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Abstract
Household surveys are often plagued by item non-response on economic variables of interest like

income, savings or the amount of wealth. Manski (1989,1994, 1995) shows how, in the presence

of such non-response, bounds on conditional quantiles of the variable of interest can be derived,

allowing for any type of non-random response behavior. Including follow up categorical questions

in the form of unfolding brackets for initial item non-respondents, is an effective way to reduce

complete item non-response. Recent evidence, however, suggests that such design is  vulnerable

to a psychometric bias known as the anchoring effect. In this paper, we extend the approach by

Manski to take account of the information provided by the bracket respondents. We derive

bounds which do and do not allow for the anchoring effect. These bounds are applied to earnings

in the 1996 wave of the Health and Retirement Survey (HRS). The results show that the

categorical questions can be useful to increase precision of the bounds, even if anchoring is

allowed for.

Key words: unfolding bracket design, anchoring effect, item nonresponse, bounding intervals,

nonparametrics.
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1 Introduction
Household surveys are often plagued by item non-response on economic variables of

interest  like income, savings or the amount of wealth. For example, in the Health and Retirement

Survey (HRS), a US panel often used to study socio-economic behaviour of the elderly, 12.4%

of those who say they have some earnings refuse or claim they do not know their amount of these

earnings. Questions on amounts of certain types of wealth often even lead to much larger non-

response rates. A number of papers show how, in the presence of such non-response, bounds on

conditional quantiles of the variable of interest can be derived, allowing for any  type of non-

random response behaviour. See, for example, Manski (1989, 1994, 1995) and Heckman (1990).

In this framework, the precision with which features of the distribution of the variable of interest

(such as quantiles of the income distribution) can be determined, i.e., the width between the

bounds, depends on the probability of non-response. In case of substantial non-response

probabilities, the approach cannot lead to reasonably precise estimates of the parameters of

interest.

Including follow-up questions in the form of unfolding brackets for initial item non-

respondents is an effective way to reduce complete item non-response. In the HRS example given

above, 73% of the initial non-respondents do answer the question whether or not their earnings

exceed $25,000, and most of these also answer a second question on either $50,000 (if the first

answer was ‘yes’) or $5,000 (if the first answer was ‘no’). Recent evidence given by Hurd et al.

(1997), however, suggests that such a design leads to an “anchoring effect,” a phenomenon well

documented in the psychological literature: the distribution of the categorical answers is affected

by the amounts in the questions (the “bids” which become  “anchors”).  Experimental studies have

shown that even if the anchor is arbitrary and uninformative with respect to the variable of

interest, it still produces large effects on the overall responses of the population (see, for example,

Jacowitz et al., 1995). Using a special survey with randomized initial bids (instead of $25,000 for

everybody), Hurd et al. (1997)  show that the distribution is biased towards the categories close

to the initial bid. They develop a parametric model to capture this anchoring phenomenon, and

estimate it. Their results confirm that the anchoring effect can lead to biased conclusions on the

parameters of interest if not properly accounted for.

In this paper, we extend the approach by Manski to take account of the information

provided by the bracket respondents. We derive two sets of bounds, which do and do not allow

for anchoring effects. The bounds which do not allow for anchoring effects are based on the

assumption that the bracket information is always correct. The bounds allowing for anchoring

effects relax this assumption, and replace it by the non-parametric assumption that the probability

of answering a bracket question correctly is at least 0.5. This assumption is substantially weaker

than the assumptions in the Hurd et al. (1997) framework.
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These bounds are applied to earnings in the 1996 wave of the Health and Retirement

Survey. The results show that the categorical questions can be useful to increase precision of the

bounds, even if anchoring is allowed for. This also helps, for example, to improve the power of

statistical tests. To illustrate this, we compare bounds for the populations of men and women,

and show how the bounds which take account of bracket information can detect differences which

cannot be identified by bounds based upon complete respondents’ information.

The remainder of this paper is organized as follows. Section 2 elaborates on  the problems

associated with item nonresponse in economic surveys, and compares different ways to deal with

such problems. Building up on Manski’s approach, Section 3 derives bounding intervals using the

unfolding bracket questions information,  accounting and not accounting for anchoring effects.

Section 4 describes the HRS data used in the empirical illustration. Section 5 explains the

estimation technique and discusses the empirical results. Section 6 concludes.

2 Item Non-response in Household Surveys
Item non-response in household surveys occurs when individuals do not provide answers to

specific questions in a survey. The problem is often associated with questions on exact amounts

of variables such as income, expenditure, or net worth of some type of assets. Such item non-

response may well be nonrandom, implying that the sample of (item) respondents is not

representative of the population of interest. This can bias the results of studies that model features

of the distribution of the variable that suffers from item non-response, such as its conditional mean

or conditional quantiles given a set of covariates. This problem has long been recognized in the

economics literature, and is know as the selection problem.

There are several ways to handle this problem. The first is to use as many covariates as

possible (X), and to assume that conditional on X,  the response process is independent of the

variable of interest. This makes it possible to use regression techniques to impute  values for non-

respondents, leading to, for  example, the hot-deck imputation approach. The key element of this

approach is that item non-respondents are not systematically different from respondents with the

same values of X. See Rao (1996), for an overview of hot-deck imputation, and Juster et al.

(1997), for imputation based upon the same assumption in the presence of bracket response.

Since the seminal work by Heckman see (Heckman, 1979, for example), the common view

in many economic examples is that the assumption of random item non-response conditional on

observed X is unreasonable and can lead to severe selection bias. Instead, a selectivity model is

used. This is a joint model of response behaviour and the variable of interest, conditional on

covariates. See, for example, the survey of Vella (1998). Parametric and semiparametric

selectivity models  avoid the assumption of conditional random item non-response, but they do

require additional assumptions such as a single index assumption or independence between
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covariates and error terms.

About ten years ago, a new approach to deal with  item nonresponse or selectivity was

introduced. See Manski (1989, 1990) and Heckman (1990). This approach does not make any

assumptions on the response process. It uses the concept of identification up to a bounding

interval. Manski (1989) shows that in the presence of item nonresponse, the sampling process

alone fails to fully identify most features of the conditional distribution of a variable Y given a

vector of covariates, X, but that in many cases,  lower and upper bounds for the feature of interest

(such as the values of the distribution function of Y given X) can be derived. Manski calls these

bounds “worst case bounds.” Manski (1994, 1995) shows how these bounds can be tightened by

adding nonparametric assumptions on a monotonic relation between Y and non-response or

exclusion restrictions on the conditional distribution of Y. Vazquez et al. (1999a) apply several

of these bounds to analyze earnings in the Netherlands. Manski (1990), Manski et al. (1992), and

Lechner (1999) use them to estimate bounds on treatment effects.

The problem of item non-response can be reduced at the data collection level by, for

example, carefully designed surveys, careful coding of responses by the interviewer, reducing

question ambiguity, giving guarantees for privacy protection, giving respondents the opportunity

to consult tax files, etc. A more direct method to reduce item nonresponse is to include

categorical questions to obtain partial information from initial non-respondents. Using  categorical

questions is often motivated by the claim that certain cognitive factors, such as confidentiality

and/or the belief that the interviewer requires an answer that reflects perfect knowledge of the

amount in question, can make people more reluctant to disclose information  when initially faced

with an open-ended question (see, for example, Juster et. al, 1997).

Two types of categorical questions are typically used. In some surveys, initial non-

respondent are routed to a range card type of categorical question, where they are asked to

choose the category which contains the amount (Y) from a given set of categories. Vazquez et al.

(1999b) extend Manski’s bounds to incorporate the information from such range card questions,

and apply this to savings quantiles, using a household survey for the Netherlands.

An alternative set up for categorical questions is that of unfolding brackets. This is used

in well-known US longitudinal studies such as the Panel Study of Income Dynamics (PSID), the

Health and Retirement Survey (HRS), and the Asset and Health Dynamics Among the Oldest Old

(AHEAD). In this type of design, those who answer ‘don’t know’ or ‘refuse’ to a question on the

specific amount, are asked a question such as ‘is the amount $B or more?’, with possible answers

‘yes’, ‘no’, ‘don’t know’, and ‘refuse’. They typically get two or three such consecutive

questions, with changing bids $B: a ‘yes’ is followed by a larger bid and a ‘no’ is followed by a

smaller bid. Those who answer ‘don’t know’ or ‘refuse’ on the first bid, are full non-respondents.

Those who answer at least one of the bracket questions are called bracket respondents. The latter
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can be complete or  incomplete bracket respondents, depending on whether they answer all the

bracket questions presented to them by ‘yes’ or ‘no’, or end with a ‘don’t know’ or ‘refuse’

answer. The advantage of an unfolding bracket design relative to a range card type of question,

is that unfolding brackets can elicit partial information on the variable of interest even if the

respondent does not complete the sequence, in cases where a range card  question might lead to

a simple ‘don’t know’ or ‘refuse’.

A major problem associated with unfolding brackets is that it may suffer from an

anchoring effect (see Jacowitz et al., 1995, and Rabin, 1996, for non-economic examples). A

psychological explanation for the anchoring effect is that the bid creates a fictitious believe in the

individual’s mind: faced with a question related to an unknown quantity,  an individual treats the

question as a problem solving situation, and the given bid is used as a cue to solve the problem.

This can result in responses that are influenced by the design of the unfolding sequence.  Hurd et

al. (1997) suggest that the anchoring effect can be modeled by assuming that the respondent

makes an error when comparing the actual  amount (unknown to the respondent) to the bid:

instead of comparing Y to B, the respondent compares Y+, to B. Hurd et al. (1997) assume that

, is symmetric around zero and independent of X and Y. They show that the anchoring effect

arises if the variance of , decreases for consecutive bracket questions. They estimate a parametric

model incorporating this for  an experimental module of the AHEAD data, in which respondents

are randomly assigned to different starting bids of an unfolding sequence.  Their findings support

their model and imply strong evidence of anchoring effects.

The Hurd et al. (1997) results imply that answers to unfolding bracket questions may often

be incorrect. They also imply that unfolding bracket questions may not give the same answers as

range card questions. In the next  section, we extended Manski’s  worst case bounds to account

for unfolding bracket questions. We allow for anchoring effects which satisfy a non-parametric

assumption implied by the Hurd et al. (1997) framework. We will compare the bounds allowing

for the anchoring effect with bounds not allowing for anchoring effects.

3 Theoretical framework
3.1 Worst case bounds; no bracket respondents
We first review Manski’s (1989) worst case bounds for the conditional distribution function of

a variable Y, at a given y0ú, and given X = x0ú . We assume that there is neither unit non-P

response, nor item non-response on X. We also assume that reported (exact) values of Y and X

are correct, and thus exclude under- or over-reporting the value of Y. Let FR indicate that Y is

(fully) observed and let NR indicate (full) non-response on Y. , the conditional distribution

function of Y given X=x in the complete population, can then be expressed as follows.



F(y|x)'F(y|x,FR)P(FR|x)%F(y|x,NR)P(NR|x)

F(y|x,FR)P(FR|x) # F(y|x) # F(y|x,FR)P(FR|x) % P(NR|x)

is the amount $B1 or more ?

F(y|x,FR)

P(FR|x) P(NR|x)

F(y|x,FR)'F(y|x,NR)

F(y|x,NR) F(y|x)

F(y|x,NR)

P(NR|x)
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(1)

(2)

(3)

The assumptions imply that  is identified for all x in the support of X, and can

be estimated using, for example, some non-parametric kernel based estimator. The same holds for

the conditional probabilities  and .  If we assume that, conditional on X, response

behavior  is independent of Y, then all expressions in the right hand side of (1) would be identified

since . This is the assumption of exogenous selection. In general, however,

the response behavior can be related to Y, and is not identified, so that is not

identified either. Without additional assumptions, all we know about  is that it is

between 0 and 1. Applying this to (1) gives,

These are Manski’s worst case bounds for the distribution function. The difference between upper

and lower bounds is equal to . The narrower the width, the more informative the bounds

will be about the unknown distribution function. Thus, a low non-response rate leads to more

informative bounds. Additional assumptions can lead to narrower bounds. Examples are

monotonicity or exclusion restrictions, see Manski (1994, 1995).

3.2 Partial information from an unfolding bracket sequence
Expressions (1) and (2) do not incorporate information from categorical follow-up categorical

questions to initial non-respondents, as discussed in the previous section. Vazquez et al. (1999b)

extend the bounds in (2) to account for a range card type of categorical question. They do not

allow for anchoring effects which, for well designed range card questions, might not be important.

Here, we consider categorical questions in the form of  an unfolding bracket sequence. In this

subsection, we do not allow for anchoring, but we will do so in the next subsection.

The unfolding brackets design was explained in the previous section. Let B1 be the initial

bid. We assume it is the same for all initial non-respondents, as is the case in the HRS data. Thus

the first bracket question is



F(y|x)' F(y|x,FR)P(FR|x) % F(y|x,BR)P(BR|x) % F(y|x,NR)P(NR|x)

B(1|x)'P(Q1'1|Y<B1,x,BR)P(Y<B1|x,BR)%P(Q1'1|Y>B1,x,BR)[1&P(Y<B1|x,BR)]

B(1|x)'P(Q1'1|x,BR)

P(Q1'1|Y<B1,x,BR)'0 B(1|x)'1&P(Y<B1|x,BR)

 We will not distinguish between the answers ‘don’t know’ and ‘refuse’ and simply write2

‘don’t know’.
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(4)

(5)

Individuals can either answer ‘yes’,‘no’ or ‘don’t know’ to this question.  Those who answer2

‘don’t know’ to this initial bid, become full non-respondents. If the answer to (3) is ‘yes’,

individuals get the same question but now with a new bid B21, with B21>B1. If the answer is

‘no’, the next  bid will be B20, with B20<B1. In the HRS, this second question is often the final

bracket question, while in some other cases, there is a third question, again with a new bid. We

will focus on the case of two bracket questions, leaving more than two questions as a

straightforward extension. For the sake of the exposition, we first consider the case where only

one bracket question is asked.

3.3 Bounds and unfolding bracket response: One bracket question
In this case, three types of respondents can be distinguished: full respondents (FR), bracket

respondents (BR) and (full) non-respondents (NR), so that F(y|x) can be written as

Full respondents answer the initial question and identify F(y|FR), as before. Non-

respondents answer ‘don’t know’ to the initial question as well as the bracket question, and, as

before, all we know about F(y|x,NR) is that it is between 0 and 1. Bracket respondents report

whether y>B1 or not.

Define a variable Q1 by Q1=1 if the answer to (3) is ‘yes’, and 0 if the answer is ‘no’. The

the bracket respondents identify . For deriving the bounds, it will be useful

to write this as 

Not allowing for an Anchoring effect

If there is no anchoring effect, all bracket respondents answer (3) correctly, so that

 and . This leads to the following bounds on

F(y|BR,x). 



for y # B1 0 # F(y|BR,x) #[1&B(1|x)]

for y > B1 [1&B(1|x)] # F(y|BR,x) # 1

F(y|FR,x)P(FR|x)
# F(y|x) #

F(y|FR,x)P(FR|x) % [1&B(1|x)]P(BR|x) % P(NR|x)

F(y|FR,x)P(FR|x) % [1&B(1|x)]P(BR|x)
# F(y|x) #

F(y|FR,x)P(FR|x) % P(BR|x) % P(NR|x)

P(Q1'1|Y<B1,x,BR) ' P(,$B1&Y|B1&Y>0,x,BR) # 0.5

P(Q1'1|Y>B1,x,BR) ' P(,$B1&Y|B1&Y<0,x,BR) $ 0.5

P(Q1'1|Y<B1,x,BR)

,|(y,x,BR) is distributed with zero median
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(6)

(7)

(8)

(9)

Combining this with the bounds on F(y|FR,x) and F(NR,x) yields

for  y # B1,for  y > B1,

The bounds in (7) and (8) will both be sharper than the worst case bounds in (2), as long as there

are bracket respondents answering ‘yes’ as well as bracket respondents answering  ‘no’.

Allowing for the Anchoring Effect

If responses to (3) are vulnerable to the anchoring effect, (6) is no longer valid, since people may

give the wrong answer to (3), so that  and P(Q1=0|Y>B1,x,BR)  are non-

zero. In the Hurd et al. (1997) framework, Q1 is based upon comparing Y+, to B1, where , is

the perception error. Hurd et al. (1997) assume that , is normally distributed with zero mean and

independent of Y and X. We will use the weaker (nonparametric) assumption

Assumption A1:

This assumption implies that the conditional probability that an individual answers

correctly is at least 0.5:



B(1|x) # 0.5P(Y<B1|x,BR) % [1&P(Y<B1|x,BR)]

B(1|x) $ 0.5[1&P(Y<B1|x,BR)].

1&2B(1|x) # P(Y<B1|x,BR) # 2[1&B(1|x)].

for y # B1 0 # F(y|BR,x) #2[1&B(1|x)]

for y > B1 [1&2B(1|x)] # F(y|BR,x) # 1

F(y|FR,x)P(FR|x)
# F(y|x) #

F(y|FR,x)P(FR|x) % 2[1&B(1|x)]P(BR|x) % P(NR|x)

F(y|FR,x)P(FR|x) % [1&2B(1|x)]P(PR|x)
# F(y|x) #

F(y|x,FR)P(FR|x) % P(PR|x) % P(NR|x)

B(1|x)

B(1|x)

B(1|x)

F(y|BR,x)

B(1|x)>0.5

F(y|BR,x)
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(10)

(11)

(12)

(13)

(14)

Applying (9) to (5) leads to the following bounds on .

This implies that

This leads to the following bounds on F(y|BR,x).

This implies either a non-trivial lower bound or a non-trivial upper bound for all  not equal

to 0.5. If <0.5, not too many people will have a high Y, since by assumption at least half

of the people with high Y will answer Q1=1. This leads to a lower bound on . If on the

other hand, , not too many people will have a low Y, since by assumption at least half

of the people with low Y will answer Q1=0. This leads to an upper bound on .

Replacing (6) by (12) and applying this to (4) leads to the following bounds on F(y|x):

for  y # B1

for  y > B1,

These bounds are sharper than Manski’s worst case bounds in (2) (unless P(BR|x)=0 or



F(L(y)|BR,x)#F(y|PR,x)#F(U(y)|BR,x)
and

0 # F(y|NR,x) # 1

F(y|FR,x)P(FR|x) % F(L(y)|BR,x)P(BR|x)

# F(y|x) #

F(y|FR,x)P(FR|x) % F(U(y)|BR,x)P(BR|x) % P(NR|x)

P(NR|x) % P(BR|x)[F(U(y)|BR,x)&F(L(y)|BR,x)]

B(1|x)

F(y|x)
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(15)

(16)

(17)

=0.5). On the other hand, they are wider than the bounds in (7)-(8), which were

constructed under the stronger assumption of no anchoring.

3.4 More than one unfolding bracket question
With two unfolding bracket questions, those who answer ‘yes’ to question (3) are given a second

question with bid B21, where B21>B1, and those who answer ‘no’ get a second question with

B20, where B20<B1. Again, they can answer ‘yes’, ‘no’ or ‘don’t know’. In this subsection we

assume that every bracket respondent answers the second question with ‘yes’ or ‘no’, so that all

bracket respondents complete the unfolding sequence. This will be generalized below.

Not allowing for an anchoring effect

If we assume that all those who answer the bracket questions answer them correctly, then we

know for all bracket respondent which of the four categories  [0, B20], [B20, B1],[B1, B21] and

[B21, 4] contains their value of y. The information is the same as the information provided by a

range card question with the same four categories.  Bounds on  for this case are given in

Vazquez et al. (1999b). They are a straightforward generalization of the bounds in (7) and (8).

Denoting the category containing y by [L(y), U(y)] (for example, for B20<y<B1, L(y)=B20 and

B(y)=B1, etc.), the bounds on F(y|BR,x) are given by

Combining this with (4) leads to the following bounds on F(y|x).

The width between the upper and lower bound for given x is equal to 

This is generally smaller than the width of Manski’s worst case bounds in (2), P(NR|x)+P(BR|x),



B(1|x)'P(Q1'1|Y<B1,x,BR)P(Y<B1|x,BR)
%P(Q1'1|Y>B1,x,BR)P(Y>B1|x,BR)

B(2,0|x)'P(Q2'1|Y<B20,Q1'0,x,BR)P(Y<B20|Q1'0,x,BR)
%P(Q2'1|Y>B20,Q1'0,x,BR)P(Y>B20|Q1'0,x,BR)

B(2,1|x)'P(Q2'1|Y<B21,Q1'1,x,BR)P(Y<B21|Q1'1,x,BR)
P(Q2'1|Y>B21,Q1'1,x)P(Y>B21|Q1'1,x,BR)

P(Q1'1|Y<B1,x,BR) # 0.5; P(Q1'1|Y<B1,x,BR) > 0.5

P(Q2'1|Y<B20,Q1'0,x,BR) # 0.5; P(Q2'1|Y>B20,Q1'0,x,BR) > 0.5

P(Q2'1|Y<B21,Q1'1,x,BR) # 0.5; P(Q2'1|Y>B21,Q1'1,x,BR) > 0.5

B(2,0|x)'P(Q2'1|Q1'0,x,BR) B(2,1|x)'P(Q2'1|Q1'1,x,BR)

B(1|x)'P(Y>B1|x,BR)

,1 ,2,0 ,2,1 ,1

,2,0 ,2,1 ,1 ,2,0 ,2,1

,2,0 ,2,1 ,1

,|(y,x,BR), ,|(y,x,BR,Q1'0) and ,|(y,x,BR,Q1'1)
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(18)

(19)

which do not use the bracket information.

Allowing for the Anchoring Effect

Define a dummy variable Q2 by Q2=1 if the answer to the second bracket question is ‘yes’, and

Q2=0 if it  is ‘no’. Define  and .

These two probabilities, together with  defined above, are identified by the

answers of the bracket respondents. Extending  (5) gives

Generalizing the Hurd et al. (1997) framework, we model incorrect answers to all three bracket

questions by introducing errors  ,  and : Q1=1 if Y+ >B1; if Q1=01 then Q2=1; if

Y+ >B20, and if Q1=1 then Q2=1 if Y+ >B21. Hurd et al. (1997) assume that ,  and 

are independent of each other and of X and Y, and are normally distributed with zero means. The

anchoring effects in their data can be explained if  and  have smaller variance than . We

do not  need this. All we need is the following generalization of Assumption A1.

Assumption A2:

 have zero median 

This is much weaker than the assumptions of Hurd et al.  (1997). It implies that each bracket

question is answered correctly with probability at least 0.5:

Together with (18),  (19) implies the following bounds for bracket respondents:



[1&2B(1|x)] # P(Y<B1|x,BR) # 2[1&B(1|x)]

[1&2B(2,0|x)] # P(Y<B20|Q1'0,x,BR) # 2[1&B(2,0|x)]

[1&2B(2,1|x)] # P(Y<B21|Q1'1,x,BR) # 2[1&B(2,1|x)]

0 # F(y|BR,x) # min[2(1&B(1|x)),2(1&B(2,0|x)),2(1&B(2,1|x))]

F(y|FR,x)P(FR|x)

# F(y|x) #

F(y|FR,x)P(FR|x) % P(NR|x)

% min[2(1&B(1|x)),2(1&B(2,0|x)),2(1&B(2,1|x))]P(BR|x).

[1&2B(2,0|x)] # F(y|BR,x) # min[2(1&B(1|x)),2(1&B(2,1|x))]P(BR|x)

F(y|FR,x)P(FR|x)%[1&2B(2,0|x)]P(BR|x)

# F(y|x) #

F(y|FR,x)P(FR|x) % min[2(1&B(1|x)),2(1&B(2,1|x))]P(BR|x) % P(NR|x).

max[(1&2B(1|x)),(1&2B(2,0|x))] # F(y|BR,x) # 2[1&B(2,1|x)]

F(y|x,BR) F(y|x)
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(20)

(21)

(22)

(23)

(24)

(25)

This leads to the following bounds on and .

For y in [0, B20]:

and with (4), 

For y in [B20, B1],

and

For y in [B1, B21],

and



F(y|FR,x)P(FR|x) % max[(1&2B(1|x)),(1&2B(2,0|x))]P(BR|x)

#F(y|x)#

F(y|FR,x)P(FR|x) %2[1&B(2,1|x)]P(BR|x) % P(NR|x).

max[(1&2B(1|x)),(1&2B(2,0|x)),(1&2B(2,1|x))] # F(y|BR,x) # 1

F(y|FR,x)P(FR|x) % max[(1&2B(1|x)),(1&2B(2,0|x)),(1&2B(2,1|x))]P(BR|x)

# F(y|x) #

F(y|FR,x)P(FR|x) % [1&P(FR|x)].

13

(26)

(27)

(28)

For y in [B21, 4],

and

The bounds in (22), (24), (26) and (28) take into account the possibility that responses to an

unfolding bracket can be affected by the anchoring effect. Therefore these bounds are wider than

the bounds in (16), which are derived under the assumption of no anchoring effects. On the other

hand, the bounds in (22), (24), (26) and (28) are narrower than Manski’s worst case bounds in

(2).

3.5 Complete and incomplete bracket respondents
As in the previous subsection, we consider the case where at most two bracket questions are

asked. Until now we assumed that all bracket respondents complete the unfolding bracket

sequence. In practice, however, some of them answer ‘don’t know’ to the second bracket

question. Thus we can distinguish two types of bracket respondents: those who answer both

questions with ‘yes’ or ‘no’ (CBR,  complete bracket respondents), and those who only answer

one question with ‘yes’ or ‘no’ (IBR, incomplete bracket respondents). We do not make any

assumptions on the relation between response behavior and value of Y, so we allow for the

possibility that incomplete bracket respondents are a selective sub-sample of all bracket

respondents.

The conditional  distribution function for bracket respondents can now be written as

follows.



F(y|BR,x)' F(y|CBR,x)P(CBR|BR,x) % F(y|IBR,x)P(IBR|BR,x)

q(",x) / inf {y: F(y|x)$"}

lb(y,x) # F(y|x) # ub(y,x)

inf {y:lb(y,x)$"} $ inf {y:F(y|x)$"} $ inf {y:ub(y,x)$"}

" 0 [0,1]

q(",x) FY[q(",x)]$"

q(",x)'4 q(",x)'&4
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(29)

(30)

(31)

(32)

P(CBR|BR,x) and P(IBR|BR,x) are both identified, since it is observed whether bracket

respondents are complete or incomplete bracket respondents. Bounds on F(y|CBR,x) can be

derived as in Section 3.4, using complete bracket respondents only. Bounds on F(y|IBR,x) can

be derived as in Section 3.3, using incomplete bracket respondents only. Combining these and

plugging them into (29) leads to bounds on F(y|BR,x). As before, two sets of bounds can be

derived, allowing or not allowing for anchoring. The bounds on F(y|BR) can be combined with

F(y|FR,x) and bounds on F(y|NR,x) in the same way as before, and thus yield bounds on F(y|x).

Note that this procedure treats complete and incomplete bracket respondents separately, and does

not impose any relation between the distribution of Y in these two sub-populations.

3.6 Bounds on Quantiles
Distributions for variables like income, savings, etc., are often described in terms of (conditional)

quantiles. For , the "-quantile of the conditional distribution of Y given X=x, is the

smallest number  that satisfies :

For " >1, we set , and for  " <0, . Following Manski (1994), bounds on these

quantiles can be derived by ‘inverting’ the bounds on the distribution function. All the bounds in

Sections 3.1-3.5 can be written as

for appropriate choices of lb(y,x) and ub(y,x), all of them non-decreasing functions of y. Inverting

this gives the following bounds on the quantiles:

Plugging in the bounds in the previous subsections, yields bounds on the conditional

quantiles of Y. This is easily illustrated using a graph of the distribution function, with y along the



" 0 [0,1]
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horizontal axis and F(y|x) along the vertical axis. The bounds on the distribution function squeeze

F(y|x) in between two curves; the vertical distance between these two curves is the width between

the bounds (at each given value of y). Reading the same graph horizontally gives, for a given

probability value , a lower and upper bound on the "-quantile.

4 The Data
The data we use comes from the 1996 wave of the Health and Retirement Survey (HRS). This

survey is a longitudinal study conducted by the University of Michigan on behalf of the American

Institute of Aging. It focuses mainly on aspects of health, retirement and economic status of USA

citizens born between 1931 and 1941. For this purpose, the study collects individual and

household information from a representative sample of the USA population from this cohort. The

data is collected every two years, with the first wave conducted in the summer of 1992.

Initially the panel consisted of approximately 7,600 households. The respondents are the

members of the household that fulfil the age criteria (the household representative) and their

partners, regardless of age (second household respondent). This leads to approximately 12,600

individual respondents  in the first wave of the panel. Each respondent answers individually to

questions on health and retirement issues. The household representative also answers questions

on past and current income and pension plans (including those of his or her partner), as well as

questions at household level, e.g. on housing conditions, household assets and family structure.

If  health problems prevent the household representative from answering these questions, someone

else (e.g. the spouse) will answer on their behalf. All interviews are conducted over the telephone,

unless the household has no telephone, or health reasons prevent either representative or spouse

answering over the telephone, in which case the interviewer will visit the household. The survey

is meant to be carried out over a period of 10 years. If respondents die, they are replaced by a

remaining household member. This reduced attrition in the panel.

The 1996 wave recorded data from  6,739 households, covering 10,887 individuals. In

4,148 of these households, two respondents gave interviews. The remaining 2,591 are single

respondent  households. Table 1 shows sample statistics for some background variables. The first

column refers to the full sample. The second and third column refer to the sub-samples of

household representatives and second household respondents. The statistics show that 51% of the

household representatives are women, while only 62% of second household respondents (usually

the spouse) are women. There is little difference between educational achievement of household

representatives and second household respondents.

The shares of Whites, Blacks and Hispanics reflect the ethnic composition of the cohorts

in the sample. About 62% of the respondents participate in the labor market, most of them are

employees. Approximately 80% of the households in the sample are home owners.
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The 1996 wave of the HRS panel groups all variables in 11 subsets and a supplement that

consists of experimental modules (mostly to check the consistency of answers to previous

questions). In  the subset, named ‘Assets and Income’, the household representatives provide

information about their own incomes, their partner’s incomes, household savings, and various

other types of net wealth. We will apply the bounds of Section 3 to the variable ‘wages and

salaries of the household representative’. This variable shows a significant percentage of initial

non-respondents who, subsequently, are routed to an unfolding bracket sequence where they  can

disclose partial information on the missing variable.

Table 1: Means (standard deviation) and Percentages (standard errors) for some background variables

for the 1996 wave of the HRS panel.

All Units Household Second Household

Representatives Respondent

Number of Observations 10,887 6,739 4,148

Age 59.6 (5.62) 60.7 (5.07) 58.6 (6.41)

Percentage Males 45 (0.5) 49 (0.6) 38 (0.8)

Education 1 2.32 (1.02) 2.36 (1.03) 2.25 (0.98)

Percentage home owners - 79 (0.5) -

Percentage Whites 71 (0.4) 69 (0.6) 76 (0.7)

Percentage Hispanics 9 (0.3) 8 (0.3) 11 (0.5)

Percentage Black 2 16 (0.4) 19 (0.5) 9 (0.4)

Other races 4 (0.2) 4 (0.3) 4 (0.3)

Percentage employed 62 (0.5) 62 (0.6) 64 (0.7)

For wages only
47 (0.5) 46 (0.6) 50 (0.8)

Self-employment only 0.09 (0.003) 0.08 (0.003) 0.10 (0.005)

For wages & self-emp. 0.06 (0.002) 0.08 (0.003) 0.04 (0.003)

Notes:

1. Education: educational achievement on a scale of 1 to 4;  1: has  completed primary education (up to the

10  grade in the USA education system), 2: has completed high school (up to the 12  grade); 3: someth th

form of college or post-high school education;  4: has completed at least a first degree at university level.

2 This group are those who describe themselves as black African-American.

Wages and salaries of the household representative

All household representatives are asked to provide information on employment status and earned
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incomes for themselves and their partners. Initially, each household representative is asked if he

or she worked for pay during the last calendar year. To this question, 4,145 individuals answered

‘yes’, 2,097 individuals answered ‘no’, and the remaining 497 answered ‘don’t know’ or ‘refuse’.

Each of the 4,145 who answered ‘yes’ are asked to specify if any of their earnings during the last

calendar year came from self-employment, wages and salaries, or a combination of these two

sources: 3,608 individuals declared that all (or some) of their earnings came from wages and

salaries. These individuals are asked the following question.

‘About how much wages and salary income did you receive during the last 

calendar year?’

1 - ‘any amount’ (in USA dollars)

‘Don’t know’

‘Refuse’

3,160 individuals answered the above question with an exact amount in USA dollars,

ranging from $ 0,00 to $350,000, with a mean of $29,430 and standard deviation $26,430. The

median was $25,000. The remaining 448 individuals answered ‘don’t know’ or ‘refuse’, implying

a 12.4% initial non-response rate. This latter group was routed to a sequence of unfolding bracket

questions, with starting bid B1=$25,000. At this initial stage of the unfolding sequence, 119

individuals answered ‘don’t know’ or ‘refuse’. Thus the full non-response rate is 3.3%. The

remaining 329 individuals form the sample of bracket respondents.

For this ‘wages and salaries’ variable, the unfolding sequence consists of two questions.

Those who answered ‘yes’ to the initial bid of $25,000 were routed to a second question with  bid

B21=$50,000, whereas those who answered ‘no’ were routed to a question with bid B20=$5,000.

In each case, the question is the same as that given in (3) - only the bid changes. At the second

question of the unfolding sequence, individuals can again answer ‘don’t know’ or ‘refuse’. Those

who do this are ‘Incomplete bracket respondents’. For this particular variable, 320 individuals

completed the sequence of unfolding brackets, while the remaining 9 bracket respondents are

incomplete bracket respondents.

Table 2 shows some sample statistics for the sample of  individuals with nonzero wages

and salaries, partitioned by response behavior. Comparing the first columns of Table 1 and Table

2 shows that the individuals who received wages and salaries are, on average, similar to the

complete sample in terms of age, gender, home ownership and ethnicity. The sub-sample of

bracket respondents contains a larger percentage of females than the other samples. Likewise,

people in this sub-sample have lower educational achievement,  are less likely to own their  home,

and are less often white. The statistics of the sub-group of incomplete bracket respondents differ
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Table 2: Means (standard deviations) and Percentages (standard errors) for some background variables: Sample of respondents who received

wages and salaries in the past calendar year 

All Full Bracket Respondents Full Non-

employed Respondents  (BR) respondents (NR)

with wages (FR)

Complete bracket Incomplete bracket respondents

respondents (CBR) (IBR)

Number of 3602 3160 320 9 113

Observations

Average age 58.6 (4.7) 58.6 (4.7) 58.8 (4.7) 55.7 (3.2) 59 (4.9)

Percentage Males 50 (0.8) 52 (0.9) 38 (2.7) 0.78 (0.14) 0.45 (4.7)

Education 2.52 (1.01) 2.6 (1.03) 2.2 (1.02) 3.1 (1.01) 2.6 (0.99)1

% Home owners 73(0.7) 74(0.8) 65(2.7) 89(10.0) 83(3.5)

% White 72 (0.7) 75 (0.8) 58 (2.8) 78 (14) 72 (4.2)

% Hispanics 8 (0.5) 7 (0.5) 9 (1.6) 0(0) 5 (2.1)

% Black 18 (0.6) 16 (0.7) 32 (2.6) 12 (11) 21 (3.8)2

% Other races 2 (0.2) 2 (0.3) 2 (0.8) 10 (10) 3 (1.6)
1,2: see Notes Table 1
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substantially from those of the other groups, but this is based upon very few observations.

5 Estimates of the Bounds
In this section we apply the various upper and lower bounds on distribution functions and

quantiles derived in Section 3 to the variable wages and salaries of the household representative,

as described in Section 4. First, we use the full sample, not conditioning on any covariates. In

addition, we estimate the bounds for males and females separately (i.e., conditioning on gender),

and use these results to determine whether significant differences in the quantiles between the

genders can be detected.

Since we only condition on discrete variables, we do not need non-parametric smoothing

techniques, and our estimates can be computed as functions of fractions in the (sub-)sample

satisfying a given condition.

The width between point estimates of upper and lower bounds reflect the  uncertainty due

to item nonresponse. We also estimate confidence bands around the estimated upper and lower

bounds, to measure uncertainty due to sampling error. For all sets of bounds, these confidence

bands are estimated using a bootstrap method, based on 500 (re-)samples drawn with replacement

from the original data. The lower and upper bound are estimated 500 times, and the confidence

bands are formed by the 2.5% and 97.5% percentiles in these 500 estimates. This results in a two-

sided 95% confidence bands for both the upper and lower bound. In the figures below we report

the lower confidence band for the lower bound and the upper confidence band for the upper

bound. The (vertical) distance between these thus reflects both the uncertainty due to sampling

error and the uncertainty due to item non-response.

5.1 Bounds using the full sample
Figure 1 shows estimates of Manski’s (1995) worst case bounds, not using the bracket response

information. The solid curves are the estimated upper and lower bounds, whereas the dashed

curves are the estimated  confidence bands. The horizontal distance between the upper and lower

bound equals 0.124, the initial percentage of item non-response. Table 3 shows point estimates

and confidence intervals for a selection of quantiles corresponding to Figure 1. For example, with

at least 95% confidence, the median of  respondent’s wages and salaries is between $19,500 and

$29,000. From this table, and Figure 1, we can conclude  that, due to the initial percentage of item

nonresponse, the width between upper and lower bound is quite large, and seem hardly useful to

draw economically meaningful conclusions.
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Table 3: Estimated bounds and confidence intervals on Respondent’s wages and salaries (in US$).

Worst case bounds without bracket information (cf. Figure 1)

Quantiles Confidence Lower bound Upper bound Confidence

interval (Lower) interval (Upper)

25  Percentileth $5,800 $7,700 $13,700 $14,700

40  Percentileth $13,700 $14,700 $22,500 $24,500

50  Percentileth $19,500 $20,800 $27,900 $29,900

60  Percentileth $25,000 $26,000 $34,600 $37,000

75  Percentileth $35,600 $36,900 $50,000 $55,000

90  Percentileth $51,000 $55,000 $350,000 max

Our next step is to estimate the extended version of the bounds incorporating the

information provided by the bracket respondents. Table 4 summarizes the information provided

by these 329 respondents.
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Table 4: Information on Respondent’s wages and salaries provided by bracket respondents

Group Bid 1: B1 answer Bid 2: B21/B20 answer Resulting bracket Number

bounds

Yes 30$50,000  —  max

Yes  > $50,000 ? No 86$25,000  —  $50,000

CBR >$25,000 ?

No > $ 5,000 ? Yes 170$5,000  — $25,000

No 34$0  — $5,000

Yes  > $50,000 ? DK, RF. 9> $25,000

IBR >$25,000 ?

No > $ 5,000 ? DK, RF. 0< $25,000

Bounds accounting for bracket information can allow for an anchoring effect, or not. To

illustrate the difference, we first present estimates for the upper and lower bounds for the

distribution function of bracket respondents only, F(y|BR). Figure 2 shows the estimates of the

bounds according to expression (15), assuming there is no anchoring effect. Figure 3 on the other

hand is based on estimating expressions (21), (23), (25) and (27), allowing for the anchoring

effect and using Assumption A2. Comparing Figure 2 to Figure 3 shows that allowing for the

anchoring effect substantially  reduces the information provided by bracket respondents.
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Figures 4 and 5 show the results concerning the distribution of Respondents wages and

salaries in the complete population, combining the estimates for full-respondents and the bounds

for full non-respondents with Figures 2 and 3, respectively. 

The interpretation of the curves in both cases is the same as in Figure 1. Comparing the

width between the bounds in either Figure 4 or Figure 5 to that in Figure 1 shows that  including

the bracket information greatly improves the information content of the bounds. Figure 4

obviously does a better job than Figure 5 in this respect, but at the cost of adding the assumption

of no anchoring.

Table 5 illustrates these findings in more detail by comparing the 95% confidence intervals

in these two figures. For example, the third row shows that when the bounds are estimated

without allowing for the anchoring effect, the median is bounded between $21,000 and $25,900.

If we allow for the anchoring effect, the median is between  $19,500 and $27,900. Both intervals

are smaller than the ‘worst case’ interval in Table 1, ($19,500; $29,900), which does not use the

bracket information at all.
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Table 5: Confidence Intervals for quantiles of Respondent’s wages and salaries, allowing and not

allowing for anchoring (cf. Figure 4 and Figure 5.

Quantiles Point estimates Point estimates (based Point estimates (based

on 95%  confidence), on 95%  confidence),

no anchoring effect with anchoring effect 

(Figure 4). (Figure 5)

25  Percentile Lower bound:th

Upper bound:

Difference: $6,800 $8,000

$7,900 $6,700

$14,700 $14,700

40  Percentile Lower bound:th

Upper bound:

Difference: $7,600 $9,500

$15,800 $14,400

$23,400 $23,900

50  Percentile Lower bound:th

Upper bound:

Difference: $4,900 $8,400

$21,000 $19,500

$25,900 $27,900

60  Percentile Lower bound:th

Upper bound:

Difference: $6,500 $10,000

$25,000 $25,000

$31,500 $35,000

75  Percentile Lower bound:th

Upper bound:

Difference: $12,350 $14,400

$35,600 $35,600

$47,950 $50,000

90  Percentile Lower bound:th

Upper bound:

Difference: $17,460 undefined

$52,540 $52,540

$70,000 max

5.2 Separate Estimates higher and lower education
Until now we have used the full sample of households representative who declared to earn wages

and salaries. In this section, we distinguish between individuals who have achieved a basic level

of education (up to high school) and those who have a higher level of education (attended

college/technical college beyond high school and/ or attended university). The purpose is to use

the estimates of the bounds to test for significant difference between the earnings of these two

populations. The percentage of individuals declaring to earn some form of wages and salaries is

similar between the two populations, but initial nonresponse rate is slightly higher for low

educated than high educated (13.4% vs. 10.9%), although the picture changes once nonresponse

individuals are allowed to provide information with a categorical question, since full nonresponse

is higher for high educated than low educated (3.7% vs. 2.3%). This could be explain, for

example, by suggesting that once initial non-respondents are allowed to provide some information
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with a categorical question, confidentiality, rather than lack of accurate information, will be the

dominant factor that will determine the nonresponse rate, assuming that higher earners (high

educated) are more reluctant to disclose information (see Vazquez et al. (1999b)). 

Table 6: Sample statistics  and response behavior by level of education of household respondent, for variable wages and

salaries.

All Low education High education

Number of Observations

in the survey

6,739 4,110 2,629

Units with incomes 3,602 1,978 1,624

Number of full

respondents

3,160 1,713 1,447

(88%) (86.6%) (89.1%)

Mean (std. Deviation) $29,430 ($26,430) $22,813 ($18,080) $38,298 ($31,765)

Median $25,000 $19,000 $33,000

 Number of  initial non-

respondents

442 265 177

(12.3%) (13.4%) (10.9%)

Number  of bracket

respondents

329 212 117

(9.1%) (10.7%) (7.2%)

Number  of full non

respondents

113 53 60

(3.1%) (2.3%) (3.7%)

Figures 6 and 7 show estimates of Manski’s basic worst case bounds for low educated and

high educated, respectively. They are constructed in the same way as Figure 1: the solid curves

are the estimated upper and lower bounds, and the dashed curves are the confidence bands. The

bounds for low educated are wider than those for high educated, due to the higher nonresponse

rate. Figure 8 compares the regions of identification for the unknown quantiles of the distribution

for low educated (solid curves) and high educated (dashed curves). 
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The test statistic is ((Q  - Q )/)), where Q  is the lower bound point estimate for highhigh low high

educated and Q  is the upper bound point estimate for the low educated. ) is the estimatedlow

standard deviation of (Q  - Q ), i.e.,  where  and  are thhigh low

bootstrap estimates of the variances of the estimates for Q  and Q  . (These variances arehigh low

estimated by re-sampling 500 times from the original data, with replacement, and estimating the

variance of these 500 estimates). 
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Except in the upper tails of the distribution, the upper and lower bounds on the quantiles

for the high educated population are above those of the low educated population. Up to the 30th

percentile, the upper bound for the low educated is above the lower bound for the high educated,

so that there is not enough evidence to suggest that for these percentile range high educated are

higher earners than low educated. The same holds for the percentiles above the 80  percentile.th

On the other hand, there is no overlap for percentiles between the 30  and 80 . Thus, an informalth th

test of the null hypothesis that one of these percentiles is the same for both populations, would

lead to rejection.

The result of formal tests for selected quantiles are presented in Table 7. The final column

gives the t-values of the difference between the estimated lower bound for high educated and the

estimated upper bound for the low educated, based upon the number in the columns  . The one3

sided t-test rejects equality for all the percentiles above the 30  percentile and up to the 90th th

percentile.
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Table 7: Tests for differences between selected quantiles for high educated  and low educated based on

Manski’s worst case bounds without bracket respondents. (variable wages and salaries)

Low edu Low edu High edu (Low High edu test statistic

(Upper bound) (Upper bound) bound) point (Low bound) (one sided t-

st. error point estimate estimate st. error test) 

20  Percentileth $365 $9,800  $6,800 $815 -3.36

25  Percentileth $413 $11,900  $9,800 $1,074 -1.83

30  Percentileth $521 $13,000 $14,700 $1,066 1.43

40  Percentileth $429 $17,900 $23,900 $1,186 4.76

50  Percentileth $572 $22,500 $30,000 $754 7.92

60  Percentileth $844 $27,400 $35,600 $942 6.48

75  Percentileth $1,089 $39,400 $48,600 $945 6.38

80  Percentileth $1,575 $46,700 $52,500 $1,712 2.49

90  Percentileth $2,130 $350,000 $60,000 $1,560 -109.84

Next, we want to see if including the information provided by bracket respondents affects

the above conclusion. The first step is to examine the bounds on the quantiles in the sub-

population of bracket respondents, allowing and not allowing for anchoring (cf. Figures 2 and 3).

These are presented in Figures 9 and 10 for low educated, and Figures 11 and 12 for high

educated. 
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For both high and low educated, the results are similar to those for the whole sample,

illustrated in Figure 2 and 3, although allowing for anchoring (Figures 10 and 12) in separate

populations leads to much less informative bounds than allowing for anchoring with the full

sample (Figure 3). Combining this with the information for the full respondents gives the bounds

on the quantiles for the two populations, presented in Figures 13 and 14 (low educated) and

Figures 15 and 16 (high educated). This bounds are narrower than those in Figures 6 and 7. 
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Figure 17 compares the confidence bands for low and high educated if anchoring is not

allowed for (drawn from Figures 13 and 15). Table 8 presents the results of formal tests for

equality on earnings of selected quantiles for these two populations. Figure 18, associated with

Table 9, does the same but now allowing for an anchoring effect. In both cases, comparing Table

7 to Tables 8 and 9 allowing or not for anchoring, the bracket information is much more

informative since the null of equality is rejected from the 30  percentile of the distribution. Thus,th

whether we allow or not for anchoring the power of the test will increase relative to that based

on Manski’s basic worst case bounds.
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Table 8: Tests for differences between selected quantiles for high educated  and low educated based on

Manski’s worst case bounds with bracket respondents: no anchoring (variable wages and salaries)

Low edu Low edu High edu (Low High edu test statistic

(Upper bound) (Upper bound) bound) point (Low bound) (one sided t-

st. error point estimate estimate st. error test) 

20  Percentileth $533 $8,900  $7,700 $860 -1.19

25  Percentileth $572 $10,800  $10,700 $1,020 -0.09

30  Percentileth $378 $12,750 $16,700 $813 4.41

40  Percentileth $545 $17,500 $25,000 $139 13.33

50  Percentileth $615 $22,000 $30,000 $678 8.74

60  Percentileth $545 $25,000 $37,000 $1,110 9.70

75  Percentileth $986 $31,500 $49,500 $437 16.69

80  Percentileth $1,033 $37,000 $52,500 $1,680 7.86

90  Percentileth $1,820 $50,000 $66,000 $1,465 6.85

Table 9: Tests for differences between selected quantiles for high educated  and low educated based on

Manski’s worst case bounds with bracket respondents: anchoring (variable wages and salaries)

Low edu Low edu High edu (Low High edu test statistic

(Upper bound) (Upper bound) bound) point (Low bound) (one sided t-

st. error point estimate estimate st. error test) 

20  Percentileth $358 $9,800  $7,700 $835 -2.31

25  Percentileth $425 $12,000  $12,000 $1,114 0.00

30  Percentileth $515 $13,000 $15,800 $1,202 2.14

40  Percentileth $409 $17,900 $25,000 $903 7.16

50  Percentileth $618 $22,500 $30,000 $791 7.47

60  Percentileth $146 $25,000 $35,600 $952 11.01

75  Percentileth $1,111 $34,600 $48,600 $880 9.88

80  Percentileth $1,208 $40,000 $52,600 $1,688 6.07

90  Percentileth $3,320 $52,500 $66,000 $1,465 3.72

6 Conclusions
In this paper we have extended the Manski’s approach to deal with item nonresponse in survey

data. Manski’s approach consists of estimating a bounding interval around the parameter of

interest, such as a conditional quantile. The approach allows for selective item non-response and

avoids the type of assumptions usually associated with parametric and semi-parametric methods.
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On the other hand,  it does not fully identify the unknown parameters, but only an upper and a

lower bound. We extend these bounds to take into account that initial non-respondents can

provide partial information by answering follow up categorical questions. Nowadays, many

household surveys rely on unfolding sequence type of categorical questions to reduce the

percentage of item nonresponse. Hurd et al. (1997) have shown that responses to such questions,

on variables like income, consumption or savings, can be subject to a psychometric bias known

as the anchoring effect: the answer is affected by the wording in the questions and thus can suffer

from response errors. Hurd et al. (1997) model this response error with a parametric set up. We

compare extensions on Manski’s worst case bounds which do and do not allow for this anchoring

effect. In the latter case, our assumptions on the nature of the anchoring effect are more general

than those of Hurd et al. (1997). Using the variable wages and salary of the household

representative taken from the 1996 wave of the Household and Retirement Survey, we compare

estimates of Manski’s basic worst case bounds with estimates of our extended bounds.

For the variable that we consider, the initial nonresponse rate is 12.4%. Most of these

initial non-respondents answer some unfolding bracket questions, and the percentage of full non-

response is only 3.3%. Since the distance between upper and lower bounds is driven by the

percentage of item non-response, we find that incorporating information provided by bracket

respondents tightens the bounds. If we allow for anchoring effects, however, the gain in

information is much smaller than under the assumption of no anchoring. 

We also use the bounds to test for equality of quantiles of low and high educated

household representatives, and use these bounds to test for equality on earning between these two

populations. According to Manski’s basic worst case bounds, from the 40   to 80   percentilesth th

high educated are significantly higher earners than low educated household representatives,

although the null of equality cannot be rejected for percentiles in the tails of the distribution.

Adding the information provided by bracket respondents improves the power of the tests under

both allowing and not allowing for the anchoring assumption, and leads to rejecting the null more

often. Since allowing for anchoring leads to less informative bounds than not allowing for it, the

power of the test with bracket respondents and anchoring, although improving, is similar in power

with respect  If the anchoring effect is allowed for, however, the results are similar to the use of

worst case bounds with no bracket information.
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