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Disturbance Decoupling in Dynamic Games
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Abstract

A theory for disturbance decoupling problems has been well developed in the area
of geometric control theory. The aim of the present study is to introduce disturbance
decoupling problems in a dynamic game context. For this purpose, techniques from
geometric control theory are applied. Necessary and sufficient conditions are de-
rived for the solvability of the disturbance decoupling problems introduced here.
Consequently, for a given game, the players can easily check if these problems are
solvable or not.
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1 Introduction

Dynamic game theory is concerned with situations in which several agents (or “play-
ers”) who have different objectives are influencing the same dynamic system. Often,
the objectives are expressed through cost functions which the agents aim to min-
imize. The usual notion of optimum in the single-agent case is substituted in the
multiple-agent situation by a notion of equilibrium. Actually several such notions
exist, depending on the information that the players have about each other’s deci-
sions and about the system state; for instance, there is an essential difference between
open-loop and closed-loop equilibria. See [1] for an extensive account.
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2 PRELIMINARIES 2

In the single-player case, methods of control design are not always linked to cost
functions. Common design objectives such as stability or decoupling in fact do not
give rise to unique optimal controls. Design objectives of this type do not seem to
have received much attention so far in the context of dynamic games. In this paper,
we shall consider a dynamic game version of the well known disturbance decou-
pling problem [3, 5]. With the idea of closed-loop equilibria in mind, we shall con-
sider the situation in which all players use feedback policies. Even given this, there
are several solution concepts to consider depending on whether the players do or do
not cooperate and depending on the information that the players have about each
other’s policies. Specifically, we shall discuss three cases: (i) the cooperative case;
(ii) the noncooperative case without information about other players’ policies; (iii)
the noncooperative with information about other players’ policies. In each case, we
shall give easily verifiable necessary and sufficient conditions for a solution to exist.

2 Preliminaries

The system under consideration is assumed to be linear and to be described by the
differential equation

_x = Ax +
NX
i=1

Biui + Ed; x(0) = x0;

where A 2 IRn�n , Bi 2 IRn�mi and E 2 IRn�m with the standing assumption that
E 6= 0. The system is controlled byN players; player i influences the system through
his control function ui. In addition, the system is influenced by the unknown distur-
bance function d. The output of player i is given by a linear function zi of the state,
i.e. zi = Hix, with Hi 2 IRpi�n. In this paper only linear state feedback problems
are considered, i.e. the players are able to observe the state and they choose controls
of the form ui = Fix, with Fi 2 IRmi�n. With a choice of N feedback maps Fi, the
output of player i can be written as

zi(t) = Hie

�
A+
P

N

i=1
BiFi

�
t
x0 +

tZ
0

Ti(t� �)d(�)d�;

where Ti(t) := Hie

�
A+
P

N

i=1
BiFi

�
t
E is the closed-loop impulse response from distur-

bance to the output of player i. The system is said to be disturbance decoupled for
player i if Ti(t) = 0 for all t � 0.

Let B andH be subspaces of IRn. The maximal (A;B)-controlled invariant contained
in H is denoted by maxV(A;B;H). The following result is well known.

Theorem 2.1 If N = 1, the system is disturbance decoupled (for player 1) iff

imE � maxV(A; imB1; kerH1):

Disturbance Decoupling in Dynamic Games



3 COOPERATIVE DISTURBANCE DECOUPLING 3

In section 4.2 we use the concept of robust controlled invariance. This concept was
introduced in [2]; a more detailed discussion can be found in [3], section 6.5. In the
following paragraph we recall the definition and the results that are of importance
for the present paper.

Let A and B depend on a parameter q 2 Q � IRr. A subspace W is called a robust
(A(q);B(q))-controlled invariant relative to Q if A(q)W � W + B(q) for all q 2 Q.
The set of all robust controlled invariants contained in a given subspace is closed un-
der addition. The maximal robust (A(q);B(q))-controlled invariant contained inH is
denoted by maxVR(A(q);B(q);H). For the computation of this space the following
algorithm, first presented in [4], is available. In this algorithm we use the notation
f (Y0) � X for the inverse image of Y0 under f , where f is a map from the set X to
the set Y and Y0 � Y .

Algorithm 2.2 The subspace maxVR(A(q);B(q);H) coincides with the last term of
the sequence

Z0 := H;

Zi := H \

0
@\
q2Q

A(q) (Zi�1 + B(q))

1
A ; i = 1; � � � ; k;

where the value of k � n is determined by the condition Zk = Zk�1.

We finally present the hyper-robust disturbance localization problem (section 6.5.1
of [3]). Consider the case N = 1 and let A, B1 depend on the parameter q. Then,
the hyper-robust disturbance localization problem is to find a feedback map F1(q)

such that the system is disturbance decoupled (for player 1) for all q 2 Q. For this
problem the following result was established [3, Thm. 6.5-1].

Theorem 2.3 The hyper-robust disturbance localization problem is solvable iff

imE � maxVR(A(q); imB1(q); kerH1):

3 Cooperative Disturbance Decoupling

If the players cooperate it is of common interest to decouple outputs from the dis-
turbance. In the following definition we define the problem of decoupling all the
outputs from the disturbance using all the inputs.

Definition 3.1 The Cooperative Disturbance Decoupling Problem (CDDP) by state feed-
back is to find feedback maps Fi such that the system is disturbance decoupled for
all the players.

Disturbance Decoupling in Dynamic Games



4 NONCOOPERATIVE DISTURBANCE DECOUPLING 4

In this problem there is neither a distinction between the controls nor between the
outputs. Instead of considering a system with N controls and N outputs, we can
equivalently consider a system with one control and one output in the following
way:

_x = Ax+
h
B1 � � � BN

i264
u1
...
uN

3
75+Ed; x(0) = x0;

2
64
z1
...
zN

3
75 =

2
64
H1

...
HN

3
75x:

The standard results from geometric control theory can be applied to this system. If
we apply theorem 2.1 we get the following result.

Theorem 3.2 The CDDP by state feedback is solvable iff

imE � maxV

 
A;

NX
i=1

imBi;

N\
i=1

kerHi

!
:

4 Noncooperative Disturbance Decoupling

We now turn to the noncooperative setting. Different problems can be posed de-
pending on whether or not players choose their feedback policies in a certain or-
der and are aware of each other’s decisions. In this section we shall fix one player
(denoted by subscript d) and consider the situations in which this player is or is not
aware of the other players’ chosen feedback policies. For ease of notation we take
N = 2; the second player will be denoted by subscript o.

4.1 Strong Noncooperative Disturbance Decoupling

Here we consider the situation without information about other players’ choices of
feedback policies. The corresponding problem can be formally defined as follows.

Definition 4.1 The Strong Noncooperative Disturbance Decoupling Problem (SNDDP)
by state feedback is to find a feedback map Fd such that the system is disturbance
decoupled for player d for all feedback maps Fo.

Assume that Fd solves the SNDDP by state feedback. We then have that Td(t) = 0

for all Fo, or, equivalently

Hd(A+BdFd + BoFo)
kE = 0; for all Fo and for all k � 0: (1)

Disturbance Decoupling in Dynamic Games



4 NONCOOPERATIVE DISTURBANCE DECOUPLING 5

By taking Fo = 0, it follows that

imE � maxV(A; imBd; kerHd): (2)

Obviously, this condition (which is stated completely in terms of the system matri-
ces) is a necessary condition for solvability of the SNDDP by state feedback. In the
following lemma we prove another consequence of (1).

Lemma 4.2 If there exists an Fd for which (1) holds, we have

Hd(A+BdFd)
lBo = 0; for all l � 0: (3)

Proof We prove this lemma by induction. Setting k = 1 in (1), we findHd(A+BdFd+

BoFo)E = 0 for all Fo. Taking Fo = 0 yields Hd(A + BdFd)E = 0 so that we have
HdBoFoE = 0 for all Fo. Since E 6= 0 this gives us HdBo = 0. Now, fix an l0 � 0

and assume that (3) holds for all l = 0; � � � ; l0. Take k = l0 + 2 and Fo = 0 in (1) to
get Hd(A + BdFd)

l0+2E = 0. Use this and the formula (which can also be seen by
induction)

(A+BdFd + BoFo)
l0+2 =(A+ BdFd)

l0+2 +

+
l0+1X
j=0

(A+BdFd)
jBoFo(A+ BdFd +BoFo)

l0+1�j

to see that (1) (with k = l0 + 2) implies

l0+1X
j=0

Hd(A+ BdFd)
jBoFo(A+BdFd + BoFo)

l0+1�jE = 0; for all Fo:

With the induction assumption, this reduces to Hd(A+ BdFd)
l0+1BoFoE = 0 for all

Fo. Since E 6= 0 this gives us Hd(A+ BdFd)
l0+1Bo = 0, which is the desired result.

�

So the feedback maaping Fd that solves the SNDDP by state feedback also satisfies
(3). As a consequence the system matrices must satisfy

imBo � maxV(A; imBd; kerHd):

Again we find a necessary condition for the solvability of the SNDDP by state feed-
back completely in terms of the system matrices. In the following theorem it is stated
that (2) and (3) are also sufficient.

Theorem 4.3 The SNDDP by state feedback is solvable iff

im
h
Bo E

i
� maxV(A; imBd; kerHd): (4)

Disturbance Decoupling in Dynamic Games



4 NONCOOPERATIVE DISTURBANCE DECOUPLING 6

Proof The necessity was already proven. For the sufficiency, it suffices to consider
the control input of player o as an extra distrubance. Indeed, assume that (4) holds
and writeW := maxV(A; imBd; kerHd). Since W is an (A; imBd)-controlled invari-
ant, there exists an Fd such that W is an A+BdFd-invariant, so that

(A+BdFd + BoFo)W � W + imBo � W :

Together with (4) shows that the closed loop system is disturbance decoupled for
player d. �

Formula (4) provides a compact necessary and sufficient condition for the existence
of a feedback control for the decoupling player that achieves disturbance decoupling
for him whatever the other player will do. In fact, if condition (4) holds, the cor-
responding feedback control of the decoupling player achieves disturbance decou-
pling for any control of the other player.

4.2 Weak Noncooperative Disturbance Decoupling

In this subsection we consider the case in which information about other players’
feedback policies is available. The corresponding problem can be formally defined
as follows.

Definition 4.4 The Weak Noncooperative Disturbance Decoupling Problem (WNDDP) by
state feedback is to find for any given feedback map Fo a feedback map Fd such that
the system is disturbance decoupled for player d.

If the WNDDP by state feedback is solvable, the decoupling player is able to respond
to any control of the other player in such a way that he can decouple his output from
the disturbance. In particular, if the other player chooses Fo = 0, the decoupling
player can decouple iff

imE � maxV(A; imBd; kerHd): (5)

Hence condition (2) is also a necessary condition for the solvability of the WNDDP
by state feedback.

For a given Fo the system equations are

_x = (A+BoFo)x+Bdud + Ed;

zd = Hdx:

Although Fo is not manipulable for the decoupling player, it is accessible for his de-
coupling purposes. We recognize this problem as a particular case of the hyper-ro-
bust disturbance localization problem (see the end of section 2). According to Theo-
rem 2.3 the problem for the decoupling player is solvable iff

imE � maxVR(A+ Bo�; imBd; kerHd); (6)

Disturbance Decoupling in Dynamic Games



4 NONCOOPERATIVE DISTURBANCE DECOUPLING 7

i.e. the maximal robust (A+Bo�; imBd)-controlled invariant relative to IRmo�n con-
tained in kerHd (we write a dot instead of an Fo in order to indicate that the robust-
ness needs to be interpreted with respect to this parameter). According to Algorithm
2.2 this space coincides with the last term of the sequence

Z0 := kerHd;

Zi := kerHd \

0
@\
Fo

(A+BoFo)
 (Zi�1 + imBd)

1
A ; i = 1; � � � ; k:

Now, assume that the WNDDP is solvable. Then, since E 6= 0 and according to (6),
there exists an x0 6= 0 in the space (A + BoFo)

 (Zi + imBd) for all Fo and for all
i = 0; 1; � � � . Equivalently, (A+BoFo)x0 2 Zi+imBd for all Fo and for all i = 0; 1; � � � .
Because this holds for all Fo and because x0 6= 0, we have Ax0 + bo 2 Zi + imBd for
all bo 2 imBo and for all i = 0; 1; 2; � � � . But this implies that

imBo � Zi + imBd; i = 0; 1; � � � : (7)

We have now shown that solvability of the WNDDP by state feedback implies (5)
and (7). The latter condition is however not yet in terms of the system matrices. We
will remedy this after the following lemma.

Lemma 4.5 Consider the sequence Vi, defined by

V0 := kerHd;

Vi := kerHd \ A (Vi�1 + imBd); i = 1; � � � ; k:

Then we have the inclusion Zi � Vi for all i.

Remark The last term of the sequence Vi equals the maximal (A; imBd)-controlled
invariant contained in kerHd.

Proof We prove the lemma by induction. Clearly, the statement holds for i = 0.
Assume that Zi � Vi for a certain i. According to the definition of the Zi’s we have
Zi+1 � kerHd and Zi+1 � (A + BoFo)

 (Zi + imBd) for all Fo, so in particular for
Fo = 0. This results in

AZi+1 � Zi + imBd � Vi + imBd;

and hence, Zi+1 � A (Vi + imBd) \ kerHd = Vi+1, which completes the proof. �

Applying this lemma to (7) gives us imBo � Si + imBd for all i and by taking the
last term in this sequence (as noted in the preceding remark) we arrive at a necessary
condition in terms of the system matrices. In the following theorem we claim that
this condition together with condition (5) is actually also sufficient for solvability of
WNDDP.

Disturbance Decoupling in Dynamic Games



5 CONCLUDING REMARKS 8

Theorem 4.6 The WNDDP by state feedback is solvable iff

imE � maxV(A; imBd; kerHd); (8)
imBo � maxV(A; imBd; kerHd) + imBd: (9)

Proof The necessity was already proven. The sufficiency can be concluded by con-
sidering the input of player o as an accessible disturbance (cf. [5, Exc. 4.10], [3, p. 225]).
Specifically, let Fo 2 IRmo�n and write W := maxV(A; imBd; kerHd). According to
(9), we have imE � W � kerHd. Furthermore, since W is an (A; imBd)-controlled
invariant and because of (9), we also have (A+BoFo)W � W + imBd, so that W is
also an (A+BoFo; imBd)-controlled invariant; hence there exists a mapping Fd such
that W is an (A+ BoFo +BdFd)-invariant. �

Formula (8) and (9) provide compact necessary and sufficient conditions for the de-
coupling player to respond to the action of the other player always in such a way
that his output is decoupled from the disturbance.

5 Concluding Remarks

The aim of the paper was to define some disturbance decoupling problems in the
area of differential games. Necessary and sufficient conditions for the solvability of
these problems in terms of the system data were derived; consequently, one can eas-
ily verify whether the considered problems are solvable for a given system.

The idea of considering games in which the players follow certain control objectives
that are not necessarily given by cost functions can be carried further in many ways.
In the context of decoupling, extensions can for instance be made in the direction of
incorporating stability and to the case where the players are not able to completely
observe the state and/or each other’s actions. The notion of equilibrium could be
incorporated to a greater extent by considering games in which the players know
that the other players will look for a decoupling feedback but are not informed about
each other’s decisions. The two noncooperative problems considered in this paper
provide necessary and sufficient conditions respectively for a decoupling solution to
exist in this situation.
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