Short-Term and Long-Term Government Debt and Nonresident Interest Withholding Taxes

Sylvester C.W. Eijffinger, Harry P. Huizinga and Jan J.G. Lemmen*
CentER and Department of Economics
Tilburg University

First version, April 1996
This version, September 1996

Abstract
This paper examines the incidence of nonresident interest withholding taxes in the international 3-month Treasury-bill market and the international 5-year government bond market. The approach is one of pooled cross-section, time-series regressions. We find that, in general, U.S. dollar yields on national Treasury-bills and pre-tax 5-year government bond yields fully reflect nonresident interest withholding taxes imposed on American or Japanese investors. Nonresident interest withholding taxes on short-term and long-term government debt thus do not appear to be borne by the international investor.

Key words: Withholding taxation; interest parity conditions; government debt.

JEL Classification: G15, H22, H63.

* P.O. Box 90153, 5000 LE Tilburg, The Netherlands. We thank the Bank of Japan, Banque de France, Schweizerische National Bank and the Sveriges Riksbank for generously providing end-of-period treasury bill data. We are grateful to Julian Alworth and to two discussants and other participants of the 1996 TAPES conference on Interjurisdictional Differences in Tax and Expenditure Policies, May 29-31, 1996, Amsterdam, The Netherlands.
1 Introduction

Many industrialized countries continue to levy nonresident interest withholding taxes on interest accruing to foreign residents. The large variation in countries’ withholding tax regimes in terms of rates and application, however, suggests that countries disagree what role these taxes play or should play. To inform the debate, this paper examines how interest withholding taxes, insofar as they apply to government debt, affect government debt yields for the industrialized countries. The basic question is to what extent a withholding tax is compounded into higher pre-tax interest rates on short-term Treasury bills or T-bills and on long-term 5-year government bonds. From the estimated mark-up, we can immediately infer to what extent the nonresident withholding tax is in fact borne by the debt-issuing treasury rather than by the lender or the lender’s treasury. A priori, the relationship between nonresident withholding taxes and interest rates can be expected to reflect, first, whether these taxes are easily evaded by way of a third country, tax-exempt financial intermediaries or by coupon washing techniques. Second, the interest rate mark-up importantly depends on whether the lender expects to receive a foreign tax credit to offset the withholding tax. At one extreme, no mark-up should occur if a risk-neutral investor receives a fully offsetting tax credit, while a full mark-up is consistent with the absence of any tax credit. Given these complications, empirical estimation of the extent of mark-up is called for to provide insights into the economic working and incidence of nonresident interest withholding taxation.

The nonresident withholding tax regime tends to be a patchwork of rates and regulations. Tax treaties may stipulate different rates for different interest receiving countries, while there may be a host of exemptions based on the type of debt instrument, its maturity, and the status of interest payor or payee.1 Many countries exempt government debt from nonresident withholding taxation altogether. Exceptions to this rule among the industrialized countries include Australia, Italy, Japan, Spain and Switzerland. This paper focuses on government debt markets,
as they are well-defined, relatively liquid and as it is of prime interest to see how withholding
taxes affect the tax-inclusive government cost of borrowing.

Previously, Brean (1984) has documented a downward effect of the 1975 elimination
of interest withholding taxes on interest rates for Canadian medium and long-term corporate
borrowings from foreign sources. Along similar lines, Nöhrbaß and Raab (1990) find that the
yield on German corporate bonds fully reflects the 10 per cent withholding tax rate in force
in early 1989. Developing country commercial bank credit terms in the 1970s also reflect
nonresident withholding taxes, as shown in Huizinga (1996). Net-of-tax interest rates charged
to developing country borrowers are shown to be negatively related to withholding taxes as
applied to foreign bank interest. As a related matter, Demirgüç-Kunt and Huizinga (1995)
examine the impact of dividend and capital gains withholding taxes as imposed by developing
countries on their pre-tax equity returns. Only withholding taxes on capital gains appear to
have a discernible impact on pre-tax equity returns. This is consistent with the rather limited
creditability of nonresident capital gains withholding taxes in the U.S. and other capital exporting
countries.

This paper examines the link between interest rates and withholding taxes separately
for T-bills and 5-year government bonds, while the international investors in government debt
are taken to be either American or Japanese. With T-bill yields, we in fact estimate a covered
interest parity relationship adjusted for the withholding-tax mark-up. T-bills have the advantage
that they are almost free of default risk. To check whether the results also apply to longer-term
debt, we further examine a closed interest parity relationship linking the government bond yield
to comparable offshore swap interest rates in the same currency - but not subject to withholding
taxation. The swap rate reflects the interest rate on a benchmark bond designated by major
securities houses as such, and therefore rather liquid and trading at a premium.
The remainder of the paper is organized as follows. Section 2 derives the estimating equations from underlying interest arbitrage relationships. Section 3 presents the empirical results for the T-bill and 5-year government bond markets in two separate subsections. While the evidence differs somewhat across samples and time periods, overall it is supportive of the view that withholding taxes are compounded one-for-one into higher pre-tax government yields. As indicated, this is consistent with the view that international investors (such as American and Japanese pension funds) cannot obtain any offsetting foreign tax credits or that there is widespread domestic tax evasion. Section 4 evaluates the results and concludes.

2 The estimating equations

As indicated, the scope for nonresident interest withholding taxation to affect the covered interest parity c.q. the closed interest parity relationship depends on the particular financial instruments that are considered. In this paper, we focus on the source-based interest withholding taxation of 3-month T-bills and 5-year government bonds. The impact of interest withholding taxation on financial returns, generally, depends on the tax treatment of foreign source interest income by the international investor’s domestic tax authority as well as on the withholding tax regime. This section indicates how the covered and closed interest parity conditions can be adjusted for the presence of source-based interest withholding taxation.6

In the later empirical work, the investors in international government debts are taken to be American or Japanese. Both the U.S. and Japan generally provide their residents with a foreign tax credit for nonresident interest withholding taxes paid. In both countries, foreign tax credits are nevertheless limited to the domestic tax liability on foreign source income. If the foreign tax credit limitation is binding, then the investor is said to be in an excess credit position. There are some differences, however, in the precise calculation of the foreign tax credit limitation. Japan, for example, allows the foreign tax credit to be calculated on the basis
of worldwide foreign source income, and unused foreign tax credits can be carried forward for three years. In the 1986 Tax Reform Act, the U.S. has introduced an alternative basket approach to determining allowable foreign tax-credits. Specifically, a separate income basket or category was created for foreign-source interest income that is taxed at a withholding tax rate equal to or greater than 5 per cent. The available foreign tax credit is determined separately for each basket of income. Within each separate income basket, unused foreign tax credits can be carried forward five years and back for two years. This legislation effectively has limited the creditability of high nonresident interest withholding taxes.

The top corporate and personal income tax rates in Japan and the U.S. exceed the withholding tax rates, if any, imposed on nonresident Japanese and U.S. investors by the countries in this study. This suggests that it is unlikely that international portfolio investors will be in an excess credit position. This reasoning is faulty, however, as income taxes are applied to net-of-expense interest income rather than to gross interest receipts. Allowable expenses associated with a portfolio investment typically include the cost of funds necessary to finance the investment. As a result, an investor’s net-of-expense foreign-source income may be very low, and the investor can be in an excess credit position. Clearly, tax-exempt institutional investors, like pension funds, are always in an excess credit position, if they pay nonresident interest withholding taxes.

Let \(\tau_{w,i,t} \) be the interest withholding tax rate imposed by government \(i \) on international investors at time \(t \), and let \(\tau \) be the investor’s marginal home country income tax rate applied to all income, including foreign exchange gains, if the investor pays any domestic tax on foreign source income. An international investor that is in an excess credit position faces a marginal tax rate on foreign source income of zero. Let \(\gamma \) be the probability that the international investor can obtain a tax-credit ex post. Uncertainty regarding the availability of foreign tax credits
can, for instance, be due to the international investor’s uncertain returns on financial assets other than government debt.

First, let us consider the tax-adjusted covered interest parity condition for a U.S. (or Japanese) investor that can invest in U.S. and non-U.S. T-bills. Let \(i_t \) and \(i_t^* \) be the U.S. and foreign country \(i \)'s T-bill rates at time \(t \), respectively. The investor can borrow freely in dollars against the U.S. T-bill interest rate. The costs of such borrowings are deductible from the investor’s domestic taxable income. In particular, domestic interest expenses incurred to finance foreign financial assets are deductible from the investor’s foreign source taxable income. Further, any exchange risk can be eliminated by way of forward exchange contracts. Let \(F_{i,t} \) and \(S_{i,t} \) be the forward and spot exchange rates, defined as amounts of foreign currency \(i \) per U.S. dollar. Both U.S. and non-U.S. T-bills are assumed to carry some sovereign risk. In particular, let \(\theta \) be the expected credit loss per dollar invested in U.S. T-bills and \(\theta_i^* \) be the expected credit loss per dollar invested in foreign T-bills issued by country \(i \). In case of debt default both principal and interest are assumed to be lost, but the investor is allowed to write off the full principal investment against taxable income. A risk-neutral international investor that can freely borrow to finance any T-bill investment will then be indifferent about doing so if,

\[
1 + \left(\frac{(1 - \tau)}{(1 - \gamma)} \right) i_t (1 - \theta) + \gamma \tau \theta = 0
\]

\[
\left[1 + (1 - \nu) \left(1 + \frac{F_{i,t}}{S_{i,t}} \right) \frac{F_{i,t}}{S_{i,t}} \right] (1 - \tau) (1 - \gamma) \left(1 + i_t^* (1 - \tau_{i,t}^*) \right) \frac{F_{i,t}}{S_{i,t}} (1 - \theta_i^*) + \gamma \tau \theta^* \tag{1}
\]

Equation (1) reflects that with probability \(\gamma \) the investor faces a positive domestic income tax rate, \(\tau \), on foreign source income. The last terms on both sides of (1) are the expected values of the loss offset provision in case of debt default. In equation (1), we assume that the events
\(\theta, \theta^*\) and \(\gamma\) are independent. Now define \(p_{i,t}\) to be the percentage depreciation of the U.S. dollar vis-à-vis foreign country \(i\)'s currency implicit in the forward exchange rate as follows,

\[
p_{i,t} \equiv \frac{F_{i,t}}{S_{i,t}} - 1
\]

(2)

Substituting \(\frac{F_{i,t}}{S_{i,t}}\) from (2) into (1) and setting the cross terms \(i_{i,t}^* p_{i,t}, \theta_i^* p_{i,t}, \theta_i^* i_{i,t}^*\) and \(\theta_i\) to zero, we get after rearranging,

\[
(I - \gamma \tau)\left(p_{i,t} + i_{i,t}^* - i_t \right) = (I - \gamma \tau)(\theta_i^* - \theta) + (I - \gamma)\tau_{i,t}^* i_{i,t}^*
\]

(3)

After dividing by \((I - \gamma \tau)\), we now can obtain the following tax-adjusted covered interest parity condition,

\[
f_{i,t} = \hat{\theta}_i + \beta \tau_{i,t}^* i_{i,t}^*
\]

(4)

where

\[
f_{i,t} = p_{i,t} + i_{i,t}^* - i_t, \quad \theta_i = \theta_i^* - \theta, \quad \beta = \frac{I - \gamma}{I - \gamma \tau}
\]

The variable \(f_{i,t}\) in (4) is the part of country \(i\)'s T-bill yield in excess of covered interest parity. The variable \(\hat{\theta}_i\) simply is the expected credit loss of investments in country \(i\)'s T-bills relative to U.S. T-bills. The parameter \(\beta\) further indicates how much the foreign (non-U.S.) interest rate, \(i_{i,t}^*\), rises if the withholding tax payment, \(\tau_{i,t}^* i_{i,t}^*\), is increased by unity for given values of \(i_t, p_{i,t}\) and \(\hat{\theta}_i\). The parameter \(\beta\), which satisfies \(0 \leq \beta \leq 1\), thus is naturally interpreted as the share of the withholding tax borne by the foreign government itself, while \(I - \beta\) is the
share of the withholding tax borne by the investor’s home country Treasury. The incidence parameter, \(\beta \), is negatively related to the probability, \(\gamma \), that the potential foreign tax credit is realized ex post if \(\tau < 1 \). At the same time, the expression for \(\beta \) reveals that it is positively related to the income tax rate \(\tau \), if \(0 < \gamma < 1 \). To see why, note that the pre-tax foreign interest rate, \(i_{i,t}^* \), has to rise to compensate the international investor following an increase in the withholding tax rate, \(\tau_w \). The foreign interest payment, \(i_{i,t}^* \), is subject to the investor’s domestic income taxation. The foreign interest rate, \(i_{i,t}^* \), thus has to rise more, the larger the income tax rate, \(\tau \). The share of the incidence of the foreign withholding tax borne by the investor’s national Treasury thus decreases with the income tax rate, \(\tau \).

To obtain an alternative specification, we can divide both sides of equation (4) by the foreign interest rate, \(i_{i,t}^* \), to give the following tax-inclusive covered interest parity relationship,

\[
f_{i,t}' = \hat{\theta}_i' + \beta \tau_w
\]

where

\[
f_{i,t}' = \frac{f_{i,t}}{i_{i,t}}, \quad \hat{\theta}_i' = \frac{\bar{\theta}_i}{i_{i,t}^*}
\]

In (5), the interpretation of \(\beta \) remains unchanged. In deriving equations (4) and (5), we have assumed that the investor reports his foreign source interest income to the domestic tax authority. Alternatively, the investor evades domestic taxes on foreign investment income. In that instance, we effectively have \(\gamma = \tau = 0 \), which implies that \(\beta \) in (4) and (5) equals 1. In case of tax evasion, the T-bill interest rate, \(i_{i,t}^* \), thus rises one-for-one with the withholding tax liability, \(\tau_w i_{i,t}^* \).
Next, let us consider the tax-adjusted closed interest parity condition for an investor who can invest in national 5-year government bonds and, alternatively, in offshore 5-year swap instruments in the same currency. Setting $p_{i,t} = 0$ in (4) and substituting the foreign-currency swap rate $i_{i,t}$ for the U.S. T-bill rate i_t, we get,

$$g_{i,t} = \hat{\theta}_i + \beta \tau_{i,t}^w i_{i,t}$$

(6)

where

$$g_{i,t} = i_{i,t}^* - i_{i,t}$$

The variable $g_{i,t}$ thus is the excess of country i’s 5-year government bond yield, $i_{i,t}^*$, over the corresponding swap interest rate, $i_{i,t}$, while the variable $\hat{\theta}_i$ now reflects the expected credit loss per dollar invested in 5-year government bonds relative to the corresponding swap instrument.

Analogously to equation (5), we can divide (6) by the 5-year government bond yield, $i_{i,t}^*$, to obtain,

$$g'_{i,t} = \hat{\theta}'_i + \beta \tau_{i,t}^w$$

where

$$g'_{i,t} = \frac{g_{i,t}}{i_{i,t}^*}$$
In practice, deviations from the tax-adjusted arbitrage relationships (4) and (6) and the tax-inclusive arbitrage relationships (5) and (7) occur for a variety of reasons, including data imperfections and transaction costs. As a result, a random component can be appended to any of these four relationships to give rise to an estimating equation.

3 Data and empirical results

Of the industrialized countries considered, only Australia, Germany, Italy, Japan, Spain and Switzerland have imposed interest withholding taxes on U.S. residents. The withholding tax rate data is mostly available on an annual basis (see the Appendix for all data sources), although any within-year tax rate changes are dated as accurately as possible. Australia, specifically, imposes a 10 per cent withholding tax applicable to American investors ever since 1980. Germany had a withholding tax of 10 per cent from January 1989 until July 1989. Italy increased its withholding tax on U.S. investors from zero to 6.25 per cent in September 1986 and subsequently to 12.5 per cent in October 1988. Japan and Switzerland have maintained a constant withholding tax rates of 5 and 10 per cent, respectively, on American investors since 1980. Spain raised its withholding tax on government debt from 20 to 25 per cent in July 1989. All of these countries apply a roughly similar withholding tax regime to nonresident Japanese investors. Of the countries in the sample, Italy and Spain and to a lesser extent Belgium, France and Sweden have imposed capital controls in the eighties. These capital controls, however, in no instance prohibited the foreign ownership of domestic government debt securities. Below we consider how the withholding tax regime has affected yields in, first, the national T-bill markets and, second, the 5-year government bond markets.
3.1 Withholding taxes and T-bills

The T-bill interest rate data set consists of monthly observations from January 1980 to December 1994 for twelve industrialized countries: Australia, Belgium, Canada, France, Germany, Italy, Japan, Netherlands, Sweden, Switzerland, the United Kingdom and the United States. The maturity of all T-bills is 3 months. The countries in the data set vary widely among themselves and over time in their interest withholding tax regime.

As can be seen from Garbade (1982) and OECD (1990), national T-bill markets differ widely in, for instance, market institutions and pricing conventions. The market for U.S.-Treasury debt is arguably the deepest in the world, with a near continuum of Treasury maturities and very narrow bid-ask spreads. T-bills are issued in weekly batches by tender. Contrary to the U.S., there is no active secondary market for T-bills in Germany. T-bills payable within three months are used as collateral for Lombard loans. Similarly, in Japan, a liquid secondary market in T-bills has yet to emerge. Gensaki bonds, which are repurchase agreements covering three-month transactions, are collateralized by government bonds or T-bills. Essentially, the gensaki market is a somewhat restricted private market. The Bank Nationale de Belgique subscribes to three-month Treasury certificates at par, in practice in so far as it can transfer them onto the market. In Canada, investment dealers, the chartered banks and the Bank of Canada submit tenders to the Ministry of Finance for 3-month T-bills to be issued. T-bills are sold at discount. In France, 13-week T-bills are an important element of the money market. T-bills are available to all economic agents and are sold in so-called Dutch auctions. T-bills in Italy are the Government’s most important source of short-term finance. They are issued by auction, in which the Banca d’Italia participates in the same way as other authorized dealers. In the Netherlands, nearly all 3-month Treasury paper is held by monetary institutions that use it as an interest-bearing and pledgeable asset to meet the liquidity requirements imposed by De Nederlandsche Bank. The banks have practically no Treasury paper freely available for sale on the market.
Secondary market dealings have become rare, and secondary market rates are merely indicative. T-bills in the United Kingdom are offered for tender each week. In Sweden, Treasury discount notes are the main instrument for Government short-term borrowing. Switzerland possesses only the embryo of a domestic money market. The Banque Nationale Suisse, may discount bills of exchange and cheques, "rescriptions" issued by the Confederation (T-bills) and by the cantons and communes, though is not obliged to. Finally, in Australia Treasury notes are issued by the Commonwealth Government. They are issued at a discount by periodic tender and are redeemable at par 13 weeks from the date of issue.

Next, we turn to the results of estimating (4) for the pooled cross-country, time series data set using ordinary least squares (OLS), as reported in Table 1. The regressions in Table 1 include eleven country dummy variables, θ_i, and the nonresident withholding tax imposed on either U.S. or Japanese investors times foreign country i's interest rate, i.e. $\tau^{w}_{us,1980-1994} \cdot i$ or $\tau^{w}_{jap,1980-1994} \cdot i$. A constant term is omitted. Newey-West (1987) standard errors are also reported to account for possible heteroskedasticity and autocorrelation resulting from overlapping 3-month interest rate observations. The Newey-West standard errors differ relatively little from the OLS standard errors, with relatively minor implications for significance levels. The regressions 1 and 5 reflect the basic tax-adjusted covered interest parity condition in (4) for U.S. and Japanese nonresident investors, respectively. The coefficient β is estimated at 1.206 for U.S. investors (in regression 1) and at 1.233 for Japanese investors (in regression 5). In either regression, the β's are statistically significantly different from zero, but not from unity. A country dummy can be interpreted as sovereign default risk relative to the U.S.. This suggests that there is a relatively large default risk for Belgian, Canadian and Swedish debts.

In regressions 2 and 6, two control variables, the ratio of non-U.S. debt to GDP less the ratio of U.S. debt to GDP, DEBT-DEBT_{US}, and the non-U.S. inflation less U.S. inflation, INF-INF_{US}, are added to the basic regressions. These control variables can be seen as somewhat
more specific (and obviously more time-varying) indicators of country risk than country
dummies. The coefficient β is now estimated at 1.048 for the U.S. investor (in regression 2)
and at 1.088 for the Japanese (in regression 6). Again, these estimates of β remain statistically
indifferent from unity. The regressions do not explicitly controls for the possible role of capital
export restrictions in determining government debt yields in the absence of the requisite data.9
The estimated positive β coefficients thus in principle can be biased insofar as nonresident
withholding tax rates are correlated with capital export restrictions. Note that a country such
as Italy imposes positive nonresident withholding tax rates, and has also restricted capital exports
(of course, these restrictions have been eliminated in 1990). Withholding taxes tend to increase
pre-tax interest rates, while capital export restrictions have the opposite effect. A failure to
control for capital export restrictions in the regressions thus cannot explain positive β coefficients
insofar as withholding taxes and capital export restrictions have been positively related.

In regressions 3 and 7, separate β coefficients are estimated for 5 consecutive three-year
intervals in the basic equation (4) for U.S. and Japanese investors, respectively. In both
regressions, the β estimate for the 1980-1982 interval is significantly different from zero and
from unity, while the β estimates for the intervals 1983-1985, 1986-1988, 1989-1991 and 1992-
1994 are significantly different from zero, but not from unity. Also note that in practice not
all the estimates of β are within the zero-one range. Regressions 4 and 8, finally, add the two
debt and inflation control variables to regressions 3 and 7. Otherwise, regressions 4 and 8
correspond closely to regressions 3 and 7.

The regressions reported in Table 2 are based on the tax-inclusive covered interest parity
specification in equation (5).10 Otherwise, the regressions are fully analogous to those reported
in Table 1.11 The basic regressions 1 and 5 now reveal estimates for the coefficient β that
are both not statistically different from zero and from unity. The estimated parameters for the
country dummies are larger than in Table 1, as they now are roughly interpreted as the expected
credit loss (relative to the U.S.) as a share of the foreign country i’s interest rate. Similar results are obtained if control variables are included in regressions 2 and 6. Regressions 3-7 and 4-8 show, however, that the β estimates are roughly in the neighborhood of unity for the intervals 1980-1982, 1983-1985, and 1986-1988, while they are close to zero in the subsequent intervals 1989-1991 and 1992-1994. This pattern of results is consistent with the view that key international investors did not receive offsetting foreign tax credits in the period 1980-1988, while such tax credits were available in the latter period 1989-1994.

Overall, the evidence suggests that withholding on national T-bills were fully reflected in pre-tax yields, at least until 1988. Perhaps this is to be expected, as large institutional investors such as pension funds are tax-exempt in both the United States and Japan, and thus cannot receive foreign tax credits to offset foreign-source interest withholding taxation. As national T-bill markets differ markedly in scope and organization, it is interesting to check to what extent these conclusions continue to hold for longer-term government debt markets. To this end, we next examine the relationship between interest withholding taxation and yields in the 5-year government debt markets.

3.2 Withholding taxes and 5-year government bonds

Long term government bonds are perhaps closer substitutes in investor portfolios than national T-bills, in part because national central banks are less active in long-term government debt markets than in T-bill markets. It interesting to test the relationship between withholding taxes and yields separately for the long-term government debt market, not the least because long-term government debt markets tend to be far more liquid that, say, corporate debt markets. Also, maturity per se can have an independent effect on the extent to which interest withholding taxes are marked-up into higher pre-tax yields. This, for instance, is shown to be case in the commercial bank credit market to developing countries in the 1970s by Huizinga (1996). The
evidence there suggests that pre-tax interest rates are marked-up less for short term bank loans than for longer term bank loans on account of foreign-source interest withholding taxes. A reason for this ‘withholding tax yield-curve effect’ may be that banks on short notice know whether they can realize the foreign tax credits associated with any loans. They therefore value foreign tax credits associated with short term loans relatively highly giving rise to a smaller mark-up into higher pre-tax yields for short-term credits. A second reason for a ‘withholding tax yield-curve effect’ may be that there is always some uncertainty about domestic tax regime changes insofar as existing financial instruments are not subject to grandfather clauses in case of policy changes. Of course, the government debt market is far more liquid than the secondary market for third world debt has even been, and a priori any maturity effect is expected to be weaker.

The data set now consists of monthly 5-year government bond yields and comparable offshore swap rates in the same currency for the period from April 1987 to December 1995. The data is for thirteen industrialized countries: Belgium, Canada, Denmark, France, Germany, Italy, Japan, Netherlands, Spain, Sweden, Switzerland, the United Kingdom and the United States. Again, Newey-West (1987) corrected standard errors are also reported to account for possible heteroskedasticity and autocorrelation resulting from the overlapping sample problem.12

Table 3 first reports regressions based on the tax-adjusted closed interest parity condition in equation (6). The basic regressions 1 and 5 yield estimates of the coefficient β that are close to zero and statistically insignificant for the U.S. and Japanese investor cases. In contrast, regressions 6 finds a positive and slightly significant β estimate for the U.S. case.13 Next, regressions 3-7 and regressions 4-8 test whether the mark-up of withholding taxation includes separate β estimates for three consecutive 3-year intervals to see whether the β estimate changes over time. The results suggest that the impact of nonresident withholding taxation on pre-tax
yields on 5-year government bonds increases somewhat over time, although most of the individual β estimates are significantly indifferent from zero.

To conclude, Table 4 reports regressions based on the tax-inclusive closed interest parity specification in equation (7). The estimates of the β coefficient for the basic regressions 1 and 5 are close to zero and not significantly different from zero. In regressions 3-7 and 4-8, however, the β estimates are close to unity for the intervals 1990-1992 and 1993-1995, which suggests that the foreign pre-tax interest rates rise one-for-one by the interest tax withheld.

4 Evaluation and conclusion

This paper has tested to what extent national T-bill and 5-year government bond yields reflect the nonresident withholding tax regime. Where the estimates of the incidence parameter, β, are statistically different from zero, they tend to be in the neighborhood of unity in Tables 1-4. Overall, we therefore conclude that at least during certain periods both T-bill and 5-year bond yields fully reflect the withholding tax regime. This conclusion suggests that key international investors receive few, if any, offsetting foreign tax-credits from their domestic tax authorities. This is to be expected as the marginal international investors are generally tax-exempt institutional investors such as pension funds. As a result, the net-of-tax government cost of funds may be invariant to the withholding tax rate. Nonresident withholding taxes thus appear to have few, if any, international redistributive implications. At the same time, the international tax system de facto appears to be source-based, although most countries de jure tax their residents' income on a worldwide basis with offsetting tax credits for foreign source income taxes.

While nonresident withholding taxes may have little impact on net-of-tax interest rates, they of course increase pre-tax interest rates. This increase in interest rates also benefits domestic holders of government debt that are not subject to nonresident withholding taxes. Nonresident withholding taxes thus have potentially important national redistributive implications. To the extent that domestic owners of government debt benefit from higher interest rates, the overall
effect of nonresident withholding taxes on the government budget may be negative. The domestic
demand for government debt thus poses an constraint on the efficacy of nonresident withholding
taxes as a tool to generate net government revenues. Important in this regard is the extent to
which higher pre-tax government yields cause a shift in ownership from foreign to domestic
investors in government debt. In practice, governments appear to have an incentive to separate
the domestic and foreign demands for their securities. Capital controls, which are now out of
vogue, are one way to achieve this. Alternatively, governments can issue debts denominated
in domestic and foreign currencies in an attempt to achieve market separation.

The insight that nonresident withholding taxes on the public debt may raise little
government revenue may be a stimulus for countries to agree to harmonize the international
withholding tax system.15 By acting together, countries may in fact restore the efficacy of
interest withholding taxes to generate net tax revenues. In 1989, the European Commission
proposed the introduction of a minimum withholding tax of 15% on foreign interest income.
This proposal was an essential complement to the achievement of a free movement of capital.
Capital flows were liberalized in the European Union by July 1, 1990 (with the exceptions
of Greece, Ireland, Portugal and Spain). The final elimination of restrictions on short-term capital
flows, which may be most tax-sensitive, followed the earlier liberalization of long-term capital
flows. The liberalization of course implies that capital now can flow freely from countries with
source-level interest taxation to countries without any such taxation. Despite the obvious benefits
of concerted European action, the minimum withholding tax proposal was rejected over concerns
about its effects for Europe’s financial centres.16 The European debate on withholding tax
policy stresses that a common withholding tax policy ideally also involves the non-European
industrialized countries and financial centres.
Data Appendix

Description of T-bill rates

<table>
<thead>
<tr>
<th>Country</th>
<th>Period</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>January 1980-December 1994</td>
<td>3-month T-bill rate in percentage per year (end-of-period)</td>
<td>DATASTREAM, National Government Series</td>
</tr>
<tr>
<td>Belgium</td>
<td>January 1980-December 1994</td>
<td>3-month T-bill rate in percentages per year (end-of-period)</td>
<td>DATASTREAM, National Government Series</td>
</tr>
<tr>
<td>Canada</td>
<td>January 1980-December 1994</td>
<td>3-month T-bill rate in percentages per year (end-of-period)</td>
<td>DATASTREAM, National Government Series</td>
</tr>
<tr>
<td>France</td>
<td>December 1986-December 1994</td>
<td>Bons du tresor, marché secondaire, 3 mois, dernière cotation (fin de mois)</td>
<td>Banque de France</td>
</tr>
<tr>
<td>Germany</td>
<td>January 1980-December 1994</td>
<td>3-month T-bill rate in percentages per year (end-of-period)</td>
<td>DATASTREAM, National Government Series</td>
</tr>
<tr>
<td>Italy</td>
<td>January 1980-December 1994</td>
<td>3-month T-bill rate in percentages per year (end-of-period)</td>
<td>DATASTREAM, National Government Series</td>
</tr>
<tr>
<td>Japan</td>
<td>January 1980-December 1994</td>
<td>3-month gensaki rate in percentages per year, i.e. repurchase agreement rate using long-term bonds and more recently using T-bills as collateral (end-of-period)</td>
<td>Bank of Japan</td>
</tr>
<tr>
<td>Sweden</td>
<td>January 1981-December 1994</td>
<td>3-month T-bill rate in percentages per year (end-of-period)</td>
<td>Sveriges Riksbank</td>
</tr>
<tr>
<td>Switzerland</td>
<td>January 1980-December 1994</td>
<td>3-month Eidgnössische Geldmarktbuchforderungen in percentages per year (yield of last issue in month)</td>
<td>Schweizerische National Bank</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>January 1980-December 1994</td>
<td>3-month T-bill rate in percentages per year (end-of-period)</td>
<td>DATASTREAM, National Government Series</td>
</tr>
<tr>
<td>United States</td>
<td>January 1980-December 1994</td>
<td>3-month T-bill rate in percentages per year (end-of-period)</td>
<td>DATASTREAM, National Government Series</td>
</tr>
</tbody>
</table>

Description of spot exchange rates vis-à-vis the U.S. dollar

End-of-period spot exchange rates over the period January 1980-December 1994 vis-à-vis the U.S. dollar are obtained from IMF, International Financial Statistics, line ae via DATASTREAM.

Description of three-month forward exchange rates vis-à-vis the U.S. dollar

End-of-period three-month forward exchange rates vis-à-vis the U.S. dollar are obtained from IMF, International Financial Statistics, line b. If they are not available they are calculated from the formula for the forward premium $p_{i,t}$ on foreign country i’s currency at time t in percent per annum as explained in IMF (1985):

$$p_{i,t} = \frac{(S_{i,t} - F_{i,t}^{(3)}) \cdot 4 \cdot 100}{S_{i,t}}$$

End-of-period forward premia (discounts) are obtained from the IMF, International Financial Statistics, line 60f. The annualized forward premium (discount) is based on a 360-day year, and the three-month forward exchange rate is the rate for 90 days, yielding the factor 4 that is employed in the formula. If forward exchange rates from the IMF are unavailable, end-of-period three-month forward exchange rates vis-à-vis the U.S. dollar are obtained from Barclays Bank (Canada: November 1994-December 1994 and Netherlands: November 1993-December 1994). All data are obtained via DATASTREAM.
Interest rate swaps and corresponding government bond yields

Interest rate swaps (see floating payment reset frequency)

Source of data: Intercapital Brokers Ltd as collected by DART Ltd obtained via DASTREAM
Time of day quotes: End of U.K. business day, middle rate
Fixed business day convention: All modified succeeding
Floating business day convention: All modified succeeding
Floating resets: All discrete
Settlement lag: None
Frequency: Monthly, end-of-month

Benchmark 5-year government bond indices - redemption yield (see fixed payment frequency)

Source of data: EFFAS (European Federation of Financial Analysts Societies) obtained via DASTREAM
Time of day quotes: End of U.K. business day, middle rate
Frequency: Monthly, end-of-month

Following DART’s currency specifications, data are annualized
\[1 + \left(\frac{\text{annual yield}}{100} \right) - \left(1 + \left(\frac{\text{semi-annual yield}}{200} \right) \right)^2 \]
and converted to a 360 day year by multiplying by \(\frac{360}{365} \) if necessary:

<table>
<thead>
<tr>
<th>Country</th>
<th>Period</th>
<th>Fixed payment frequency</th>
<th>Fixed day count basis</th>
<th>Floating payment reset frequency</th>
<th>Floating day count basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>February 1993-December 1995</td>
<td>Annual</td>
<td>30/360</td>
<td>Semi-Annual</td>
<td>Actual/360</td>
</tr>
<tr>
<td>France</td>
<td>June 1991-December 1995</td>
<td>Annual</td>
<td>Actual/Actual</td>
<td>Semi-Annual</td>
<td>Actual/360</td>
</tr>
<tr>
<td>Germany</td>
<td>April 1987-December 1995</td>
<td>Annual</td>
<td>30/360</td>
<td>Semi-Annual</td>
<td>Actual/360</td>
</tr>
<tr>
<td>Italy</td>
<td>March 1991-December 1995</td>
<td>Annual</td>
<td>30/360</td>
<td>Semi-Annual</td>
<td>Actual/360</td>
</tr>
<tr>
<td>Netherlands</td>
<td>June 1991-December 1995</td>
<td>Annual</td>
<td>30/360</td>
<td>Semi-Annual</td>
<td>Actual/360</td>
</tr>
<tr>
<td>Spain</td>
<td>January 1991-December 1995</td>
<td>Annual</td>
<td>30/360</td>
<td>Semi-Annual</td>
<td>Actual/360</td>
</tr>
<tr>
<td>Switzerland</td>
<td>January 1988-December 1995</td>
<td>Annual</td>
<td>30/360</td>
<td>Semi-Annual</td>
<td>Actual/360</td>
</tr>
<tr>
<td>United States</td>
<td>January 1989-December 1995</td>
<td>Annual</td>
<td>Actual/360</td>
<td>Semi-Annual</td>
<td>Actual/360</td>
</tr>
</tbody>
</table>

Source: Data Analysis Risk Technology Limited, Park House, 16 Finsbury Circus,

Withholding tax rates

Interfisc, loose-leaf.

Control variables

References

Endnotes

2. In January 1989 the German government introduced a withholding tax of 10% for all German domestic instruments held by residents and nonresidents. The tax was first announced in October 1987 and this resulted in massive capital outflows and a widening of the onshore-offshore interest differential as the onshore rate increased to compensate for the tax. On July 1, 1989, just six months after its inception, the withholding tax was removed (Deutsche Bundesbank, 1994).

3. In the domestic tax area, Poterba (1986) and Feenberg and Poterba (1991) examine the implied marginal tax rates and revenue losses in the market for tax exempt bonds in the United States.

4. Several reasons for deviations from covered interest parity other than plain credit risk have been noted in the literature. See Officer and Willett (1970) for an early survey. Aliber (1973) specifically considers political risk, while Frenkel and Levich (1975, 1977) and Clinton (1988) focus on transaction costs. Taylor (1987, 1989) further points out the role of data imperfections, and Dooley and Isard (1980), Otani and Tiwari (1981) and Ito (1986) consider capital controls.

5. Formally, an interest swap is an contractual agreement whereby two parties exchange a series of cash flows determined by two different interest rates on the same notional principal for a defined period of time. There is no exchange of principal at inception or conclusion of the swap. Interest rate swaps can be viewed as portfolios of forward contracts on interest rates. At each settlement date, the two parties have an implicit forward contract on interest rates. The interest swap market is a highly competitive market. For a description of interest rate swaps, see Hull (1993) and Smithson, Smith and Wilford (1995).

6. With the help of forward rates and swaps both asymmetric tax treatments (i.e. tax provisions that treat government debt differently in one market than another) and government regulations (i.e. barriers to the government debt market) are exploitable.

7. T-bills are promises of the Treasury to pay a stipulated amount on a stated maturity (Garbade 1982).

8. The Newey-West (1987) correction is based on Bartlett weights and second order lags.

10. Note that the tax-inclusive specification excludes the possibility of spurious correlation.

11. Remember that (1) the US interest rate is included in the Japanese regressions, and (2) the market value of potential tax credits is related to the withholding tax rates in both countries.

12. The Newey-West (1987) correction is based on Bartlett weights and fifty-nine order lags.

13. The inflation rate is less well suited since it involves also foreign policy behaviour.

14. Nonresident withholding taxes represent to some extent a direct transfer of resources from the lender’s tax authority to the borrowing government.

15. While debt pricing depends on the marginal investor in government debt, the net revenue implications of nonresident withholding taxes also depend on inframarginal holders of this debt.

Table 1 - Tax-adjusted covered interest parity for 3-month Treasury bills

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{\text{JPN,1992}}$</td>
<td>1.306</td>
<td>1.294</td>
<td>1.273</td>
<td>1.273</td>
<td>1.273</td>
<td>1.273</td>
<td>1.273</td>
<td>1.273</td>
</tr>
<tr>
<td>(\pm 0.042)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
</tr>
<tr>
<td>$\tau_{\text{US,1983}}$</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>(\pm 0.042)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
</tr>
<tr>
<td>$\tau_{\text{US,1989}}$</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>(\pm 0.042)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
</tr>
<tr>
<td>$\tau_{\text{US,1989}}$</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>(\pm 0.042)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
<td>(3.29)</td>
</tr>
</tbody>
</table>

Note: The dependent variable is the return on the non-U.S. T-bill in excess of covered interest parity (τ_f). Absolute t-statistics based on OLS are in parentheses and based on Newey-West (1987) are in square brackets. R^2 is the coefficient of determination adjusted for degrees of freedom. N is the number of usable observations.
Table 2 - Tax-inclusive covered interest parity for 3-month Treasury bills

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D, Australia</td>
<td>-0.138</td>
<td>-0.033</td>
<td>-0.222</td>
<td>-0.136</td>
<td>-0.141</td>
<td>-0.057</td>
<td>-0.213</td>
<td>-0.176</td>
</tr>
<tr>
<td>D, Belgium</td>
<td>0.090</td>
<td>-0.055</td>
<td>0.090</td>
<td>0.004</td>
<td>0.090</td>
<td>-0.005</td>
<td>0.090</td>
<td>0.061</td>
</tr>
<tr>
<td>D, Canada</td>
<td>0.086</td>
<td>0.087</td>
<td>0.086</td>
<td>0.077</td>
<td>0.086</td>
<td>0.102</td>
<td>0.086</td>
<td>0.088</td>
</tr>
<tr>
<td>D, France</td>
<td>0.077</td>
<td>0.160</td>
<td>0.077</td>
<td>0.111</td>
<td>0.077</td>
<td>0.154</td>
<td>0.077</td>
<td>0.096</td>
</tr>
<tr>
<td>D, Germany</td>
<td>-0.151</td>
<td>-0.081</td>
<td>-0.150</td>
<td>-0.123</td>
<td>-0.151</td>
<td>-0.064</td>
<td>-0.151</td>
<td>-0.135</td>
</tr>
<tr>
<td>D, Italy</td>
<td>-0.130</td>
<td>-0.162</td>
<td>-0.130</td>
<td>-0.164</td>
<td>-0.128</td>
<td>0.139</td>
<td>-0.133</td>
<td>-0.119</td>
</tr>
<tr>
<td>D, Japan</td>
<td>0.122</td>
<td>0.161</td>
<td>0.037</td>
<td>0.051</td>
<td>0.037</td>
<td>0.280</td>
<td>0.051</td>
<td>0.164</td>
</tr>
<tr>
<td>D, Netherlands</td>
<td>0.115</td>
<td>0.115</td>
<td>0.115</td>
<td>0.105</td>
<td>0.115</td>
<td>0.129</td>
<td>0.115</td>
<td>0.116</td>
</tr>
<tr>
<td>D, Sweden</td>
<td>0.066</td>
<td>0.091</td>
<td>0.066</td>
<td>0.069</td>
<td>0.066</td>
<td>0.101</td>
<td>0.066</td>
<td>0.072</td>
</tr>
<tr>
<td>D, Switzerland</td>
<td>0.158</td>
<td>0.317</td>
<td>0.158</td>
<td>0.297</td>
<td>0.138</td>
<td>0.292</td>
<td>0.138</td>
<td>0.112</td>
</tr>
<tr>
<td>D, United Kingdom</td>
<td>0.033</td>
<td>0.089</td>
<td>0.033</td>
<td>0.053</td>
<td>0.033</td>
<td>0.090</td>
<td>0.033</td>
<td>0.046</td>
</tr>
<tr>
<td>(\tau_{us, 1980 - 1984})</td>
<td>0.334</td>
<td>-0.043</td>
<td>0.139</td>
<td>-0.020</td>
<td>0.202</td>
<td>-0.053</td>
<td>0.055</td>
<td>0.053</td>
</tr>
<tr>
<td>(\tau_{us, 1980 - 1994})</td>
<td>0.359</td>
<td>-0.043</td>
<td>0.139</td>
<td>-0.020</td>
<td>0.202</td>
<td>-0.053</td>
<td>0.055</td>
<td>0.053</td>
</tr>
<tr>
<td>INF-INF</td>
<td>-0.138</td>
<td>-0.033</td>
<td>-0.222</td>
<td>-0.136</td>
<td>-0.141</td>
<td>-0.057</td>
<td>-0.213</td>
<td>-0.176</td>
</tr>
<tr>
<td>DEBT-DEBT</td>
<td>0.090</td>
<td>-0.055</td>
<td>0.090</td>
<td>0.004</td>
<td>0.090</td>
<td>-0.005</td>
<td>0.090</td>
<td>0.061</td>
</tr>
<tr>
<td>(\tau_{us, 1980 - 1984})</td>
<td>0.359</td>
<td>-0.043</td>
<td>0.139</td>
<td>-0.020</td>
<td>0.202</td>
<td>-0.053</td>
<td>0.055</td>
<td>0.053</td>
</tr>
<tr>
<td>(\tau_{us, 1980 - 1994})</td>
<td>0.359</td>
<td>-0.043</td>
<td>0.139</td>
<td>-0.020</td>
<td>0.202</td>
<td>-0.053</td>
<td>0.055</td>
<td>0.053</td>
</tr>
<tr>
<td>INF-INF</td>
<td>-0.138</td>
<td>-0.033</td>
<td>-0.222</td>
<td>-0.136</td>
<td>-0.141</td>
<td>-0.057</td>
<td>-0.213</td>
<td>-0.176</td>
</tr>
<tr>
<td>DEBT-DEBT</td>
<td>0.090</td>
<td>-0.055</td>
<td>0.090</td>
<td>0.004</td>
<td>0.090</td>
<td>-0.005</td>
<td>0.090</td>
<td>0.061</td>
</tr>
<tr>
<td>(\tau_{us, 1980 - 1984})</td>
<td>0.359</td>
<td>-0.043</td>
<td>0.139</td>
<td>-0.020</td>
<td>0.202</td>
<td>-0.053</td>
<td>0.055</td>
<td>0.053</td>
</tr>
<tr>
<td>(\tau_{us, 1980 - 1994})</td>
<td>0.359</td>
<td>-0.043</td>
<td>0.139</td>
<td>-0.020</td>
<td>0.202</td>
<td>-0.053</td>
<td>0.055</td>
<td>0.053</td>
</tr>
<tr>
<td>INF-INF</td>
<td>-0.138</td>
<td>-0.033</td>
<td>-0.222</td>
<td>-0.136</td>
<td>-0.141</td>
<td>-0.057</td>
<td>-0.213</td>
<td>-0.176</td>
</tr>
<tr>
<td>DEBT-DEBT</td>
<td>0.090</td>
<td>-0.055</td>
<td>0.090</td>
<td>0.004</td>
<td>0.090</td>
<td>-0.005</td>
<td>0.090</td>
<td>0.061</td>
</tr>
<tr>
<td>(\tau_{us, 1980 - 1984})</td>
<td>0.359</td>
<td>-0.043</td>
<td>0.139</td>
<td>-0.020</td>
<td>0.202</td>
<td>-0.053</td>
<td>0.055</td>
<td>0.053</td>
</tr>
<tr>
<td>(\tau_{us, 1980 - 1994})</td>
<td>0.359</td>
<td>-0.043</td>
<td>0.139</td>
<td>-0.020</td>
<td>0.202</td>
<td>-0.053</td>
<td>0.055</td>
<td>0.053</td>
</tr>
</tbody>
</table>

Note: The dependent variable is the return on the non-U.S. T-bill in excess of covered interest parity per dollar invested in the foreign country's asset \((r_{f,i}^{c}) \). Absolute t-statistics based on OLS are in parentheses and based on Newey-West (1987) are in square brackets. \(R^2 \) is the coefficient of determination adjusted for degrees of freedom. N is the number of usable observations.
Table 3 - Tax-adjusted closed interest parity for 5-year government bonds

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r^w_{u,2007-2009})</td>
<td>-0.024</td>
<td>0.136</td>
<td>0.136</td>
<td>0.136</td>
<td>0.136</td>
<td>0.136</td>
<td>0.136</td>
<td>0.136</td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.77)</td>
<td>(0.77)</td>
<td>(0.77)</td>
<td>(0.77)</td>
<td>(0.77)</td>
<td>(0.77)</td>
<td>(0.77)</td>
</tr>
<tr>
<td>(r^w_{u,2007-2008})</td>
<td>-0.200</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>(1.93)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>(r^w_{u,2006-2005})</td>
<td>-0.787</td>
<td>-0.779</td>
<td>-0.779</td>
<td>-0.779</td>
<td>-0.779</td>
<td>-0.779</td>
<td>-0.779</td>
<td>-0.779</td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td>(0.78)</td>
<td>(0.78)</td>
<td>(0.78)</td>
<td>(0.78)</td>
<td>(0.78)</td>
<td>(0.78)</td>
<td>(0.78)</td>
</tr>
<tr>
<td>(r^w_{u,2005-2004})</td>
<td>-0.045</td>
<td>0.405</td>
<td>0.405</td>
<td>0.405</td>
<td>0.405</td>
<td>0.405</td>
<td>0.405</td>
<td>0.405</td>
</tr>
<tr>
<td></td>
<td>(2.99)</td>
<td>(2.29)</td>
<td>(2.29)</td>
<td>(2.29)</td>
<td>(2.29)</td>
<td>(2.29)</td>
<td>(2.29)</td>
<td>(2.29)</td>
</tr>
<tr>
<td>(r^w_{u,2004-2003})</td>
<td>-0.386</td>
<td>0.090</td>
<td>0.090</td>
<td>0.090</td>
<td>0.090</td>
<td>0.090</td>
<td>0.090</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>(3.02)</td>
<td>(1.18)</td>
<td>(1.18)</td>
<td>(1.18)</td>
<td>(1.18)</td>
<td>(1.18)</td>
<td>(1.18)</td>
<td>(1.18)</td>
</tr>
<tr>
<td>(r^w_{u,2003-2002})</td>
<td>0.122</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
<td>0.173</td>
</tr>
<tr>
<td></td>
<td>(0.50)</td>
<td>(0.82)</td>
<td>(0.82)</td>
<td>(0.82)</td>
<td>(0.82)</td>
<td>(0.82)</td>
<td>(0.82)</td>
<td>(0.82)</td>
</tr>
<tr>
<td>(r^w_{u,2002-2001})</td>
<td>-0.405</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td>(2.99)</td>
<td>(0.63)</td>
<td>(0.63)</td>
<td>(0.63)</td>
<td>(0.63)</td>
<td>(0.63)</td>
<td>(0.63)</td>
<td>(0.63)</td>
</tr>
<tr>
<td>(r^w_{u,2001-2000})</td>
<td>0.222</td>
<td>0.222</td>
<td>0.222</td>
<td>0.222</td>
<td>0.222</td>
<td>0.222</td>
<td>0.222</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>(1.59)</td>
<td>(1.59)</td>
<td>(1.59)</td>
<td>(1.59)</td>
<td>(1.59)</td>
<td>(1.59)</td>
<td>(1.59)</td>
<td>(1.59)</td>
</tr>
<tr>
<td>(r^w_{u,2000-1999})</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>(0.83)</td>
<td>(0.83)</td>
<td>(0.83)</td>
<td>(0.83)</td>
<td>(0.83)</td>
<td>(0.83)</td>
<td>(0.83)</td>
<td>(0.83)</td>
</tr>
</tbody>
</table>

Note: The dependent variable is the return on the 5-year benchmark government bond index in excess of the swap rate (\(g_u \)). Absolute t-statistics based on OLS are in parentheses and based on Newey-West (1987) are in square brackets. R^2 is the coefficient of determination adjusted for degrees of freedom. N is the number of usable observations.
Table 4 - Tax-inclusive closed interest parity for 5-year government bonds

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_{\text{D}, 2007 - 2009})</td>
<td>-0.003</td>
<td>-0.017</td>
<td>-0.003</td>
<td>-0.019</td>
<td>-0.037</td>
<td>-0.027</td>
<td>-0.025</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.10)</td>
<td>(0.02)</td>
<td>(0.11)</td>
<td>(0.20)</td>
<td>(0.24)</td>
<td>(0.20)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>(\tau_{\text{D}, 2007 - 2009})</td>
<td>-0.024</td>
<td>-0.025</td>
<td>-0.007</td>
<td>-0.082</td>
<td>-0.128</td>
<td>-0.057</td>
<td>-0.027</td>
<td>-0.073</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td>(0.30)</td>
<td>(0.17)</td>
<td>(0.56)</td>
<td>(0.75)</td>
<td>(0.56)</td>
<td>(0.20)</td>
<td>(0.75)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.79</td>
<td>0.79</td>
<td>0.80</td>
<td>0.80</td>
<td>0.79</td>
<td>0.86</td>
<td>0.88</td>
<td>0.86</td>
</tr>
<tr>
<td>(N)</td>
<td>779</td>
<td>779</td>
<td>779</td>
<td>779</td>
<td>787</td>
<td>787</td>
<td>787</td>
<td>787</td>
</tr>
</tbody>
</table>

Note: The dependent variable is the return on the 5-year benchmark government bond index in excess of the swap rate \((g^e) \). Absolute t-statistics based on OLS are in parentheses and based on Newey-West (1987) are in square brackets. \(R^2 \) is the coefficient of determination adjusted for degrees of freedom. N is the number of usable observations.