APPLICATION-DRIVEN SEQUENTIAL DESIGNS FOR SIMULATION EXPERIMENTS: KRIGING METAMODELING

By Jack P.C. Kleijnen and Wim C.M. van Beers

March 2003

ISSN 0924-7815
Application-driven Sequential Designs for Simulation Experiments:
Kriging Metamodelling

Jack P.C. Kleijnen ¹ and Wim C.M. van Beers ²

¹ Department of Information Systems and Management/
Center for Economic Research (CentER)
Tilburg University (UvT), Postbox 90153, 5000 LE Tilburg, The Netherlands
Phone: +31_13_4662029; Fax: +31_13_4663377; E-mail: kleijnen@uvt.nl
http://center.kub.nl/staff/kleijnen/

² Department of Information Systems and Management
Tilburg University (UvT), Postbox 90153, 5000 LE Tilburg, The Netherlands
Phone: +31_13_4662016; Fax: +31_13_4663377; E-mail: wvbeers@uvt.nl
Abstract

This paper proposes a novel method to select an experimental design for interpolation in simulation. Though the paper focuses on Kriging in deterministic simulation, the method also applies to other types of metamodels (besides Kriging), and to stochastic simulation. The paper focuses on simulations that require much computer time, so it is important to select a design with a small number of observations. The proposed method is therefore sequential. The novelty of the method is that it accounts for the specific input/output function of the particular simulation model at hand; i.e., the method is application-driven or customized. This customization is achieved through cross-validation and jackknifing. The new method is tested through two academic applications, which demonstrate that the method indeed gives better results than a design with a prefixed sample size.

Keywords

Design of Experiments; Simulation; Kriging interpolation; Metamodel; Cross-validation; Jackknife; Space filling, Latin Hypercube Sampling; Sensitivity analysis

1. Introduction

We are interested in expensive simulations; that is, we assume that a single simulation run takes ‘much’ computer time (say, its time is measured in days, not minutes). Therefore we devise a method meant to minimize the number of simulation runs – that number is called the ‘sample size’ in statistics or the ‘design size’ or ‘scheme size’ in design of experiments (DOE).

We tailor our design to the actual simulation; that is, we do not derive a generic design such as a classic 2^{k-p} design or a Latin Hypercube Sampling (LHS) design. We explain the differences between our designs on one hand and classic and LHS designs on the other hand, as follows.

Classic designs assume a simple ‘metamodel’ (also called approximate model, emulator, response surface, surrogate, etc.). A metamodel is a model of an input/output (I/O) function. We denote the metamodel by $Y(x)$ where x denotes the k
-dimensional vector of the \(k \) inputs – called ‘factors’ in classic DOE. In simulation, the true I/O function is implicitly defined by the simulation model itself (in real-life experiments, ‘nature’ defines this function). Classic \(2^k-p \) designs of resolution III assume a first-order polynomial function (optimal resolution-III designs are orthogonal matrices, under various criteria). Central composite designs (CCD) assume a second-order polynomial function. See, for example, the well-known textbook Box, Hunter, and Hunter (1978) or the recent textbook, Myers and Montgomery (2002).

LHS - much applied in Kriging – assumes I/O functions more complicated than classic designs do - but LHS does not specify a specific function for \(Y(x) \). Instead, LHS focuses on the design space formed by the \(k \)-dimensional unit cube, defined by \(0 \leq x_j \leq 1 \) \((j = 1, \ldots, k)\) after standardizing (scaling) the inputs. LHS tries to sample that space according to some prior distribution for the inputs, such as independent uniform distributions on \([0, 1]\) (or some non-uniform distribution in risk or uncertainty analysis); see McKay, Beckman, and Conover (1979, 2000), and also Koehler and Owen (1996) and Kleijnen et al. (2002).

Unlike LHS, we explicitly account for the I/O function; unlike, classic DOE we use a more realistic I/O function than a low-order polynomial. Therefore we estimate the true I/O function through cross-validation; i.e., we successively delete one of the I/O observations already simulated (for cross-validation see Stone 1974; for an update see Meckesheimer et al. 2002, Mertens 2001). In this way we estimate the uncertainty of output at input combinations not yet observed. To measure this uncertainty, we use the jackknifed variance. For jackknifing see the classic article by Miller (1974); for an update see again Meckesheimer et al. and Mertens.

It turns out that our procedure concentrates on input combinations (design points, simulation scenarios) in sub-areas that have *more interesting* I/O behavior. In our Example I, we spend most of our simulation time on the challenging ‘explosive’ part of a hyperbolic function (which may represent mean steady-state waiting time of single-server waiting systems). In Example II, we avoid spending much time on the relatively flat part of the fourth-degree polynomial I/O function with multiple local hills. (The reader may take a peek at Figures 3 and 6 discussed later.)

We make our procedure *sequential* for the following two reasons
1. Sequential procedures are known to be more ‘efficient’; that is, they require fewer observations than fixed-sample procedures; see the statistics literature, for example, Ghosh and Sen (1991) and Park et al. (2002).

2. Simulation experiments proceed sequentially (unless parallel computers are used).

 Our Application-Driven Sequential Design (ADSD) does not provide tabulated designs; instead, we present a procedure for generating a sequential design for the actual (simulation) experiment.

 Note that (after we finished this research, we found that) a different ADSD is developed by Sasena, Papalambros, and Govaerts (2002). They, however, focus on optimization instead of sensitivity analysis (we think that optimization is more applied in engineering sciences than in management sciences, because the latter sciences involve softer performance criteria). Moreover, they use the ‘generalized expected improvement function’ assuming a Gaussian distribution, as proposed by Jones, Schonlau, and Welch (1998). We, however, use distribution-free jackknifing and cross-validation for a set of candidate input combinations. Sasena et al. examine several criteria for selecting the next input combination to be simulated, including the ‘maximum variance’ criterion; the latter criterion is the one we use. (An alternative to their single, globally fitted Kriging metamodel for constrained optimization is a sequence of locally fitted first-order polynomials; see Angün et al. 2002.) Related to Sasena et al. (2002) is Watson and Barnes (1995). More research is needed to compare our method with Sasena et al.’s method (also see our final section, called ‘Conclusions and further research’).

The remainder of this paper is organized as follows. Section 2 summarizes the basics of Kriging. Section 3 summarizes DOE and Kriging. Section 4 explains our method, which uses cross-validation and jackknifing to select the next input combination to be simulated; this section also discusses sequentialization and stopping. Section 5 demonstrates the procedure through two academic applications, which shows that our method gives better results than a design with a prefixed sample size; moreover, estimated Gaussian and linear correlation functions (variograms) – used in Kriging - give approximately the same results. Section 6 present conclusions and topics for further research.
2. Kriging basics

Kriging is named after a South-African mining engineer, D.G. Krige. It is an interpolation method that predicts unknown values of a random function or random process; see Cressie (1993)’s classic Kriging textbook and equation (1) below. More precisely, a Kriging prediction is a weighted linear combination of all output values already observed. These weights depend on the distances between the location to be predicted and the locations already observed. Kriging assumes that the closer the input data are, the more positively correlated the prediction errors are. This assumption is modeled through the correlogram or the related variogram, discussed below.

Nowadays, Kriging is also popular in deterministic simulation (to model the performance of computer chips, television screens, etc.); see Sacks et al. (1989)’s pioneering article, and - for an update - see Simpson et al. (2001a). Compared with linear regression analysis, Kriging has an important advantage in deterministic simulation: Kriging is an exact interpolator; that is, predicted values at observed input values are exactly equal to the observed (simulated) output values.

Kriging assumes the following metamodel:

\[Y(x) = \mu(x) + \delta(x) \quad \text{with} \quad \delta(x) \sim NID(0, \sigma^2(x)) \]

(1)
where μ is the mean of the stochastic process $Y(\cdot)$, and $\delta(x)$ is the additive noise, which is assumed normally independently distributed (NID) with mean zero and variance $\sigma^2(x)$. Ordinary Kriging further assumes a stationary covariance process for $Y(x)$ in (1): the expected values $\mu(x)$ are constant and the covariances of $Y(x+h)$ and $Y(x)$ depend only on the distance (or lag) $|h| = |(x+h)-(x)|$.

As we mentioned above, the Kriging predictor for the unobserved input x_o - denoted by $\hat{Y}(x_o)$ - is a weighted linear combination of all the (say) n observed output data:

$$\hat{Y}(x_o) = \sum_{i=1}^{n} \lambda_i \cdot Y(x_i) = \lambda' \cdot Y$$

with $\sum_{i=1}^{n} \lambda_i = 1$, $\lambda = (\lambda_1, \ldots, \lambda_m)'$ and $Y = (y_1, \ldots, y_m)'$. To choose these weights, the ‘best’ linear unbiased estimator (BLUE) is derived: this estimator minimizes the mean-squared prediction error $MSE(\hat{Y}(x_o)) = E((\hat{Y}(x_o) - Y(x_o))^2)$, with respect to λ. Obviously, this solution depends on the covariances, which may be characterized by the variogram, defined as $2\gamma(h) = \text{var}(Y(x+h) - Y(x))$. (We follow Cressie, who uses variograms, whereas Sacks et al. use correlation functions; also see our discussion on the estimation of variograms in Section 5.) An example variogram is given in Figure 1.

Insert Figure 1

It can be proven that the optimal weights in (2) are

$$\lambda' = \left(\gamma + 1 \frac{1-\Gamma^{-1} \gamma}{1} \right)^{-1} \Gamma^{-1}$$

where γ is the vector of (co)variances $(\gamma(x_0-x_1), \ldots, \gamma(x_0-x_n))'$; Γ is the $n \times n$ matrix whose $(i,j)^{th}$ element is $\gamma(x_i - x_j)$; $1 = (1, \ldots, 1)'$ is the vector of ones. We point out that the weights in (3) vary with the prediction point, whereas regression analysis uses the same estimated metamodel for all prediction points. Further details on Kriging are provided by Cressie (1993, p. 122); an update is Van Beers and Kleijnen (2003).
3. DOE and Kriging

A design is a set of (say) n combinations of the k factor values. These combinations are usually bounded by ‘box’ constraints: $a_j \leq x_j \leq b_j$, where $a_j, b_j \in R$ with $j = 1, ..., k$. The set of all feasible combinations is called the experimental region (say) H. We suppose that H is a k-dimensional unit cube, after rescaling the original rectangular area (also see the Introduction).

Our goal is to find a design - for Kriging predictions within H - with the smallest size that satisfies a certain criterion. The literature proposed several criteria: see Sacks et al. (1989, p. 414). Most of these criteria are based on the Mean Squared prediction Error, \(\text{MSE}(\hat{Y}(x)) = E(\hat{Y}(x) - Y(x))^2 \) where the predictor \(\hat{Y}(x) \) follows from (2) and the true output \(Y(x) \) was defined in (1). (An alternative considers 100(1\(- \alpha \)) prediction regions for \(y(x) \) and inter-quantile ranges for \(\hat{y}(x) \); see Cressie 1993, p. 108.) However, most progress has been made through the Integrated Mean Squared Error (IMSE); see Bates et al. (1996): choose the design that minimizes

\[
\text{IMSE} = \int_{H} \text{MSE}(\hat{Y}(x)) \phi(x)dx
\]

for a given weight function \(\phi(x) \).

To validate the design, Sacks et al. (1989, p. 416) compare the predictions with the known true values in a test set of size (say) m. They assume \(\phi(x) \) to be uniform, so IMSE in (4) can be estimated by the Empirical Integrated Mean Squared Error (EIMSE):

\[
\text{EIMSE} = \frac{1}{m} \sum_{i=1}^{m} \left(\hat{y}_i(x) - y_i(x) \right)^2.
\]

Note that criteria such as (4) are more appropriate in sensitivity analysis than in simulation optimization; see Sasena et al. (2002) and also Kleijnen and Sargent (2000) and Kleijnen (1998).

4. Application-driven sequential design

4.1 Pilot input combinations
We start with a *pilot design* of size (say) \(n_0 \). To select \(n_0 \) *specific* points, we notice that Kriging gives very bad predictions in case of *extrapolation* (i.e., predictions outside the convex hull of the observations obtained so far). Indeed, in our examples we find very bad results (not displayed). Therefore, we select the \(2^k \) vertices of \(H \) as a subset of the pilot design. In our tow examples with a *single* input \((k = 1)\), this choice implies that one input value is the minimum and one is the maximum of the input’s range; see Figure 2 (other parts of this figure will be explained below, in Sections 4.2 and 4.3).

Insert Figure 2

Besides these \(2^k \) vertices, we must select some more input combinations to *estimate the variogram*. Like Cressie (1993) we assume either a Gaussian variogram
\[
\gamma(h) = c_0 + c_1 (1 - \exp(-h/a))
\]

or a linear variogram
\[
\gamma(h) = c_0 + c \cdot h.
\]

Obviously, estimation of these variograms requires at least three different values of \(h \); thus at least three different I/O combinations. Moreover - as we shall see - our approach uses cross-validation, which implies that we drop one of the \(n_0 \) observations and re-estimate the variogram; i.e., cross-validation necessitates one extra I/O combination.

In practice, we may select a ‘small’ set of additional observations – besides the \(2^k \) corner points – using a standard *space-filling design*, which ensures that no two design points are too close to each other. More specifically, we propose a *maximin* design, which packs all design points in hyper spheres with maximum radius; see Koehler and Owen (1996, p. 288). In our examples, we take - besides the two endpoints of the factor’s range – two additional points. The latter points we place such that all four observed points are equidistant; see again Figure 2. (Future research may investigate alternative sizes \(n_0 \) and components \(x \).)

4.2 Candidate input combinations
After selecting and actually simulating a pilot design (Section 4.1), we choose additional input combinations - accounting for the particular simulation model at hand. Because we do not know the I/O function of this simulation model, we choose (say) \(c \) candidate points - without actually running any expensive simulations for these candidates (as we shall see in Section 4.3).

First we must select a value for \(c \). In Figure 2 we select three candidate input values (had we taken more candidates, then we would have to perform more Kriging calculations; in general, the latter calculations are small compared with the ‘expensive’ simulation computations).

Next we must select \(c \) specific candidates. Again, we use a space-filling design (as we did for the pilot sample). In Figure 2 we select the three candidates halfway between the four input values already observed. (Future research may investigate how to use a space filling design to select candidates, ignoring candidates that are too close to the points already observed. In practice, LHS designs are attractive since they are so simple: LHS is part of spreadsheet add-ons such as @Risk.)

4.3 Cross-validation

To select a ‘winning’ candidate for actual (expensive) simulation, we estimate the variance of the predicted output at each candidate input – without any actual simulation. Therefore we use cross-validation and jackknifing, as follows.

Given a set of observed I/O data \((x_i, y_i)\) with \(i = 1, \ldots, n\) (initially, \(n = n_0\)), we eliminate observation \(i\) and obtain the cross-validation sample (with only \(n - 1\) observations):

\[
S^{(-i)} = \{(x_1, y_1), (x_2, y_2), \ldots, (x_{i-1}, y_{i-1}), (x_{i+1}, y_{i+1}), \ldots, (x_n, y_n)\}. \tag{8}
\]

From the sample in (8), we could compute the Kriging prediction for the output for each candidate. However, to avoid extrapolation (see Section 4.1), we do not eliminate the observations at the vertices: of the cross-validation sample in (8) we use only (say) \(n_c\) observations. The predictions are analogous to (2) replacing \(n\) by \(n_c\); in case of \(k = 1\) we take \(n_c = n_0 - 1\). Obviously, we must re-estimate the optimal weights in (2), using (3) (also see the ‘binning’ discussion at the end of Section 4.4). Figure 2
shows the $n_c = n_0 - 1 = 3$ Kriging predictions (say) $\hat{Y}^{(-i)}$ after deleting observation i as in (8), for each of the $c = 3$ candidates.

Figure 2 suggests that it is most difficult to predict the output at the candidate point $x = 8.33$. To quantify this prediction uncertainty, we use jackknifing.

4.4 Jackknifing

First, we calculate the jackknife’s pseudo-value for candidate j, which is defined as the following weighted average of the original and the cross-validation predictors:

$$\tilde{y}_{j;i} = n_c \times \hat{Y}^{(-0)} - (n_c - 1) \times \hat{Y}^{(-i)} \quad \text{with} \quad j = 1, \ldots, c \text{ and } i = 1, \ldots, n_c$$ \hspace{1cm} (9)

where $\hat{Y}^{(-0)}$ is the original Kriging prediction for candidate input j based on the complete set of observations (zero observations eliminated: see the superscript -0).

From the pseudo-values in (9), we estimate the jackknife variance for candidate j:

$$\tilde{s}_j^2 = \frac{1}{n_c(n_c - 1)} \sum_{i=1}^{n_c} (\tilde{y}_{j;i} - \bar{\tilde{y}}_j)^2 \quad \text{with} \quad \bar{\tilde{y}}_j = \frac{1}{n_c} \sum_{i=1}^{n_c} \tilde{y}_{j;i}.$$ \hspace{1cm} (10)

Note that we also experimented with other measures of variability, for example, the 90% interquantile; all these measures gave the same type of design.

Finally, to select the winning candidate (say) m for actual simulation, we find the maximum of the jackknife variances in (10):

$$m = \arg(\max_j \{\tilde{s}_j^2\})$$ \hspace{1cm} (11)

Note that a candidate location close to a deleted observation lies relative far away from the remaining observations. Hence, such a candidate is less correlated to its neighboring points. Consequently, its Kriging prediction becomes rather uncertain. However, this phenomenon holds for each deleted observation.

Note further that to reduce the computer time needed by our procedure (not by the simulation itself), we estimate the variogram from binned distances: for n inputs, we classify the $n(n - 1)/2$ possible distances h in (say) $n_b < n$ equally sized intervals.
or ‘bins’. These intervals should be as small as possible to retain spatial resolution, yet large enough to stabilize the variogram estimator. Journel and Huijbregts (1978) recommend at least thirty distinct pairs in each interval. For the \(n_b \) midpoints of these intervals, we calculate the average squared difference to estimate the variogram; see Cressie (1993, p.69). In our examples we use \(n_b = 15 \).

4.5 Sequentialization

Once we have simulated the ‘winning’ candidate selected through (11), we add the new observation to the set of observations; see \(S \) in (8) – now with superscript (-0) and with \(n + 1 \) members.

Next, we choose a new set of candidates with respect to this augmented set. For example, in Figure 2 we add as new candidates \(x = 1.67, x = 5, x = 7.5 \) and \(x = 9.17 \); these candidates are not shown in Figure 2, but the winning candidate is shown as part of Figure 3.

The ‘dynamics’ of our procedure is demonstrated by Figure 4, which shows the order in which input values are selected - in a total sample size \(n = 50 \).

Insert Figures 3a & b

Insert Figure 4

4.6 Stopping rule

To stop our sequential procedure, we measure the *Successive Relative Improvement* (SRI) after \(n \) observations:

\[
\text{SRI}_n = \left| \max_j \{ \tilde{s}_j^2 \}_n - \max_j \{ \tilde{s}_j^2 \}_{n-1} \right| / \max_j \{ \tilde{s}_j^2 \}_{n-1}
\]

(12)

where \(\max_j \{ \tilde{s}_j^2 \}_n \) denotes the maximum jackknife variance (see (11)) after \(n \) observations. Figure 5 shows SRI for up to \(n = 50 \) in Example I (detailed in Section 5.1). There are no essential changes in (12) beyond \(n = 15 \). In the literature (including
Sasena et al. 2002 and Jones et al. 1998), we did not find an appealing stopping criterion for our sequential design; future research may be needed.

Insert Figure 5

We stop our sequential procedure as soon as we find no ‘substantial’ reduction for SRI. However, SRI may fluctuate greatly in the first stages, so we might stop prematurely. To avoid such stopping, we select a minimum value (say) \(n_{\text{min}} \) so that the complete design contains \(n = n_0 + n_{\text{min}} \) observations. Figure 3(a) used \(n_{\text{min}} = 15 \), whereas Figure 3(b) used \(n_{\text{min}} = 50 \) (Figure 2 is the part of Figure 3 that corresponds with \(n = 4 \)).

In practice – as Kleijnen et al. (2002) point out – simulation experiments may stop prematurely (e.g., the computer may break down). Our procedure then still gives useful information.

5. **Two examples**

5.1 **Example 1: a hyperbolic I/O function**

Consider the following hyperbole:

\[
y = \frac{x}{1-x} \quad \text{with } 0 < x < 1.
\]

(13)

We are interested in this example, because \(y \) in (13) equals the expected waiting time in the steady state of a single-server system with Markovian (Poisson) arrival and service times (denoted by M/M/1). This system has a single input parameter, namely the traffic load \(x \), which is the ratio of the arrival rate and the service rate. This system is a building block in many realistic discrete-event simulation models; see Law and Kelton (2000, p. 12) and also Van Beers and Kleijnen (2001).

When applying our approach to (13), we decided to select a pilot sample size \(n_0 = 4 \) and a minimum sample size value \(n_{\text{min}} = 10 \). We stop the sequential procedure as soon as the SRI in (12) drops below 5%; this results in a total sample size \(n = 19 \). Also see Figure 6(a). Replacing 5% by 1% gives \(n = 36 \); see Figure 6(b).
Figure 6 demonstrates that our final design selects relative few input values in the area that generates an approximately linear I/O function, whereas it selects many input values in the exploding part (where x approaches one).

Insert Figures 6a & b

We think that our design is intuitively appealing - but we also use a *test set* to quantify its performance. In this test, we compare our design with a *single-stage LHS design* of the same size ($n = 19$ or $n = 36$). LHS divides the total range of the input variable into n mutually exclusive and exhaustive intervals of equal length; within each interval, LHS samples a uniformly distributed value. To estimate the resulting variability, we obtain (say) ten LHS samples, from which we estimate the mean and the standard deviation (standard error).

From the n observations per design we compute the Kriging predictors for the 32 true test values, and calculate the squared error per test value. From the 32 values we compute the average – see EIMSE in (5), which corresponds with the L_2 norm – and the maximum or L_∞ norm. We find substantially better results for our designs; see Table 1.

insert table 1

5.2. Example II: a fourth-order polynomial I/O function

As Van Beers and Kleijnen (2001) did, we consider

$$y = -0.0579x^4 + 1.11x^3 - 6.845x^2 + 14.1071x + 2,$$ \hspace{1cm} (14)

which is a multi-modal function; see again Figure 2.

For our design, we select $n_0 = 4$, $n_{\text{min}} = 10$, and a SRI smaller than 5%. This gives a sequential design with 18 observations. A SRI smaller than 1% gives a final (sequential) design with 24 observations (Example I resulted in 36 observations).

Figure 7 demonstrates that our final design selects relative few input values in the area that generates an approximately linear I/O function, whereas it selects many input values near the edges, where the function changes much.
We again compare our design with a single-stage LHS design of the same size \((n = 18 \text{ or } n = 24)\), and obtain ten LHS samples to estimate the mean and standard deviation. We find substantially better results for our designs; see Table 2.

Note that we focus on sensitivity analysis, not optimization. For example, our method selects input values - not only near the ‘top’ - but also near the ‘bottom’ of (14). If we were searching for a maximum, we would adapt our procedure such that it would not collect data near an obvious minimum.

Insert Figure 7

5.3 Estimated variograms: Gaussian versus linear

We also investigate the influence of the assumed variogram, namely a Gaussian variogram and a linear variogram; see (6) and (7). We use a single-stage design with 21 observations. We use ordinary least squares for these estimators (whereas Sack et al. assume a Gaussian correlation function and use maximum likelihood estimation, which takes much more computer time and may involve numerical problems).

The Gaussian and the linear variograms result in two designs that look very similar, for both Example I and Example II. More precisely, when using a test set of nine equidistant input values, Kriging predictions based on a Gaussian variogram give an EIMSE of 0.3702, whereas a linear variogram gives 0.3680 for Example I. Analogously, Example II gives 0.0497 and 0.0482. So the Gaussian and linear variograms give similar values for EIMSE. The linear variogram, however, is simpler: no data transformation is needed.

6. Conclusions and further research

To avoid expensive simulation runs, we propose cross-validation and jackknifing to estimate the variances of the outputs for candidate input combinations. We actually simulate only the candidate with the highest estimated variance. This procedure we apply sequentially.

Our two examples show that our procedure simulates relatively many input combinations in those sub-areas that have interesting I/O behavior. Our design gives smaller prediction errors than single-stage designs do.
In future research, we may extend our approach to
1. alternative \textit{pilot-sample} sizes \(n_0 \) with alternative space-filling input combinations \(\mathbf{x} \) (Jones et al. 1998, p. 21 propose \(n_0 = 10k \) and an adjusted LHS design)
2. alternative space-filling designs for the selection of \textit{candidate} input combinations, ignoring candidates that are too close to the points already observed in any preceding stages (such an alternative design may be a nearly-orthogonal LHS design; see Kleijnen et al. 2002)
3. a \textit{stopping criterion} for our sequential design
4. \textit{multiple} inputs (\(k > 1 \))
5. \textit{realistic} simulation models (instead of our Examples I and II)
6. comparison of our approach with Sasena et al. (2002)’s approach
7. \textit{stochastic} simulation models
8. \textit{other metamodels}, such as linear regression models (see Kleijnen and Sargent 2000) and neural nets (see Simpson et al. 2001b).

\textbf{Acknowledgment}

Bert Bettonvil (Tilburg University) provided very useful comments on an earlier version.

\textbf{References}

Figure 1. An example variogram

Figure 2. Fourth-order polynomial example, including four pilot observations and three candidate inputs with predictions based on cross-validation, where \((-i)\) denotes which observation \(i\) is dropped in the cross validation.
Figure 3(a). Figure 2 continued with $n = 19$ observations

Figure 3(b). Figure 2 continued with $n = 54$ observations
Figure 4. Dynamics of sequential sampling for Example 1

Figure 5. Successive relative improvements for 50 observations in hyperbole example
Figure 6(a). Hyperbole example, including four pilot observations and with $n = 19$ observations

Figure 6(b). Figure 6a continued with $n = 36$ observations
Figure 7. Final design for fourth-order polynomial example with RSI < 1% and $n = 24$
<table>
<thead>
<tr>
<th></th>
<th>ADSD</th>
<th>LHS</th>
<th></th>
<th>ADSD</th>
<th>LHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EIMSE</td>
<td>L_{∞}</td>
<td>EIMSE</td>
<td>(stand. error)</td>
<td>L_{∞}</td>
</tr>
<tr>
<td>$n = 19$</td>
<td>8.90 * 10^{-4}</td>
<td>0.0759</td>
<td>6.14 * 10^{-3}</td>
<td>(4.81 * 10^{-3})</td>
<td>0.3559</td>
</tr>
<tr>
<td>$n = 36$</td>
<td>1.19 * 10^{-4}</td>
<td>0.0303</td>
<td>2.76 * 10^{-4}</td>
<td>(9.79 * 10^{-5})</td>
<td>0.0791</td>
</tr>
</tbody>
</table>

Table 1. IMSE of two design types for hyperbole (Example I)

<table>
<thead>
<tr>
<th></th>
<th>ADSD</th>
<th>LHS</th>
<th></th>
<th>ADSD</th>
<th>LHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EIMSE</td>
<td>L_{∞}</td>
<td>EIMSE</td>
<td>(stand. error)</td>
<td>L_{∞}</td>
</tr>
<tr>
<td>$n = 18$</td>
<td>0.1741</td>
<td>1.0470</td>
<td>0.5855</td>
<td>(0.5574)</td>
<td>3.3011</td>
</tr>
<tr>
<td>$n = 24$</td>
<td>0.0121</td>
<td>0.2503</td>
<td>0.2473</td>
<td>(0.2112)</td>
<td>2.1212</td>
</tr>
</tbody>
</table>

Table 2. IMSE for two types of designs for fourth degree polynomial