

Tilburg University

ServiceCom

Orriëns, B.; Yang, J.; Papazoglou, M.

Published in:
Proceedings of the 4th International Conference on Web Information Systems Engineering

Publication date:
2003

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Orriëns, B., Yang, J., & Papazoglou, M. (2003). ServiceCom: A tool for service composition reuse and
specialization. In T. Catacci, M. Mecella, J. Mylopoulos, & M. Orlowska (Eds.), Proceedings of the 4th
International Conference on Web Information Systems Engineering (pp. 355-358). Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. May. 2021

https://research.tilburguniversity.edu/en/publications/b0a5ce5b-2674-48cf-be48-056e87fbbf7c

ServiceCom: A Tool for Service Composition Reuse and Specialization

Bart Orriëns, Jian Yang and Mike P. Papazoglou
Tilburg University, Infolab, PO Box 90153, 5000 LIE, Tilburg Netherlands

{b.orriens, jian, mikep}@uvt.nl

Abstract

Web services are becoming the dominant paradigm for
distributed computing and electronic business. This has
raised the opportunity for service providers and
application developers to create value added services by
combining web services. Several web service composition
solutions have been proposed, e.g. BPEL4WS. However,
these approaches are either not flexible or too
complicated as they lack proper support for modularity
and reusability. Motivated by the demand of a light-
weighted tool of service composition, we developed
ServiceCom, a tool for service composition specification,
construction and execution. In this paper we discuss how
ServiceCom suppors reusable web service composition
specification, combination, and execution.

1. Introduction

Web services are self-contained, internet-enabled
applications capable not only of performing business
activities on their own, but also possessing the ability to
engage other web services in order to complete higher
order business transactions. The platform neutral nature of
the web services creates the opportunity for building
composite services by using existing elementary or
complex services possibly offered by different enterprises.
For example, a travel plan service can be
developed by combining several elementary services such
as hotel reservation, ticket booking, car
rental, sightseeing package, etc., based on
their WSDL descriptions. By composite service, we mean
a service that uses other services. The services that are
used by a composite service are called its constituent
services. Web service design and composition is a
distributed programming activity. It requires software
engineering principles and technology support for service
specification, reuse, specialization, and extension such as
those used, for example, in component based software
development. Normally composite services are developed
by hard-coding business logic into application programs.
the development of business applications would be greatly
facilitated if methodologies and tools for supporting the
development and delivery of composite services in a

coordinated and effectively reusable manner were to be
devised. Some preliminary work has been conducted in
the area of service composition, mostly in aspects of
business process modeling language [2] and composition
specification e.g. BPEL4WS [3]. However, these
approaches are either not flexible or too complicated as
they lack proper support for modularity and reusability.
Motivated by the demand of a light-weighted tool of
service composition, we developed ServiceCom, a tool
for service composition specification, construction and
execution. In this paper we provide an overview of
ServiceCom, and outline its significance and contributions
to the research in service composition.

2. Overview

ServiceCom is a Java based tool for modular and
reusable web service composition. The tool is based on
the concept of service component [7], which facilitates
the idea of web service component reuse, specialization
and extension. Service components are a packaging
mechanism for developing web-based distributed
applications in terms of combining existing (published)
web services. Service components have a recursive nature
in that they can be composed of published web services
while in turn they are also considered to be themselves
web services (albeit complex in nature). Once a service
component is defined, it can be reused, specialized, and
extended.

To support the service component mechanism a
Service Composition Specification Language (SCSL)
has been developed (see [7] for the syntax). In this
language activity, binding, condition and composition type
constructs are used (among others) to define a web service
composition. Activity constructs represent constituent
services through the use of name and description
characteristics. To bind activities to particular web service
providers binding constructs can be attached to activity
constructs. These bindings identify an operation on a port
of a service in the WSDL interface of the provider.
Alternatively, they may provide search criteria to enable
the locating of appropriate providers during runtime.
Condition constructs may be used in case of conditional
compositions to govern the control flow within the service

component. To express different forms of activity
choreographies SCSL utilizes the composition type
construct. Supported types include If, IfElse,
ParaWithSync, ParaAlt, SeqAlt, SeqNoInt, SeqWithInt
and WhileDo patterns.

Based on top of the service component mechanism and
SCSL ServiceCom propagates a phased approach to
service composition spanning composition description,
planning, building and invocation. An overview of this
phased approach is provided in Figure 1. In the following
we briefly describe the purpose of the Description,
Planning, Building and Invocation phase and discuss
how ServiceCom implements each phase. We also explain
how reuse, extension and specialization are supported.

)LJXUH����:HE�VHUYLFH�FRPSRVLWLRQ�SKDVH�PRGHO�

2.1. Description phase

In the Description phase users can specify a web
service composition. For this purpose ServiceCom offers
a composition designer, which provides a visual-oriented
development environment. First a composition type is
selected. Subsequently activity, binding and condition
constructs may be dragged and dropped on the designer
window. Characteristics may be set and edited through the
use of popup dialogs, which can be opened by double-
clicking a composition construct. Alternatively, constructs
may be inserted, edited and removed through the use of
menus. A screenshot of the composition designer is
provided in Figure 2 in Appendix A.

Reuse, extension and specialization of constructs in the
Description phase is based upon the use of unique names
and namespaces. This combination ensures that a
reference to a construct may only refer to a single
construct, since a construct name must be unique within a
namespace and each composition has a unique namespace.
For the reuse of constructs simple references can be used.

Extension and specialization is supported through the
utilization of base types. When specifying a base type for
a construct the characteristics of this base construct are
inherited by the sub-construct. Additional information in
the sub-construct not present in the base construct extends
the base construct. Similarly, in case of information that is
present in both the sub and base construct the
characteristics of the base construct are overridden. In
ServiceCom both references and base types can be made
through the selection of composition constructs from the
web service composition library. (See Figure 4 in
Appendix A for a screenshot)

2.2. Planning phase

The Planning phase is concerned with binding the
activities in the service composition to concrete services.
For this purpose ServiceCom offers a web service
provider library facility. This library facility contains
locally known web service providers, which can aid the
user in case he does not know an appropriate provider for
an activity in a composition. (i.e. the WSDL interfaces are
stored on the local system). Web service providers may be
added and removed from the library. Also, a search on the
Internet can be performed to locate suitable providers,
based on user-specified search criteria. Any located
providers may then be added to the library, making them
locally available. Furthermore, provider functionality may
be tested through a quick invocation. As such, the web
service provider library is of great help in the planning
phase of the web service process model by enabling the
reuse of web service providers. For a screenshot of the
library see Figure 3 in Appendix A.

In case a user does not want to search and select a
service provider manually ServiceCom is capable of
selecting appropriate providers automatically during
runtime. For this purpose the tool utilizes the search
criteria specified in the binding construct(s).

2.3. Building phase

The Building phase is of essence in the web service
composition phase model. It crosses the gap between
composition specification and actual invocation. In this
phase the web service composition specification is used as
input to generate the set of Java source and class files
required for the invocation of the composition. This set of
files comprise of the following:

• Firstly, for each activity in the composition a set of

Java source and class files is created for invocation.
These files are derived from the WSDL definition of
the service provider, specified in the binding
construct of the activity. For each service in the

definition a class is defined, as well as for the ports of
these services. Operations are represented as Java
methods, whereas faults are expressed as exceptions.
Additionally, files are generated that translate
operation invocations from and to SOAP messages to
enable XML-based invocation.

• Secondly, a set of Java source and class files is
created for the web service composition. These files
enable the invocation of the composition in the
specified manner. The exact types of files that are
generated depend on the type of the composition. For
example, if a composition is of the type if, then its
condition constructs are mapped to source and class
files. In case of parallel compositions source and
class files are generated that enable the invocation of
an activity in a separate thread of execution.

• Thirdly, a WSDL definition is generated for the web
service composition. This definition functions as the
public interface of the composition.

• Fourthly, the composition is stored as a SCSL
specification to enable further reuse

The above files can all be reused in the composition

building process. Firstly ServiceCom will only generate
source and class files for a composition if they are not
already in the library. For example, suppose a service is
involved in multiple compositions, instead of generating
new files for each composition only one set files will be
generated and it will be reused in all other compositions
this service is involved in.

Secondly, generated files can be used in the
development of other applications. The mentioned
functionality may be extended and specialized in an
object-oriented fashion through the use of Java overriding
and inheritance mechanisms. However, these two types of
reuse are in our opinion best facilitated in professional
programming environments and are thus considered to be
outside the scope of ServiceCom.

Thirdly, reuse of the generated public interface of the
composition is possible. The WSDL definition may be
included in the web service provider library, making it
available for use in other compositions. The interface file
can also be published in for example an UDDI registry to
make the composite service’s functionality known to the
outside world. For the latter purpose ServiceCom offers a
deploy mechanism. This mechanism enables the
publication of the new, composite web service in standard
web service containers, such as Tomcat and J2EE.

2.3. Invocation phase

The Invocation phase deals with the execution of a web
service composition and its corresponding result handling.
In most cases users will likely want to incorporate the

composition’s functionality in custom made programs. In
these situations the development of nice, user-friendly
interfaces are left to the designers of these programs.
However, some users may simply want to invoke the
service once and are not interested at all in software
program development. These users may employ the
standard interfaces for the web service composition,
which can be generated prior to invocation. Although
these interfaces are basic, they provide a means to the user
to enter the required inputs and display the received
outputs. These interfaces can be reused in a similar
fashion as the Java source and class files generated in the
Building phase.

3. Demo

We will use a travel-planning scenario to illustrate the
features of ServiceCom in the demo. The demo starts with
a request from the user about the services he/she wants
and the conditions, such as the ticket reservation, hotel
booking, the dates, and price ranges, the preferences of
the services, etc. The user will be presented with a set of
dialog menus to specify, to select, and to modify, and to
invoke. We will also demonstrate that the resulting
composite web service can be published as a new service
and its configuration is stored and can be re-used and
extended. In summary we will demonstrate the following
features of the tool: supporting an integrated environment
for service composition, which includes composition
specification, planning, implementation, and execution.
Furthermore, we will demonstrate that ServiceCom
supports composition publishing, re-use, and extension in
a light-weighted manner, which enables it to be executed
in different enterprise settings without too much
implementation overhead.

4. Contributions

In this paper we gave a short description of
ServiceCom, a light-weighted tool for service
composition. This tool covers the complete life cycle of
service composition, including the description, planning,
building and executing of compositions. To the best of our
knowledge there currently do not exist any other tools that
provide such an integrated approach to service
composition. Most importantly, because ServiceCom is
based upon the service component mechanism, it
promotes reusability and specialization in the specification
of compositions. This sets it apart from other service
composition tools based upon more traditional languages,
such as BPEL4WS. Furthermore, in the building of
service compositions reuse of class files is supported, thus
shortening the building process increasing its efficiency.

References

[1] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S.
Thatte, S. Weerawarana; "Business Process Execution Language
for Web Services", July 31, 2002,
http://www-106.ibm.com/developerworks/webservices/
library/ws-bpel/
[2] Business Process Modelling Initiative; "Business Process
Modeling Language", http://www.bpmi.org
[3] Workflow Management Coalition; “XML Process Definition
Language”, May 22, 2001,
http://www.wfmc.org/standards/docs/ xpdl 010522..pdf
[4] F. Leymann; "Web Service Flow Language", 2001,
http://www.ibm.com/software/solutions/webservices/pdf/
WSFL.pdf
[5] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana; “
Web Service Description Language”, 15 March 2001,
http://www.w3.org/TR/wsdl
[6] J. Yang, M.P. Papazoglou, W.J. v/d Heuvel; "Tackling the
Challenges of Service Composition", ICDE-RIDE workshop on
Engineering E-Commerce/E-Business, San Jose, USA, 2002
[7] J. Yang, M.P. Papazoglou; "Service Components for
Managing the Life-Cycle of Service Compositions", Information
System, June 2003 (forthcoming)
[8] C. Bussler; "Work Class Inheritance and Dynamic Work
Class Binding", Proceedings of the Workshop Software
Architectures for Business Process Management at the 11th
Conference on Advanced Information Systems Engineering
(CAiSE*99), Heidelberg, Germany, 1999
[9] G. Kappel, P. Lang, S. Rausch-Schott, W. Retschitzegger;
"Work Management Based on Objects, Rules, and Roles",
Bulletin of the Technical Committee on Data Engineering, Vol.
18, No. 1, March 1995
[10] M.P. Papazoglou, A. Delis, A. Bouguettaya, M. Haghjoo;
"Class Library Support for Work Environments and
Applications", IEEE Transactions on Computers, Vol. 46, No.6,
June 1997

Appendix A - ServiceCom screen shots

)LJXUH����0DLQ�ZLQGRZ��FRPSRVLWLRQ�GHVLJQHU�DQG�
DFWLYLW\�GHVLJQHU�

)LJXUH����:HE�VHUYLFH�SURYLGHU�OLEUDU\�

)LJXUH����:HE�VHUYLFH�FRPSRVLWLRQ�OLEUDU\�

