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I. Introduction

Managing the risks of derivative assets has always been one of the major challenges in

risk management. With the strong increase in derivative positions in the portfolios of

financial institutions the task of managing these risks has become more daunting than

ever. An equally daunting task is testing the quality of models used to quantify the risk

of derivatives positions.

Since the Basle Committee advised the use of value-at-risk (VaR) in the 1996 amend-

ment to the Basle Accord for determination of regulatory capital, many studies have

investigated VaR (see, for example, the overviews in Jorion (2000) and Dowd (1998)

and the references therein). Recently, a literature emerged advocating alternative risk

measures, namely, coherent risk measures and, in particular, expected shortfall (see, for

example, Artzner et al. (1999), Delbaen (2000), Acerbi and Tasche (2002), and Tasche

(2002)). The advantages of expected shortfall over VaR are that it satisfies the prop-

erty of subadditivity and the fact that portfolio optimization under expected shortfall

constraints yields reasonable portfolios, contrary to VaR (see, for example, Yamai and

Yoshiba (2002) for the constrained portfolio optimization). Though most people agree

that from a theoretical point of view expected shortfall is to be preferred to VaR, it is

still less widely used due to the lack of a solid backtesting procedure. Recently, Kerkhof

and Melenberg (2002) introduced a test for expected shortfall and found that for ap-

propriately adjusted levels, expected shortfall has more desirable backtesting properties

than VaR.

Though quite a number of studies have tested the performance of several VaR models,

derivatives positions were rarely explicitly taken into account (see, for example, McNeil

and Frey (2000), Christoffersen et al. (2001), and Berkowitz and O’Brien (2002)). In

cases where derivative positions were explicitly taken into account, the literature usually

focused on the computation of VaR rather than on the testing of the VaR models, since

the standard binomial test can be applied (see, for example, Kupiec (1995) and El-

Jahel et al. (1999)). However, the standard binomial test cannot be applied to expected

shortfall. In order to test expected shortfall we need information of the distribution of
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bank’s profit and losses (P&L) account, or more specifically its tail behavior.

One of the problems that one faces in determining the P&L distribution of (non-

linear) derivatives is that their risk characteristics change over time. For example, an

option can change from a 1 year at-the-money option into a 3 month far out-of-the-

money option, resulting in completely different risk characteristics. In this paper, we

propose a method to take into account the differences in risk exposures between options

with different characteristics.

We consider several methods to estimate the risk measure for the one-day hedge

error. The first method we consider is a simple Black-Scholes based model which as-

sumes normal asset returns and constant implied volatilities. Method 2 relaxes the

assumption of normal asset return and uses a nonparametric asset return distribution

based on historical simulation. Method 3 is a full historical simulation method that as-

sumes a nonparametric asset returns distribution and a nonparametric implied volatility

distribution. The fourth method is a Vector AutoRegessive (VAR) model for asset re-

turns and implied volatilities returns with Gaussian errors, while method 5 considers

nonparametric errors instead.

We test the models on the FX market and, in particular, the mutual exchange rates

of the US, the UK, and Japan. Furthermore, we test the models on S&P 500 options.

We find that the historical simulation method and the VAR models perform reasonably

well.

The remainder of the paper is structured as follows. Section II describes daily market

risk for derivative positions. Section III discusses the aging, moneyness, and level effects

of derivative positions and a possible transformation to standardize the risk exposures.

The models used are described in Section IV. Section V describes the test used and

Section VI presents the empirical results. Finally, Section VII concludes.

II. Quantifying daily market risk

Consider the situation where a financial institution manages a portfolio which is short

in options. Due to this position the financial institution is subject to a risk exposure
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with respect to the value of the options. To decrease this risk exposure the financial

institution hedges the derivative using a particular hedge strategy. To illustrate, consider

a derivative whose price at day t equals ft. The financial institution hedges the derivative

using some underlying instruments with prices St =
(
S1

t , ..., S
k
t

)
. Let the money market

account at time t be given by Nt. Let the financial institution hedge the derivative by

buying amounts γt =
(
γ1

t , ..., γ
k
t

)
of the underlying instruments. Define

αt =
ft − γt · St

Nt
. (1)

Then we will have as accounting identity

ft = γt · St + αtNt. (2)

The next day the price of the derivative will be ft+1, while the hedging position (if there

are no intermediate adaptations) will be valued γt·St+1+αtNt+1. The difference between

the next period’s derivative’s price and the hedge position induces the daily market risk.

A financial institution can quantify this daily market risk by assuming some method

to estimate or calibrate the next day’s probability distribution of (ft+1, St+1, Nt+1).

Taking a numeraire whose future value at t + 1 is known (for example, a one-period

discount bond) reduces the problem to estimating or calibrating the next day’s proba-

bility distribution of (ft+1, St+1), but now with respect to the numeraire instead of cash.

This allows for estimation or calibration of the daily market risk measures (for instance,

value-at-risk or expected shortfall). Our interest in this paper is in risk measures of the

daily market risk profile. Specifically, we are interested in the distribution of

E1
t ≡ ∆ft − γt∆St, (3)

where ∆xt ≡ xt+1 − xt for x = f, S. E1
t denotes the one-period hedge error and

its distribution which is termed the daily market risk profile is denoted by L (E1
t

)
.

Examples of the daily market risk profile are given in the upper panel of Figure 1, which
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Figure 1. Aging, moneyness, and level effects On the x-axis the return on the
hedged portfolio is given in percentages. Total number of simulations = 100,000. The
upper panel shows the daily risk profiles of delta hedged ATM call option with a matu-
rities of 3 months, 1 year, and 3 years and level 100. The middle panel shows the daily
risk profiles of delta hedged OTM (m = -0.1) , ATM (m = 0), and ITM (m = 0.1) call
option with a maturity 1 year and level of 100. The lower panel shows the daily risk
profiles of a delta hedged ATM call option with a maturity of 1 year and levels of 50,
100, and 200.
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presents daily market risk profiles of a delta hedged 3 month at-the-money, 1 year at-

the-money, and 3 year at-the-money (ATM) call option in a Black-Scholes world with

annual instantaneous drift µ = 0.1, instantaneous volatility σ = 0.2, and instantaneous

riskless interest rate equal to r = 0.05. Time t is measured in days (1 year equals 250

days). In line with Boyle and Emanuel (1980) a shifted non-central χ2−distribution is
found as an approximation for the market risk profile.

III. Aging, moneyness, and level effect

Figure 1 clearly shows that the distribution of hedge errors of options depends on the

time to maturity, τ = T − t. We refer to the fact that the daily market risk profile

changes with the time to maturity as the aging effect. For shorter maturities, the daily
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risk profile is more spread out. The middle panel of Figure 1 shows the dependence of

the daily risk profile on moneyness which is termed the moneyness effect.1 Out-of-the-

money options have more variability than in-the-money options. Finally, in the lower

panel we see the influence of the level on the risk profiles, the so-called level effect. It is

easy to show that this effect is linearly dependent on the level.

The three effects shown in Figure 1 indicate the problems one encounters when using

time series data of a particular option to extract information of the daily market risk

profile of that option. The observations of hedge errors of the option are taken with

different times to maturity and potentially different moneyness and levels. Since the

distribution differs for these situations, these hedge errors are hard to compare. In

order to suppress the level effect we first determine a level-independent distribution of

relative hedge errors in the following way:

Ẽ1
t =

E1
t

ft − γt · St
. (4)

The dependence on the daily market risk profile on the aging and moneyness effect is

more complicated to resolve. To get rid of the aging and moneyness effect, it is natural

to use data on derivatives with the same moneyness and time to maturity, if possible.

For FX derivatives and interest-rate derivatives these data are available, since these are

quoted in the market with a fixed time to maturity. For equity derivatives, however,

this is more complicated due to the fact that these derivatives have fixed maturity dates.

Therefore, we have to transform our data.

A. Transformation of the data

A possible way to correct the daily market risk profile for the aging and moneyness effect

is to assume a parametric option pricing model so that one can use the characteristics

of such a model to find the appropriate corrections. In this section we correct for the

aging and moneyness effect using the Black-Scholes model.2 Denoting the model price
1Moneyness is defined as m = log

(
ertSt/k

)
. A call option is called in-the-money (ITM) if m > 0,

at-the-money if (ATM) m = 0, and out-of-the-money (OTM) if m < 0.
2Other models with sufficiently smooth pricing formulas can also be used.

7



by f(ξt) with ξt = (St, t) a Taylor series expansion gives

f(ξt+∆t) = f(ξt) + ∆(ξt)∆St +
1
2
Γ(ξt) (∆St)

2 +Θ(ξt)∆t+O(∆t3/2), (5)

where

∆St = St+∆t − St. (6)

∆(ξt) ≡ ∂f
∂S (ξt) denotes the first-order partial derivative of f with respect to the under-

lying, Γ(ξt) ≡ ∂2f
∂S2 (ξt) denotes the second order partial derivative with respect to the

underlying, and Θ(ξt) ≡ ∂f
∂t (ξt) denotes the first partial derivative with respect to the

current time.

We take ∆t = 1. Let E1
t denote the one-period hedge error from time t to t+ 1 and

let {γt}T
t=1 denote the hedging strategy. Neglecting the remainder term from now on,

we get

E1
t = ∆ft − γt∆St

= (γt −∆(ξt)∆St) +
1
2
Γ(ξt) (∆St)

2 +Θ(ξt).

In general, the hedge errors E1
1 , ..., E

1
T resulting from the hedge strategy {γt}T

t=1 do

not have the same distribution. To evaluate the performance of a hedge strategy, we

want to “standardize” the hedge errors such that they have the same distribution. As

reference distribution, we use the distribution, L (E1
t∗
)
, for some t∗ such that 0 ≤ t∗ < T .

We assume strict stationarity of the differenced underlying process, implying,

L (∆St) = L (∆St∗) (7)

for t = 1, ..., T. Using the auxiliary process γ∗t

γ∗t = ∆(ξt) +
Γ(ξt)
Γ(ξt∗)

(γt∗ −∆(ξt∗)) ,

we find the following relationship between the distributions of the hedge errors at dif-
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Figure 2. Transformation This figure shows the effect of the transformation described
in III.A. The graph shows the risk profile when the hedge errors of a delta hedged ATM
option position are corrected for all effects, and the risk profiles corrected for all effects
but the aging effect, the moneyness effect, and the level effect, respectively. The reference
distribution is a one year ATM call option.
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ferent times.

L (Et∗) = L
(
Γ(ξt∗)
Γ(ξt)

E1
t +

Γ(ξt∗)
Γ(ξt)

(γ∗t − γt)∆St − Γ(ξt∗)
Γ(ξt)

Θ(ξt) + Θ(ξt∗)
)
. (8)

In (8) we found a relation between the one-period hedge error from t∗ to t∗ + 1 with

characteristics (St∗ ,mt∗ , τt∗) and the one-period hedge error from t to t + 1 with char-

acteristics (St,mt, τt). Therefore, we can transform the data set of realizations drawn

from not identically distributed distributions to one of realizations drawn from approx-

imately identically distributed distributions. To obtain (8) we neglected the remainder

term and used a parametric model in (5), so that this can only be seen as a good practical

approximation and not as a strict identity.
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Suppose we have a time series of hedge errors from a one year ATM call option. In

Figure 2 we see the result of correcting the time series hedge errors for aging, moneyness,

and level effect. This is in accordance with the ”true” distribution determined by cross-

sectional simulation. Furthermore, the distribution is given in case one of the corrections

is left out. We see that the distribution is more spread out, if we leave out the aging

effect correction. This follows from the fact that gamma is higher for short term options.

Not correcting for the moneyness results in a less spread out distribution due to the fact

that the gamma is lower for ITM and OTM options. Finally, we see that the distribution

which is not corrected for level is rather similar to the corrected one. The level effect,

however, becomes more important in case the sample is longer and the underlying moves

further away from its starting position.

IV. Daily market risk forecasting methods

In this section, we discuss several methods that can be used to compute risk measures,

such as value-at-risk and expected shortfall, of the daily market risk. In doing so, the

models need to estimate F ≡ L
(
Ẽ1

t

)
or more specifically the (joint) distribution of

∆fmi
t and ∆Smi

t for models i = 1, ..., 5. After applying the standardizing procedure in

(8) we assume a stationary time series of3

Ẽ1,mi
t =

∆fmi
t − γt∆Smi

t

ft − γtSt
, t = 1, ..., T,

with ∆fmi
t ≡ fmi

t+1 − ft and ∆Smi
t ≡ Smi

t+1 − St where ft and St denote observed prices.

We have returns data available of the underlying (S), the implied volatility (σ), the

domestic interest rate (rd), and the foreign interest rate (rf ), h−N+1 =
(
hs
−N+1, h

σ
−N+1, h

rd

−N+1, h
rf

−N+1

)
, ..(

hs
T , h

σ
T , h

rd

T , hrf

T

)
, with hx

t = log (xt/xt−1). From these data we use {h1, ..., hT } for test-
ing and denote it as the testing sample. The testing sample is used in the backtest to

determine the quality of the method. All the models discussed below are used to es-

timate the distribution of the relative one-period hedge error Ẽ1,mi, denoted by Fmi .
3The time series is also assumed to be ergodic and satisfy the necessary regularity conditions needed

for Central limit theorems used later on.
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For notational convenience, we neglect the dependence of Ẽ1,mi , ∆fmi
t , and ∆Smi

t on

mi in the following enumeration of models.

1. Method 1 is a naive method which more or less follows the Black-Scholes world

assumptions, but with potentially changing mean and volatility. It assumes that

L (hs
t+1

)
= N (

µt, σ
2
t

)
and that σ, rd, and rf are constant. To estimate µt and

σ2
t we use the returns data of the underlying, h

s
t , ..., h

s
t−N , to get µt and σ2

t , the

so-called rolling window estimators for µt and σ2
t . For t = 1, ..., T we draw hs

t from

N (
µt, σ

2
t

)
to construct (∆St)

T
t=1 and (∆ft)

T
t=1.

4 Given the hedge strategy γ we

construct
(
Ẽ1

t

)T

t=1
from which we produce an estimate �̂m1 = �

(
ˆFm1

)
.

2. Method 2 is a historical simulation method for the underlying asset. The implied

volatilities, domestic and foreign interest rates are as in method 1. Method 2

allows a distribution for the underlying that differs from the normal distribution.

It assumes (hs
t )

T
t=−N+1 is an i.i.d. sample. We estimate the distribution, L (hs

t ),

by the empirical distribution of (hs
t∗)

t
t∗=t−N+1.

5 Drawing (with replacement) from

(hs
t∗)

t
t∗=t−N+1 for t = 1, ..., T allows us to construct (∆St)

T
t=1 and (∆ft)

T
t=1. Given

the hedge strategy γ we construct
(
Ẽ1

t

)T

t=1
from which we produce an estimate

�̂m2 = �
(
ˆFm2

)
.

3. Method 3 is a full historical simulation method. This type of method is often

used in practice and assumes that (ht)
T
t=−N+1 is an i.i.d. sample. We estimate

the distribution, L (ht) by the empirical distribution of (ht∗)
t
t∗=t−N+1. Drawing

ht (with replacement) from (ht∗)
t
t∗=t−N+1 for t = 1, ..., T allows us to construct

to construct (∆St)
T
t=1 and (∆ft)

T
t=1. Given the hedge strategy γ we construct(

Ẽ1
t

)T

t=1
from which we produce an estimate �̂m3 = �

(
ˆFm3

)
.

4. In method 4 a first-order Vector AutoRegressive (VAR) model for estimation of

4Note that the sequence (∆St)
T
t=1 is not used to produce a price path (St)

T
t=1 of the underlying. It

only serves to compute a series of hedge errors. The price path of the underlying is given by the data.
5Considering the stationarity assumption, it would be more efficient to use all available data, but we

use this nonparametric rolling window estimator because it is often used in practice.
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the distribution of (St+1, σt+1)
T
t=1 is estimated using (ht∗)

t
t∗=t−N+1 for t = 1, ..., T


 hs

t+1

hσ
t+1


 = Φ0 +Φ1


 hs

t

hσ
t


+


 us

t+1

uσ
t+1


 (9)

ht+1 = Φ0 +Φ1ht + ut+1, t = 1, ..., T (10)

with

L (ut+1|Ft) = N (0,Σt) ,

where Ft denotes the information set at point t. This gives (Φ0,t,Φ1,t)
T
t=1, and

(Σt)
T
t=1 to generate (∆St+1,∆σt+1) for t = 1, ..., T and (∆ft)

T
t=1. Given the

hedge strategy γ we construct
(
Ẽ1

t

)T

t=1
from which we produce an estimate �̂m4 =

�
(
ˆFm4

)
.

5. In method 5 a first-order Vector AutoRegressive (VAR) model for estimation of the

distribution of (St+1, σt+1)
T
t=1 is estimated using (h

s
t∗ , h

σ
t∗)

t
t∗=t−N+1 for t = 1, ..., T


 hs

t+1

hσ
t+1


 = Φ0 +Φ1


 hs

t

hσ
t


+


 us

t+1

uσ
t+1


 (11)

ht+1 = Φ0 +Φ1ht + ut+1, t = 1, ..., T (12)

with

L (ut+1|Ft) = FN
t ,

where FN
t denotes the empirical distribution function of u at time t estimated from

ut−N+1, ..., ut−1. This gives (Φ0,t,Φ1,t)
T
t=1, and (Σt)

T
t=1 to generate (∆St+1,∆σt+1)

for t = 1, ..., T and (∆ft)
T
t=1. Given the hedge strategy γ we construct

(
Ẽ1

t

)T

t=1

from which we produce an estimate �̂m5 = �
(
ˆFm5

)
.
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V. Test procedure

In this section, we present a test to evaluate daily market risk evaluation models de-

scribed in Section IV. Time t runs from −N + 1 to T . The last T observations are

used for testing. At each point in time the method is estimated from the previous N

observations, that is, we use the so-called rolling window estimator.

The predicted daily market risk will be obtained from the distribution Fmi of6

Ẽ1,mi
t =

∆fmi
t − γt∆Smi

t

ft − γtSt
, (13)

while the actual daily market risk is induced by the distribution F of

Ẽ1
t =

∆ft − γt∆St

ft − γtSt
(14)

We would like to test whether the predicted risk measures are the same for the

method hedge errors as for the empirical hedge errors. Let � (Fmi) represent the char-

acteristic of interest of Fmi and let � (F ) represent the corresponding characteristic of

interest of F .

Denote by �
(
F̂mi

)
an appropriate estimator for � (Fmi) such that

√
T
(
�
(
F̂mi

)
− � (Fmi)

)
=

√
T
1
T

T∑
t=1

Ψmi
t + op (1) , IEΨmi

t = 0, IE (Ψmi
t )2 < ∞,

(15)

and, similarly, let �
(
F̂
)
be an appropriate corresponding estimator for � (F ) such that

√
T
(
�
(
F̂
)
− � (F )

)
=

√
T
1
T

T∑
t=1

Ψt + op (1) , IEΨt = 0, IE (Ψt)
2 < ∞, (16)

where Ψmi
t and Ψt are called the influence functions. In Appendix A the influence

functions for VaR and expected shortfall are given. Then, under the null hypothesis
6Notice the difference in notation: ∆xmi

t ≡ xmi
t+1 − xt and ∆xt ≡ xt+1 − xt for x = S, f . In both

cases we use the observed prices as starting point.
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H0 : � (Fmi) = � (F ) , we have

√
T
(
�
(
F̂mi

)
− � (Fmi)

)
−
√
T
(
�
(
F̂
)
− � (F )

)
=

[
1 −1

]√
T
1
T

T∑
t=1


 Ψmi

t

Ψt


+ op (1)

d−→
H0

N (0, V ) (17)

with

V =
[
1 −1

] lim
T→∞

IE


T−1


 T∑

t=1


 Ψmi

t

Ψt




 Ψmi

t

Ψt



′






 1

−1


 (18)

So, with V̂ (using, for example, the estimator of Newey and West (1987)) satisfying

V̂
p−→ V , we can take as a test statistic

T

(
�
(
F̂mi

)
− �

(
F̂
))2

V̂

d−→
H0

χ2
1 (19)

Since we can simulate from Fmi as often as we would like, we can strengthen the

test above by using �̄ ≡ 1
K

K∑
k=1

�k(F̂
mi
t ), with K equal to the number of trials, instead of

�̂(Fmi
t ). This gives for fixed K

√
T (�̄− �(Fmi)) =

√
T

1
TK

K∑
k=1

T∑
t=1

Ψmi
t,k + op (1) ,

IEΨmi
t,k = 0, IE

(
Ψmi

t,k

)2
< ∞. (20)

The expression in (20) converges in probability to zero as K → ∞ and so we can take

as a test statistic

T

(
�̄− �

(
F̂
))2

v̂

d−→
H0

χ2
1, (21)

where v̂ denotes a consistent estimator for

v = lim
T→∞

IE

[
T−1

T∑
t=1

Ψ2
t

]
. (22)
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VI. Empirical Results

A. FX market

The FX market is by far the most liquid market in the world with a daily turnover of

about 1.5 trillion US dollars (for comparison, the NYSE has a daily turnover of about

30 billion US dollar). In this section, we apply the test outlined above to call options on

the dollar-yen, dollar-pound, and pound-dollar exchange rates. Quotes are in implied

volatilities in the FX market and prices can be computed using the Garman-Kohlhagen

model (see Garman and Kohlhagen (1983)). This is a version of the Black-Scholes model

applicable to currency options. Call option prices are given by

cGK
(
S, k, rd, rf , σ, τ

)
= Ste

−rf τΦ(d+)−Xe−rdτΦ(d−) , (23)

where

d± =
log (St/k) +

(
rd − rf

)
τ

σ
√
τ

± 1
2
σ
√
τ . (24)

rd is the domestic instantaneous riskless interest rate, rf is the foreign instantaneous

riskless interest rate, σ denotes the instantaneous volatility of the exchange rate and

Φ (·) denotes the Gaussian cumulative distribution function.
The daily data available consist of implied volatilities of 3 month ATM call options on

dollar-yen, dollar-pound, and pound-dollar exchange rates, the corresponding exchange

rates, and the US, UK, and Japanese interest rates.7 The data run from August 9, 1995

until December 13, 2002 and are shown in Figure 3.

This results in 1918 data points. We use a two year rolling window estimation period

for all the models. Taking the number of trading days per year equal to 250 gives us

estimation periods of 500 observations and 1418 observations for testing. In Kerkhof

and Melenberg (2002) it is argued that for fair comparison with a 1% value-at-risk

the level of expected shortfall should be about 2.5%.8 The quality of the models is
7The data have been kindly shared by ABN-AMRO Bank.
8This argument is based on the normal distribution, but seems to be approximately correct in our

sample.
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Figure 3. FX data In the upper panel the normalized price paths of the USD/JPY,
USD/GBP, and GBP/JPY are given. In the lower panel the implied volatilities for the
3m ATM call options are given.
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tested by tests whether the variances, the 1%-value-at-risk, and 2.5% expected shortfall

of the hedge error as predicted by the models and empirical hedge errors are equal.9

The level for value-at-risk is chosen at 1% such that it equals the current level in the

1996 amendment to the Basle Accord (see Basle Committee on Banking Supervision

(1996)). Table I reports the variance, 1% value-at-risk, and 2.5% expected shortfall for

an investment of $100 in a portfolio of ATM call options and the underlying exchange

rate with as ratio the hedge strategy.

For all exchange rates we find that the methods 1 and 2 is rejected for all risk mea-

sures. The full historical simulation method (method 3) performs well for all exchange

rates and all risk measures. The parametric VAR method, method 4, is rejected for the

USD/JPY exchange rate for being too conservative, while it is rejected in the GBP/JPY

exchange rate for underestimating the risk. The nonparametric VAR method, method 5,

is conservative in all markets and is rejected for the USD/JPY and USD/GBP exchange
9In the absence of data on ITM and OTM options, we have assumed a flat volatility smile for the

FX options. Since we are looking at one-day hedge errors and the FX volatility smile is rather flat near
the money, this should not lead to severe biases.
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Table I
Tests of Risk measures for the 3 month exchange rates

This table shows the empirical standard deviations, VaR0.01, and ES0.025 and those
obtained from methods 1,...,5 for the USD/JPY, GBP/JPY, and USD/GBP exchange
rate. We test whether the method predictions correspond to the empirical quantities.
The p-values of these tests are given in parentheses. In order to reduce sampling error
we used K = 10, 000.

emp method 1 method 2 method 3 method 4 method 5
USD/JPY

std. dev. 0.23
0.05
(0.00)

0.09
(0.00)

0.20
(0.36)

0.22
(0.85)

0.21
(0.63)

VaR0.01 -0.58
−0.18
(0.00)

−0.25
(0.00)

−0.62
(0.39)

−0.80
(0.00)

−0.72
(0.00)

ES0.025 -0.74
−0.19
(0.00)

−0.33
(0.00)

−0.70
(0.74)

−0.90
(0.43)

−0.85
(0.81)

USD/GBP

std. dev. 0.11
0.04
(0.00)

0.04
(0.00)

0.11
(0.19)

0.12
(0.09)

0.13
(0.00)

VaR0.01 -0.30
−0.13
(0.00)

−0.17
(0.00)

−0.35
(0.11)

−0.35
(0.12)

−0.44
(0.00)

ES0.025 -0.38
−0.14
(0.00)

−0.19
(0.00)

−0.40
(0.19)

−0.36
(0.75)

−0.47
(0.02)

GBP/JPY

std. dev. 0.19
0.06
(0.00)

0.08
(0.00)

0.17
(0.27)

0.16
(0.07)

0.17
(0.30)

VaR0.01 -0.52
−0.19
(0.00)

−0.30
(0.00)

−0.54
(0.78)

−0.40
(0.03)

−0.52
(0.91)

ES0.025 -0.61
−0.20
(0.00)

−0.34
(0.00)

−0.60
(0.83)

−0.41
(0.02)

−0.61
(0.92)
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rates.

B. S&P 500 options

We have available option data on the S&P 500 ranging from January 2, 1992 till August

29, 1997. Quotes on the options are the end-of-day quotes with synchronous observations

of the underlying index. For the FX options we have data on fixed time to maturity

and moneyness options available. For the S&P 500 we have fixed maturity and varying

moneyness option data. Therefore, we apply the transformation method of Section

III.A. We analyze the models for calculating the risk measures for 3 month ATM

options. For this we use the options with time to maturity closest to 3 months and

closest to the ATM level. Again we investigate a portfolio of $100 invested in options

and the underlying asset. As hedge ratio we apply the standard Black-Scholes delta

with continuous dividend yield.

We find that the empirical risks for S&P500 options are higher than for the FX

options. We find that the positions in the 1 year options are more risky than the

positions in the 3 months options. For the tests of the S&P500 options we get more or

less the same results as for the FX options. Only models 3, 4, and 5 have a acceptable

prediction behavior.

Overall, we see that models 1 and 2 do not perform well and underestimate the risk of

delta hedged derivatives positions in almost all cases. This can be explained by the fact

that they do not take fluctuations in the levels of implied volatilities into account. The

historical simulation method and both VAR models perform about the same, although

the VAR models for changes in the underlying and implied volatilities are sometimes a

bit too conservative. Since the historical simulation method and the VAR model with

historical simulation take more time to compute than the Gaussian VAR model where

VaR and ES can be computed analytically, it seems easiest to compute both VaR and

ES based on the Gaussian VAR model.
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Table II
Tests of risk measures for delta hedged 3 month S&P 500 options

This table shows the empirical standard deviations, VaR0.01, and ES0.025 and those
obtained from methods 1,...,5 for a delta-hedged positions in 3 month ATM S&P 500
options. We test whether the method predictions correspond to the empirical quantities.
The p-values of these tests are given in parentheses. In order to reduce sampling error
we used K = 10, 000.

emp method 1 method 2 method 3 method 4 method 5
ATM 3 months

std. dev. 0.24
0.04
(0.00)

0.05
(0.00)

0.23
(0.34)

0.24
(0.83)

0.23
(0.55)

VaR0.01 −0.74 −0.13
(0.00)

−0.19
(0.00)

−0.67
(0.27)

−0.80
(0.42)

−0.71
(0.55)

ES0.025 −0.85 −0.13
(0.00)

−0.19
(0.00)

−0.76
(0.35)

−0.83
(0.73)

−0.79
(0.48)

ATM 1 year

std. dev. 0.41
0.06
(0.00)

0.06
(0.00)

0.43
(0.50)

0.43
(0.49)

0.43
(0.28)

VaR0.01 −1.26 −0.13
(0.00)

−0.17
(0.00)

−1.39
(0.18)

−1.12
(0.15)

−1.42
(0.10)

ES0.025 −1.27 −0.17
(0.00)

−0.19
(0.00)

−1.41
(0.22)

−1.16
(0.12)

−1.44
(0.12)
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VII. Conclusions

In this paper we tested several risk management models for computing expected shortfall

and value-at-risk for one-period hedge errors of hedged derivatives positions. Though

value-at-risk can be tested using a binomial test, this is not the case for expected shortfall

and we need information of the distribution in the tail. By nature, the characteristics

of derivatives positions are changeable and as a consequence the size of risk exposures

varies over time. To overcome this problem, we present a transformation procedure.

We empirically test the performance of several models, based on tests for standard

deviation, value-at-risk, and expected shortfall. We find that in order to get good

indication of the risk of a hedged derivative in both the FX and the equity market it is

of crucial importance to take the variation in the implied volatilities into account. We

find that a historical simulation method, which is commonly used in practice, produces

the best results. A parametric and non-parametric VAR model perform reasonably well,

but their performance trails that of the historical simulation method.
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A. Influence functions for value-at-risk and expected short-

fall

Let Ft denote the distribution of the one-day hedge error E1
t . The influence functions

of value-at-risk and expected shortfall are then given by:

1. Value-at-risk: In the case of VaRp the influence function Ψ (Ft) is given by

ΨVaR (Ft) =
p− II[−∞,F−1

t (p)] (x)

q
(
F−1

t (p)
) , (25)

and

IEΨ2
VaR (Ft) =

p (1− p)
q2
(
F−1

t (p)
) . (26)

2. Expected shortfall: In the case of ESp the influence function Ψ (Ft) is given by

ΨES (Ft) = −1
p

[(
x− F−1

t (p)
)
II[−∞,F−1

t (p)] (x)

+ΨVaR (Ft)

(
p−

∫ F−1
t (p)

−∞
dF (x)

)]
− ES (Ft) + VaR (Ft) (27)

and

IEΨ2
ES (Ft) =

1
p
IE
[
X2|X ≤ F−1

t (p)
]− ES (Ft)

2

+2
(
1− 1

p

)
ES (Ft)VaR (Ft)−

(
1− 1

p

)
VaR (Ft)

2 . (28)

See Kerkhof and Melenberg (2002) for derivations.
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