be obtained by differentiation of
the log-likelihood,

l̇i(θ)= d

dθ
log

(
1

ψi−1
fi−1(xi/ψi−1)

)

= −
(

1 + εi
f ′
i−1(εi)

fi−1(εi)

)
d

dθ
log(ψi−1). (7)

To obtain the efficient score function in the semiparametric
model in which the conditional density fi−1 remains unspeci-
fied, we need to calculate the projection of the score l̇i(θ) on
the tangent space generated by the nuisance function fi−1. As
we argue along the general lines of, for example, Bickel et al.
(1993), this tangent space Ti(θ) is generated by all observation
i score functions hi−1(·) for which

hi−1(·) ∈Hi−1, (8)
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0 = E{hi−1(εi)|Hi−1} =
∫
ε

hi−1(ε)dP{εi ≤ ε|Hi−1}, (9)

and

0 = E{εihi−1(εi)|Hi−1} =
∫
ε

εhi−1(ε)dP{εi ≤ ε|Hi−1}. (10)

Because we have only two conditions on fi, we have two con-
ditions on the scores in the tangent space. Condition (8) fol-
lows from the fact that fi−1 is known to depend on Hi−1 only,
so that scores obtained by local changes in fi−1 also depend
on Hi−1 only. Condition (9) is the standard constraint in tan-
gent space calculations, following from the fact that densi-
ties by definition integrate to 1. In more classical terms, this
represents the condition that expectations of score functions
are always 0 [cf. (1)]. Finally, condition (10) results from the
moment restriction E{εi|Hi−1} = E{εi|Fi−1} = 1. The argu-
ment is as follows. Local changes in fi−1 represented by the
score hi−1 induce a change in the first (conditional) moment
of
∫
ε
εhi−1(ε)dP {εi ≤ ε|Hi−1}. However, this moment is re-

stricted to be 1 by condition (2). Therefore, the change must
always be 0—otherwise, one would not remain in the specified
model. With these ingredients, we are ready to state the key
proposition providing the lower bound for estimation of the pa-
rameters in ψi of the general semiparametric model described
by (2) and (6).

Proposition 1. In the semiparametric model described by (2)
and (6), the projection of the score function l̇i(θ) in (7) on the
tangent space Ti(θ) defined by (8)–(10) is given by h∗

i−1(εi)

with

h∗
i−1(ε)= −

(
1 + ε

f ′
i−1(ε)

fi−1(ε)
+ ε − 1

var{εi|Hi−1}
)

× E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}
. (11)

Proof. First, note that the proposed projection (11) indeed
belongs to the tangent space Ti(θ) because it satisfies condi-
tions (8)–(10). Second, the residual of the proposed projection
of l̇i(θ) can be written as

l̇
∗
i (θ) ≡ l̇i(θ)− h∗

i−1(εi)

= εi − 1

var{εi|Hi−1}E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}

−
(

1 + εi
f ′
i−1(εi)

fi−1(εi)

)

×
[

d

dθ
log(ψi−1)− E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}]
. (12)

We show that both terms on the right side are orthogonal to the
tangent space Ti(θ). Let hi−1 ∈ Ti(θ) be arbitrary. Then for the
first term we obtain

E

{
εi − 1

var{εi|Hi−1}E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}
hi−1(εi)

}

= E

{
E{(εi − 1)hi−1(εi)|Hi−1}

E
{ d

dθ log(ψi−1)|Hi−1
}

var{εi|Hi−1}
}
.

From (9) and (10), we see that the latter term equals 0, proving
the desired orthogonality.

For the second term in (12), we obtain

E

{(
1 + εi

f ′
i−1(εi)

fi−1(εi)

)[
d

dθ
log(ψi−1)− E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}]

× hi−1(εi)

}

= E

{
E

{(
1 + εi

f ′
i−1(εi)

fi−1(εi)

)[
d

dθ
log(ψi−1)

− E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}]
hi−1(εi)

∣∣∣Fi−1

}}

= E

{[
d

dθ
log(ψi−1)− E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}]

× E

{(
1 + εi

f ′
i−1(εi)

fi−1(εi)

)
hi−1(εi)

∣∣∣Fi−1

}}

= E

{[
d

dθ
log(ψi−1)− E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}]

× E

{(
1 + εi

f ′
i−1(εi)

fi−1(εi)

)
hi−1(εi)

∣∣∣Hi−1

}}
,

where the last equality follows from (6). It is easily seen that
this expression equals 0, by first conditioning on Hi−1. This
completes the proof.

The proof of the foregoing proposition is indirect. Only very
few constructive arguments for obtaining efficient score func-
tions are known in the semiparametric literature. It is impor-
tant to note that the efficient score functions is, as a projection,
unique (see, Newey 1990 for a more general discussion).

As mentioned before, the residual (12) of the projection (11)
is the efficient score function, which we denote by l̇

∗
i (θ). Op-

timal semiparametric estimators must be based on this score
function. However, (12) cannot be used directly, because it de-
pends on the unknown density fi−1 and on E{(d/dθ) log(ψi−1)|
Hi−1}. In Section 3.2 we discuss how to estimate fi−1 and
E{(d/dθ) log(ψi−1)|Hi−1} to get a semiparametrically efficient
estimator of θ .

Adaptiveness occurs (by definition) in the case where the
efficient score function (12) equals the parametric score func-
tion (7). Thus adaptiveness means that the projection of the
parametric score on the tangent space is 0. In that case, there
is (asymptotically) as much information in the semiparamet-
ric model as in the parametric model for estimating θ ; the
parametric score and the semiparametrically efficient score
coincide. In the ACD model (4), we have ψi−1 > 0. There-
fore, using (d/dθ) log(ψi) = ψ−1

i (d/dθ)ψi and (d/dθ)ψi =
γ (d/dθ)ψi−1 + (1, xi−1,ψi−1)

T , that specification implies
(d/dθ) log(ψi−1) > 0. Hence adaptiveness occurs if and only
if

1 + εi
f ′
i−1(εi)

fi−1(εi)
+ εi − 1

var{εi|Hi−1} = 0.

It is easily seen that for some positive ci−1, this is equivalent to

fi−1(ε)=
c−1/ci−1

i−1

�(1/ci−1)
ε1/ci−1−1 exp(−ε/ci−1), ε > 0. (13)
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Hence adaptiveness occurs if and only if the conditional in-
novation’s distribution is of the gamma type (rescaled to have
expectation 1). Note that the free parameter ci−1 may be time-
varying and thus that innovations need not be iid for adaptive-
ness to occur. A similar result has been obtained for location
models where adaptiveness occurs for the normal distribution
and symmetrized square roots of chi-squared distributions (see
González-Rivera 1997). In our scale case, we have adaptive-
ness for the exponential and gamma distributions. The practical
consequence of such a result is, of course, limited, because the
bound is calculated in a model that does not make any distribu-
tional assumptions.

It is well known that densities at which adaptiveness occurs
also are often the densities for which the pseudo–maximum
likelihood estimator (PMLE) is consistent (see, e.g., Bickel
1982). This shows that a PMLE-type estimator is consistent if
and only if it is based on a gamma distribution. Because for
these densities 1 + εf ′(ε)/f (ε) is always proportional to 1 − ε,
the PMLE estimators obtained are in fact identical, and the re-
sulting PMLE is based purely on the moment condition (2). The
estimator thus obtained is consistent in the full semiparamet-
ric model. In Section 3.1 we explain that the PMLE is only
semiparametrically efficient under very restrictive conditions.
We give an alternative estimator that is semiparametrically effi-
cient in the model under consideration in Section 3.2.

The information for estimating θ in the parametric model is
given by the variance of the parametric score (7). Assuming
stationarity, this yields

E

{
Jfi−1

(
d

dθ
log(ψi−1)

)(
d

dθ
log(ψi−1)

)T}
,

where Jf denotes the Fisher information for scale, that is,

Jf =
∫ (

1 + ε
f ′(ε)
f (ε)

)2

f (ε)dε.

The information loss of the semiparametric model, with respect
to the parametric model, is given by the variance of (11),

E

{(
Jfi−1 − 1

var{εi|Hi−1}
)

E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}

× E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}T}
.

Note that the information loss is indeed 0 (adaptiveness) if and
only if the (conditional) density fi−1 belongs to the Gamma
class. This follows, because we have, by the Cauchy–Schwarz
inequality,

Jfi−1

∫
(ε− 1)2fi−1(ε)dε

≥
[∫

(ε− 1)

(
1 + ε

f ′
i−1(ε)

fi−1(ε)

)
fi−1(ε)dε

]2

= 1,

with equality if and only if fi−1 is of the form (13). The infor-
mation in the semiparametric model is given by the variance of

the residual of the projection that, by the Pythagorean theorem,
equals

E

{
Jfi−1

(
d

dθ
log(ψi−1)

)(
d

dθ
log(ψi−1)

)T}

− E

{(
Jfi−1 − 1

var{εi|Hi−1}
)

E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}

× E

{
d

dθ
log(ψi−1)

∣∣∣Hi−1

}T}
.

2.3 Examples

We consider the efficiency calculations in more detail in three
specific models.

Example 1 (IID Innovations). In the case where the restricted
information set Hi is the trivial sigma-field, we obtain that
ψ̇ = E{ d

dθ log(ψi−1)|Hi−1} is a vector of constants. This im-
plies that all components of the projection (11) generate the
same direction in the tangent space Ti(θ). Moreover, in this
case, fi−1 = f . Adaptiveness in such models is well studied (see
Drost et al. 1997). The efficient score function becomes

l̇
∗
i (θ)=

εi − 1

var{εi} ψ̇−
(

1+εi
f ′(εi)

f (εi)

)[
d

dθ
log(ψi−1)− ψ̇

]
. (14)

Example 2 (Markov Innovations). In a true Markov setting
of the innovations, one would take Hi = σ(εi). The efficient
score (12) does not simplify in this Markov case,

l̇
∗
i (θ) = εi − 1

var{εi|εi−1}E

{
d

dθ
log(ψi−1)

∣∣∣εi−1

}

−
(

1 + εi
f ′
i−1(εi)

fi−1(εi)

)

×
[

d

dθ
log(ψi−1)− E

{
d

dθ
log(ψi−1)

∣∣∣εi−1

}]
. (15)

General statements are difficult to make in this setting. Clearly,
the first-order Markov case is easily generalized to higher-order
Markov settings.

Example 3 (Martingale Condition). Consider the case where
Hi = Fi. In that case, the second factor in (11) reduces to
d logψi−1/dθ , and the efficient score becomes

l̇
∗
i (θ)=

εi − 1

var{εi|Hi−1}
d

dθ
log(ψi−1). (16)

In this expression, the (conditional) density fi−1 enters only
through var{εi|Hi−1}. This shows that the semiparametrically
efficient estimator of θ is the moment estimator based on (2)
with (optimal) instrument

1

var{εi|Hi−1}
d

dθ
log(ψi−1).

Note that our general semiparametric approach shows that in
the present example, the optimal semiparametric estimator is
a moment estimator. We did not limit attention to moment es-
timators a priori. Wefelmeyer (1996) obtained similar results
in more general models specified in terms of conditional mo-
ments conditions only. Note that the same efficient score would
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be obtained in any model where Hi−1 contains d logψi−1/dθ ,
that is, Hi−1 ⊃ σ(d logψi−1/dθ). The efficient score does not
change if one enlarges such a model to the martingale model
with Hi =Fi. One may also turn this argument around. Starting
from a model that is solely characterized by the relation (2), no
statistical information is added if one imposes the condition that
the conditional distribution of the innovations given the past
Fi−1 is determined by d logψi−1/dθ alone. In that sense, adap-
tiveness occurs between these two situations. However, the con-
struction of efficient estimators is much simpler in cases where
the restricted information set Hi−1 is not too large. Therefore,
from a practical standpoint, alternative specifications of the re-
stricted information set Hi−1, like the one that we use in Sec-
tion 4, are relevant.

3. ESTIMATION IN SEMIPARAMETRIC
AUTOREGRESSIVE CONDITIONAL

DURATION MODELS

3.1 Pseudolikelihood Procedures

The most basic ACD models assume that innovations are iid
and exponentially distributed. This assumption has been easily
rejected in several studies (see, e.g., Engle and Russell 1998;
Engle 2000), but it can be used in a pseudolikelihood proce-
dure. The score function in the ACD model with iid exponential
innovations is given by

(εi − 1)
d

dθ
log(ψi−1). (17)

In view of (2), this score clearly satisfies the score condition (1).
Consequently, the pseudolikelihood estimator based on iid ex-
ponential innovations yields consistent estimators under stan-
dard regularity conditions. However, this estimator is only effi-
cient under fairly restrictive conditions, which are discussed at
the end of this section.

One might consider enlarging the distributional class of the
innovations to accommodate the misspecification in the expo-
nential density. However, such an enlargement may have un-
desirable consequences, as we will see shortly. Two classes are
widely used in the literature: the gamma and the log-normal dis-
tributions. In both specifications, one added parameter makes
the exponential distribution more flexible.

Let fλ denote the density of a normalized gamma distribu-
tion, denoted by �(λ,λ), that is,

fλ(x)∝ xλ−1 exp(−λx),

then we have

−
(

1 + εi
f ′
λ(εi)

fλ(εi)

)
= λ(εi − 1).

Thus a pseudolikelihood procedure based on this gamma distri-
bution yields a score function that is proportional to (17). There-
fore, the estimator obtained is identical to the one obtained from
an exponential pseudolikelihood procedure. The “extension” to
gamma distributions is thus void as far as a pseudolikelihood
procedure is concerned. Of course, in a parametric setting, a
gamma distribution provides a more flexible way to fit the resid-
uals than the exponential distribution.

A second popular class of distributions is the lognormal
class. The density of the normalized lognormal distribution, de-
noted by LN(− 1

2σ
2, σ 2), is given by

fσ 2(x)∝ (σx)−1 exp

(
−1

2

(
log(x)+ 1

2
σ 2
)2

/σ 2
)
.

In this class, the scale score function is given by

−
(

1 + εi
f ′
σ 2

fσ 2
(εi)

)
= −1

2
− log(εi)

σ 2
. (18)

However, the score function (18) does not satisfy the score con-
dition (1) in the full semiparametric model as defined by (2)
and (6). Therefore, pseudolikelihood estimators in the ACD
model based on lognormal distributions will be inconsistent.
Similarly, pseudolikelihood procedures based on other paramet-
ric classes of distributions (like the Weibull distributions) will
generally yield inconsistent estimates. For the Weibull distribu-
tions, this result may seem counterintuitive, because the expo-
nential distribution is in the Weibull class. However, the incon-
sistency of the Weibull-based PMLE follows from the fact that
the score condition (1) does not hold for the full semiparametric
model.

Summarizing, the exponential distribution is essentially the
only pseudodistribution for which the PMLE provides consis-
tent estimates of the ACD parameters in semiparametric set-
tings. However, this exponential PMLE is only semiparamet-
rically efficient under very restrictive assumptions. Indeed, the
exponential PMLE is semiparametrically efficient if and only
if (17) is proportional to the efficient score (12). Because to
achieve general efficiency, this must hold at all fi−1, we find that
the exponential PMLE is efficient if and only if (d/dθ) logψi−1
belongs to Hi−1 and var{εi|Hi−1} is degenerate. Relaxing the
pseudodistributional assumptions in a PMLE setting may spoil
the consistency of the exponential pseudolikelihood procedure.
This holds even if the relaxation includes the exponential as a
special case. Although there are many other examples of this
effect in the literature, it is often overlooked. These considera-
tions confirm the adaptiveness results given after (13).

3.2 Construction of Efficient Semiparametric Estimators

As we have seen, the often-used PMLE does not produce effi-
cient estimators in the semiparametric ACD model. If one does
not use an exponential pseudodensity, then the PMLE may not
even be consistent. To obtain semiparametrically efficient esti-
mators, we follow standard arguments that we briefly outline
here. (The interested reader is referred to Bickel et al. 1993,
thm. 7.8.1, prop. 7.8.1; Drost et al. 1997, thm. 3.1, for more
details.)

The idea is to improve an arbitrary given
√

n-consistent esti-
mator toward an efficient estimator. Let θ̃n denote this arbitrary√

n-consistent estimator, for example, the exponential PMLE
of Section 3.1. In a parametric context, where the functional
form of fi−1 is known, an efficient estimator is obtained from a
one-step Newton–Raphson improvement,

θ̂n = θ̃n +
(

1

n

n∑
i=1

l̇i(θ̃n)l̇i(θ̃n)
T

)−1
1

n

n∑
i=1

l̇i(θ̃n). (19)
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Indeed, the estimator θ̂n is easily seen to have influence function(
El̇i(θ0)l̇i(θ0)

T)−1
l̇i(θ0).

A similar procedure is followed in the semiparametric model.
The parametric score function l̇i in (19) must be replaced by the
semiparametrically efficient score functions l̇

∗
i , outlined in Sec-

tion 2.3. Here the unknown (conditional) densities and expecta-
tions need to be consistently estimated by nonparametric meth-
ods. The exact estimation procedure is irrelevant, as long as the
estimators are consistent in integrated mean-squared sense.

The idea of a one-step improvement using an estimated ef-
ficient score function is rather old. Intuitively, the estimator θ̃n

brings you in a
√

n neighborhood of the true value θ0. Then, to
obtain a locally and asymptotically efficient estimator, we need
to construct an estimator with influence function(

El̇
∗
i (θ0)l̇

∗
i (θ0)

T)−1
l̇
∗
i (θ0).

The local Gaussian behavior of the model implies that the log-
likelihood is approximately quadratic. The estimator θ̂n is then
the MLE obtained from maximizing the approximate quadratic
log-likelihood following from the initial estimator θ̃n.

In Sections 4 and 5 we use kernel estimators to estimate un-
known densities and their derivatives and Nadaraya–Watson re-
gression estimators for the conditional moments and variances
that appear in the efficient score function. The density of the
residuals is, generally speaking, approximately gamma-shaped.
Therefore, we decided to use local bandwidth choices in the
kernel estimators for the densities and their derivatives. To be
precise, at a given point we started by choosing the k nearest
neighbors to the left of that point and the k nearest neighbors
to the right of that point. Here k = n4/5/

√
2 for the model with

independent innovations.The local bandwidth is chosen as the
standard deviation of these 2k + 1 points. The factor 1/

√
2 is

included to enforce that the traditional bandwidth choice is ob-
tained under a uniform distribution. The nearest-neighbor rule
guarantees that the bandwidth will be smaller in regions where
the density is larger. We use these bandwidths (without further
constants) in Section 4 for density estimation. For bivariate den-
sities, however, the rate n−1/5 is replaced by n−1/6. Conditional
expectations and variances are based on nearest-neighbor esti-
mates with the same choices as for density estimation.

4. PARIS BOURSE: ALCATEL

We illustrate the applicability of the proposed semiparamet-
ric techniques using durations observed at the Paris Bourse for
transactions in Alcatel. The observations cover July and Au-
gust 1996, comprising 43 trading days (the Paris Bourse was
closed on August 15 and 16). During this period, all transac-
tions are observed. Durations vary from 1 second to 1720 sec-
onds. The first- and second-order raw autocorrelations are 24
and 22. The Paris Bourse opens at 10:00 A.M. and closes and
17:00 P.M. At the opening, buy and sell orders that arrived be-
fore opening are matched in a call auction. During the day, the
market operates as a continuous auction. We delete trades oc-
curring within 15 minutes of the opening, to focus on durations
during the day. Simultaneous trades are aggregated, so there are
no zero durations in our dataset. These simultaneous trades are
usually due to large orders on one side of the market that are

Figure 1. Cumulative Number of Trades, by Daytime (—) and Trans-
formed Time (- - -) for the Complete Sample.

matched against several orders on the other side. On July 4, the
market opened late, but we did not exclude this date from our
dataset. The average number of trades per day is 458, with a
standard deviation of 184. The minimum number of trades on
a date is 238; the maximum, 1,022. Ghysels et al. (2001) pro-
vided some more information on the Paris Bourse structure.

The mean duration in our sample is 53.2 seconds, with a
standard deviation of 84.8 seconds. For each time between
10:15 A.M. and 17:00 P.M., the continuous line in Figure 1 plots
the cumulative number of trades over all days. Hence the slope
of the line reflects the average trading intensity (over all days) at
a certain moment during the day. From Figure 1, it is clear that
the average trading intensity is almost constant during the day,
with lunchtime as an important exception. During lunchtime,
there is a clear flattening of the average trading intensity. The
lower market activity is pronouncedly present in our dataset;
therefore, we must consider a mean duration function that is
slightly more complicated than (4). We use the following spec-
ification:

ψi = α + δdi + βxi + γψi−1, (20)

where di is an indicator for lunchtime. This extension seems
to be sufficient, for the case at hand, because the trading in-
tensity is almost constant before noon and after 2:30 P.M.
We set di = 1 for transactions that occur between noon and
1:15 P.M. Note that the exponential smoothing parameter γ will
take care of a smooth transition of the “normal” intensity to
the lower lunchtime intensity. By the same effect, the inten-
sity will increase again after 1:15 P.M. This gradual change is
seen in Figure 1 as the S-shaped form of the cumulative in-
tensity around lunchtime. Engle (2000), considering IBM data,
adopted a nonparametric specification of the constant in the
conditional mean duration equation. There the expected dura-
tions fluctuate in a more pronounced way over the day, and the
simple approach (20) would fail. As long as one is interested
in the parameters β and γ , this nonparametric approach could
also be adopted in our current setup.
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Table 1. Estimates of the Parameters in the ACD Model (20) for the Alcatel Data Based on the Four Procedures
Described in the Main Text

γ β α δ

PMLE .812 (.022) .112 (.016) 3.59 (.47) 6.14 (1.05)
Martingale .827 (.019) .107 (.016) 3.18 (.37) 6.01 (.88)
Markov .810 (.020) .155 (.012) 2.33 (.54) 4.55 (.90)
IID .782 (.022) .153 (.013) 3.22 (.45) 5.39 (1.10)

NOTE: “PMLE” refers to the pseudolikelihood method based on an exponential innovation distribution. “Martingale” is the estimator where conditional
distributions are assumed to be based on past innovations. “Markov” is the efficient semiparametric estimator in case the innovation’s distribution is only
affected by the last innovation. “IID” refers to the optimal semiparametric estimator in the model where the innovations are assumed to be independent
over transactions. Robust standard errors are reported in parentheses; see the text for details.

As mentioned before, our theoretical results rely on a cor-
rectly specified mean durationψi in (20). To assess the accuracy
of our specification informally, the dotted line in Figure 1 shows
the cumulative number of trades against the transformed time
axis in the top of the figure. The time transformation is based
on estimated expected duration calculated according to (20). In
particular, given the estimated values of α, β , γ , and δ, we cal-
culate the expected value of ψi using the recursion

Eψ0 = α

1 − β − γ

and

Eψi = α + δdi + (β + γ )Eψi−1,

where di = 1 if the ith trade lies between noon and 1:15 P.M.
and di = 0 otherwise. Given these estimated expected durations,
rescaled durations x∗

i = xi
Eψ0
Eψi

are calculated from the durations
xi for each day. The dotted line in Figure 1 is obtained as the cu-
mulative number of trades based on these rescaled durations x∗

i .
The top time axis gives the corresponding time change, which
can be informally written as dt∗ = Eψ0

Eψi
dt. The transformed in-

tensity estimate is almost constant. This shows that our spec-
ification of the expected duration picks up the salient features
of the data at hand. It is important to note that, except for the
introduction of the lunchtime dummy di, we do not enhance the
specification of the conditional mean duration ψi or apply any
preanalysis transformation to the data.

We estimated the ACD model using the PMLE method and
three semiparametric methods. The first estimator (indicated by
“Martingale”), uses the score (16) where the conditional vari-
ance of the innovations is estimated by a Nadaraya–Watson
nonparametric regression of the squared innovations on the pre-
vious innovation εi−1 only, using the procedure outlined in Sec-
tion 3.2. Such an approach is often followed in practice, even
if theoretically the conditional variance in the optimal gener-
alized method of moments (GMM) score (16) depends on the
whole past, that is, εi−1, εi−2, . . . . The second semiparametric
estimator is based on a Markov assumption for the innovations
εi; see Example 2. Again, unknown conditional densities in the
efficient score function, in this case (15), are estimated using
kernel techniques, and this estimation does not affect the as-
ymptotic semiparametric efficiency of the estimator. The esti-
mator thus obtained is denoted “Markov.” The third semipara-
metric estimator imposes independence of the innovations, that
is Hi = {∅,�}, without specifying the exact distribution; see
the efficient score (14) in Example 1. This estimator is denoted
by “IID,” and its theoretical properties in the general non-iid
semiparametric model are unknown, but there is no reason to

expect that even an elementary property as consistency is pre-
served. Because the analysis of the residuals later in this section
clearly shows that the innovations are unlikely to be indepen-
dent, the “IID” estimator is only given for comparison and not
discussed further. Results of all four estimators for the Alcatel
data are presented in Table 1.

Table 1 shows that the semiparametric procedures Martingale
and Markov provide smaller standard errors than the pseudo-
likelihood estimator. Generally speaking, the gain is equivalent
to an increase in the number of observations by about 30%. This
number is obtained as the average relative efficiency of the Mar-
tingale estimator and the Markov estimator with respect to the
PMLE. The GMM-type estimator Martingale and the efficient
semiparametric estimator in the Markov model Markov behave
similarly for the data at hand. A concern is a possible bias in
the Markov estimates for the long-term levels of the durations
as measured by α and δ in (20).

It is known that estimates for the Fisher information in semi-
parametric models often have weak convergence properties.
Therefore, we do not base the standard errors in Table 1 on
the estimated Fisher information directly; rather, we apply a re-
sampling technique. For each day, estimates of the parameters
are separately obtained. The estimates and standard errors are
based on the location and dispersion of the daily estimates. As-
suming that the model innovations are independent over differ-
ent days, this gives consistent estimates for the standard errors.
Whether the true independence in the data is sufficient to apply
this technique is an empirical issue that lies outside the scope
of the present investigation. We use the median and the median
absolute deviation as measure for location and dispersion, to
prevent a dominating effect of outlying daily estimates. The me-
dian absolute deviation is standardized such that in cases of nor-
mality, the standard deviation is obtained. Note that, on average,
the daily estimates are based on approximately 500 observa-
tions. Of course, an alternative would be to use a bootstrap-type
procedure, but the theoretical properties of such an approach
would be difficult to establish in our non-iid situation, and the
computational effort involved would be enormous.

To assess the source of the gain of the semiparametric proce-
dures over the pseudolikelihood procedure, we study the resid-
uals from the pseudolikelihood procedure. Figure 2 plots an es-
timate of the unconditional density of the innovations, together
with a standard exponential density. Engle (2000) found a sim-
ilar graph (see his fig. 1) and the data suggest a nonexponential
marginal distribution. To study the dependencies between the
innovations, Figure 3 shows the autocorrelation function of the
residuals, the squared centered residuals, and the log-residuals.
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Figure 2. Comparison of the Estimated Unconditional Density (—)
and the Standard Exponential Density (- - -) of Innovations.

We clearly see that both residuals and their squares are (almost)
uncorrelated, whereas the log-residuals show a small, but sig-
nificantly positive autocorrelation. The proposed semiparamet-
ric procedure effectively takes such dependencies into account.
The first-order autocorrelation of log-residuals is only about
.094. Apparently, such low dependencies still show up in the
efficiency gains for the semiparametric estimators. Of course,
another possibility could be that the conditional mean is mis-
specified. In that case, a nonparametric specification of the con-
ditional mean could resolve the problem.

5. SIMULATION RESULTS

The results in the previous section indicate that even small
dependencies in the innovations as measured by, for exam-
ple, the autocorrelation of the log-residuals can induce sizeable
efficiency gains of efficient semiparametric procedures over
pseudolikelihood procedures. In this section we investigate this

Figure 3. ACF of Residuals (+), Squared Centered Residuals (×),
and Log-Residuals (◦).

phenomenon in more detail. We consider parametric models
that mimic the most salient features of the Alcatel data. We do
not advocate to use these parametric models as an alternative to
the semiparametric models introduced in Section 2.2, because
misspecification is quite likely and may adversely affect the es-
timators. The parametric models in this section are used merely
to confirm the properties of the semiparametric estimators in
realistic settings.

The residuals of the Alcatel durations in Section 4 show
some delicate dependencies. Clearly, the model specification
requires that the residuals be uncorrelated. Squared residuals
also appear uncorrelated, whereas logarithmic residuals show
some weak, but significant first-order autocorrelation. An ex-
tension of the classical gamma (including the exponential) or
log-normal specifications incorporating these stylized features
is obtained by making the parameters of those distributions
time-varying. As an example, consider the possible specifica-
tion

εi ∼ �(σ−2
i−1, σ

−2
i−1) (21)

or

εi ∼ LN

(
−1

2
log(1 + σ 2

i−1), log(1 + σ 2
i−1)

)
, (22)

with

σ 2
i−1 = .10 + .90εi−1.

Note that for both specifications, the conditional variance of
the innovations is indeed given by σ 2

i−1. Clearly, the forego-
ing specifications are not the only parametric ones that generate
dependence structures comparable to those found in the Alca-
tel data. Therefore, we advocate using a semiparametric tech-
nique for econometric analysis of the structural parameters in
the specification of the conditional expected duration ψi. This
seems all the more reasonable because a parametrically mis-
specified model of the innovation’s distribution does not pro-
duce consistent pseudolikelihood estimates in general. As has
been pointed out before, this holds also if the parametric spec-
ification includes the iid exponential specification for which
pseudolikelihood procedures are consistent.

We present results for the same four estimators as used in
the analysis of the Alcatel data. The first estimator (“PMLE”)
is the exponential PMLE. For the second estimator (“Martin-
gale”), the conditional variance of the innovations may depend
in an arbitrary way on the past. The third estimator (“Markov”)
is based on the efficient semiparametric score (15) and assumes
that the innovations follow a Markov process with unknown
transition density. The final estimator (“IID”) is the efficient
semiparametric estimator in case the innovations are iid (see
Example 1). The true values in (4) are α = 4.50, β = .10, and
γ = .80, and we consider both the gamma specification (21)
and the lognormal specification (22). The daily number of ob-
servations is, in accordance with the average in the Alcatel data,
fixed at 500. The computational effort in the simulations is
substantial. Therefore, the number of replications is limited to
2,500. Again, we present location and dispersion estimates that
are based on robust estimates, that is, the median and the me-
dian absolute deviation. The reported standard errors are multi-
plied by

√
2,500/43 to make them comparable with the empir-

ical results of Section 4.
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Table 2. Simulation Results for the ACD Model (4) With Innovation Structure (21), Where σ2
i−1 = .1 + .9εi−1

Exact scores Estimated scores

γ β α γ β α

PMLE .804 (.0140) .088 (.0073) 4.48 (.367) .804 (.0140) .088 (.0073) 4.48 (.367)
Martingale .800 (.0113) .093 (.0052) 4.60 (.328) .807 (.0110) .090 (.0052) 4.37 (.315)
Markov .800 (.0113) .093 (.0052) 4.60 (.328) .813 (.0131) .086 (.0059) 4.18 (.372)
IID .803 (.0143) .090 (.0068) 4.57 (.399)

NOTE: See Table 1 for an explanation of the terminology used.

The simulation results for the gamma and the lognormal
specification are presented in Tables 2 and 3. For reference,
the results in case the innovations are independently and identi-
cally exponentially distributed are given in Table 4. We present
both the estimation results based on exact scores (i.e., as ap-
propriate for the data-generating process at hand) and the esti-
mation results based on estimated scores. The exact scores are
calculated from the relevant formulas in Section 2.3 using the
specified densities. From these exact scores, we can then infer
the theoretical semiparametric efficiency gain and the theoreti-
cal ranking of the various semiparametric estimators. The effect
of the nonparametric density and regression function estimates
follows from comparing the results with exact and estimated
scores. Table 4 presents the results in the ideal situation of iid
exponential innovations εi. As discussed in Section 3, all four
estimators are efficient (even adaptive) in this case. Indeed, the
scores used by all estimators are the same, and, consequently,
when using exact scores, the estimators are identically equal to
the PMLE. In cases where the score functions are estimated,
the estimators theoretically still behave the same. The simu-
lation results confirm this, because as there is little variation
with respect to standard errors. A slight increase in the vari-
ation for the semiparametric Markov estimator may be noted,
which is caused by the nonparametric conditional density esti-
mation therein. The somewhat better behavior of the Martingale
estimator over the IID estimator using estimated scores is due
to sampling error.

To examine the effect of dependencies on the performance
of the estimators, we first consider the conditional gamma in-
novations in (21). In this case, the PMLE and the Martingale
and Markov semiparametric estimators provide consistent esti-
mates. There is no guarantee (known to us) that the IID semi-
parametric estimator is consistent in this setting with dependent
innovations. Of course, calculations with exact scores cannot be
performed for this estimator. The results based on exact scores,
show that the theoretical standard errors of the PMLE are larger
than those of the two consistent semiparametric estimators.
This confirms the results of Section 3, because the conditions
under which the PMLE provides efficient estimates are not met

in the present simulation where var{εi|Hi−1} is nondegener-
ate. Note, however, that since the innovations are conditionally
gamma distributed, the Martingale and Markov semiparamet-
ric estimators are theoretically equal. This follows immediately
from plugging in the theoretical conditional gamma density in
the efficient score functions in Examples 2 and 3. However,
the density estimation required in the implementation of the
Markov semiparametric estimator increases its variability to the
level of the PMLE, whereas the Martingale estimator retains its
theoretical variability.

The former two simulations are still quite specific since, as-
ymptotically, the Martingale and Markov semiparametric esti-
mators coincide. Therefore, we also conducted the analysis us-
ing conditionally lognormally distributed innovations as in (22).
As noted before, the lognormal distribution is not suited as a
pseudodistribution in a PMLE procedure, because such an es-
timator generally would be inconsistent. However, it is infor-
mative to investigate the effect of lognormal innovations on the
simulation results; see Table 3. Indeed, as can be seen from the
bottom line in Table 3, the last semiparametric estimator (based
on an iid-ness assumption on the innovations) does not produce
consistent estimates in this case. As before, the Martingale and
Markov semiparametric estimators show efficiency gains over
the exponential PMLE; however, these estimators are no longer
asymptotically equivalent. The table shows an improvement of
the Markov estimator, but there also seems to be a bias–variance
trade-off. The gains of the efficient semiparametric procedures
over the standard exponential PMLE are, as for the Alcatel data,
roughly on an order of magnitude of 30% of the number of ob-
servations.

Note that the standard errors for all simulations differ some-
what from those found for the Alcatel data. This suggests that
in the Alcatel data, even more complicated dependencies than
those studied in this section play a role. Clearly, the use of semi-
parametric techniques avoids misspecification problems inher-
ently present when using parametric models. Note that the sim-
ulation results for the Martingale and Markov semiparametric
estimators are quite similar in all cases. Apparently, for the

Table 3. Simulation Results for the ACD Model (4) With Innovation Structure (22), Where σ2
i−1 = .1 + .9εi−1

Exact scores Estimated scores

γ β α γ β α

PMLE .806 (.0141) .088 (.0070) 4.47 (.379) .806 (.0141) .088 (.0070) 4.47 (.379)
Martingale .795 (.0137) .097 (.0064) 4.65 (.371) .810 (.0121) .087 (.0058) 4.26 (.339)
Markov .796 (.0112) .098 (.0051) 4.66 (.316) .817 (.0112) .085 (.0056) 4.06 (.324)
IID .912 (.0084) .035 (.0039) 2.32 (.242)

NOTE: See Table 1 for an explanation of the terminology used.
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Table 4. Simulation Results for the ACD Model (4) With iid Exponential Innovations

Exact scores Estimated scores

γ β α γ β α

PMLE .788 (.0121) .099 (.0055) 4.86 (.368) .788 (.0121) .099 (.0055) 4.86 (.368)
Martingale .788 (.0121) .099 (.0055) 4.86 (.368) .788 (.0125) .098 (.0056) 4.82 (.386)
Markov .788 (.0121) .099 (.0055) 4.86 (.368) .791 (.0135) .096 (.0058) 4.72 (.424)
IID .788 (.0121) .099 (.0055) 4.86 (.368) .790 (.0132) .098 (.0058) 4.78 (.397)

NOTE: See Table 1 for an explanation of the terminology used.

specifications chosen in this section, the respective scores (15)
and (16) are close.

Summarizing, the simulations confirm that significant effi-
ciency gains may be obtained from the use of semiparametric
procedures. We prefer the theoretically optimal semiparametric
estimators. Even if large numbers of observations are available
for the study of intraday durations, the semiparametric proce-
dures allow for much more precise empirical analysis and pre-
diction. Moreover, with large datasets the distortions induced
by the nonparametric density estimation are likely to disappear.
Recall that our results are based on a moderate sample of only
500 observations.

6. CONCLUDING REMARKS

We have discussed optimal estimation in semiparametric du-
ration models. The models differ in the specification of the
possible dependencies between the innovations. These speci-
fications range from the case where innovations are iid with un-
known density to completely arbitrary dependencies that only
impose an identifying martingale restriction. For these speci-
fications, we derived the efficient score functions for the pa-
rameters of interest that govern the conditional expected dura-
tion. We also showed that the often-used exponential PMLE is
only efficient under very restrictive conditions and that the other
PMLEs (e.g., based on the lognormal or Weibull distribution)
are not consistent. We showed that an easily implementable
semiparametric estimator allows for significant (comparable to
30% of the observations) efficiency gains. To find a possible
explanation for this phenomenon, we set up a simulation exper-
iment with time-varying parameters in the innovation’s distrib-
ution. The stylized features of the Alcatel data for our observa-
tion period are mimicked in this experiment. These simulations
confirm the fact that the semiparametric procedures outperform
pseudolikelihood procedures.
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