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A Toolkit for Analyzing Nonlinear

Dynamic Stochastic Models Easily

Harald Uhlig�

CentER, University of Tilburg, and CEPR

ABSTRACT

Often, researchers wish to analyze nonlinear dynamic discrete-time stochastic models. This paper

provides a toolkit for solving such models easily, building on log-linearizing the necessary equa-

tions characterizing the equilibrium and solving for the recursive equilibrium law of motion with

the method of undetermined coe�cients. This paper contains nothing substantially new. In-

stead, the paper simpli�es and uni�es existing approaches to make them accessible for a wide

audience, showing how to log-linearizing the nonlinear equations without the need for explicit

di�erentiation, how to use the method of undetermined coe�cients for models with a vector of

endogenous state variables, to provide a general solution by characterizing the solution with a

matrix quadratic equation and solving it, and to provide frequency-domain techniques to cal-

culate the second order properties of the model in its HP-�ltered version without resorting to

simulations. Since the method is an Euler-equation based approach rather than an approach

based on solving a social planners problem, models with externalities or distortionary taxation

do not pose additional problems. MATLAB programs to carry out the calculations in this pa-

per are made available. This paper should be useful for researchers and Ph.D. students alike.
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1 Introduction

Often, researchers wish to analyze nonlinear dynamic discrete-time stochastic models.

This paper provides a toolkit for solving such models easily, building on log-linearizing

the necessary equations characterizing the equilibrium and solving for the recursive

equilibrium law of motion with the method of undetermined coe�cients1

This paper contains nothing substantially new. Instead, the point of this paper

is to simplify and unify existing methods in order to make them accessible to a large

audience of researchers, who may have always been interested in analyzing, say, real

business cycle models on their own, but hesitated to make the step of learning the

numerical tools involved. This paper reduces the pain from taking that step. The

methods here can be used to analyze most of the models studied in the literature. We

discuss how to log-linearizing the nonlinear equations without the need for explicit

di�erentiation and how to use the method of undetermined coe�cients for models

with a vector of endogenous state variables. The methods explained here follow di-

rectly from McCallum (1983), King, Plosser and Rebelo (1987) and Campbell (1994),

among others2. We provide a general solution built on solving matrix-quadratic equa-

tions, see also Binder and Pesaran (1996), and provide frequency-domain techniques,

building on results in King and Rebelo (1993), to calculate the second-order mo-

ments of the model in its HP-�ltered version without resorting to simulations. Since

the method is an Euler-equation based approach rather than an approach based on

solving a social planners problem, solving models with externalities or distortionary

taxation does not pose additional problems. Since the (nonlinear) Euler equations

usually need to be calculated in any case in order to �nd the steady state, applying

the method described in this paper requires little in terms of additional manipulations

by hand, given some preprogrammed routines to carry out the matrix calculations of

section 5. MATLAB programs to carry out these calculations, given the log-linearized

system, are available at my home page3. The method in this paper therefore allows

to solve nonlinear dynamic stochastic models easily.

Numerical solution methods for solving nonlinear stochastic dynamic models have

been studied extensively in the literature, see in particular Kydland and Prescott (1982),

1Note that the nonlinear model is thus replaced by a linearized approximate model. \Essential"

nonlinearities like chaotic systems are unlikely to be handled well by the methods in this paper.
2Campbell even touts the approach followed in his paper as \analytical", but note that in his

case as well as in our case, one needs to linearize equations and solve quadratic equations. Camp-

bell presumably attaches the attribute \analytical" to this numerical procedure, since it is rather

straightforward indeed and carrying it out by hand is actually feasible in many cases. Otherwise,

every numerical calculation anywhere could be called \analytical", since it could in principle be

carried out and analyzed by hand - it would just take very long.
3http://cwis.kub.nl/�few5/center/STAFF/uhlig/toolkit.dir/toolkit.htm is the address of the

web site for the programs.
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the comparison by Taylor and Uhlig (1990) and the methods proposed by various au-

thors in the same issue, Judd (1991), Hansen and Prescott (1995) and Danthine

and Donaldson (1995). The literature on solving linear-quadratic dynamic stochastic

models or linear stochastic di�erence equations is even larger. The key paper here

is Blanchard and Kahn (1980). Furthermore, there are the textbook treatment in

Sargent (1987), Chapters IX and XI, as well as, say, Muth (1961), McGrattan (1994)

or Hansen, McGrattan and Sargent (1994), to name a random few. Subject to ap-

plicability, all the methods relying on a log-linear approximation to the steady state

have in common that they will �nd the same recursive equilibrium law of motion as

the method described in this paper, since the linear space approximating a nonlinear

di�erentiable function is unique and \immune" to di�erentiable transformations of

the parameter space. But while McGrattan (1994) and Hansen, McGrattan and Sar-

gent (1994) focus on solving models via maximizing a quadratic objective function,

and while Blanchard and Kahn (1980) solve linear systems by searching for the stable

manifold in the entire system of necessary equations describing the equilibrium rela-

tionships, this paper by contrast solves directly for the desired recursive equilibrium

law of motion. This approach is very natural. The stability condition is imposed

at the point, where a certain matrix quadratic equation is solved. It is shown how

this matrix quadratic equation can be reduced to a standard eigenvalue problem of

another matrix with twice as many dimensions.

Three related contributions are McCallum (1983), which is the key reference for

the method of undetermined coe�cients, Ceria and Rios-Rull (1992) and Binder and

Pesaran (1996). These contributions also derive the recursive equilibrium law of mo-

tion. McCallum (1983) reduces the coe�cient-�nding problem to a problem solvable

with the methods in Blanchard and Kahn (1980), whereas Ceria and Rios-Rull (1992)

reduce the problem to one of solving a matrix-quadratic equation as do we, but do

not reduce the matrix-quadratic equation problem to a standard eigenvalue problem.

Binder and Pesaran (1996) �nally may be most closely related in that they reduce the

matrix quadratic equation characterizing the solution to an eigenvalue problem as we

do. These three contributions, however, for most parts do not distinguish between

endogenous variables which have to be part of the state vector, and other endogenous

variables. Thus applying these models in somewhat larger system can either result

in unnecessary large and computationally demanding eigenvalue problems in which

\bubble solutions" have to be removed in a painstaking fashion, or one is always

forced to reduce the system beforehand to make it �t their description4.

But all these technical di�erences to the existing literature are not in any way

4Furthermore, McCallum (1983) uses eigenvalue methods also to solve some other equations in his

method, which are solved here by a simple linear-equation-solution techniques, compare his solution

for equation (A.6) in his paper to equation (5.14).
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essential. It shall be stressed again that the main purpose and merit of this paper

is to make solving nonlinear dynamic stochastic models easy. In fact, this paper

describes the entire method as a \cookbook recipe", which should be of great practical

use to Ph.D. students and researchers alike. Since the focus here is entirely on the

computational aspect of studying these models, some issues are left aside entirely. In

particular, the issue of existence or multiplicity of equilibria as well as the reasons for

concentrating on stable solutions is not discussed. The methods in this paper should

therefore not be applied blindly, but only in light of, say, McCallum (1983), Stokey,

Lucas with Prescott (1989) and the related literature.

The outline of the paper will be evident from the description of the general pro-

cedure in the next section.

2 The general procedure

The general procedure to solve and analyze nonlinear dynamic stochastic models takes

the following steps.

1. Find the necessary equations characterizing the equilibrium, i.e. constraints,

�rst-order conditions, etc., see section 4.

2. Pick parameters and �nd the steady state(s), see section 4.

3. Log-linearize the necessary equations characterizing the equilibrium of the sys-

tem to make the equations approximately linear in the log-deviations from the

steady state, see section 3 and section 4.

4. Solve for the recursive equilibrium law of motion via the method of undeter-

mined coe�cients, employing the formulas of section 5.

5. Analyze the solution via impulse-response analysis and second-order-properties,

possibly taking account of, say, the Hodrick-Prescott-Filter. This can be done

without having to simulate the model, see section 6.

The next section skips directly to step 3 of the procedure outlined above and

describes how to log-linearize nonlinear equations without explicit di�erentiation.

Section 4 studies Hansens 1985) benchmark real business cycle model as a prototype

example, in which calculating the Euler equations, the steady state and the log-

linearization is carried out to see how this method works. Once, a linearized system

has been obtained, the methods in section 5 provide the desired recursive equilibrium

law of motion.
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3 Log-linearization

Log-linearizing the necessary equations characterizing the equilibrium is a well-known

technique. In the context of real business cycle models, log-linearization has been

proposed in particular by King, Plosser and Rebelo (1987) and Campbell (1994).

Log-linearization also appears frequently in text books, see e.g. Obstfeld and Rogo�,

p. 503-505. Nonetheless, the technique often seems to create more headaches than

it should. It thus is useful for the purpose of this paper to review how it is done.

The next two sections simplify the approach of Campbell (1994). Readers who are

familiar enough with log-linearization are advised to skip directly to section 5.

The principle is to use a Taylor approximation around the steady state to replace

all equations by approximations, which are linear functions in the log-deviations of

the variables.

Formally, let Xt be the vector of variables, �X their steady state and

xt = logXt � log �X

the vector of log-deviations. The vector 100 � xt tells us, by how much the variables

di�er from their steady state levels in period t in per cent. The necessary equations

characterizing the equilibrium can be written as

1 = f(xt; xt�1) (3.1)

1 = Et [g(xt+1; xt)] (3.2)

where f(0; 0) = 1 and g(0; 0) = 1, i.e. the left-hand side of (3.1) and (3.2). Taking

�rst-order approximations around (xt; xt�1) = (0; 0) yields5

0 � f1 � xt + f2 � xt�1
0 � Et [g1 � xt+1 + g2 � xt]

5An alternative to approximate (3.2) rewrites it as

0 = log (Et [exp (~g(xt+1; xt))])

where ~g = log g. Assuming xt and xt+1 to be (approximately) conditionally jointly normally dis-

tributed with an (approximately) constant conditional variance-covariance matrix, and assuming

that

log g(0; 0) �
1

2
Vart [~g1 � xt+1 + ~g2 � xt] ; (3.3)

independent of t (rather than log g(0; 0) = 0) yields

0 � logEt [exp (~g(0; 0) + ~g1 � xt+1 + ~g2 � xt)]

� Et [~g1 � xt+1 + ~g2 � xt] ;

using E[eX ] = eE[X]+Var[X]=2 for normally distributed variables. The two ways of approximating

(3.2) di�er essentially only in their choice for g(0; 0), since g1 = ~g1, if g(0; 0) = 1.
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One obtains a linear system in xt and xt�1 in the deterministic equations and xt+1
and xt in the expectational equations. This linear system can be solved with the

method of undetermined coe�cients, described in section 5.

In the large majority of cases, there is no need to di�erentiate the functions f and

g explicitely. Instead, the log-linearized system can usually be obtained as follows.

Multiply out everything before log-linearizing. Replace a variableXt with Xt = �Xext,

where xt is a real number close to zero. Let likewise yt be a real number close to zero.

Take logarithms, where both sides of an equation only involve products, or use the

following three building blocks, where a is some constant:

ext+ayt � 1 + xt + ayt

xtyt � 0

Et [ae
xt+1] � Et [axt+1] up to a constant :

For example, these building blocks yield

ext � 1 + xt

aXt � a �Xxt up to a constant

(Xt + a)Yt � �X �Y xt + ( �X + a) �Y yt up to a constant

Constants drop out of each equation in the end, since they satisfy steady state rela-

tionships, but they are important in intermediate steps: compare for example the two

equations above. Rather than describing the general principles further, it is fruitful

to consider a speci�c example instead.

4 An example: Hansens real business cycle model.

The following model is the benchmark real business cycle model due to Hansen (1985)

and explained there in detail. Here, the mathematical description shall su�ce. The

main point of this example here is to explain how to perform the �rst three steps of

the general procedure.

The social planner solves the problem of the representative agent

maxE
1X
t=1

�t
 
C
1��
t � 1

1� �
�ANt

!

s.t.

Ct + It = Yt (4.1)

Kt = It + (1 � �)Kt�1

Yt = ZtK
�
t�1N

1��
t

log Zt = (1�  ) log �Z +  logZt�1 + �t; �t � i:i:d:N (0;�2);
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where Ct is consumption, Nt is labor,It is investment, Yt is production, Kt is capital Zt

is the total factor productivity and A;�; �; �; �; �Z; and �2 are parameters. Hansen

only considered the case � = 1, so that the objective function is

E
1X
t=0

�t(logCt �ANt)

As in Campbell (1994), there is no di�culty in considering arbitrary �, since no

growth trend is assumed.

The �rst order conditions are

A = C
��
t (1� �)

Yt

Nt

1 = �Et

" 
Ct

Ct+1

!�

Rt+1

#
; (4.2)

Rt = �
Yt

Kt�1

+ 1� �: (4.3)

Equation (4.2) is the Lucas asset pricing equations, see Lucas (1978), which typically

arises in these models.

In contrast to some of the real business cycle literature and to avoid confusion in

the application of the method in section 5, it is very useful to stick to the following

dating convention. A new date starts with the arrival of new information. If a variable

is chosen and/or (eventually) known at date t, it will be indexed with t. Use only

variables dated t and t� 1 in deterministic equations and variables dated t+1, t and

t� 1 in equations involving expectations Et[�].
The steady state for the real business cycle model above is obtained by dropping

the time subscripts and stochastic shocks in the equations above, characterizing the

equilibrium. Formally, this amounts to �nding steady state values such that f(0; 0) =

1 and g(0; 0) = 1 in the notation of the previous section6. For example, equations (4.2)

and (4.3) result in

1 = � �R

�R = �
�Y
�K
+ 1� �;

where bars over variables denote steady state values. One needs to decide what one

wants to solve for. If one �xes � and �, these two equations will imply values for �R and
�Y = �K . Conversely, one can �x �R and �Y = �K and then these two equations yield values

6Alternatively, �nd the steady state so that (3.3) is satis�ed. This is, however, rarely done.
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for � and �. The latter procedure maps observable characteristics of the economy

into "deep parameters," and is the essence of calibration, see Kydland and Prescott

(1991).

Introduce small letters to denote log-deviations, i.e. write

Ct = �Cect

for example. The resource constraint (4.1) then reads

�Cect + �Ieit = �Y eyt

This can be written approximately as

�C(1 + ct) + �I(1 + it) = �Y (1 + yt)

Since �C + �I = �Y due to the de�nition of the steady state, the constant terms drop

out7 and one obtains
�Cct + �Iit = �Y yt (4.4)

The resource constraint is now stated in terms of percentage deviations: the steady

state levels in this equation rescale the percentage deviations to make them compa-

rable. Note that no explicit di�erentiation is required to obtain the log-linearized

version of the resource constraint: log-linearization is obtained just by using the

building blocks described in the previous section.

Similarly log-linearizating the other equations yields

�Kkt = �Iit + (1 � �) �Kkt�1

yt = zt + �kt�1 + (1 � �)nt

zt =  zt�1 + �t

0 = ��ct + yt � nt

0 = Et[�(ct � ct+1) + rt+1]

�Rrt = �
�Y
�K
(yt � kt�1):

To �nd the state variables, one needs to �nd all (linear combinations of) variables

dated t� 1 in these equations: the endogenous state variable is capital, kt�1 whereas

the exogenous state variable is the technology parameter zt�1. Note that there are as

many expectational equations as there are endogenous state variables. The coe�cients

of the equations above need to be collected in the appropriate matrices to restate these

equations in the form required for section 5: this is a straightforward exercise.

7Another way to see that constants can in the end be dropped is to note that the steady state

is characterized by ct = kt = yt = kt�1 = 0. If one replaces all log-deviations with zero, only the

constant terms remain, and that equation can be subtracted from the equation for general ct; kt; yt
and kt�1 above.
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5 Solving recursive stochastic linear systems with

the method of undetermined coe�cients

This section describes how to �nd the solution to the recursive equilibrium law of

motion in general, using the method of undetermined coe�cients. MATLAB pro-

grams performing the calculations in this section are available at my home page8.

The idea is to write all variables as linear functions (the \recursive equilibrium law of

motion") of a vector of endogenous variables xt�1 and exogenous variables zt, which

are given at date t, i.e. which cannot be changed at date t. These variables are often

called state variables or predetermined variables. In the real business cycle example

of section 4, these are at least kt�1 and zt, since they are clearly unchangeable as of

date t and, furthermore, show up in the linearized equations system. In principle,

any endogenous variable dated t � 1 or earlier could be considered a state variable.

Thus, in subsection 5.1 below, we use \brute force" and simply declare all endoge-

nous variables to be state variables, whereas in subsection 5.2, we try to be a bit more

sensitive and exploit more of the available structure. The latter is typically done in

practice, see e.g. Campbell (1994). Both subsections will characterize the solution

with a matrix quadratic equation, see also Ceria and Rios-Rull (1992) and Binder

and Pesaran (1996). Subsection 5.3 shows, how to solve that equation. For models

with just one endogenous state variable, such as the real business cycle model of

section 4 when analyzed with the more structured approach in subsection 5.2 below,

the matrix quadratic equation is simply a quadratic equation in a real number. In

that case, the solution to the quadratic equation is obviously known from high-school

algebra: it is contained as a special case of the general solution in section 5.3. In

subsection 5.4 we discuss our solution method, and compare it in particular to the

Blanchard-Kahn (1980) approach.

5.1 With brute force...

As a �rst cut, and with somewhat brute force, one may simply use all variables

without distinction as a vector of endogenous state variables9 xt�1 of size m � 1 or

as a vector of exogenous stochastic processes zt of size k � 1. It is assumed that the

log-linearized equilibrium relationships can be written in the following form

0 = Et[Fxt+1 +Gxt +Hxt�1 + Lzt+1 +Mzt] (5.1)

8http://cwis.kub.nl/�few5/center/STAFF/uhlig/toolkit.dir/toolkit.htm is the address of the

web site for the programs.
9To make this work really generally, one should actually not only include all the variables dated

t � 1 but also all the variables dated t � 2 as part of the state vector xt�1. More is even required,

if the equations already contain further lags of endogenous variables, see also the next footnote.

Usually, however, this isn't necessary.
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zt+1 = Nzt + �t+1; Et[�t+1] = 0; (5.2)

where F , G, H, L and M and matrices, collecting the coe�cients. It is assumed that

N has only stable eigenvalues. The real business cycle example above can be easily

written in this form. For example, the resource constraint (4.4) would be

0 = Et[ �Cct + �Iit � �Y yt]

since ct; it and yt are already known at date t and hence nothing changes when one

takes their expectations given all information up to date t. Note that F = L = 0 for

this equation. Of course, there are other equations in the real business cycle model,

and one of them involves nonzero entries for F and L.

What one is looking for is the recursive equilibrium law of motion

xt = Pxt�1 +Qzt (5.3)

i.e. matrices P and Q , so that the equilibrium described by these rules is stable. The

solution is characterized in the following theorem, see also Binder and Pesaran (1996).

The characterization involves a matrix quadratic equation, see equation (5.4). Sub-

section 5.3 discusses, how it can be solved. For the purpose of that section, let m be

the length of the vector xt, and let l = n = 0.

Theorem 1 If there is a recursive equilibrium law of motion solving equations (5.1),

and (5.2), then the following must be true.

1. P satis�es the (matrix) quadratic equation

0 = FP 2 +GP +H (5.4)

The equilibrium described by the recursive equilibrium law of motion (5.3) and

(5.2) is stable i� all eigenvalues of P are smaller than unity in absolute value.

2. Given P , let V denote the matrix

V = N 0 
 F + Ik 
 (FP +G);

Then,

V Q = �vec(LN +M) (5.5)

where vec(�) denotes columnwise vectorization.

Obviously, if the matrix V in this theorem is invertible, then multiplication of equation

(5.5) with V �1 yields the unique solution for Q.
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Proof: Plugging the recursive equilibrium law of motion (5.3) into equation (5.1)

twice and using (5.2) to calculate the expectations yields

0 = ((FP +G)P +H)xt�1 + (5.6)

((FQ+ L)N + (FP +G)Q+M)zt

The coe�cient matrices on xt�1 and zt need to be zero. Equating the coe�cient on

xt�1 to zero yields equation (5.4) for P . Taking the columnwise vectorization of the

coe�cient matrices of zt in this equation and collecting terms in vec(Q) yields the

equation (5.5) for Q. �

5.2 ... or with sensitivity.

We now exploit more of the structure in the linearized model. Analyzing the equations

of the real business cycle example of section 4, one sees that the only endogenous

variable dated t � 1 which shows up in any of the equations is capital, kt�1. It is

thus a reasonably guess to treat kt�1 as the only endogenous state variable together

with the exogenous state variable zt. This principle is general: in the vast majority

of cases, this is how one can identify the vector of state variables10. In practice,

one often sees researchers exploiting some of the equilibrium equations to \get rid"

of some variables, and have only a few variables remaining. For the real business

cycle example of section 4, it is actually possible to reduce everything to a single

equation for the endogenous variables, containing only kt+1, kt and kt�1. Often, one

sees reductions to a system involving two equations in two endogenous variables such

as ct and kt�1, see e.g. Campbell (1994), presumably because this allows thinking in

terms of a state space diagram, see e.g. Blanchard and Fisher (1989), chapter 2. The

analysis below follows this often-used procedure. However, there is no reason to go

through the hassle of \eliminating" variables by hand, using some of the equations:

since this is all just simple linear algebra applied to a system of equations, it is far

10There are exceptions. In richer models, the state variables need to include variables chosen at

a date earlier than t � 1 as well because these lagged variables appear in the equations. One can

recast this into the desired format as follows. The list of state variables might consist out of lagged

values of the capital stock, kt�1 and kt�2. This can and should be rewritten as k1;t�1 and k2;t�1

with k1;t�1 replacing kt�1 and where the additional equation k2;t = k1;t�1 needs to be added to the

system. With that notation, k2;t is \chosen" at date t, satisfying the \dating convention" stated in

section 4. One may also need to add additional variables like e.g. ct�1 or kt�2 as state variables,

even though they don't show up in the equations with these dates, when the model exhibits sun

spot dynamics. This can be done in the same manner, but one needs to be careful with interpreting

the results. The reader is advised to read Farmer and Guo (1994) for an example as well for the

appropriate interpretation for such a case.
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easier to leave all the equations in, and leave it to the formulas to sort it all out. That

is what is done below.

We thus make the following assumptions11. There is an endogenous state vector

xt, sizem�1, a list of other endogenous variables (\jump variables") yt, size n�1, and
a list of exogenous stochastic processes zt, size k � 1. The equilibrium relationships

between these variables are

0 = Axt +Bxt�1 + Cyt +Dzt (5.7)

0 = Et[Fxt+1+Gxt +Hxt�1 + Jyt+1 +Kyt + Lzt+1 +Mzt] (5.8)

zt+1 = Nzt + �t+1; Et[�t+1] = 0; (5.9)

where it is assumed that C is of size l � n, l � n and12 of rank n, that F is of

size (m + n � l) � n, and that N has only stable eigenvalues. Note, that one could

have written all equations (5.7) in the form of equation (5.8) with the corresponding

entries in the matrices F , J and L set to zero. Essentially, that is what is done in

subsection 5.1. Instead, the point here is to somehow exploit the structure inherent

in equations of the form (5.7), which do not involve taking expectations.

What one is looking for is the recursive equilibrium law of motion

xt = Pxt�1 +Qzt (5.10)

yt = Rxt�1 + Szt; (5.11)

i.e. matrices P;Q;R and S, so that the equilibrium described by these rules is stable.

The solution is characterized in the next theorem. To calculate the solution, one needs

to solve a matrix quadratic equation: how this is done, is explained in subsection 5.3.

The important special case l = n is treated in corrolary 1. The special case

l = n = 0 was the topic of subsection 5.1 .

Theorem 2 If there is a recursive equilibrium law of motion solving equations (5.7),

(5.8) and (5.9), then the coe�cient matrices can be found as follows. Let C+ be the

pseudo-inverse13 of C. Let C0 be an (l � n) � l matrix, whose rows form a basis of

the null space14 of C 0.

11Note that the notation di�ers from the notation in section 3
12The case l < n can be treated as well: the easiest approach is to simply \redeclare" some other

endogenous variables to be state variables instead, i.e. to raise m and thus lower n, until l = n.
13The pseudo-inverse of the matrix C is the n � l matrix C+ satisfying C+CC+ = C+ and

CC+C = C. Since it is assumed that rank(C) � n, one gets C+ = (C0C)�1C0, see Strang (1980),

p. 138. The MATLAB command to compute the pseudo-inverse is pinv(C).
14C0 can be found via the singular value decomposition of C0, see Strang (1980), p. 142. The

MATLAB command for computing C0 is (null(C0))0.
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1. P satis�es the (matrix) quadratic equations

0 = C0AP + C0B (5.12)

0 = (F � JC+A)P 2 �(JC+B �G +KC+A)P �KC+B +H (5.13)

The equilibrium described by the recursive equilibrium law of motion (5.10),

(5.11) and by (5.9) is stable i� all eigenvalues of P are smaller than unity in

absolute value.

2. R is given by

R = �C+(AP +B)

3. Given P and R, let V be the matrix

V =

"
Ik 
A; Ik 
 C

N 0 
 F + Ik 
 (FP + JR+G); N 0 
 J + Ik 
K

#
:

where Ik is the identity matrix of size k � k. Then

V

"
vec(Q)

vec(S)

#
= �

"
vec(D)

vec(LN +M)

#
; (5.14)

where vec(�) denotes columnwise vectorization.

Obviously, if the matrix V in this theorem is invertible, then multiplication of equation

(5.14) with V �1 yields the unique solution for Q.

Proof: Plug the recursive equilibrium law of motion into equation (5.7). This

yields

(AP + CR+B)xt�1 + (AQ+ CS +D)zt = 0; (5.15)

which has to hold for arbitrary xt�1 and zt. Thus, the coe�cient matrices on xt�1 and

zt in (5.15) are zero. Plugging the recursive equilibrium law of motion into equation

(5.8) twice and using (5.9) yields

0 = ((FP + JR +G)P +KR +H)xt�1 + (5.16)

((FQ+ JS + L)N + (FP + JR +G)Q+KS +M)zt

Again, the coe�cient matrices on xt�1 and zt need to be zero. Taking the column-

wise vectorization of the coe�cient matrices of zt in equations (5.15) and (5.16) and

collecting terms in vec(Q) and vec(S) yields the formula for Q and S.

To �nd P and thus R, rewrite the coe�cient matrix on xt�1 in equation (5.15) as

R = �C+(AP +B) (5.17)

0 = C0AP + C0B;
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noting that the matrix [(C+)0; (C0)0] is nonsingular and that C0C = 0, see Strang (1980),

p. 88. Use (5.17) to replace R in the coe�cient matrix on xt�1 in (5.16), yielding

(5.13). Note �nally that the stability of the equilibrium is determined by the stability

of P , since N has stable roots by assumption. �

Corollary 1 Suppose that l = n, i.e. that there are as many expectational equations

as there are endogenous state variables. If there is a recursive equilibrium law of

motion solving equations (5.7), (5.8) and (5.9), then their coe�cient matrices can be

found as follows.

1. P satis�es the (matrix) quadratic equation

(F � JC�1A)P 2 � (JC�1B �G+KC�1A)P �KC�1B +H = 0: (5.18)

The equilibrium described by the recursive equilibrium law of motion (5.10),

(5.11) and by (5.9) is stable i� all eigenvalues of P are smaller than unity in

absolute value.

2. R is given by

R = �C�1(AP +B)

3. Q satis�es

(N 0 
 (F � JC�1A) + Ik 
 (JR+ FP +G�KC�1A))vec(Q) =

vec((JC�1D � L)N +KC�1D �M); (5.19)

where Ik is the identity matrix of size k� k, provided the matrix which needs to

be inverted in this formula is indeed invertible.

4. S is given by

S = �C�1(AQ+D)

Proof: This corollary can be obtained directly by inspecting the formulas of the-

orem 2 above for the special case l = n. In particular, C+ is just the inverse of C.

Alternatively, a direct proof can be obtained directly by following the same proof

strategy as above: there is no need to repeat it. �

The formulas in these theorems become simpler yet, if m = 1 or k = 1. If

m = 1, there is just one endogenous state variable and the matrix quadratic equation
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above becomes a quadratic equation in the real number P , which can be solved using

high-school algebra: this is the case for the real business cycle model and thus the

case which Campbell (1994) analyzes. If k = 1, there is just one exogenous state

variables, in which case the Kronecker product (i.e. \
") in the formulas above

becomes multiplication, and in which case vec(Q) = Q and vec(S) = S, since Q and

S are already vectors rather than matrices.

5.3 Solving the matrix quadratic equation.

To generally solve the matrix quadratic equations (5.4) or (5.12), (5.13) for P , write

them generally as

	P 2 � �P �� = 0: (5.20)

For equations (5.12) and (5.13), de�ne

	 =

"
0l�n;m

F � JC+A

#

� =

"
C0A

JC+B �G +KC+A

#

� =

"
C0B

KC+B �H;

#

where 0l�n;m is a (l� n)�m matrix with only zero entries. In the special case l = n,

the formulas for 	, � and � become slightly simpler:

	 = F � JC�1A

� = JC�1B �G +KC�1A

� = KC�1B �H

For equation (5.4), simply use 	 = F , � = �G and � = �H.

Equation (5.20) can now be solved by turning it into a generalized eigenvalue and

eigenvector problem15, for which most mathematical packages have preprogrammed

routines16. Recall, that a generalized eigenvalue � and eigenvector s of a matrix �

with respect to a matrix � are de�ned to be a vector and a value satisfying

��s = �s (5.21)

15An earlier version of the paper proposed to study an altered version of these equations by

postmultiplying equation (5.12) with P . This altered equation together with (5.13) can then often

be reduced to a standard rather than a generalized eigenvalue problem, but had the drawback of

introducing spurious zero roots. The version presented here does not involve this alteration, and

thus does not introduce spurious zero roots. This update is due to Andy Atkeson (1997), and I am

very grateful to him for pointing it out to me. Any errors here are mine, of course.
16The Matlab command for �nding the generalized eigenvalues and eigenvectors is eig(�,�).
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A standard eigenvalue problem is obtained, if � is the identity matrix. More gener-

ally, the generalized eigenvector problem can be reduced to a standard one, if � is

invertible, by calculating standard eigenvalues and eigenvectors for ��1� instead.

Theorem 3 To solve the quadratic matrix equation

	P 2 � �P �� = 0; (5.22)

for the m�m matrix P , given m�m matrices � and �, de�ne the 2m�2m matrices

� and � via

� =

"
� �

Im 0m;m

#
;

and

� =

"
	 0m;m

0m;m Im

#
;

where Im is the identity matrix of size m, and where 0m;m is the m�m matrix with

only zero entries.

1. If s is a generalized eigenvector and � the corresponding generalized eigenvalue

of � with respect to �, then s can be written as s0 = [�x0; x0] for some x 2 IRm.

2. If there are m generalized eigenvalues �; : : : ; �m together with generalized eigen-

vectors s1; : : : ; sm of � with respect to �, written as s0i = [�ix
0

i; x
0

i] for some

xi 2 IRm, and if (x1; : : : ; xm) is linearly independent, then

P = 
�
�1

is a solution to the matrix quadratic equation (5.22), where 
 = [x1; : : : ; xm] and

� = diag(�; : : : ; �m). The solution P is stable if j �i j< 1 for all i = 1; : : : ;m.

Conversely, any diagonalizable solution P to (5.22) can be written in this way.

3. If m = 1, then the solutions P to equation (5.22) are given by

P1;2 =
1

2	
(��

p
�2 + 4	�):

if 	 6= 0 and

P = ��

�

if 	 = 0 and � 6= 0.
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Proof: First, examine the last m rows of equation (5.21) to see that any eigenvector

s for some eigenvalue � of the matrix � with respect to � can indeed be written as

s =

"
�x

x

#

for some x 2 IRm because of the special form of � and �. Examining the �rst m rows

of equation (5.21) then shows that

�2	x� ��x��x = 0 (5.23)

It follows that

	
�2 � �
� ��
 = 0

and hence

	P 2 � �P �� = 0

as claimed, after multiplying with 
�1 from the right.

Reversing the steps shows that any diagonalizable solution P to (5.22) can be

written in this way. �

Some additional properties of a solution P to (5.20) are stated in the following

theorem17:

Theorem 4 1. The eigenvalues � of � are the solutions to the equation

det
�
�2	� �� ��

�
= 0:

The lower half x of the eigenvector s to � satis�es�
�2	� �� ��

�
x = 0

2. If 	 is invertible and if P is a real-valued solution to the matrix-quadratic

equation (5.18), then

tr(4	�1�+ (	�1�)2) � 0:

Proof: The claim about � follows from

det

 "
(�� �	) �

Im ��Im

#!
= det (��(�� �	)��) ;

17I am grateful to Jan Magnus for pointing these out to me. Furthermore, Ceria and Rios-Rull,

1992, point to additional literature on this subject, which found and concentrated on part 1 of

theorem 4, but did not study the more useful theorem 3.
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which follows from inspecting the formula for the determinant. The claim about the

eigenvector piece x is just (5.23). For the last claim, calculate that

0 = tr(P 2 �	�1�P �	�1�) = tr((P � 1

2
	�1�)2 � (	�1�+

1

4
(	�1�)2)):

The conclusion follows since tr((P � 1

2
	�1�)2) � 0: �

5.4 Discussion.

Theorem 3 links the approach used here to Blanchard and Kahn (1980), which is

the key reference for solving linear di�erence equations. Consider solving the second

order di�erence equation

	xt+1 � �xt ��xt�1 = 0: (5.24)

The approach in Blanchard and Kahn (1980) amounts to �nding the stable roots of

� by instead analyzing the dynamics of the \stacked" system s0t = [x0t; x
0

t�1] ,

�st+1 = �st;

i.e. by reducing (5.24) to a �rst-order di�erence equation. The approach here solves

for the matrix P in the recursive equilibrium law of motion xt+1 = Pxt. Theorem 3

above states that both approaches amount to the same problem. The advantage of

the method here is that it is easily applied to the entire system (5.7), (5.8) and (5.9),

reducing it to (5.24) eventually, while �nding the stable roots in the entire system

given by these equations and at the same time taking care of the expectation opera-

tors, using the Blanchard-Kahn (1980) procedure, is often perceived as complicated.

Fundamentally, there is no di�erence.

To apply theorem 3, one needs to select m out of 2m possible eigenvalues. Note

that P has only nonzero eigenvalues if the state space was chosen to be of minimal

size: thus attention can be restricted to the roots j �i j> 0 in that case. In gen-

eral, there may be quite a bit of choice left. In practice, however, there will often

be exactly m stable eigenvalues remaining so that the stable solution is unique18.

18Another approach to select a unique solution is in McCallum (1983), who suggests to use those

roots that can be obtained continuously from the zero roots of the equation 	P 2 � �P � �� for

� = 0, as � changes from 0 to 1. However, not only is following these roots as functions of �

computationally very demanding, it is also the case that uniqueness gets lost once two or more such

paths cross each other. If these paths do not cross in a particular application, and if additionally

all roots for all � are positive real numbers, say, then the McCallum proposal simply amounts to

using the roots of minimal value. The MATLAB programs supplied by the author use the roots of

minimal absolute value subject to eliminating spurious zero roots and tries to use complex roots in

conjugate pairs, as described below.
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For a one-dimensional vector of endogenous state variables, this condition is called

saddle-point stability. The literature on solving linear rational expectations equilibria

typically assumes this condition to hold or shows it to hold in social planning prob-

lems under reasonable conditions, see Blanchard and Kahn (1980), Kollintzas (1985)

and Hansen, McGrattan and Sargent (1994). If there are fewer stable eigenvalues

than endogenous state variables, the equilibrium might be inherently unstable. The

method above then still permits calculation of an equilibrium which satis�es the non-

linear equilibrium conditions at least locally. In particular, in models involving more

than one agent or sectors or countries, one may �nd as many unit roots as there are

more agents (sectors, countries) than one since shocks may a�ect the relative wealth

(capital) of any two agents (sectors, countries) and thus may result in permanent

changes in their consumption paths (or capital stocks): in these cases, the method

above allowing for unit roots still gives useful results, which obviously should then be

used with some care. These unit roots typically already show up as an indetermined

steady state: any of the possible steady states can then serve as a starting point for

the dynamic calculation, keeping in mind that a simulation based on the dynamics

calculated here will eventually wander away too far to be numerically useful. If there

are more stable eigenvalues than endogenous state variables, enlarging the number of

endogenous state variables by including further lagged values might help. Nonethe-

less, the presence of an excess of stable roots then may point to the existence of

sunspots or endogenous uctuations, see e.g. Farmer and Guo (1994).

If not all eigenvalues of � are distinct, P in turn might have repeated eigenvalues.

Since the eigenspace for a repeated eigenvalue is (usually) multidimensional, there

will be in�nitely many choices for the eigenvectors and hence in�nitely many choices

for P in that case. Note, for example, that for any given � and any three real numbers

a; b; c satisfying a2 + bc = �2, all matrices

P =

"
a b

c �a

#

solve

P 2 �
"
�2 0

0 �2

#
= 0:

These cases are rare in practice, since � is diagonalizable with distinct eigenvalues

generically in the coe�cients of the system (5.7), (5.8) and (5.9).

More disconcerting is the possibility that some of the roots may be complex rather

than real. Consider, for example, 	 = I2, � = �I2 and

� =

"
0:23 0:64

�0:64 0:23

#
:
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Using the theorem above, one obtains exactly two stable roots, which happen to

be complex, �1;2 = 0:3 � 0:4i = 0:5e��i, where where � � 0:9273. Their associated

eigenvectors are complex, too. Calculating P results in a matrix with only real entries,

however, given by

P =

"
0:3 0:4

�0:4 0:3

#
= 0:5

"
cos� sin�

� sin� cos�

#
:

Since � is a real-valued matrix, complex eigenvalues only arise in complex-conjugate

pairs. When using both roots of a complex-conjugate pair to calculate � and thus

P , the resulting solution should be a real-valued matrix. In order to do this, one

may have to enlarge the state space of endogenous state variables to be at least two-

dimensional, see again Farmer and Guo (1994) for an example. The complex roots

then give rise to endogenous damped cycles of frequency �.

6 Interpreting the results

The results obtained, i.e. the recursive equilibrium law of motion

xt = Pxt�1 +Qzt

yt = Rxt�1 + Szt

zt = Nzt�1 + �t

can be used to examine model implications. Since xt; yt and zt are log-deviations,

the entries in P;Q;R; S and N can be understood as elasticities and interpreted

accordingly, see e.g. Campbell (1994).

Impulse responses to a particular shock �1 can be calculated by setting x0 = 0; y0 =

0 and z0 = 0, as well as �t = 0 for t � 2, and recursively calculating zt and then xt
and yt, given xt�1; yt�1; zt�1 and �t for t = 1; : : : ; T with the recursive equilibrium law

of motion and the law of motion for zt.

To �nd the second moment properties of the model such as variances and autocor-

relations of certain variables as well as the small sample properties of their estimators,

simulation methods are often used. Before calculating these moments, the Hodrick-

Prescott �lter is typically applied (short: HP-Filter). This section demonstrates a

frequency-domain technique to obtain these moments (albeit without the small sam-

ple properties of their estimators) without the need for any simulations19. Obviously,

19Some of these methods were originally contained in an early version of Uhlig and Xu (1996),

but were eventually cut from that paper.
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the methods here do not deliver properties of the small sample distribution, which

may be necessary for testing.

The matrix-valued spectral density for [x0t; z
0

t]
0 is given by

f(!) =
1

2�

"
(Im � Pe�i!)�1Q

Ik

#
(Ik �Ne�i!)�1�

(Ik �N 0ei!)�1
h
Q0(Im � P 0ei!)�1; Ik

i
where Ik and Im are the identity matrices of dimension k and m, see Hamilton (1994),

formula (10.4.43). Two ways to calculate the matrix-valued spectral density for the

entire vector of variables st = [x0t; y
0

t; z
0

t]
0 are

g(!) =

2
664

Im 0m;k

Re�i! S

0k;m Ik

3
775 f(!)

"
Im R0ei! 0m;k

0k;m S0 Ik

#

= Wf(!)W 0 , where W =

2
664

Im; 0m;k

RP+; S �RP+Q

0k;m; Ik

3
775 ;

where P+ is the pseudo-inverse of P and where the last equality exploits st =

W [x0t; z
0

t]
0, replacing xt�1 with P+xt � P+Qzt in the recursive equilibrium law of

motion for yt. The HP �lter aims at removing a smooth trend �t from some given

data st by solving

min
�t

TX
t=1

�
(st � �t)

2 + � ((�t+1 � �t)� (�t � �t�1))
2
�

The solution is a linear lag polynomial rt = st � �t = h(L)st which has the transfer

function

~h(!) =
4�(1 � cos(!))2

1 + 4�(1 � cos(!))2
;

see King and Rebelo (1993). Thus, the matrix spectral density of the HP-�ltered

vector is simply

gHP (!) = ~h2(!)g(!);

from which one can obtain the autocorrelations of rt in time domain via an inverse

Fourier transformation, Z �

��
gHP (!)e

i!kd! = E[rtr
0

t�k];

see formula (10.4.4) in Hamilton (1994). Inverse Fourier transformations are part of

many numerical packages.
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7 Conclusions

We have provided a toolkit to analyze nonlinear dynamic stochastic models easily.

The main contribution of this paper is to simplify and unify existing approaches,

showing how to log-linearize the necessary equations characterizing the equilibrium

without explicit di�erentiation, to provide a general solution to a linearized system

using the method of undetermined coe�cients, allowing in particular for a vector of

endogenous states, and to provide simulation-free frequency-domain based method

to calculate the the model implications in its HP-�ltered version. These methods

are easy to use if a numerical package such as MATLAB or GAUSS is available.

This paper should therefore be useful for anybody interested in analyzing nonlinear

stochastic dynamic models.
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