Coordination of Capital Taxation Among a Large Number of Asymmetric Countries
van Ypersele, T.P.M.C.

Publication date:
1998

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Coordination of Capital Taxation Among a Large Number of Asymmetric Countries

Tanguy van Ypersele

December 1998

Abstract

We examine international fiscal coordination in a world where markets are integrated but national governments are sovereign. Consequences of the liberalization of the capital market on national fiscal policies and possible remedies to resulting inefficiencies are analyzed. A simple model, with N countries where competitive firms produce an homogeneous good using mobile capital and immobile labor is considered. Fiscal competition arises between governments that have to tax capital and labor in order to raise a fixed amount of revenue. It is shown that capital mobility improves the capital allocation among countries as it enables capital owners to invest it in the country where capital is scarce. But fiscal competition leads to asymmetric capital taxation among countries and thus to a distortion on the international capital market.

Two fiscal reforms are considered: the introduction of a minimum capital tax level and the imposition of a tax range, i.e. a minimum plus a maximum capital tax level.

We show that the minimum tax reform is never prefered to fiscal competition by all countries while tax range reforms are unanimously accepted when it imposes convergence to the extreme taxes and it does not change the international remuneration of capital.
1. Introduction

The paper tackles the problem of international fiscal coordination in a world where markets are integrated but national governments are sovereign. The ongoing globalization movement allows a superior utilization of resources and a better allocation of risks among countries. When markets get more liberalized, national economies become more interdependent. Therefore a government has to take into account the behavior of its trade partners when undertaking local economic policies. It is no longer possible to envisage redistributive policies, the production of public goods or the fiscal policy without taking into account its effects on trade or capital flows. A possible consequence of this international interdependence is a downward pressure on the size of the public sector (cfr. Cremer and Al. (1996) for a survey of the literature). This could be viewed as a positive consequence if we consider the government as a growing and inefcient Leviathan and a negative one if we envisage a benevolent social planner.

In this paper, we consider the consequences on national fiscal policies of the liberalization of the capital market. We consider a simple model, with \(N \) countries where competitive firms produce a homogeneous good using mobile capital and immobile labor. Fiscal competition arises between governments that have to tax capital and labor in order to levy a fixed amount of public money. The capital tax we consider here, as it concerns productive capital, has to be understood as a corporate tax\(^1\).

We show that capital mobility improves capital allocation among countries as it enables capital owners to invest in the country where capital is scarce. But fiscal competition leads to asymmetric capital taxation and thus to a distortion of the international capital market. More precisely, at equilibrium, the more a country imports capital, the larger its corporate tax. This is because a country importing capital, by taxing it, has part of its tax burden supported by foreign capital owners. Moreover, by taxing capital, a country depresses the international remuneration of capital and therefore decreases the cost it has to incur for the capital it imports.

The questions raised in this paper are important policy issues. Both the OECD and the European Commission have advocated fiscal harmonization; see OECD (1991) and the Ruding Report (1992), in reference to production efficiency.

The core of this paper is the analysis of possible remedies to the consequences of fiscal competition. We consider two fiscal reforms: the introduction of a minimum capital tax level and the imposition of a tax range, i.e. a minimum and a maximum capital tax level\(^2\).

\(^{1}\)This view is shared by most of the literature, see for instance Person and Tabellini (1992).

\(^{2}\)The first reform has already been used by the European Union to decrease the inefficiency
Taking as decision rule unanimity, we show that the minimum tax reform never passes and that tax range reforms are unanimously accepted when it imposes convergence to the extreme of equilibrium taxes.

These reforms have the nice features of being simple, anonymous and of respecting the subsidiary principle.\(^3\) It is anonymous in that it applies in the same way to all countries, i.e. it restricts their strategy set and does not assign a particular tax level to each country. It respects the subsidiary principle in that it leaves to the national level the fiscal decision while the supra-national interventions intend to limit inefficiencies.

It is possible to interpret this as an attempt to design supra-national (for Europe) or federal (for the Australia, Canada or the US) institutions helping to avoid inefficiencies linked to fiscal competition. The core of an institution is its jurisdiction and decision rule. The jurisdiction would be the setting of the tax range or of the minimum tax level. We have selected unanimity as decision rule as it is the one used in the European Union on these matters.

Would the model be empirically irrelevant, our policy propositions would be with little interest. In order to convince us of the empirical relevance of the model, we computed correlations between statutory corporate tax levels and the extend of foreign capital ownership for the 14 EU members. This has not to be considered as a rigorous test because the measurements we use are rough estimations: We proxy the extend of the foreign ownership of capital in a country by aggregating its current account balance between 1990 and 1996. We would reject our theory, if we observed a negative correlation between the statutory corporate tax of each country and the ratio between our proxy of foreign ownership of capital and the number of workers. Our sample consists in 14 members of the EU (all except Luxembourg for which we do not have all data) and our data come from the IMF (1998) and the KPMG corporate tax survey 1998. We find a significant positive correlation and therefore are not able to reject our theory\(^4\).

The paper is organized as follows. In the next section we place this paper in the context of the literature on fiscal competition. Section 3 describes the main features of the model. Section 4 is devoted to the description of the agents’ preferences and to the derivation of a non-cooperative equilibrium. In section 5 we study the harmonization procedure and derive the main results. Section 6 discussed extension of the model.

3 The subsidiarity principle states that decisions have to be taken at the lowest efficient level of government (supra national, national or regional).

4 To check if the correlation is significant we regress the extend of foreign capital ownership divided by the active population on the statutory corporate tax level and found that this coefficient is significant at .99.
2. Related Literature

Several papers investigate the scope for international income tax coordination. Some of them consider a fixed international remuneration of capital. Razin and Sadka (1991) showed that when there is no pure profit and all fiscal instruments are available, there is no scope for coordination as each country uses only residency based tax and therefore no international externalities are created by fiscal policy. Huizinga and Nielsen (1996) show that there are cases for coordination when some pure profit exists. They show that coordination is more important when foreign ownership is developed in each countries.

The largest support for fiscal coordination comes from models considering endogenously determined capital remuneration. Bucovetsky and Wilson (1991), Persson and Tabellini (1992), Lopez, Marchand Pestieau (1996) show that fiscal competition leads to under-provision of public good or inefficient redistribution. Others, like Bucovetsky (1991) and Grazzini and van Ypersele (1996) are concerned about the efficient allocation of capital. They therefore consider a fixed public budget requirement. Both show that there is room for coordination.

This paper belongs to the last category. It differs from the existing literature in several ways. First, we allow heterogeneity among countries in size of its population, as in Bucovetsky (1991) and in capital endowment. This leads to an asymmetric equilibrium to the non-cooperative game and enables us to tackle more carefully the problem of inefficient allocation of capital. Second, we consider a setting with an arbitrary numbers of countries. It does not add much to the description of a non-cooperative equilibrium, but provides a richer model with which to consider the different potential coordination policies. More importantly, we propose design for coordination policies in an environment that could be considered as supranational institutions.

A non negligible aspect of our result, is that, contrary to Bucovetsky and Wilson (1991), fiscal coordination holds even when residence based capital tax is allowed.

Our model builds on Grazzini and van Ypersele (1996). The first part of our analysis generalizes it by extending the number of countries (from two to N) and by using a more general production function. It enables us to decompose the effect of fiscal policies on the welfare of each country in a more precise way. The most interesting innovations lie in the analysis of the tax reform proposition.

3. The model

Consider N sovereign countries that run a fiscal policy in order to balance their public budget. Each country is assumed to have an exogenously fixed budget re-
Fiscal policies consist in per unit factor taxes levied according to the source based principle. The economy is described as follows: two production factors, capital K and labor L, are used in the production of a single consumption good. The production technology exhibits constant returns to scale and is described by a homogeneous production function $F(K; L): F(K; L) = Lf(k)$ with $k = K/L$, $f^0(k) > 0$ and $f^{00}(k) < 0$. To spare conditions on positive production and positive net remuneration of capital, we also assume that $f^0(0) = 1$, $f^0(1) = 0$, $f(0) = 0$.

Firms behave competitively and production factors are therefore priced at their marginal productivity:

$$r = f^0(k)$$

and

$$w = f(k)k^f(k)$$

r and w denoting respectively, the gross remuneration of capital and labor. The relative factor demand of a particular firm is given by:

$$\kappa(r) = f^0(k)$$

with

$$\kappa^0 = \frac{1}{f^w(k)}.$$

It is assumed that capital is perfectly mobile and labor perfectly immobile. As taxes are levied according to the source based principle, the capital is invested in the country giving the largest net remuneration. The following arbitrage condition holds:

$$r_i - t_i = r_j - t_j = \frac{1}{2}$$

where t_i is the per unit capital tax and $\frac{1}{2}$ net capital remuneration on the international market.

Countries are assumed to be asymmetric with respect to their factor endowment and we denote by K_w and L_w the world aggregate endowment of capital and labor and $\chi_i > 0$ and $\delta_i > 0$; the shares of the aggregate endowment of owned by country i; so that $L_i = \chi_i L_w$ and $K_i = \delta_i K_w$. Note that $\sum_{i=1}^{N} \chi_i = 1$ and $\sum_{i=1}^{N} \delta_i = 1$.

For later use, we define $K_i = \chi_i K_w$ and $K_w = \sum_{i=1}^{N} \chi_i K_w$.

At the Walrasian equilibrium, factor prices adjust to clear markets. A labor market exists in each country and international markets are available for the capital and consumption goods. At equilibrium, labor markets clear in each country.

5We denote the country variables with a subscript i where $i = 1::N$.

6Subscripts and dependent variables will be omitted when not absolutely necessary.
The international capital market clearing condition is therefore given by

\[\tilde{L}_w X \tilde{K}_w = \nabla \tilde{K}_w \]

As the LHS of this equation is strictly decreasing in \(\tilde{t}_i \), an equilibrium exists,

\[\tilde{t}_i = \frac{1}{2} t_1; \cdots; t_i; \cdots t_n \]

with

\[\frac{\gamma}{\tilde{t}_i} = \frac{\partial \tilde{t}_i}{\partial t_i} = \frac{i}{\tilde{K}_w \tilde{K}_i (\tilde{K}_w \tilde{K}_i)} \]

At equilibrium the level of capital invested in each country is

\[K_i (\tilde{t}_1; \cdots; t_i; \cdots t_n; t_i) = \tilde{L}_w \tilde{K}_i (\tilde{t}_1; \cdots; t_i; \cdots t_n; t_i) \]

Therefore, the existing equilibrium wage rate is given by

\[w_i = f (R_i) \frac{i}{\tilde{K}_i} \cdot k_i f' (R_i) \]

with

\[\frac{\partial w_i}{\partial t_i} = i (\gamma \tilde{R}_i + 1) R_i < 0 \]

for \(i = 1; \cdots; N \), and

\[\frac{\partial w_i}{\partial t_j} = i \gamma \tilde{R}_j > 0 \]

for \(i = 1; \cdots; N \) and \(j \neq i \).

It is important to note that capital movements originate in two sources: the difference in factor endowments and the difference in capital taxes. In the absence of capital taxes, capital movements lead to an equalization of the invested capital labor ratio across countries, i.e. to the efficient allocation of factors. Accordingly, the liberalizing the capital market leads to a better allocation of resources, and capital taxes introduce distortions in the capital market. When capital taxes are not equalized across countries, part of the capital movements are not motivated by allocative efficiency but by fiscal opportunism.

4. Fiscal competition

In this section we analyze fiscal competition arising between the different countries. Capital and labor taxes are assumed to be decided simultaneously by each national social planner who maximizes the welfare of its representative consumer.
Tax setting is described as an equilibrium of a non-cooperative game in which strategies are tax levels and the payoffs which are the countries representative agent’s utility. First, we describe the public budget constraint and analyze for each country the effect of its national tax policy on the welfare of its representative consumer. Then, we characterize a non-cooperative equilibrium of the game we have just described.

4.1. The government budget constraint

In country i, a fixed amount of public money, G_i, has to be levied through taxation. The tax choice lies in the allocation of the tax burden between labor and capital. Taxes are per unit and source based. The budget constraint of the government in country i writes as:

$$G_i = \omega_i L w (\xi_i + t_i k_i)$$

with ξ_i and t_i denoting respectively, labor and capital taxes. Indeed, the tax decision is essentially a single dimension problem since ξ_i can be expressed as a function of t_i,

$$\xi_i = \frac{G_i}{\omega_i L w} t_i k_i.$$

It is important to note that the tax choice consists in levying public money through a non-distortionary tax instrument and/or a distortionary one. The labor tax is non-distortionary as labor is inelastically supplied and immobile while the capital tax distorts the international price of capital.

As no limits have been imposed on the tax instrument, it is possible to have negative taxes at equilibrium.

4.2. The representative agent

In this part of the section, we isolate the different effects of the capital tax on the welfare of the representative agent of a particular country.

The representative agent in country i derives welfare from consumption of the single good produced in the economy. His preferences can be represented by its country’s per capita GNP, i.e. the value of the domestic product minus the net contribution from abroad:

$$U_i = (r_i k_i + w_i) - \frac{1}{2} \delta_i k_i$$

where δ_i is the aggregate relative endowment of country i and $k_i = \frac{K_i}{L_i}$ is the ratio of the factors of production effectively invested in country i:

$$\delta_i = K_i L_i.$$
The marginal effect of capital tax can be decomposed into three effects: the terms of trade effect, the tax import/export effect and the capital movement effect. These are respectively identified in the following expression:

$$ \frac{dU_i}{dt_i} = \frac{d(\frac{1}{2}k_i \dot{k}_i)}{dt_i} + \frac{dt_i(k_i \dot{\dot{k}}_i)}{dt_i} + (\dot{k}_i \dot{k}_i) $$

The terms of trade effect represents the gain (loss) that a capital importing (exporting) country makes resulting from the depression of the international remuneration of capital induced by the increase of the capital tax. We call it the terms of trade effect as the logic behind it is exactly the one that justifies the optimum tariff in international trade: the tariff is seen as a way to influence the terms of trade. A country that imports capital has an incentive to increase its capital tax in order to decrease its cost. On the contrary, a country that is capital exporter should decrease it in order to increase its international remuneration.

The tax burden import/export effect: When a capital importing country levies a tax on capital, not only resident owners pay the tax but also the foreign investors. This means that part of its tax burden is supported by non-residents, i.e. $t_i(k_i \dot{k}_i)$. By increasing the capital tax level, a capital importing country influences the size of the tax burden that it exports. Up to a certain point this effect is positive. For a capital exporting country, the reverse is observed: each unit of exported capital is not taxed at home and is then a loss of tax revenue.

The residual effect of the fiscal policy is due to the influence of the induced capital movement on the gross remuneration of factors. A higher t_i decreases invested capital and then changes gross factor remuneration. We call it the capital movement effect. This effect is negative (res. positive) if the country is a capital importer (res. exporter). The logic behind it is that $\frac{\partial}{\partial k} \frac{\partial U_i}{\partial t_i} = \dot{k}_i \frac{\partial r}{\partial t_i}$: an additional unit of capital invested at home increases a labor remuneration more than capital remuneration when the country is a capital importer.

In order to spare tedious calculations, it is assumed that the utility functions are continuous, strictly quasi-concave with respect to their capital tax rate and that $\frac{\partial^2 U_i}{\partial t_i \partial t_j} \geq 0$. We present in the appendix an example satisfying all these assumptions.

4.3. The non-cooperative fiscal decision

It is now possible to describe formally a non-cooperative game played by the different countries. It is a N player game whose players are the national social planners and strategies the level of capital tax.

The payoffs of the game are
\[
\frac{1}{N}(t_1; \ldots; t_N) = \bar{k}_i \frac{1}{N} t_i + w(t_1; \ldots; t_N) + t_i k_i (t_1; \ldots; t_N) \quad (4.2)
\]

\[8i = 1; \ldots; N.\]

The strategies are

\[t_i \in [1; 1] \quad 8i = 1; \ldots; N: \quad (4.3)\]

The best reply function of country \(i\), \(\mathcal{E}_i(t_i)\) is implicitly defined by the F.O.C of the maximization problem of its social planner:

\[(1 + \frac{1}{2} t_i) k_i^0 t_i + (k_i - k_i) t_i = 0; \quad (4.4)\]

which is equivalent to

\[t_i = \frac{\frac{1}{2} k_i}{1 + \frac{1}{2} k_i^0}; \quad \frac{\partial^2 u_i}{\partial t_i} = \frac{\partial^2 u_i}{\partial t_i^2} > 0; \quad (4.5)\]

By the implicit function theorem, and the assumptions on the utility functions,

\[\frac{\partial \mathcal{E}_i}{\partial t_j} = \frac{\partial^2 u_i}{\partial t_i \partial t_j} > 0.\]

This is to say that capital taxes are strategic complements. An equilibrium of the non-cooperative game is given by the solution of the system of equations defined by the \(N\) best-reply functions defined by (4.5).

Proposition 4.1. (i) The game defined by equations (4.2) and (4.3) has a non-cooperative equilibrium \((t_{nc1}; \ldots; t_{ncN})\). (ii) The equilibrium capital tax levels are such that capital importing countries set positive capital taxes while capital exporting countries subsidize it. (iii) Moreover, at equilibrium, the capital is almost never efficiently allocated among countries.

Proof. (ii) We know that, at equilibrium, countries are on their best-reply functions, this is to say that \(t_i = \frac{1}{2} k_i \frac{k_i - k_i}{1 + \frac{1}{2} k_i^0}; t_i \not< 0\) when \((k_i - k_i) > 0\): Such game has an equilibrium when payoff functions are continuous and quasi-concave and when the strategy sets are compact and convex. As the two first conditions are assumptions of our model, we need to show that strategy sets are convex and compact. As capital tax rates are unidimensional strategy sets, we have to show that they are bounded from below and from above. The demonstration is done by contradiction for the upper bound. Imagine that a country, \(i\); sets an infinite tax at equilibrium, then \(r_i = 1\) and, by the assumptions on the production function, \(k_i = 0\) and therefore the country is exporting capital. This is impossible as we showed in (ii) that only capital importing countries set
positive capital tax. Following a similar argument, it is easy to show that the strategy sets are bounded from below.

(iii) The capital is efficiently allocated across countries when its cost is equalized. As the cost is given by the international price of capital plus the national capital tax rate, costs are equalized only when all countries set the same level of capital tax. This is the case only when countries are symmetric.

Even if at a first sight, the result could seem surprising, proposition 4:1 is rather intuitive when analyzed with the three effects of capital taxation in mind.

When the capital tax is not too high, capital taxation has two positive effects on welfare for a capital importing country: a decrease in their capital import bill via the terms-of-trade effect and an alleviation of the tax burden via the tax burden export effect. Only the capital movement effect briddles the capital taxation willingness of these countries. Capital taxation has the opposite results for a capital exporting country. They have a negative incentive to tax as they fear a loss of their tax base and they want to get the highest return from the capital they export.

Note here that the inefficiencies identified in this proposition would not exist if countries were symmetric in their relative capital endowment. In this latter case, at equilibrium, capital is taxed in none of the countries and thus there does not exist any inefficiency in the capital market. In this paper it is the asymmetry between countries that causes inefficiency and not the factor elasticity as in Bucovetsky and Wilson (1991) or Huizinga and Nielsen (1996).

As at a non-cooperative equilibrium the allocation of capital is inefficient, it makes sense to explore possible coordination devices.

5. Fiscal Reforms

We analyze in this section two tax reforms: the minimum tax reform and the tax range reform.

For simplicity, we concentrate our analysis on cases where the equilibrium of the non cooperative game is unique. For further references, label the countries such that \(t_{nc1}, t_{nc2}, \ldots, t_{ncN} \) with \(t_{nc} \) denoting the value of the taxes at the non-cooperative equilibrium:

5.1. The minimum tax reform

The minimum tax reform is a natural candidate as a possible tax reform since it has already been used to overcome inefficiencies arising from fiscal competition on the VAT in European Union.
In this section, we argue that, under the assumptions of our model, this reform cannot be accepted by all countries. The capital exporting countries reject it while the capital importing countries advocate it. To show this we first have to derive the Nash equilibrium of the game where the agents strategies are constrained from below. We define this game as the “tax constrained game”. We then show that any increase of the minimum tax level injures the capital exporting countries.

Strategies of this constrained game are all the capital tax levels larger than the minimum tax level, \(\pm \), and the payoffs, the welfare of the representative consumer in each country. Let \(B(\pm) \) as the set of countries bounded when the minimum tax level is \(\pm \) and \(\bar{\beta}(\pm) \) the largest country index of \(B(\pm) \).

Lemma 5.1. The “tax constrained” game has an equilibrium \((\tilde{t}_1(\pm); \cdots; \tilde{t}_i(\pm); \cdots; \tilde{t}_N(\pm)) \), where \(\tilde{t}_i(\pm) = \pm \) for \(i = \bar{\beta}(\pm) \) and \(\frac{d\tilde{t}_i(\pm)}{d\pm} > 0 \) for \(i > \bar{\beta}(\pm) \).

Proof. As strategy sets are compact and convex and payoffs are quasi-concave and continuous functions, the equilibrium exists. The equilibrium taxes are increasing functions of the minimum tax level because they are strategic complements as shown in (4.6).

This shows that for each level of the minimum tax rate, an equilibrium exists. Let us now state the following proposition:

Proposition 5.2. The minimum tax reform is never unanimously accepted.

Proof. As a reform passes only if it is weakly preferred by all countries and strictly preferred by at least one, it is enough to show that an increase of \(\pm \) is detrimental for at least one country. We do this for a non-constrained country. By differentiating the welfare of an agent \(i \) at the constrained equilibrium \((\tilde{t}_1(\pm); \cdots; \tilde{t}_i(\pm); \cdots; \tilde{t}_N(\pm)) \) with respect to \(\pm \)

\[
\frac{dU_i}{d\pm} = \frac{dU_i}{dt_j} \frac{dt_j}{d\pm} + \sum_{j \neq i} \frac{dU_i}{dt_j} \frac{dt_j}{d\pm} \tag{5.1}
\]

As country \(i \) is not constrained, it is on its best reply and thus \(\frac{dU_i}{dt_j} = 0 \). Moreover,

\[
\frac{dU_i}{dt_j} = \frac{k_i j \ k_j}{1 + \frac{1}{\delta_i}} \tag{5.2}
\]

Then,

\[
\frac{dU_i}{d\pm} = \frac{k_i j \ k_j}{1 + \frac{1}{\delta_i}} \sum_{j=1}^{N} \frac{dt_j}{d\pm} \]
This expression is negative (res. positive) when the country \(i\) exports (reps. imports) capital. There is a conflict of interest between the capital importing countries and the capital exporting ones. For completeness, we have to consider the case where none of the capital exporting countries are unbounded. To see that it is also detrimental for a bounded country, just note that this country is forced to set a capital tax larger than its optimal one. This means that \(\frac{du}{dx} < 0\); knowing that \(\sum_{j \in j} dU_j \frac{dk_j}{dt} = (1 + \frac{k_i}{k_i}) \frac{1}{\xi_i} \sum_{j = 1}^{N} \frac{d\xi_j}{dt} d\alpha_j = (1 + \frac{k_i}{k_i}) \frac{1}{\xi_i} \int \frac{d\xi_j}{dt} d\alpha_j\), by 5.1 it is straightforward that \(\frac{du}{dx} < 0\).

A rough intuition of this result is the following. As it is for the capital exporting countries that the minimum tax could be binding, bounded countries have to give up more of their tax base than they would like. This is detrimental for them and positive for the capital importing countries that have the opportunity to export more of their tax burden.

In our model, this means that if the European Union wants to pass this kind of reform, capital exporting countries have to be compensated. Even if this is not impossible, it is nevertheless interesting to find another tax reform that would be self contained. This is what is developed in the next section.

5.2. The tax range reform

A tax range reform is defined as the imposition of a lower \((\pm \frac{1}{2})\) and an upper \((\pm \frac{1}{2})\) limit to the capital tax level. The tax range is given by \([\pm \frac{1}{2}, \pm \frac{1}{2}]\).

We show that there exist such tax reforms that are unanimously preferred to the non-cooperative equilibrium. The success of this reform precisely comes from the weakness of the former one. If it is detrimental for the capital exporting countries to be bound from below and positive for the capital importing, it is reasonable to expect the opposite effect from an upper boundary. As both policies decrease the inter-country difference in capital cost, it improves the capital allocation efficiency. We can therefore expect a net gain from the combination of these two reforms.

As for the minimum tax reform, we first compute the constrained Nash equilibrium. We then show that it can be Pareto improving.

The constrained Nash equilibrium is defined by the game which strategies are all the capital tax levels in the tax range, \([\pm \frac{1}{2}, \pm \frac{1}{2}]\) and the payoffs are the welfare of each representative consumer.

For a given tax range, define \(B(\pm \frac{1}{2})\) as the set of countries that are bounded from below and \(T(\pm \frac{1}{2})\) as the set of countries bounded from the top.

Let also define \(\bar{\mu}(\pm \frac{1}{2}) = 1 + \max_i B(\pm \frac{1}{2})\) and \(\mu(\pm \frac{1}{2}) = \min_i T(\pm \frac{1}{2})\); \(\bar{\mu}\) is then the index of the unbound country with the lowest capital tax and \(\mu\) is the index of the unbound country with the highest capital tax.
Lemma 5.3. This game has an equilibrium \((t^C_1; \ldots; t^C_N)\), where \(t^C_i = \pm\) when \(i < \bar{\mu}(\pm \frac{1}{2})\), \(t^C_i = \pm \frac{1}{2}\) for \(i \leq \bar{\mu}\), \(\mu(\pm \frac{1}{2})\) and \(t^C_i = t^C_i(\pm \frac{1}{2})\) when \(\bar{\mu}(\pm \frac{1}{2}) < i < \mu(\pm \frac{1}{2})\). Where \(\frac{dC}{dz} > 0\) and \(\frac{dC}{dz} < 0\).

Proof. By the usual argument, the existence of the equilibrium is ensured. As capital taxes are strategic complements, \(\frac{dC}{dz} > 0\) and \(\frac{dC}{dz} > 0\): ■

Each tax range corresponds to a constrained Nash equilibrium. We now turn to the analysis of impact of a tax range reform \(d^{\pm}\) on the welfare of the different representative agents.

A country bounded from below, i.e. \(i < \bar{\mu}\), has the following welfare function

\[
U_i = \frac{1}{2}k_i + w_i + \pm k_i
\]

Differentiating it with respect to \(\pm\) we get the welfare effect of an increase of the lower bound,

\[
\frac{dU_i}{d\pm} = \frac{d}{d\pm}\left(\frac{1}{2}k_i + k_i\right) + \pm k_i \left(1 - \frac{d\pm}{d\pm}\right)
\]

Similarly, for the upper bound,

\[
\frac{dU_i}{d\pm} = \frac{d}{d\pm}\left(\frac{1}{2}k_i + k_i\right) + \pm k_i \left(1 + \frac{d\pm}{d\pm}\right)
\]

The total effect is given by,

\[
dU_i = \frac{dU_i}{d\pm} d\pm + \frac{dU_i}{d\pm} d\pm = \pm k_i d\pm + \left(\frac{d}{d\pm}\frac{d\pm}{d\pm} + \frac{d\pm}{d\pm}\frac{d\pm}{d\pm}\right) (k_i + \pm k_i)
\]

(5.3)

By exactly the same procedure it is easy to show that, for countries bounded from above,

\[
dU_i = \frac{dU_i}{d\pm} d\pm + \frac{dU_i}{d\pm} d\pm = \pm k_i d\pm + \left(\frac{d}{d\pm}\frac{d\pm}{d\pm} + \frac{d\pm}{d\pm}\frac{d\pm}{d\pm}\right) (k_i + \mp k_i)
\]

(5.4)

The welfare effect of a tax range reform on an unbounded country is a little more difficult to find.

The welfare of an unbounded country is given by

\[
U_i = \frac{1}{2}k_i + w_i + \mu C_i(\pm \mp)k_i
\]
Differentiating with respect to both boundaries, we get
\[
\frac{dU_i}{d\pm} = (k_i \hat{k}_i) \frac{d\hat{k}_i}{d\pm} + t_i \hat{k}_i \left(\frac{dt_i}{d\pm} + \frac{d\hat{k}_i}{d\pm} \right)
\]
with \(\pm = \pm i \).

The total effect of the reform is then
\[
dU_i = \left(k_i \hat{k}_i + t_i \hat{k}_i \right) \frac{d\hat{k}_i}{d\pm} + t_i \hat{k}_i dt_i
\]
with \(dx = \frac{dx}{d\pm} + \frac{dx}{d\hat{\pm}} \).

It is now possible to show the following proposition.

Proposition 5.4. Tax range reforms that leave international remuneration of capital unchanged and increase the elasticity of the international demand for capital exist and are always accepted as long as \(d\pm > 0, \hat{d}\pm < 0 \) and \(0 < \hat{\pm} \).

Moreover, as a result of the tax reform, all capital exporting countries increase their capital tax and all capital importing ones decrease it.

Proof. From (5.3), (5.4) and (5.5), it directly follows that

when \(i < \bar{i} \);

\[dU_i = \hat{k}_i \frac{d\hat{k}_i}{d\pm}, \quad 0 \] as long as \(d\pm > 0 \) and \(\hat{\pm} > 0 \);

and, when \(i > \mu \);

\[dU_i = \hat{k}_i \frac{d\hat{k}_i}{d\pm}, \quad 0 \] as long as \(d\pm < 0 \) and \(\hat{\pm} > 0 \);

where the conditions on the boundaries and on the reforms are equivalent to the one stated in the proposition;

when \(i \in [\bar{i}; \mu] \);

\[dU_i = t_i \hat{k}_i dt_i, \]

As by setting \(t_i \) equal to its capital tax before the reform, unbounded countries can secure the before reform welfare, if they change their equilibrium strategy, it is for the better. This is to say that \(dU_i > 0 \) and by the former equation that \(dt_i < 0 \) when country \(i \) is capital exporter (importer).

This says that under these conditions, all countries are better off. The reform then passes.

To complete the proof, we have to show that such reform exists and increases the elasticity of the international demand for capital.

The intuition behind this result is the following.
As $\frac{1}{2}$ is unchanged, the term of trade effect on welfare is neutralized. A tax range reform is a mix between a minimum tax increase and a maximum tax decrease. An increase of the minimum tax hurts capital exporting countries, because of the tax burden effect, as they are forced to give up more than they would like of their tax base. This effect is however attenuated by the increase of their gross income described by the capital movement effect. The capital importing countries are affected exactly in the opposite way. They are able to export more of their tax burden but have to pay a tribute, the decrease of their gross income. The decrease of the maximum tax affects countries in exactly the opposite way. The tax burden effect is used as a built-in mechanism to transfer resources from the country that gains to compensate the countries suffers. Capital exporting countries benefit from the efficiency gain and compensate the capital importing.

The efficiency gains are larger than the one directly created by the convergence of the boundaries: there are gains due to the additional convergence of the countries that are not bounded by the reform. This additional convergence is explained by the increased elasticity of the international demand for capital: all capital importing (exporting) countries have an incentive to increase (decrease) their capital tax because the terms of trade effect is augmented (on the welfare point of view, the term of trade effects are neutralized, but the marginal effect of capital tax described by the term of trade effect is affected). This induces a further convergence of the capital taxes and thus an additional increase of efficiency.

In this proposition, the zero capital tax rate seems to be important, which is not surprising since labor tax is non-distortionary. We can reasonably conjecture that if labor supply were inelastic, a positive capital tax rate would play this role.

Both reforms have the appealing properties of being simple, anonymous and respecting the subsidiary principle. By anonymous we mean that the minimum tax or the range applies in the same way to all countries, i.e. it restricts their strategy set. A non anonymous reform would impose a different tax level on each country. In the context of our model it does not make a big difference. A minimum tax or tax range reform is mimicked by imposing to each country the capital tax level that they would have announced under the minimum tax reform or the tax range reform. An anonymous rule is desirable because: (i) The informational requirement in imposing such reforms is lower, and (ii) a non anonymous reform would be politically difficult to sustain.

The proposed reforms respect the subsidiary principle as they leave to the national level the fiscal decision while the supra-national interventions intend to limit inefficiencies.

A more ambitious way of interpreting this work is to see it as an attempt to design supra-national (for Europe) or federal (for Australia, Canada or the US) institutions helping to avoid the inefficiencies linked to fiscal competition.
An institution consists in competencies and a decision rule. The competencies would be the setting of the tax range. For the decision rule, we propose unanimity rule as it prevails in the European Union on these matters or with the behavior of independent countries in international negotiations. Some of the required features of such institution would be precisely to respect the anonymity and the subsidiary principles. For instance, the WTO, with its most preferred clause, imposes that each country grant an equal treatment to all their trade partners.

6. Additional discussion

It is important to note that in this paper, the source based capital tax would be used even if a residency base version would be at the disposition of the government. The existence of a residency based tax would only enable the government to reallocate part of the tax burden from the workers to the capital owners. The source based capital tax would still be used as a strategic device.

We want to discuss the following extension: Imagine that the three tax instruments were available and that factor supplies are not perfectly inelastic (but quite). The conclusions of our model would not be changed, the non-cooperative equilibrium would consists in source based and residency based taxes and a labor tax for each country. The source based capital tax wouldn’t have changed as factor supply are quite inelastic. But the residual tax burden would be split among the capital income and the labor residency based taxes to minimize the distortions due to the factor supply elasticity.

Imagine now, that tax evasion is possible and is done at no risk. To evade tax at no risk, a capital owner has to get the income of its capital from a non-national institution. For instance, the Belgian capital owner gets its dividend from a Luxembourg bank even though his capital is invested in Belgium. The residency based tax would then be nil as it is not possible to implement it. In this case, the introduction of a minimum withholding tax would please all countries as it enables the government to use this instrument at least up to the minimum tax level and therefore enable to decrease the inefficiencies linked to the factor supply elasticity. Typically, the minimum withholding tax would be the lowest one from set of the nationally preferred residency based capital without tax evasion.

The introduction of a minimum capital tax would pass without doubt. To reach this conclusion, it has to be assumed that no profit is done by the banks distributing the benefits and no risk are taken by the tax evaders. This is typically not the case. This explains that we observe a certain level of residency based capital tax in Europe and that countries that attract the most of these financial benefits try to block this kind of reforms.
7. Conclusion

In this paper we have analyzed the fiscal competition between N asymmetric countries when international capital market is liberalized. We have concentrated our analysis on the effect of this competition on the allocation of capital among countries, i.e. on production efficiency. We decompose the impact of fiscal policy in three effects: the terms of trade effect, the tax import/export effect and the capital movement effect.

We have shown that, when countries behave non-cooperatively, at equilibrium, capital tax level differs among countries leading to an inefficient allocation of resources. We examined two tax reforms, one that imposes a minimum tax and another that fixes a range in which capital tax levels have to be decided.

We showed that the first reform would not be unanimously accepted and that the second reform passes as long as the convergence of tax limits is such that the international remuneration of capital is not affected. The N countries framework is important here, as the effects of the reforms differ from countries that are bounded and the one that are unbounded.

We argued that the tax range reform plus the unanimity rule could be an interesting starting point for discussion of a supranational or federal fiscal institution as it respects some appealing principles like the anonymity of the reforms and the subsidiary principle.

This paper helps to identify how asymmetry between a large number of countries plays an important role in the fiscal competition and what kind of reforms could pass. In addition to that it allows for several interesting extensions on the economical and institutional points of view.

8. Appendix

In this appendix, considering a particular example, we show, with some lemmas, that the analysis we undertook in this paper is not vain, i.e. we were not reasoning on an empty set.

Consider the following constant returns to scale production function in intensive form:

\[f(k) = (a - bk)k \]

This function has been used by Bucovetsky and Grazzini and van Ypersele. It perfectly fits in the assumptions we impose except for two technical conditions i.e. \(f'(0) = 1 \), \(f'(1) = 0 \). These conditions have to be replaced by \(\kappa_i < \frac{a}{2b_i} \); in order to ensure positive marginal productivity.
Lemma 0.1. $\frac{d^2U_i}{dt_i^2} < 0$ and $\frac{d^2U_{ij}}{dt_i dt_j} > 0$:

Proof. Mutatis mutandis equation (4.4),

$$\frac{dU_i}{dt_i} = 2b_i, \{K_i \mid j = 1, \ldots, j \} \ t_j \ i \ t_i = 0$$ \hspace{1cm} (0.1)

It directly follows that $\frac{d^2U_i}{dt_i^2} = (, 1 \ 1) < 0$ and $\frac{d^2U_{ij}}{dt_i dt_j} = , j, i > 0$. ■

Lemma 0.2. The non-cooperative equilibrium exists and is unique.

Proof. The Nash equilibrium solves the system of equations defined by (0.1) for the N countries. This system is linear and of full rank. The solution is then unique given by

$$t^*_{ij} = \frac{|\sum_{j=1}^{N} \eta_{ij} + \eta_{jj} A\ 1_{i} - \sum_{j=1}^{N} \eta_{ji} + \eta_{ii} A\ 1_{j}}{|A|} \ \text{for all } i = 1, \ldots, N$$

Lemma 0.3. For all tax range $[\pm \bar{t}]$; an equilibrium of the constrained game exists and is unique.

Proof. The equilibrium of the constrained game solves the system of equations of the non-constrained countries: is unique, as this is a non-homogeneous system of equations.

$$t^*_{ij} = \frac{1}{2b_k w(1 - \bar{t})} \left[\eta_{ij} + \eta_{jj} A\ 1_{i} - \sum_{j=1}^{N} \eta_{ji} + \eta_{ii} A\ 1_{j} \right]$$

In matrix form,

$$\begin{array}{cccccccc}
0 & 1 & 1 & 1 & \cdots & 1 & \cdots & 1 \\
1 & \eta_{11} & \eta_{12} & \cdots & \eta_{1N} & \cdots & \eta_{1t_{ij}} & \cdots & \eta_{1N} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
1 & \eta_{N1} & \eta_{N2} & \cdots & \eta_{NN} & \cdots & \eta_{Nt_{ij}} & \cdots & \eta_{Nt_{ij}} \\
\end{array}$$

with $A_i = 2b_k w(1 - \bar{t}) + \sum_{j=1}^{N} \eta_{ij} + \eta_{jj} A\ 1_{i} - \sum_{j=1}^{N} \eta_{ji} + \eta_{ii} A\ 1_{j}$.

Applying Cramer’s rule and standard matrix calculus results, we get
Lemma 0.4. There exists at least one pair of countries \((i; j)\) such that

\[
\operatorname{sign}(1 + \sum_{j=\mu}^{\bar{\mu}} \frac{1}{P_{ij}} \frac{1}{P_{ji}} (2) \frac{1}{k_{ij}} \frac{1}{k_{ji}}) \neq \operatorname{sign}(1 + \sum_{j=\mu}^{\bar{\mu}} \frac{1}{P_{ij}} 2) \frac{1}{k_{ij}} \frac{1}{k_{ji}})
\]

for all \(i\) such that \(i \in \mu\) and \(t_{C_i} = \pm\) for all \(i < \mu\) and \(t_{C_i} = \mp\) for all \(i > \mu\):

Proof. To prove this we first compute \(\delta_{ij}\) and show that \(1 + \sum_{j=\mu}^{\bar{\mu}} \frac{1}{P_{ij}} \frac{1}{P_{ji}} (2) \frac{1}{k_{ij}} \frac{1}{k_{ji}}\) has the same sign for all countries which is a sufficient condition for the statement of the lemma as \(k_{ij} k_{ji}\) does not have the same sign for all countries.

\[
dt_i = \frac{\partial}{\partial \frac{1}{P_{ij}} \frac{1}{P_{ji}}} (\frac{1}{P_{ij}} + \frac{1}{P_{ji}}) = \frac{\partial}{\partial \frac{1}{P_{ij}}} (\frac{1}{P_{ij}} + \frac{1}{P_{ji}}) = \frac{\partial}{\partial \frac{1}{P_{ij}}} \frac{1}{P_{ij}} = 0
\]

with \(\delta_{ij} = \frac{1}{P_{ij}} \frac{1}{P_{ji}}\).

It is now possible to check if \(1 + \sum_{j=\mu}^{\bar{\mu}} \frac{1}{P_{ij}} \frac{1}{P_{ji}} (2) \frac{1}{k_{ij}} \frac{1}{k_{ji}}\) has the same sign for all countries\(^8\).

\[
1 + \sum_{j=\mu}^{\bar{\mu}} \frac{1}{P_{ij}} \frac{1}{P_{ji}} = 1 + \frac{1}{P_{ij}} \frac{1}{P_{ji}} > 0
\]

as \(P_{ij} \frac{1}{P_{ji}} < 1\).

\(^8\) This is a sufficient condition to ensure that there exist at least one pair of countries \((i; j)\) such that \(\operatorname{sign}(1 + \sum_{j=\mu}^{\bar{\mu}} \frac{1}{P_{ij}} \frac{1}{P_{ji}} (2) \frac{1}{k_{ij}} \frac{1}{k_{ji}}) \neq \operatorname{sign}(1 + \sum_{j=\mu}^{\bar{\mu}} \frac{1}{P_{ij}} 2) \frac{1}{k_{ij}} \frac{1}{k_{ji}}).\)
References

[12] KPMG 1998 Corporate tax rate survey

