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Abstract

In this paper we reconsider the conditions under which the �nite-planning-horizon linear-

quadratic di�erential game has an open-loop Nash equilibrium solution. Both necessary

and su�cient conditions are presented for the existence of a unique solution in terms of

an invertibility condition on a matrix. Moreover, we show that the often encountered

solvability conditions stated in terms of Riccati equations are in general not correct. In

an example we show that existence of a solution of the associated Riccati-type di�erential

equations may fail to exist whereas an open-loop Nash equilibrium solution exists.

The scalar case is studied in more detail, and we show that solvability of the associated

Riccati equations is in that case both necessary and su�cient.

Furthermore we consider convergence properties of the open-loop Nash equilibrium solu-

tion if the planning horizon is extended to in�nity. To study this aspect we consider the

existence of real solutions of the associated algebraic Riccati equation in detail and show

how all solutions can be easily calculated from the eigenstructure of a matrix.

Keywords: Linear quadratic games, open-loop Nash equilibrium solution, solvability con-
ditions, Riccati equations
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I. Introduction

A well known problem studied in the literature on dynamic games is the existence of

a unique open-loop Nash equilibrium solution in the two-player linear quadratic di�eren-

tial game de�ned by (see e.g. Starr and Ho (1969), Simaan and Cruz (1973), Ba�sar and

Olsder (1982) or Abou-Kandil and Bertrand (1986)):

_x = Ax+B1u1 +B2u2; x(0) = x0 (1)

with cost functionals:

J1(u1; u2) :=
1

2
x(tf)

TK1fx(tf) +
1

2

Z tf

0
fx(t)TQ1x(t) + u1(t)

TR11u1(t) + u2(t)
TR12u2(t)gdt;

and

J2(u1; u2) :=
1

2
x(tf)

TK2fx(tf) +
1

2

Z tf

0
fx(t)TQ2x(t) + u1(t)

TR21u1(t) + u2(t)
TR22u2(t)gdt;

in which all matrices are symmetric and, moreover, both Qi and Kif are semi-positive
de�nite and Rii are positive de�nite, i = 1; 2.
It is often stated (see e.g. Starr and Ho (1969), Simaan and Cruz (1973), Abou-Kandil

and Bertrand (1986) and Abou-Kandil et al. (1993)) that the open-loop Nash equilibrium
solution is given by

u�1(t) = �R�111BT
1K1(t)�(t; 0)x0 (2)

u�2(t) = �R�122BT
2K2(t)�(t; 0)x0 (3)

provided that the set of coupled asymmetric Riccati-type di�erential equations

_K1 = �ATK1 �K1A�Q1 +K1S1K1 +K1S2K2; K1(tf) = K1f (4)

_K2 = �ATK2 �K2A�Q2 +K2S2K2 +K2S1K1; K2(tf) = K2f (5)

has a solution K1(t), K2(t). Here �(t; 0) satis�es the transition equation

_�(t; 0) = (A� S1K1 � S2K2)�(t; 0); �(t; t) = I

and Si = BiR
�1
ii B

T
i ; i = 1; 2:

We will show by means of an example that, stated this way, this assertion is in general not
correct. As correctly stated by Ba�sar and Olsder (1982 theorem 6.5 A-2, or 1995 theorem

6.12) existence of a solution to the above mentioned Riccati di�erential equations is just
a su�cient condition to conclude that there exists an open-loop Nash equilibrium for the

game. Unfortunately, Ba�sar and Olsder make an additional assumption in their proof on
the costate variable (that it can be written as the product of a di�erentiable matrix and

the state variable), under which, as we will show the existence of a solution of the Riccati

equations is both a necessary and su�cient condition for existence of an open-loop Nash
equilibrium. Therefore we present a correct proof of this theorem.
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We will analyze problem (1) from its roots: the corresponding Hamiltonian equations. In

section 2 we show how both necessary and su�cient conditions for the existence of a unique

open-loop Nash equilibrium can be derived from these Hamiltonian equations, in terms of

the invertibility of a certain matrixM . In section 3 we give a correct proof of the theorem

stated in Ba�sar and Olsder. Moreover, we present a su�cient condition which guarantees

the existence of the set of Riccati di�erential equations.

One area where games of this type are widely used is in policy coordination models (see

e.g. van Aarle et al. (1995), Dockner et al. (1985), Fershtman et al. (1987) Hughes

Hallett et al. (1990), Petit (1989)). In many economic policy coordination problems an

interesting problem is to analyse the e�ect of an expanding planning horizon on the re-

sulting equilibria. Therefore we consider this e�ect if one expands the planning horizon tf
in (1) to in�nity in a separate section. One nice property is that the equilibrium solution

becomes much easier to calculate and implement than for a �nite planning horizon. Before

we present the results on this subject in section 5, we �rst consider the algebraic Riccati

equations associated with (4,5) and their solutions. In section 4 we show how all solutions
of these equations can be determined from the eigenstructure of the matrix M , and that
the eigenvalues of the associated closed-loop system, obtained by applying the state feed-

back control u�i (t) = �R�1ii BT
i Kix(t) in (1), are completely determined by the eigenvalues

of matrix M . A number of the results presented in sections 4 an 5 are also reported by
Abou-Kandil et al. (1993). The conditions under which they derive the results are however
not always completely speci�ed and their proofs are of a more analytic nature. Therefore
we choose to give here a selfcontained expositure including their results.

Finally, in section 6 we study the scalar case which is of particular interest for many eco-
nomic applications. We show that in the scalar case the above mentioned invertibility
condition is always satis�ed and that as a consequence the equilibrium solution is given
by (2,3) and that this solution converges to a stationary stabilizing feedback policy if the
planning horizon expands.

The paper ends with some concluding remarks.

II. Existence conditions for an open-loop Nash equilibrium

In this section we consider in detail the existence of a unique open-loop Nash equilib-
rium of the di�erential game (1). Due to the stated assumptions both cost functionals

Ji; i = 1; 2, are strictly convex functions of ui for all admissible control functions uj; j 6= i

and for all x0. This implies that the conditions following from the minimum principle are
both necessary and su�cient (see e.g. Ba�sar and Olsder (1982, section 6.5)).
Minimization of the Hamiltonian

Hi = (xTQix+ uT1Ri1u1 + uT2Ri2u2) +  T
i (Ax+B1u1 +B2u2); i = 1; 2

with respect to ui yields the optimality conditions (see e.g. Ba�sar and Olsder (1982) or
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Abou-Kandil and Bertrand (1986)):

u�1(t) = �R�111BT
1  1(t) (6)

u�2(t) = �R�122BT
2  2(t); (7)

where the n-dimensional vectors  1(t) and  2(t) satisfy

_ 1(t) = �Q1x(t)�AT 1(t); with  1(tf) = K1fx(tf)

_ 2(t) = �Q2x(t)�AT 2(t); with  2(tf) = K2fx(tf)

and

_x(t) = Ax(t)� S1 1(t)� S2 2(t); x(0) = x0:

In other words, the problem has a unique open-loop Nash equilibrium if and only if the

di�erential equation

d

dt

0
B@ x(t)
 1(t)
 2(t)

1
CA = �

0
B@ �A S1 S2

Q1 A
T 0

Q2 0 A
T

1
CA
0
B@ x(t)
 1(t)
 2(t)

1
CA

with boundary conditions x(0) = x0;  1(tf) � K1fx(tf) = 0 and  2(tf) � K2fx(tf) = 0;
has a unique solution. Denoting the state variable (xT (t)  T

1 (t)  
T
2 (t))

T by y(t), we can

rewrite this two-point boundary value problem in the standard form

_y(t) = �My(t); with Py(0) +Qy(tf) = (xT0 0 0)T ; (8)

where M =

0
B@ �A S1 S2

Q1 A
T 0

Q2 0 A
T

1
CA ; P =

0
B@ I 0 0

0 0 0
0 0 0

1
CA and Q =

0
B@ 0 0 0
�K1f I 0
�K2f 0 I

1
CA

From (8) we have immediately that problem (1) has a unique open-loop Nash equilibrium
if and only if

(P +Qe�Mtf )y(0) = (xT0 0 0)T ;

or equivalently,
(PeMtf +Q)e�Mtfy(0) = (xT0 0 0)T ; (9)

is uniquely solvable for every x0. Elementary matrix analysis then shows that

Theorem 1:

The two-player linear quadratic di�erential game (1) has a unique open-loop Nash equilib-
rium for every initial state if and only if the following matrix H(tf) is invertible:

H(tf ) :=W11(tf ) +W12(tf)K1f +W13(tf)K2f ;

with W (tf) = (Wij(tf)) fi; j = 1; 2; 3; Wij 2 Rn�ng := exp(Mtf ).
Moreover, the open-loop Nash equilibrium solution as well as the associated state trajec-

tory can be calculated from the linear two-point boundary value problem (8). 2
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III. Su�cient conditions for existence of an open-loop Nash equilibrium

In this section we consider the usual approach to the problem in terms of the Riccati

equations (4,5) in more detail. First we show that whenever the set of Riccati equations

(4,5) has a solution there exists an open-loop Nash equilibrium.

Theorem 2:
Problem (1) has a solution if the set of Riccati equations (4,5) has a solution.

Proof:

Let Ki(t) satisfy the set of Riccati equations (4,5). Assume that the feedback control

ui(t) = �R�1ii BT
i Ki(t)x(t) is used to control system (1).

Now, de�ne  i(t) := Ki(t)x(t). Then, obviously _ i(t) = _Ki(t)x(t) +Ki(t) _x(t).
Substitution of _Ki from (4,5) and _x from (1) yields

_ i = (�ATKi �Qi)x = �AT i �Qix:

From this we conclude that the two-point boundary value problem (8) has a solution, which
proves the claim. 2

Now, under the assumption that the open-loop problem has a solution, it follows im-
mediately from theorem 1 and (9) that

y0 = eMtf

0
B@ I

K1f

K2f

1
CAH�1(tf)x0:

Since y(t) = e�Mty0, it follows that the entries of y(t) can be rewritten as

x(t) = (I 0 0)eM(tf�t)

0
B@

I

K1f

K2f

1
CAH�1(tf)x0 (10)

 1(t) = (0 I 0)eM(tf�t)

0
B@

I

K1f

K2f

1
CAH�1(tf)x0 (11)

 2(t) = (0 0 I)eM(tf�t)

0
B@ I

K1f

K2f

1
CAH�1(tf)x0 (12)

Using these formulas the following theorem can easily be proved.
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Theorem 3:

If

H(tf � t)(:=W11(tf � t) +W12(tf � t)K1f +W13(tf � t)K2f )

is invertible for all t 2 [0; tf ], then

 1(t) = K1(t)x(t) and  2(t) = K2(t)x(t)

for some continuously di�erentiable matrix functions K1(t) and K2(t), respectively.

Proof:

From (10) we have that x(t) = H(tf � t)H�1(tf)x0:

Since by assumption the matrixH(tf�t) is invertible it follows that H�1(tf)x0 = H�1(tf�
t)x(t):

Substitution of this expression into the equations for  i; i = 1; 2, in (11,12) yields:

 1(t) = G1(tf � t)H�1(tf � t)x(t) and (13)

 2(t) = G2(tf � t)H�1(tf � t)x(t) (14)

for some continuously di�erentiable matrix functions Gi; i = 1; 2: Since also H�1(:) is a
continuously di�erentiable matrix function the advertised result is obvious now. 2

We like to stress here that the condition as stated in theorem 3 is just a su�cient condition

to derive the fact that the adjoint state variables  i; i = 1; 2 can be written as the product
of a di�erentiable matrix and the state variable. Given the fact that such a representation
is possible, the next corollary shows that then the open-loop Nash equilibrium can be ob-
tained by solving the set of Riccati di�erential equations. This implies in particular (see
the result of theorem 2) that whenever this representation is possible a unique open-loop
Nash equilibrium exists if and only if the set of Riccati di�erential equations (4,5) has a

solution.

Corollary 4:
If H(tf � t) is invertible 8t 2 [0; tf ], then the unique open-loop Nash equilibrium solution

is given by (2-5).

Proof:

From (6,7) we have that  1(t) and  2(t) satisfy

_ 1(t) = �Q1x(t)�AT 1(t); with  1(tf) = K1fx(tf)and

_ 2(t) = �Q2x(t)�AT 2(t); with  2(tf) = K2fx(tf)

and

_x(t) = Ax(t)� S1 1(t)� S2 2(t); x(0) = x0:
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According to theorem 3, under the above mentioned invertibility condition,  1(t) and  2(t)

can be factorized as K1(t)x(t) and K2(t)x(t) for some continuous di�erentiable matrix func-

tions K1(t) and K2(t), respectively. So, in particular we have that _ i = _Kix+Ki _x; i = 1; 2:

Substitution of _ i and  i; i = 1; 2 into the above formulas yields

( _K1+A
TK1+K1A+Q1�K1S1K1�K1S2K2)e

Mtx0 = 0 with (K1(tf )�K1f)e
Mtfx0 = 0; and

( _K2 +ATK2 +K2A+Q2�K2S2K2 �K2S1K1)e
Mtx0 = 0 with (K2(tf)�K2f )e

Mtfx0 = 0;

for arbitrarily chosen x0.

From this the stated result is obvious. 2

Note that this result in particular implies that under the above mentioned invertibility

condition the existence of a solution to the set of Riccati equations is guaranteed. So

veri�cation of the solvability condition becomes super
uous.

The next example shows that there exist situations where the set of Riccati di�erential
equations (4,5) does not have a solution, whereas there exists an open-loop Nash equilib-
rium for the game.

Example 5:

Let A =

 
�1 0
0 �0:9

!
; B1 = B2 = Q2 =

 
1 0
0 1

!
; R11 =

 
500 �200
�200 100

!�1
;

R22 =

 
1000 200
200 50

!�1
; and Q1 =

 
2 1
1 1

!
:

Now, choose tf = 0:1. Then, numerical calculation shows

H(0:1) =

 
35:0323 9:3217
�1:8604 0:4729

!
+

 
366:4330 �142:9873
�36:5968 16:4049

!
K1f+

 
850:3143 172:4050

�22:0161 �3:5423

!
K2f =: V (I K1f K2f )

T :

Now, chooseK1f =

0
@ � 1

V (2;3)

1�V (2;1)

V (2;4)
1�V (2;1)

V (2;4)
2

1
A, andK2f =

 
0 0

0 �V (2;2)+V (2;3)K1f(1;2)+V (2;4)K1f(2;2)

V (2;6)

!
,

then H(0:1) =

 
20:11 1096:54
0 0

!
is not invertible.

So, according to theorem 1 the problem has no open-loop Nash equilibrium, and therefore

(see theorem 2) the corresponding set of Riccati di�erential equations has no solution.

Next consider H(0:11). Numerical calculation shows that with the system parameters as
chosen above, H(0:11) is invertible. So, according to theorem 1 again, the game does have

an open-loop Nash equilibrium for tf = 0:11. However, since the set of Riccati di�erential
equations can be rewritten as one autonomous vector di�erential equation, whose solutions

are known to be shift invariant, it is clear that the corresponding set of Riccati di�erential
equations can not have a solution for tf = 0:11, since it has no solution for tf = 0:1. 2
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IV. The solutions for the algebraic Riccati equation

To study the asymptotic behaviour of the open-loop Nash equilibrium solution of game (1),

in this section we �rst consider the set of solutions satisfying the set of so-called algebraic

Riccati equations corresponding with (4,5)

0 = �ATK1 �K1A�Q1 +K1S1K1 +K1S2K2;

0 = �ATK2 �K2A�Q2 +K2S2K2 +K2S1K1;

)
(ARE)

MacFarlane (1963) and Potter (1966) independently discovered that there exists a relation-

ship between the stabilizing solution of the algebraic Riccati equation and the eigenvectors

of a related Hamiltonian matrix in linear quadratic regulator problems. We will follow their

approach here and formulate similar results for our problem (1). In fact Abou-Kandil et
al. (1993) already pointed out the existence of a similar relationship. One of their results

is that if the planning horizon tf in (1) tends to in�nity, under some technical conditions
on the matrixM , the solution of the above mentioned set of Riccati di�erential equations
converges to a solution of the set of (ARE) which can be calculated from the eigenspaces
of matrix M.
In this section we elaborate on the relationship between solutions of (ARE) and matrix M

in detail. We present both necessary and su�cient conditions in terms of the matrix M
under which (ARE) has (a) real solution(s). In particular we will see that all solutions of
(ARE) can be calculated from the invariant subspaces of M and that the eigenvalues of the
associated closed-loop system, obtained by applying the control u�i (t) = �R�1ii BT

i Ki(t)x(t),
are completely determined by the eigenvalues of matrix M. As a corollary from these results

we obtain both necessary and su�cient conditions for the existence of a stabilizing control
of this type, a result which will be used in the next section.
In our analysis the set of all M -invariant subspaces play a crucial role. Therefore we in-
troduce a separate notation for this set:

Minv := fT jMT � T g.

It is well-known (see e.g. Lancaster and Tismenetsky (1985)) that this set contains only

a �nite number of (distinct) elements if and only if all eigenvalues of M have a geometric

multiplicity one.
The set of possible solutions for the algebraic Riccati equation can, as will be shown in the
next theorem, directly be calculated from the following collection ofM invariant subspaces:

Kpos :=
�
K 2MinvjK � Im

0
B@ 0 0

I 0
0 I

1
CA = R3n

�
:
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Note that elements in the set Kpos can be calculated using the set of matrices

Kpos :=

�
K 2 R3n�njImK� Im

0
B@

0 0

I 0

0 I

1
CA = R3n

�
:

The exact result on how all solutions of (ARE) can be calculated reads as follows:

Theorem 6:
(ARE) has a real solution (K1;K2) if and only if K1 = Y X�1 and K2 = ZX�1 for some

K =: Im

0
B@ X

Y

Z

1
CA,

such that

K 2 Kpos:

Moreover, if the control functions u�i (t) = �R�1ii BT
i Ki�(t)x0 are used to control the system

(1) the spectrum of the matrix �A+ S1K1 + S2K2, coincides with �(M jK).

Proof:
") " Assume (K1;K2) solve (ARE). Then simple calculations show that

M

0
B@

I

K1

K2

1
CA =

0
B@
�A+ S1K1 + S2K2

Q1 +ATK1

Q2 +ATK2

1
CA =

0
B@

I

K1

K2

1
CA (�A+ S1K1 + S2K2):

Now, introducing X := I; Y := K1; and Z := K2, we see that M

0
B@
X

Y

Z

1
CA =

0
B@
X

Y

Z

1
CAJ; for

some matrix J and matrix X invertible, which completes this part of the proof.

"( " Let K 2 Kpos. Then there exist K1 and K2 such that K = Im

0
B@ I

K1

K2

1
CA, and a matrix

J such that

M

0
B@ I

K1

K2

1
CA =

0
B@ I

K1

K2

1
CA J:

Spelling out the left hand side of this equation gives

0
B@ �A+ S1K1 + S2K2

Q1 +ATK1

Q2 +ATK2

1
CA =

0
B@ I

K1

K2

1
CA J;
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which immediately yields that J = �A+ S1K1 + S2K2. Substitution of this equality into

the right hand side of the equality shows then that Q1+ATK1 = K1(�A+ S1K1 + S2K2)

and Q2 + ATK2 = K2(�A + S1K1 + S2K2), or stated di�erently, K1;K2 satisfy (ARE).

This proves the second part of the theorem.

The last statement of the theorem concerning the spectrum of the matrix�A+S1K1+S2K2

follows directly from the above arguments by noting that if we choose as a basis for IR3n0
B@

I 0 0

K1 I 0

K2 0 I

1
CA, matrixM has the block-triangular structure

0
B@
�A+ S1K1 + S2K2 S1 S2

0 AT �K1S1 �K1S2
0 �K2S1 AT �K2S

which completes the proof. 2

From the above theorem a number of interesting properties concerning the solvability

of (ARE) follow. First of all we observe that every element of Kpos de�nes exactly one

solution of (ARE). Furthermore, this set contains only a �nite number of elements if and

only if the geometric multiplicities of all eigenvalues of M is one. So, in that case we
immediately conclude that (ARE) will have at most a �nite number of solutions and that
(ARE) will have no real solution if and only if Kpos is empty.
Another conclusion which immediately follows from the above theorem is that

Corollary 7:
(ARE) will have a set of solutions (K1;K2) stabilizing the closed-loop system matrix
A � S1K1 � S2K2 if and only if there exists an M invariant subspace K in Kpos such
that Re � > 0 for all � 2 �(M jK). 2

To illustrate some of the above mentioned properties, reconsider example 5.

Example 5 (continued):

Numerical calculations show that the eigenvalues of M are f�42:1181;�0:8866;�0:3441�
4:6285i;�0:3168; 42:1096g, and the corresponding eigenspaces

T1 = Spanf (�0:9968 0:0549 0:0471 0:0229 0:0242 � 0:0013)T g;
T2 = Spanf (�0:0178 0:0108 � 0:2191 � 0:5272 � 0:1570 0:8056)T g;
T3 = Spanf (�0:0439 0:1636 � 0:085 � 0:1382 0:0519 � 0:1906)T ;

(0:2512 � 0:9146 � 0:0284 � 0:0425 0:0168 � 0:0582)T g;
T4 = Spanf (0:1145 � 0:4047 � 0:2570 � 0:4975 0:1676 � 0:6939)T g and
T5 = Spanf (�0:9970 0:0545 � 0:0450 � 0:0219 � 0:0231 0:0013)T g:

According to theorem 6, the corresponding set of algebraic Riccati equations has at most 
4
2

!
+1 = 7 real solutions. Furthermore, there is no solution which stabilizes the closed-

loop system matrix.
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As an example consider

0
B@
X

Y

Z

1
CA := (T1 T2): This yields the solution

K1 = Y X�1 =

 
0:0471 �0:2191
0:0229 �0:5272

! 
�0:9968 �0:0178
0:0549 0:0108

!
�1

and

K2 = ZX�1 =

 
0:0242 �0:1570
�0:0013 0:8056

! 
�0:9968 �0:0178
0:0549 0:0108

!�1
:

The eigenvalues of the closed-loop system (1) using the control ui(t) = �R�1ii BT
i Kix(t)

are f42:1181; 0:8866g: It is easily veri�ed that the rank of the �rst two rows of every other

candidate solution is also two, so we conclude that (ARE) has seven solutions, none of

which is stabilizing. 2

V. Convergence results

As argued in the introduction, it is interesting to see how the open-loop equilibrium solution
changes when the planning horizon tf tends to in�nity. To study convergence properties for

problem (1), it seems reasonable to require that problem (1) has a properly de�ned solu-
tion for every �nite planning horizon. Therefore in this section we will make the following
well-posedness assumption (see theorem 1)

H(tf) is invertible for all tf <1: (15)

Furthermore, we will see that general convergence results can only be derived if the eigen-
structure of matrix M satis�es an additional property, which we de�ne �rst.

De�nition 8:

M is called dichotomically separable if there exist subspaces V1 and V2 such that MVi �
Vi; i = 1; 2; V1 � V2 = IR3n; where dimV1 = n; dimV2 = 2n; and moreover Re � >

Re � for all � 2 �(M jV1); � 2 �(M jV2): 2

Using corollary 4 we have now immediately from (15) that to study the convergence of

the open-loop Nash equilibrium solution we can restrict ourselves to the study of the set of

Riccati di�erential equations (4-5) at time 0. We will denote the corresponding solutions
of (4-5) by Ki(0; tf), respectively. So the question is under which conditions the solutions
of this set of equations will converge if tf increases. Note that Ki(0; tf) can be viewed as

the solution k(t) of an autonomous vector di�erential equation _k = f(k), with k(0) = k0
for some �xed k0, and where f is a smooth function. Elementary analysis shows then that

Ki(0; tf) converges to a limit �k only if this limit �k satis�es f(�k) = 0. Therefore, we imme-

diately deduce from theorem 6 the following necessary condition for convergence.

Lemma 9:

Ki(0; tf) can only converge to a limit �Ki(0) if the set Kpos is nonempty. 2
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Note that dichotomic separability of M implies that Kpos is nonempty. On the other

hand it is not di�cult to construct an example where Kpos is nonempty, whereas M is not

dichotomically separable.

To study the convergence of Ki(0; tf ) we reconsider (13) and (14) in theorem 3. From these

formulas we have that

K1(0; tf) = (0 I 0)eMtf

0
B@

I

K1f

K2f

1
CA
0
B@(I 0 0)eMtf

0
B@

I

K1f

K2f

1
CA
1
CA
�1

; and (16)

K2(0; tf) = (0 0 I)eMtf

0
B@ I

K1f

K2f

1
CA
0
B@(I 0 0)eMtf

0
B@ I

K1f

K2f

1
CA
1
CA
�1

: (17)

We are now able to give an elementary proof of the following result (see also Abou-Kandil

et al (1993, section 4))

Theorem 10:
Assume that the well-posedness assumption (15) holds.

Then, if M is dichotomically separable and Span

0
B@ I

K1f

K2f

1
CA� V2 = IR3n;

K1(0; tf)! Y0X
�1
0 ; and K2(0; tf)! Z0X

�1
0 ;

whereX0; Y0; Z0 are de�ned by (using the notation of de�nition 8) V1 =: Span(X
T
0 Y

T
0 ZT

0 )
T :

Proof:

Choose

0
B@

I 0 0

K1f I 0
K2f 0 I

1
CA as a basis for IR3n. Then, because

Span

0
B@ I

K1f

K2f

1
CA� V2 = IR3n;

there exists an invertible matrix V22 2 IR2n�2n such that V2 = Span

 
0
V22

!
.

Moreover, because M is dichotomically separable, there exist matrices J1; J2 such that

M = V

 
J1 0

0 J2

!
V �1;

where

V =

0
B@

X0 0 
Y0
Z0

!
V22

1
CA ;

13



and �(Ji) = �(M jVi), i = 1; 2.

Using this, we can rewrite K1(0; tf ) and K2(0; tf) in (16,17) as ~Gi(tf) ~H
�1(tf), i = 1; 2,

where

~G1(tf) = (0 I 0)V e��ntf
 
eJ1tf 0

0 eJ2tf

!
V �1

0
B@ I

K1f

K2f

1
CA ;

~G2(tf) = (0 0 I)V e��ntf
 
eJ1tf 0

0 eJ2tf

!
V �1

0
B@ I

K1f

K2f

1
CA ;

~H(tf) = (I 0 0)V e��ntf
 
eJ1tf 0

0 eJ2tf

!
V �1

0
B@

I

K1f

K2f

1
CA :

Here �n is the element of �(M jV1) which has the smallest real part.

Next, consider ~G1(tf)� Y0X
�1
0

~H(tf).

Simple calculations show that this matrix can be rewritten as

e��ntf (�Y0X�1
0 I 0)V

 
eJ1tf 0
0 eJ2tf

!
V �1

0
B@ I

K1f

K2f

1
CA ; (18)

Since (�Y0X�1
0 I 0)

�
XT

0 Y T
0 ZT

0

�T
= 0, (18) equals

e��ntf
�
I 0

�
V22e

J2tfV �1
22

 
K1f � Y0X

�1
0

K2f � Z0X
�1
0

!
:

As e��ntfeJ2tf converges to zero for tf !1, it is obvious now that ~G1(tf)� Y0X
�1
0

~H(tf )
converges to zero for tf ! 1. Similarly it can be shown that also ~G2(tf ) � Z0X

�1
0

~H(tf )

converges to zero for tf ! 1. To conclude from this that K1(0; tf) ! Y0X
�1
0 , and

K2(0; tf ) ! Z0X
�1
0 , it su�ces to show that ~H�1(tf) remains bounded for tf ! 1. This

follows, however, directly by spelling out ~H(tf) as

~H(tf) = e��ntfX0e
J1tfX�1

0 :

2

Combination of the results from theorem 10 and corollary 7 yields then

Corollary 11:
If the planning horizon tf in the di�erential game (1) tends to in�nity, the unique open-loop

14



Nash equilibriumsolution converges to a stationary feedback strategy u�i (t) = �R�1ii BT
i Kix(t); i =

1; 2, which stabilizes the associated closed-loop system, if the following conditions are sat-

is�ed:

1. all conditions mentioned in theorem 10

2. Re � > 0;8� 2 �(M jV1):

Moreover, these constant feedback matrices can be calculated from the eigenspaces of ma-

trix M (see theorem 10). 2

VI. The scalar case

We start this section by showing that the invertibility condition mentioned in corollary

3 is always satis�ed if the dimensions of both the state and the input variables in system

(1) equal one. This implies that for this kind of systems the usually stated assertion that
the open-loop Nash strategy is given by (2-5) is correct and, moreover, that the associated

Riccati equations yield the appropriate solution. To prove this result we �rst calculate the
exponential of matrix M . To stress the fact that in this section we are dealing with the
scalar case, we will put the system parameters in lower case, so e.g. a instead of A.

Lemma 12:

Consider matrix M in (8). The exponential of matrix M , eMs, is given by

V

0
B@ e��s 0 0

0 eas 0
0 0 e�s

1
CA V �1; (19)

where

V =

0
B@
a+ � 0 a� �

�q1 �s2 �q1
�q2 s1 �q2

1
CA

and its inverse

V �1 =
1

detV

0
B@ (s1q1 + s2q2) s1(a� �) s2(a� �)

0 �2q2� 2q1�

�(s1q1 + s2q2) �s1(a+ �) �s2(a+ �)

1
CA ;

with the determinant of V , detV = 2�(s1q1 + s2q2); and � =
p
a2 + s1q1 + s2q2.

Proof:

Straightforward multiplication shows that we can factorizeM asM = V diag(a; �;��)V �1.
So (see e.g. Lancaster et al (1985, theorem 9.4.3)), the exponential of matrix M , eMs, is

as stated above. 2
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Next consider the matrix H(s) from theorem 3 for an arbitrarily chosen s 2 [0; tf ]. Obvi-

ously, H(s) = (1 0 0)eMs

0
B@

1

k1f
k2f

1
CA. Using the expressions in lemma 12 for V and V �1 we

�nd

H(s) =
1

detV
[(s1q1+ s2q2)f(��a)e�s+(a+�)e��sg+(�2�a2)(e�s� e��s)(s1k1f + s2k2f)]:

Clearly, H(s) is positive for every s � 0. This implies in particular that H(s) di�ers from

zero for every s 2 [0; tf ], whatever tf > 0 is. So from corollary 4 we now immediately have

the following conclusion.

Theorem 13:
Problem (1) has a unique open-loop Nash equilibrium solution:

u�1(t) = �
1

r11
b1k1(t)x(t)

u�2(t) = �
1

r22
b2k2(t)x(t)

where k1(t) and k2(t) are the solutions of the coupled asymmetric Riccati-type di�erential
equations

_k1 = �ak1 � k1a� q1 + k21s1 + k1s2k2; k1(tf) = k1f
_k2 = �ak2 � k2a� q2 + k22s2 + k2s1k1; k2(tf) = k2f :

Here si =
1

rii
b2i ; i = 1; 2: 2

We conclude this section by considering the convergence properties of the open-loop equi-

librium solution mentioned above. It turns out that in the scalar case we can prove that
this solution always converges.

Theorem 14:
Assume that s1q1 + s2q2 > 0:

Then, the open-loop Nash equilibrium solution from theorem 13 converges to the (station-

ary feedback) strategies:

u�1(t) = �
1

r11
b1k1x(t)

u�2(t) = �
1

r22
b2k2x(t)

where k1 =
(a+�)q1
s1q1+s2q2

and k2 =
(a+�)q2
s1q1+s2q2

:

Moreover, these strategies stabilize the closed-loop system (1).
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Proof:

Since s1q1 + s2q2 > 0; it is clear from (19) that M is dichotomic separable. Furthermore

we showed above that the well-posedness assumption is always satis�ed in the scalar case.

Note that � > 0, so according to corollary 11 the open-loop Nash strategies converge to

a stationary feedback strategy whenever kif ; i = 1; 2; are such that s1q1 + s2q2 + s1(a �
�)k1f + s2(a� �)k2f 6= 0.

Now consider the case that s1q1 + s2q2 + s1(a � �)k1f + s2(a � �)k2f = 0: To study this

case, reconsider (16) and (17) for tf ! 1. Elementary spelling out of these formulas,

using (19), shows that also in this case both k1(0; tf) and k2(0; tf) converge to the limits

as advertised above, which concludes the proof. 2

VII. Concluding remarks

In this paper we reconsidered the existence and asymptotic behaviour of a unique open-
loop Nash equilibrium solution in the two-player linear quadratic game. We analyzed the
problem starting from its basics: the Hamiltonian equations. We derived necessary and

su�cient conditions for the existence of a unique open-loop Nash equilibrium solution in
terms of a full rank condition on a modi�ed fundamental matrix. An open problem remains
to �nd general conditions on the system matrices which guarantee that the rank condition
is satis�ed. Furthermore we showed by means of an example that in general a solution to
the set of associated di�erential Riccati equations may fail to exist whereas an open-loop

Nash equilibrium solution exists. A su�cient condition is given under which the open-loop
equilibrium solution can be obtained via the solutions of these Riccati di�erential equa-
tions. Again, an open problem remains to interpret this solvability condition in terms of
the system matrices.
To study convergence of the open-loop equilibrium solution if the planning horizon is ex-

tended to in�nity, we argued that for well-posedness reasons we can restrict ourselves to
study the asymptotic behavior of the Riccati di�erential equations. To that end we �rst
considered the existence of real solutions for the corresponding algebraic Riccati equations.
We showed how every real solution to (ARE) can be calculated from the invariant sub-

spaces of the matrixM =

0
B@ �A S1 S2
Q1 AT

0

Q2 0 AT

1
CA. Furthermore, we showed how the eigenvalues

of the system if the corresponding feedback control strategies are used in (1) correspond

to the eigenvalues of this matrix.
In particular this approach makes it possible to conclude whether (ARE) has a real so-
lution, and if so, how many solutions there are (there are always only a �nite number of

solutions if the geometric multiplicity of all eigenvalues of M is one) and which of them

gives rise to control strategies that stabilize the closed-loop system. We noted that in
general (ARE) will have more than one stabilizing solution. We like to note that it is not

di�cult to show by means of an example that this property is independent of the fact
whether matrixM is dichotomically separable or not.
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These results raise a number of interesting open questions, namely, is it possible to say a

priori something on the relationship between the eigenstructure of matrixM (in particular

the structure which guarantees the existence of stabilizing solutions to (ARE), and more

in particular the structure which generically implies convergence of the solutions of the

Riccati di�erential equations) and geometric properties of the system parameters in (1). A

�rst attempt to answer the question under which conditions on the system matrices there

may exist a stabilizing solution was addressed in Engwerda and Weeren (1994), where for

a number of particular situations it was shown that matrixM always has at least n eigen-

values (counted with their algebraic multiplicities) with a positive real part. On the other

hand, by means of an example it was shown there that this property does not always hold.

The results on the existence of real solutions to (ARE) were used to show that if the

dimension of the direct sum of the invariant subspaces corresponding with the n largest

eigenvalues (counted again with algebraic multiplicities) equals n, then generically the so-

lution to the Riccati di�erential equations converges to a solution which can be directly

calculated from this direct sum.
Since there are a number of applications which just involve scalar systems we concluded
the paper by a detailed analysis of that case. We showed that for those systems, the unique

open-loop Nash equilibrium solution can always be found by solving the associated set of
Riccati di�erential equations, and that this solution converges to a stationary state feed-
back strategy, which stabilizes the associated closed-loop system if the planning horizon
tends to in�nity.
Finally we note that the obtained results can be straightforwardly generalized to the N

player game.
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