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Modified normal demand distributions

in (R, S)-inventory control

L.W.G. Strijbosch

J.J.A. Moors

To model demand, the normal distribution is by far the most popular; the disad-

vantage that it takes negative values is taken for granted. This paper proposes two

modifications of the normal distribution, both taking non-negative values only. Safety

factors and order-up-to-levels for the familiar (R, S)-control system are derived and

compared with the standard values corresponding with the original normal distribution.

1 Introduction

In all textbooks and much literature on inventory control, the normal distribution plays

an important part in modelling demand. In the celebrated textbook Silver et al. (1998),

normal demand is discussed in numerous places; from more recent literature we mention

six examples. Only normal demand is considered in Artto & Pylkkänen (1999), Chen &

Chuang (2000), Geunes & Zeng (2001) and Alstrøm (2001), in quite different settings.

Zeng & Hayya (1999) made comparisons for four families of demand distributions; they

state: ’the normal distribution always enjoys wide applications in both research and

practice’ (p. 149). Bartezzaghi et al. (1999) considered the numerical impact of six

specific distributions, among which a normal.

An obvious argument for this choice of the demand distribution are the nice analytical

properties of the normal distribution, enabling the derivation of exact expressions for

important control parameters like safety factors.

Nevertheless, normal demand distributions have two clear disadvantages. The first

is their symmetry, which does not reflect the fact that in practice demand distributions

generally are skewed to the right. Of even more importance is the occurrence of negative

values, particularly for higher values of the coefficient of variation. This problem is either
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neglected, or negative demand is interpreted as deliveries being sent back. So, implicit

additional assumptions are that customers are allowed to return delivered goods - even

if delivery is rather long ago - and that this phenomenon may occur rather frequently.

In case of constant order-up-to levels, even more additional assumptions are neces-

sary; if total demand during a replenishment cycle is negative, it has to be assumed that

the returned stock is sent back to the original supplier.

To avoid these akward constructions, we here suggest two modifications of the normal

distributions; both only take non-negative values and are asymmetrical, while allowing

theoretical derivations. The first is obtained by replacing all negative values by 0, creat-

ing a probability mass in the origin. The second is the normal distribution, one-sidedly

truncated at 0. Starting from the normal distribution N(µ, σ2), they will be denoted as

N+(µ, σ2) and N ∗(µ, σ2), respectively. Figure 1 shows these distributions; f(F ) denotes

the density (distribution function) of N(µ, σ2), ϕ(Φ) of the standard normal.

Figure 1.1. The modified normal distributions N+(µ, σ2) and N∗(µ, σ2).

N+(µ,σ2)

N*(µ,σ2)

µ µ

σ

0 0

F(0)=Φ(- µ/σ)

f(x)/Φ(µ/σ) ↑

x → x →

σ

It is worth mentioning that normal distributions with a probability mass in 0 feature in

Geunes & Zeng (2001). The two distributions will be studied within the (R, S)-inventory

control system with lead time zero. This means that stock is measured whenever a

review period R has passed, and immediately replenished to the order-up-to level S.

Two criteria will be considered:

- the fraction of review periods in which total demand can be delivered from stock

should be equal to a given level P1,

- the fraction of total demand that can be delivered from stock should equal a given

level P2 (the fill rate).
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They are called the P1- and P2- service criterion, respectively.

Let X refer to demand during a review period and assume that µ and σ2 are known.

We will calculate the order-up-to levels S+

i and S∗i for criterion Pi (i = 1, 2) and - by

standardizing - the corresponding safety factors c+
i
and c∗i . They will be compared with

the well-known safety factors ci, relating to the normal distribution itself:{
c1 = Φ−1(P1)

c2 = G−1[(1− P2)/ν]
(1.1)

where ν = σ/µ denotes the coefficient of variation and G is given by

G(k) =
∞∫
k

(z − k)ϕ(z)dz = ϕ(k)− kΦ(−k) (1.2)

Compare Silver et al. (1998) e.g. or Strijbosch & Moors (1998). Table 1.1. gives

numerical values of the ci.

Table 1.1. Values of ci

Pi 0.9 0.925 0.95 0.975

ν

c1 - 1.2816 1.4395 1.6449 1.9600

0.25 -0.0021 0.2165 0.4929 0.9023

0.50 0.4929 0.6711 0.9023 1.2556

0.75 0.7405 0.9023 1.1146 1.4430

c2 1.00 0.9023 1.0546 1.2556 1.5689

1.25 1.0212 1.1671 1.3602 1.6631

1.50 1.1146 1.2556 1.4430 1.7379

1.75 1.1910 1.3283 1.5111 1.7997

2.00 1.2556 1.3898 1.5689 1.8523

In Section 2 the modified normal demand distribution N+(µ, σ2) will be covered, in

Section 3 the truncated normal distribution N ∗(µ, σ2). Section 4 presents a more refined

comparison with the normal distribution. In the final Section 5 the results are discussed.
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2 Demand distribution N+(µ, σ2)

The distribution N+(µ, σ2) has a point mass F (0) = Φ(−1/ν) in 0 and the normal
density f(x) for x > 0. Hence, its distribution function F+ is given by

F+(x) =




0, x < 0

F (0), x = 0

F (x), x > 0

(2.1)

The mean µ+ follows from (1.2):

µ+ =
∞∫
0

xf(x)dx = σ
∞∫
−1/ν

(z + 1/ν)ϕ(z)dz = σG(−1/ν) (2.2)

The second moment µ+
2
is found similarly:

µ+
2
=
∞∫
0

x2f(x)dx = σ2
∞∫
−
1/ν

(z + 1/ν)2ϕ(z)dz

= σ2

[
∞∫
−1/ν

z2ϕ(z)dz +
2

ν

∞∫
−1/ν

(z + 1/ν)ϕ(z)dz − 1

ν2

∞∫
−1/ν

ϕ(z)dz

]

= σ2[ϕ(1/ν)/ν + (1 + 1/ν2)Φ(1/ν)]

using partial integration and (1.2) once more. Writing

H(k) = kϕ(k) + (k2 + 1)Φ(k) (2.3)

for brevity, the variance σ+
2

is given by

σ+
2

= σ2[H
(
1/ν)−G2(−1/ν

)
] (2.4)

so that the coefficient of variation ν+ equals

ν+ =
√
H(1/ν)/G2(−1/ν)− 1 (2.5)

Figure 2.1. shows these parameters of N+(µ, σ2) as function of ν; some theoretical

properties are derived in Appendix A.
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Figure 2.1. Behaviour of µ+/µ, σ+/σ and ν+.
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Since µ is positive, F (0) ≤ 0.5 holds, so that in general P1 exceeds F (0). Then the

order-up-to level S+

1
corresponding to the P1−criterion remains unchanged:

S+

1
= S1

and standardizing with the parameters of N+(µ, σ2) gives

c+
1
=

S+

1
− µ+

σ+
=
1/ν −G(−1/ν) + Φ−1(P1)√

H(1/ν)−G2(−1/ν)
(2.6)

The level S+

2
has to satisfy

∞∫
S
+

2

(x− S+

2
)f(x)dx = (1− P2)µ

+

The left-hand side equals σG[(S+

2
− µ)/σ], so that

S+

2
= µ+ σG−1[(1− P2)G(−1/ν)]

and finally

c+
2
=
1/ν −G(−1/ν) +G−1[(1− P2)G(−1/ν)]√

H(1/ν)−G2(−1/ν)
(2.7)

Table 2.1 presents numerical results for the same values of ν and P as in Tabel 1.1.
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Table 2.1 Values of c+i .

Pi c+
1

c+
2

ν ν+ 0.9 0.925 0.95 0.975 0.9 0.925 0.95 0.975

0.25 0.2500 1.2816 1.4396 1.6449 1.9600 -0.0021 0.2165 0.4929 0.9024

0.50 0.4879 1.2992 1.4604 1.6699 1.9915 0.4916 0.6736 0.9098 1.2706

0.75 0.6703 1.3437 1.5150 1.7376 2.0793 0.7372 0.9139 1.1455 1.5035

1.00 0.8000 1.3826 1.5649 1.8018 2.1654 0.8943 1.0729 1.3082 1.6744

1.25 0.8945 1.4109 1.6028 1.8523 2.2351 1.0048 1.1868 1.4273 1.8031

1.50 0.9659 1.4311 1.6311 1.8911 2.2900 1.0870 1.2724 1.5179 1.9025

1.75 1.0216 1.4458 1.6526 1.9212 2.3336 1.1506 1.3391 1.5890 1.9814

2.00 1.0661 1.4568 1.6691 1.9451 2.3687 1.2013 1.3924 1.6462 2.0452

Comparison with Table 1.1. shows that c+
1
exceeds c1 throughout; the difference is

increasing in ν and P1. The picture for c
+

2
is quite similar, but c+

2
is smaller than c2

for P relatively low. The general conclusion is that to attain high performance, safety

factors should be increased if the demand model N+(µ, σ2) is preferred to N(µ, σ2). For

the tabled values, the increase is up to 20% for c1 and up to 10% for c2.

3 Demand distribution N∗(µ, σ2)

For positive x, the distribution function of the truncated normal distribution is given

by [F (x)−Φ(−1/ν]/Φ(1/ν). Immediate results therefore are

µ∗ = µ+/Φ(1/ν), µ∗
2
= µ+

2
/Φ(1/ν)

and consequently


µ∗ = σG(−1/ν)/Φ(1/ν)
σ∗2 =

σ2

Φ2(1/ν)
[Φ(1/ν)H(1/ν)−G2(−1/ν)]

ν∗ =
√
Φ(1/ν)H(1/ν)/G2(−1/ν)− 1

(3.1)

Figure 3.1 shows the parameters σ∗ and ν∗ as function of ν.
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Figure 3.1. Behaviour of µ∗/µ, σ∗/σ and ν∗.
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Now, S∗
1
has to satisfy

P1Φ(1/ν) = F (S∗
1
)−Φ(−1/ν) = Φ[(S∗

1
− µ)/σ]−Φ(−1/ν)

so that

S∗
1
= µ+ σΦ−1[P1Φ(1/ν) + Φ(−1/ν)]

and

c∗
1
=
Φ(1/ν)/ν −G(−1/ν) + Φ−1[P1Φ(1/ν) + Φ(−1/ν)]Φ(1/ν)√

Φ(1/ν)H(1/ν)−G2(−1/ν)
(3.2)

The level S∗
2
follows from

(1− P2)µ
∗Φ(1/ν) =

∞∫
S∗
2

(x− S∗
2
)f(x)dx = σG[(S∗

2
− µ)/σ]

and equals

S∗
2
= µ+ σG−1[(1− P2)G(−1/ν)]

which is identical to S2. Hence,

c∗
2
=
Φ(1/ν)/ν −G(−1/ν) +G−1[(1− P2)G(−1/ν)]Φ(1/ν)√

Φ(1/ν)H(1/ν)−G2(−1/ν)
(3.3)

Values of safety factors for the truncated normal distribution are given in Table 3.1.
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Table 3.1 Values of c∗i .

Pi c∗
1

c∗
2

ν ν+ 0.9 0.925 0.95 0.975 0.9 0.925 0.95 0.975

0.25 0.2499 1.2818 1.4398 1.6452 1.9604 -0.0022 0.2164 0.4929 0.9025

0.50 0.4581 1.3164 1.4832 1.7002 2.0335 0.4619 0.6514 0.8973 1.2727

0.75 0.5632 1.3547 1.5356 1.7716 2.1349 0.6355 0.8267 1.0772 1.4644

1.00 0.6163 1.3738 1.5647 1.8142 2.1994 0.7193 0.9143 1.1713 1.5712

1.25 0.6471 1.3838 1.5813 1.8398 2.2399 0.7673 0.9656 1.2276 1.6369

1.50 0.6670 1.3895 1.5915 1.8564 2.2671 0.7981 0.9988 1.2645 1.6809

1.75 0.6808 1.3931 1.5984 1.8679 2.2863 0.8195 1.0220 1.2906 1.7122

2.00 0.6909 1.3955 1.6033 1.8763 2.3007 0.8352 1.0391 1.3099 1.7356

Comparison with Table 1.1 shows that c∗
1
exceeds c1 throughout. Comparing with

Tabel 2.1 reveals that c∗
1
is relatively close to c+

1
; note that c∗

1
takes both lower and

higher values than c+
1
. As to c∗

2
, most values are below c2, although exceptions occur;

even c∗
2
> c+

2
holds occasionally.

Comparison of the order-up-to-levels is easier. It is immediately clear that S∗
1
always

exceeds S1; Appendix A shows that, on the other hand, S2 always exceeds S
∗

2
= S+

2
.

Figure 3.2 shows the behaviour of the differences S∗
1
− S1 and S2 − S+

2
= S2 − S∗

2
(in

units σ).

Figure 3.2. Behaviour of S∗
1
− S1 and S2 − S∗

2
= S2 − S+

2
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4 Standard safety factors using ν
+ and ν

∗

If not N(µ, σ2) but rather N+(µ, σ2) or N ∗(µ, σ2) is thought to be the appropriate

demand model, this implies in fact two changes:

- normality does not hold anymore,

- mean and variance are replaced by µ+(µ∗) and σ+(σ∗), respectively.

It is interesting to separate these two effects by neglecting the first, while adopting

the second. This means that the standard safety factors ci are used, with for c2, however,

the correct coefficient of variation plugged in. Denoting the resulting safety factors by

cis, this gives more precisely:{
c∗
1s = c+

1s = c1 = Φ
−1(P1),

c∗
2s = G−1[(1− P2)/ν

∗], c+
2s = G−1[(1− P2)/ν

+]
(4.1)

The exact performance Pis of the corresponding (R, S)-rules can be calculated, e.g.

P+

2s = 1−
1

µ+

∞∫
S
+

2s

xf(x)dx = 1−G[(S+

2s − µ)/σ]/G(−1/ν)

Denoting{
a(ν) = σ+/σ =

√
H(1/ν)−G2(−1/ν)

b(ν) = σ∗/σ =
√
Φ(1/ν)H(1/ν)−G2(−1/ν)/Φ(1/ν)

this leads to the performances


P+

1s = Φ[G(−1/ν)− 1/ν +Φ−1(P1)a(ν)]

P+
2s = 1−G[G(−1/ν)− 1/ν +G−1[(1− P2)/ν

+]a(ν)]/G(−1/ν)
P ∗

1s = Φ[G(−1/ν)/Φ(1/ν)− 1/ν +Φ−1(P1)b(ν)]/Φ(1/ν)− Φ(−1/ν)
P ∗

2s = 1−G[G(−1/ν)/Φ(1/ν)− 1/ν +G−1[(1− P2)/ν
+]b(ν)]/G(−1/ν)

(4.2)

The short Tables 4.1 and 4.2 shows the deviations 100 (Pis − Pi) of the prescribed level

Pi, due to neglecting non-normality.

Table 4.1. Deviations 100 (P+

is
− Pi).

P1 P2

0.900 0.925 0.950 0.975 0.900 0.925 0.950 0.975

ν ν+

0.5 0.4879 -0.31 -0.29 -0.26 -0.19 -0.22 -0.21 -0.19 -0.14

1.0 0.8000 -1.62 -1.66 -1.57 -1.24 -1.96 -1.85 -1.62 -1.20

1.5 0.9659 -2.23 -2.38 -2.35 -1.96 -3.47 -3.28 -2.91 -2.20

2.0 1.0661 -2.48 -2.73 -2.76 -2.39 -4.53 -4.29 -3.82 -2.93
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Table 4.2. Deviations 100 (P ∗

is
− Pi).

P1 P2

0.900 0.925 0.950 0.975 0.900 0.925 0.950 0.975

ν ν+

0.5 0.4879 -0.59 -0.60 -0.56 -0.43 -0.39 -0.40 -0.38 -0.31

1.0 0.8000 -1.41 -1.58 -1.61 -1.38 -1.44 -1.49 -1.43 -1.18

1.5 0.9659 -1.57 -1.83 -1.93 -1.73 -1.90 -1.96 -1.90 -1.59

2.0 1.0661 -1.62 -1.92 -2.07 -1.89 -2.12 -2.20 -2.14 -1.80

If ν+ is used but non-normality neglected, the loss in performance may be as high

as 4.5 percentage points (for P2 = 0.9, ν = 2). Note that this means that 15.5% in stead

of the desired 10% of total demand can not be delivered from stock: this is an 55%

increase.

The use of N ∗(µ, σ2) and hence ν∗ in standard safety factors gives a similar, but

somewhat less dramatic picture. However, for P1 = 0.975 and ν = 2, the percentage

of review periods in which not all demand can be met increases with 75% (from 2.5 to

4.39%).

5 Discussion

The two families of distributions featuring in this paper both are nonnegative and skewed

to the right. Both were obtained by modifying normal distributions; for both modifica-

tions we derived order-up-to-levels and safety factors.

The two families are proposed here as alternative demand models in case the demand

does not show too much spread: our models fall short if demand populations have

coefficients of variation exceeding the upperbound ν+ ≤ 1.463 or ν∗ ≤ 0.7555.

The choice between the two alternative models heavily depends on the occurrence of

review periods with zero demand: if zero demand is a relatively frequent phenomenon,

our distributions N+(µ, σ2) may give a useful model; otherwise, the model N∗(µ, σ2)

may be more appropriate.

An even richer family of distributions, showing all essential desirable properties, is

the family of gamma distributions. Among many others, we propagated its use in the

recent past (compare Moors en Strijbosch, 2002) and will continue to do so. We thought
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it useful, however, to stipulate the disadvantages of the much-used normal distribution

and to present simple ameliorations.
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Appendix A

Here we present some interesting properties of G,H and related functions and mention

the consequences for the parameters of N+(µ, σ2).

First note that

G(0) = 1
√
2π, H(0) = 1/2.

so that µ+/µ ≈ ν/
√
2π for large ν. The properties

G′(k) = −Φ(−k)

and G(∞) = 0 imply G(k) > 0 for all k ∈ R. Hence it follows{
H ′(k) = 2G(−k) > 0,

[H(k)−G2(−k)]′ = 2Φ(−k)G(−k) > 0

Consequently, σ+/σ is decreasing in ν, with limit
√
0.5− 1/(2π) = 0.5838.

Further,

[Φ(k)H(k)−G2(−k)]
′

= ϕ(k)H(k) > 0

so that Φ(k)H(k)−G2(−k) > 0 holds. As a result,[
H(k)−G2(−k)

G2(−k)

]′

∝ G2(−k)− Φ(k)H(k) < 0

implying that ν+ is increasing in ν, with limit
√
π − 1 = 1.4634 voor ν → ∞.

Similar results can be obtained for N ∗(µ, σ2); we only mention here

µ∗/σ →
√
2/π = 0.7979

σ∗/σ →
√
1− 2/π = 0.6028

ν∗ →
√

π/2− 1 = 0.7555


 for ν → ∞

Finally, note the relation with the so-called Mills’ ratio Φ(−k)/ϕ(k). The well-known

inequality

Φ(−k)

ϕ(k)
<
1

k
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(Feller, 1950 or Moors, 1985) implies

G(−k) > k

which gives

G−1[(1− P2)/ν] ≥ G−1[(1− P2)G(−1/ν)]

and hence S2 ≥ S∗

2 .


