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Game Theory and the Market

Eric van Damme∗ Dave Furth†

December 23, 2003

Abstract

We show that both cooperative and non-cooperative game models can sub-

stantially increase our understanding of the functioning of actual markets. In the

first part of the paper, we provide a brief historical sketch of the differences and

complementary between the two types of models, by going back to the work of

the founding fathers, Von Neumann, Morgenstern and Nash. In the second part,

we illustrate our main point by means of examples of bargaining, oligopolistic

interaction and auctions.

1 Introduction

Based on the assumption that players behave rationally, game theory tries to predict

the outcome in interactive decision situations, i.e. situations in which the outcome is

determined by the actions of all players and no player has full control. The theory

distinguishes between two types of models, cooperative and non-cooperative. In models

of the latter type, emphasis is on individual players and their strategy choices, and the

main solution concept is that of Nash equilibrium (Nash, 1951). Since the concept as

originally proposed by Nash is not completely satisfactory - it does not adequately take

into account that certain threats are not credible, many variations have been proposed,

see Van Damme (2002), but in their main idea these all remain faithful to Nash’s original

insight. The cooperative game theory models, instead, focus on coalitions and outcomes,
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and for cooperative games a wide variety of solution concepts have been developed,

in which few or no unifying principles can be distinguished. (See other papers in this

volume for an overview). The terminology that is used sometimes gives rise to confusion;

it is not the case that in non-cooperative games do not wish to cooperate and that

in cooperative games players automatically do so. The difference instead is in the

level of detail of the model; non-cooperative models assume that all possibilities for

cooperation have been included as formal moves in the game, while cooperative models

are ”incomplete” and allow players to act outside of the detailed rules that have been

specified.

One of us had the privilege and the luck to follow undergraduate courses in game theory

with Stef Tijs. There were courses in non-cooperative theory as well as in cooperative

theory and both were fun. When that author had passed his final (oral) exam, he was

still puzzled about the relationships between the models and the solution concepts that

had been covered and he asked Stef a practical question: when to use a cooperative

model and when to use a non-cooperative one? The answer is not recalled, but clearly

the question is a nonsensical one: it all depends on what one wants to achieve and

what is feasible to do. Frequently, it will not be possible to write down an explicit

non-cooperative game, and even if this is possible, one should be aware that players

may attempt to violate the rules that the analyst believes to apply. On the other hand,

a cooperative model may be pitched at a too high level of abstraction and may contain

too little detail to allow the theorist to come up with a precise prediction about the

outcome. In a certain sense, the large variety of solution concepts that one finds in

cooperative game theory is a natural consequence of the model that is used being very

abstract It also follows from these considerations that cooperative and non-cooperative

models are complements to each other, rather than competitors.

Our aim in this paper is to demonstrate the complementarity between the two types of

game theory models and to illustrate their usefulness for the analysis of actual markets.

Section 2 provides a historical perspective and briefly discusses the views expressed in

Von Neumann andMorgenstern (1953) and Nash (1953). Section 3 focuses on bargaining

games, while Section 4 discusses oligopoly games and markets. Auctions are the topic

of Section 5. Section 6 concludes.
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2 Von Neumann, Morgenstern and Nash

As Von Neumann and Morgenstern (1953) argue, there is not much point in forming a

coalition in 2-person zero-sum games. In this case, both the cooperative and the non-

cooperative theory predict the same outcome. Furthermore, in 2-person non-zero-sum

games, there is only one coalition that can possibly form and it will form when it is

attractive to form it and when the rules of the game do not stand in the way. The

remaining question then is how the players will divide the surplus, a question that we

will return to in Section 3. The really interesting problems start to appear when there

are at least three players. Von Neumann and Morgenstern (1953, Chapter V) argue that

in this case the game cannot sensibly be analyzed without coalitions and side-payments,

for, even if these are not explicitly allowed by the rules of the game, the players will try

to form coalitions and make side payments outside of these formal rules.

To illustrate their claim, the founding fathers of game theory, start from a simple non-

cooperative game. Assume there are three players and each player can point to one of

the others if he wants to form a coalition with him. In this case, the coalition {i, j}

forms if and only if i points to j and j points to i. The rules also stipulate that if

{i, j} forms, the third player, k, has to pay 1 money unit to each of i and j. Formally

therefore this game of coalition formation can be represented by the following normal

form (non-cooperative) game:

1 3

2 1, 1, -2 0, 0, 0

3 1, -2, 1 1, -2, 1

1

1 3

2 1, 1, -2 -2, 1, 1

3 0, 0, 0 -2, 1, 1

2
Figure 1: A non-cooperative game of coalition formation.

(Player 1 chooses a row, player 2 a column, and players 3 a matrix.)

This game has several pure Nash equilibria, it also has a mixed Nash equilibrium in

which each player chooses each of the others with equal probability. Von Neumann and

Morgenstern start their analysis from a non-cooperative point of view, i.e. as if the

above matrix tells the whole story:

”Since each player makes his personal move in ignorance of those of the

others, no collaboration of the players can be established during the course

of play” (p. 223).
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Nevertheless, Von Neumann and Morgenstern argue that the whole point of the game

is to form a coalition, and they conclude that, if players are prevented to do so within

the game, they will attempt to do so outside. They realize that this raises the question

of why such outside agreements will be kept, and they pose the crucial question ”what,

if anything, enforces the ”sanctity” of such agreements? They answer this question in

the following way

”There may be games which themselves - by virtue of the rules of the (...)

provide the mechanism for agreements and their enforcement. But we cannot

base our considerations on this possibility since a game need not provide

this mechanism; (...) Thus there seems no escape from the necessity of

considering agreements concluded outside the game. If we do not allow for

them, then it is hard to see what, if anything, will govern the conduct of a

player in a simple majority game” (p. 223).

The reader may judge for himself whether, and in which circumstances, he considers this

argument to be convincing. In any case, if one accepts the argument that a convinc-

ing theory cannot be formulated without auxiliary concepts such as ”agreements” and

”coalitions”, then one also has to accept that side-payments will form an integral part

of the theory. This latter argument is easily seen by considering a minor modification of

the game of Figure 1. Suppose that if the coalition {1, 2} would form the payoffs would

be (1+ε, 1−ε,−2) and that if {1, 3} would form, the payoffs would be (1+ε,−2, 1−ε):

what outcome of the game would result in this case? Von Neumann and Morgenstern

argue that the advantage of player 1 is quite illusory: if player 1 would insist on getting

1 + ε in the coalition {1, 2}, then 2 would prefer to form the coalition with 3,and simi-

larly with the roles of the weaker players reversed. Consequently, in order to prevent the

coalition of the two ”weaker” players from forming, player 1 will offer a side payment of

ε to each of them. Consequently, Von Neumann and Morgenstern conclude

”It seems that what a player can get in a definite coalition depends not only

on what the rules of the game provide for that eventuality, but also on the

other (competing ) possibilities of coalitions for himself and for his partner.

Since the rules of the game are absolute and inviolable, this means that under

certain conditions compensations must be paid among coalition partners;

i.e. that a player must have to pay a well-defined price to a prospective
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coalition partner. The amount of the compensations will depend on what

other alternatives are open to each of the players” (p. 227).

Obviously, if one concludes that coalitions and side payments have to be considered in

the solution, then the natural next step is to see whether the solution can be determined

by these aspects alone, and it is that problem that Von Neumann and Morgenstern then

the one he is negotiating a coalition with set out to solve in the remaining 400 pages of

the their book.

John Nash refused to accept that it was necessary to include elements outside the formal

structure of the game to develop a convincing theory of games. His thesis (Nash, 1950a),

of which the mathematical core was published a bit later as Nash (1951) opens with

”Von Neumann and Morgenstern have developed a very fruitful theory of

two-person zero-sum games in their book Theory of Games and Economic

Behavior. This book also contains a theory of n-person games of a type

which we would call cooperative. This theory is based on an analysis of

the interrelationships of the various coalitions which can be formed by the

players of the game. Our theory, in contradistinction, is based on the absence

of coalitions in that it is assumed that each participant acts independently,

without collaboration or communication with any of the others. The notion

of an equilibrium point is the basic ingredient in our theory.”

Hence, Nash was the first to introduce the formal distinction between the two classes of

games. After having given the formal definition of a non-cooperative game, Nash then

defines the equilibrium notion, proves that any finite game has at least one equilibrium,

derive properties of equilibria, discusses issues of robustness and equilibrium selection

and finally discussed interpretational issues. In the remainder of this Section, we give a

brief sketch.

A non-cooperative game is a tuple < Si, ui >i∈I where I is a nonempty set of players,

Si is the strategy set of player i and ui : S → R (where S = Xi∈ISi) is the payoff func-

tion of player i. This formal structure had already been introduced by Von Neumann

and Morgenstern, who had also argued that, for finite Si, it was natural to introduce

mixed strategies. A mixed strategy σi of player i is a probability distribution on Si.
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In what follows we write k to denote a generic pure strategy and we write σk

i
for the

probability that σi assigns to k. If σ = (σ1, . . . , σI) is a combination of mixed strategies,

we may write ui(σ) for player i’s expected payoff when σ is played. Von Neumann and

Morgenstern had proved the important result that for rational players it was sufficient

to look at expected payoffs. In other words, it is assumed that payoffs are Von Neu-

mann Morgenstern utilities. Nash now defines an equilibrium point as a mixed strategy

combination σ∗ such that each player’s mixed strategy σ∗
i
maximizes his payoff if the

strategies of the others (denoted by σ∗
−i
) are held fixed, hence

ui(σ
∗) = max

σi

ui(σi, σ
∗

−i) for all i ∈ I

Nash’s main result is that in finite games (i.e. I and all Si are finite sets) at least one

equilibrium exists. The proof is so elegant that it is worthwhile to give it here. For i ∈ I

and k ∈ Si, write

Uk

i
(σ) = max(0, ui(k, σ−i)− ui(σ))

and consider the map f : Σ → Σ defined (componentwise) by

fk

i
(σ) = (σk

i
+ Uk

i
(σ))/(1 +

∑

�∈Si

U �

i
(σ)),

then f is a continuous map, that maps the convex set Σ (of all mixed strategy profiles)

into itself, so that, by Brouwer’s fixed point theorem, a fixed point σ∗ exists. It is then

easily seen that such a σ∗ is an equilibrium point of the game.

The section ”Motivation and Interpretation” from Nash’s thesis was not included in

the published version (Nash 1951). In retrospect, this is to be regretted as it led to

misunderstandings and delayed progress in game theory for some time. Nash provided

two interpretations, one, ”the rationalistic interpretation” arguing why equilibrium is

relevant when the game is played by fully rational players, the other ”the mass action

representation” arguing that equilibrium might be obtained as a result of ignorant play-

ers learning to play the game over time when the game is repeated. We refer the reader

to Van Damme (1995) for further discussion on these interpretations, here we confine

ourselves to the remark that the rationalistic interpretation, the view of a solution as

a convincing theory of rationality, had already been proposed in Von Neumann and
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Morgenstern, see Section 17.3 of their book. However, the founding fathers had not

followed up their own suggestion. In addition, they had come to the conclusion that it

was necessary to consider set-valued solution concepts. Again, Nash was not convinced

by their arguments and he found it a weak spot in their theory.

3 Bargaining

In this Section we illustrate the complementarity between game theory’s two approaches

for the special case of bargaining problems.

As referred to already at the end of the previous Section, the theory that Von Neumann

and Morgenstern developed generally allows multiple outcomes. Consider the special

case of a simple bargaining problem. Assume there is one seller who has one object for

sale, who does not value this object himself, and that there is one buyer that attaches

value 1 to it, with both players being risk neutral. For what price will the object be

sold? Von Neumann and Morgenstern discuss this problem in Section 61 of their book

where they come to the conclusion that ”a satisfactory theory of this highly simplified

model should leave the entire interval (i.e. in this case [0,1]) availabel for p”. (p. 557)

The above is unsatisfactory to Nash. In Nash (1950b), he writes

”In Theory of Games and Economic Behavior a theory of n-person games is

developed which includes as a special case the two-person bargaining prob-

lem. But the theory developed there makes no attempt to find a value for a

given n-person game, that is, to determine what it is worth to each player

to have the opportunity to engage in the game (...) It is our opinion that

these n-person games should have values.”

Nash then postulates that a value exists and he sets out to identify it. To do so, he uses

the axiomatic method, that is

”One states as axioms several properties that it would seem natural for the

solution to have and then one discovers that the axioms actually determine

the solution uniquely” (Nash, 1953, p. 129)
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In his 1950b paper, Nash adopts the cooperative approach, hence, he assumes that the

solution can be identified by using only information about what outcomes and coalitions

are possible. Without loss of generality, let us normalize payoffs such that each player

has payoff 0 if players do not cooperate and that cooperation pays, i.e. there is at least

one payoff vector u with u1, u2 > 0 that is feasible. In this case, the solution then should

just depend on the set of payoffs that are possible when players do cooperate. Let us

write f(S) for the solution when this set is S. This set will be convex, as players can

randomize. Obviously, such trivialities as f(S) ∈ S and fi(S) � 0 for i = 1, 2 should

be satisfied. In addition, the solution should be independent of which utility function

is used to represent the given players preferences and should be symmetric (u1 = u2)

when the game is symmetric. All these things are undebatable. It is quite remarkable

that only one additional axiom is needed to uniquely determine the solution for each

bargaining problem. This is the Axiom of Independence of Irrelevant Alternatives:

If S ⊂ T and f(T ) ∈ S, then f(S) = f(T )

Again the proof of this major result is so elegant, that we cannot resist to give it. Define

g(S) as that point in S that maximizes u1u2 in S∩R2

+
. Then by rescaling utilities we may

assume g(S) = (1, 1), and it follows that the line u2+u2 = 2 is a supporting hyperplane

for S at (1, 1). (It separates the convex set S from the convex set {(u1, u2); u1u2 � 1}.)

Now let T be the set {(u1, u2) ∈ R
2

+
; u1 + u2 � 2}. Then, by symmetry, f(T ) = (1, 1),

hence IIA implies f(S) = (1, 1). We have, therefore, established that there is only

one solution satisfying the IIA axiom: it is the point where the product of the players’

utilities is maximized. As a corollary we obtain that, in the simple seller-buyer example

that we started out with, the solution is a price of 1

2
.

One interpretation of the above solution is that it will result when players can bargain

freely. Obviously, when the players would be severely restricted in their bargaining

possibilities then a different outcome may result. For example, in the above buyer-seller

game, if the seller can make a take it or leave it offer, the buyer will be forced to pay

a price of (almost) one. The advantage of non-cooperative modelling is that it allows

to analyze each specific bargaining procedure and to predict the outcome on the basis

of detailed modelling of the rules; the drawback (or realism?) of that model is that

the outcome may crucially depend on these details. Indeed, if, in our simple example,

the buyer would have all the bargaining power, the price would be (close to) zero.

The symmetry assumption in Nash’s axiomatic model represents something like players

having equal bargaining power and this is obviously violated in these take it or leave it
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games. It is not clear how such asymmetric games could be relevant for players that are

otherwise completely symmetric. Nash (1953) contains important modelling advise for

non-cooperative game theorists. He writes that in the non-cooperative approach

”the cooperative game is reduced to an non-cooperative game. To do this,

one makes the players’ steps of negotiation in the cooperative game become

moves in the non-cooperative model. Of course, one cannot represent all

possible bargaining devices as moves in the non-cooperative game. The

negotiation process must be formalized and restricted, but in such a way

that each participant is still able to utilize all the essential strength of his

position” (Nash (1953, p. 129).

Nash also writes that the two approaches are complementary and that each helps to

justify and clarify the other. To complement his cooperative analysis, Nash studies the

following simultaneous demand game: each player i demands a certain utility level ui

that he should get; if the demands are compatible, that is (u1, u2) ∈ S, then each player

gets what he demanded, otherwise disagreement (with payoff 0) results. At first it seems

that this non-cooperative game does not fulfill our aims, after all any Pareto optimal

outcome of S corresponds to a Nash equilibrium of the game, and so does disagreement.

Nash, however, argues that one of these equilibria is distinguished in the sense that

it is the only one that is robust against small perturbations in the data. Of course,

this unique robust equilibrium is then seen to correspond to the cooperative solution of

the game. Specifically, Nash assumes that players are somewhat uncertain about what

outcomes are feasible. Let p(u) be the probability that u is feasible with p(u) = 1 if u ∈ S

and p a continuous function that falls rapidly to zero outside of S. With uncertainty

given by p, player i’s payoff function is now given by uip(u) and it is easily verified that

any maximum of the map u1u2p(u) is an equilibrium of this slightly perturbed game.

Note that all these equilibria converge to the Nash solution (the maximum of u1u2 on

S) when p tends to the characteristic function of S and that, for nicely behaved p, the

perturbed game will only have equilibria close to the Nash solution. Consequently, only

the Nash solution constitutes a robust equilibrium of the original demand game.

The above coincidence certainly is not an isolated result, the Nash solution also arises

in other natural non-cooperative bargaining models. As an example, we discuss Rubin-

stein’s (1981) alternating offer bargaining game. Consider the simple seller buyer game
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that we started this Section with and assume bargaining proceeds as follows, until agree-

ment is reached or the game has come to an end. In odd numbered period (t = 1, 3, . . .),

the seller proposes a price to the buyer and the buyer responds by accepting or rejecting

the offer; in even numbered period (t = 2, 4, . . .), the roles of the players are reversed

and the buyer has the initiative; after each rejection, the game stops with positive but

small probability α. Rubinstein shows that this game has a unique (subgame perfect)

equilibrium, and that, in equilibrium, agreement is reached immediately. Let ps (resp.

pb) be the price proposed by the seller (resp. the buyer). The seller realizes that if the

buyer rejects his first offer, the buyer’s expected utility will be (1 − α)(1 − pb), hence,

the seller will not offer a higher utility, nor a lower. Consequently, in equilibrium we

must have

1− ps = (1− α)(1− pb)

and, by a similar argument

pb = (1− α)ps

It follows that the equilibrium prices are given by

ps = 1/(2− α) pb = (1− α)/(2− α)

and as α tends to zero (when the first mover advantage vanishes and the game becomes

symmetric), we obtain the Nash bargaining solution.

We conclude this Section with the observation that also in Von Neumann and Morgen-

stern (1953) both cooperative and non-cooperative approaches are mixed. In Section 2,

we discussed the 3-player zero-sum game and the need to consider coalitions and side-

payments. In Section 22.2 of the Theory of Games and Economic Behavior, the general

such game is considered: if coalition {j, k} forms, then player i has to pay ai to this

coalition (i �= j �= k). What coalition will form and how will it split the surplus? To

answer this question, Von Neumann and Morgenstern consider a demand game. They

assume that each player i specifies a price pi for his participation in each coalition. Ob-

viously, if pi is too large, j and k will prefer to cooperate together rather than to form

a coalition with i. Given pi, j cannot expect more than ak − pi in {i, j} while k cannot

expect more than aj − pi in {i, k}, hence i will price himself out of the market if
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(ak − pi) + (aj − pi) < ai

Consequently, each player i cannot expect more than

pi = (−ai + aj + ak)/2

If the game is essential and it pays to form a coalition, i.e. a1 + a2 + a3 > 0, then the

above system of three questions with three unknown (i = 1, 2, 3) has a unique solution.

Each player i can reasonably demand pi: we can predict how the coalition that will form

will split the surplus, but all three possible coalitions are equally likely.

4 Markets

In this Section, we briefly discuss the application of game theory to oligopolistic markets.

In line with the literature, most of the discussion will be based on non-cooperative

models, but we will see that also here cooperative analysis plays its role.

In a non-cooperative oligopoly game, the players are firms, the strategy sets are, in

general, compact and connected subsets of an Euclidean space, and the payoffs are the

profits of the firms. As Nash’s existence theorem only applies to finite games, a first

question is whether equilibrium exists. Here we will confine ourselves to the specific

case where the strategy set of player i, denoted Xi, is a closed and connected interval

in R. Hence, in essence we assume that each firm sells just one product, of which it

either sets the price or the quantity. We speak of a Cournot game when the strategies

are quantities, of a Bertrand game when the strategies are prices. Write X for the

Cartesian product of all Xi. For player i ∈ N his best response correspondence is the

map Bi that assigns to each x ∈ X the set of all yi ∈ Xi that maximize this player’s

payoff against x. Note that in the two-player case, Bi (viewed as a function of x−i ) will

typically be decreasing in the case of a Cournot game and be increasing in the case of

Bertrand. In the former case, we speak of strategic substitutes, in the latter of strategic

complements. We write B for the vector of all Bi . When for each player i ∈ N the

profit function is continuous on X and is quasi—concave in xi ∈ Xi for fixed x−i ∈ X−i,

then the conditions of the Kakutani fixed point theorem are satisfied ( B is an upper-

hemi continuous map, for which all image sets are non-empty compact and convex),
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hence, the oligopoly game has a Nash equilibrium. When products are differentiated,

these conditions will typically be satisfied, but with homogeneous products, they may

be violated. For example, in the Bertrand case, without capacity constraints and with

no possibility to ration demand, the firm with the lowest price will typically attract all

demand, hence, demand functions and profit functions are discontinuous. Dasgupta and

Maskin (1986) contains useful existence theorems for cases like these. (Also see Furth

(1986).) Of course, the equilibrium is not necessarily unique.

The first formal analysis of an oligopolistic market was performed by Cournot, who

analyzed a duopoly in which two firms sell a homogeneous (consumption) good to the

consumers, see Cournot(1838). He writes

“Let us now imagine two proprietors and two springs of which the qualities

are identical, and which, on account of their similar positions, supply the

same market in competition. In this case the price is necessarily the same

for each proprietor. [. . .]; and each of them independently will seek to make

this income as large as possible.”

Cournot(1838), cited from Daughety(1988, p. 63)

In Cournot’s model, a strategy of a firm is the quantity supplied to the market. Cournot

argued that if firm i supplies qi firm j will have an incentive to supply the quantity qj

that is the best response to qi and he defined an equilibrium as a situation in which

each of the duopolists is at a best response. Hence, the solution that Cournot proposed,

the Cournot equilibrium, can be viewed as a Nash equilibrium. Nevertheless, Cournot’s

interpretation of the equilibrium seems to have been very different from the modern

”rationalistic” interpretation of equilibrium, it seems to be more in line with the ”mass

action interpretation” of Nash. The following citations are revealing of this:

“After one hundred and fifty years the Cournot model remains the bench-

mark of price formation under oligopoly. Nash equilibrium has emerged

as the central tool to analyze strategic interactions and this is a funda-

mental methodological contribution which goes back to Cournot’s analysis.”

Vives(1989, p.511)

“After the appearance of the Nash equilibrium, what we witness is the grad-

ual injection of a certain ambiguity into Cournot’s account in order to make
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it interpretable in terms of Nash. Following Nash, Cournot is reread and

reinterpreted. This may have several different motivations, of which we here

present concrete evidence of two. In one case, it is a way of anchoring, or

stabilizing, the new and still floating idea of the Nash equilibrium. By show-

ing that somebody in the past — and all the better if it is an eminent figure

— seems to have had ‘the same idea’ in mind, the Nash equilibrium is given

a history, it is legitimised, and the case for game theory is strengthened. In

the other case, the motivation is to detract from the originality of Nash’s

idea, maintaining that ‘it was always there’, i.e. Nash has said nothing new.”

Leonard(1994, p.505)

Bertrand(1883) criticized Cournot for taking quantities as strategic variables and he

suggested to take prices instead. It differs a lot for the outcome what the strategic

variables are. In a Cournot game, a player assumes that the opponent’s quantity remains

unchanged, hence, this corresponds to assuming that the opponent raises his price if I

raise mine. Clearly such a situation is less competitive than one of Bertrand competition

in which a firm assumes that the opponent maintains his price when it raises its own

price. Consequently, prices are frequently lower in the Bertrand situation. In fact,

when the firms produce identical products, marginal cost are constant and there are no

capacity constraints, already with two firms, Bertrand price competition results in the

competitive price, that is the price is equal to the marginal costs.

This result, that in a Bertrand game with homogeneous products and constant marginal

cost, the competitive price is already obtained with two firms is sometimes called the

Bertrand paradox and it seems to have bothered many economists in the past. Edge-

worth(1897) suggested that firms have capacity constraints and that such constraints

might resolve the paradox; after all, with capacity constraints, the reaction of the op-

ponent will be less aggressive, hence, the market less competitive. However, capacity

constraints raise another puzzle. Suppose one firm sets the competitive price, but is

not able to supply total demand at that price. After this firm has sold its full capacity,

a ‘residual’ market remains and the other firm makes most profits when it charges the

‘residual monopoly price’ in this market. As Edgeworth observed, given the high price of

the second firm, the first firm has an incentive to raise its price to just below this price.

Obviously, at these higher prices, there is then a game of each firm trying to undercut

the other, which is driving prices down again. As a consequence, a pure strategy equilib-

rium need not exist. We are led to Edgeworth cycles,.see also Levitan and Shubik(1972).
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However, we note here that there always exists an equilibrium in mixed strategies: firms

set prices randomly, according to some distribution function. It may be shown, see

Levitan and Shubik(1972), Kreps and Scheinkman(1983), Osborne and Pitchik(1986)

and Deneckere and Kovenock(1992), that for small capacities a Cournot type outcome

results, i.e. supplies are sold against a market clearing price, while for sufficiently large

capacities, the Bertrand outcome is the equilibrium, i.e. firms set the competitive price.

For the remaining intermediate capacity levels, there is no equilibrium in pure strategies.

Kreps and Scheinkman(1983) also analyze the situation where firms can choose their

capacity levels.They assume that firms play the following two period game:

- In the first period firms choose their capacity levels k1 and k2,

- Knowing these capacities, in the second period firms play the Bertrand Edgeworth

price game.

In this situation, high capacity levels are attractive as they allow to sell a lot, but

they are likewise unattractive as they imply a very competitive market; in contrast, low

levels imply high prices but low quantities. Kreps and Scheinkman(1983) show that

with efficient rationing in the second period, firms will choose the Cournot quantities

in the first period and the corresponding market clearing prices in the second. Hence,

the Cournot model can be viewed as a shortcut of the two-stage Bertrand-Edgeworth

model. However, it turns out that the solution of the game depends on the rationing

scheme, as Davidson and Deneckere(1986) have shown.

All the oligopoly games discussed thus far are games with imperfect information, as

players take their decisions simultaneously. Hence, when a player takes his decision, he

does not know about the decisions of the other players. Oligopoly games with perfect

information, in which players take their decisions sequentially with they being informed

about all the previous moves, are nowadays called Stackelberg games, after Stackel-

berg(1934). Moving sequentially is a way in which too intense competition might be

avoided, for example, if players succeed in avoiding simultaneous price setting, prices will

typically be higher. Von Stackelberg assumed that one of the players is the ‘first mover’,

the leader, and the other is the follower. In Stackelberg’s model, first ‘the leader’ decides

and next, knowing what the leader has done, ‘the follower’ makes his decision, hence, we

have a game with perfect information.We believe that Stackelberg meant ‘leader’ and

‘follower’ more as a behavior rule, rather than an exogenously imposed ordering of the

moves, hence, in our view, he assumed asymmetries between different player types. In

any case, this behavior does not lead to a Nash equilibrium of the simultaneous move
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game. The best a follower can do, is to play a best response against the action of the

leader

xF = BF (xL).

The leader knowing this, will therefore play

xL = arg max
x∈XL

πL(x;BF (x)).

In a Cournot setting, this typically applies that the leader will produce more, and the

follower will produce less than his Cournot quantity, hence, the follower is in a weaker

position, and it pays to lead: there is a first-mover advantage. (Bagwell (1995), however,

has argued that this first-mover advantage is eliminated if the leader’s quantity can only

be observed with some noise. Specifically, he considers the situation where, if the leader

choose xL the follower observes xL with probability 1 − ε, while the follower sees a

randomly drawn x̃ with the remaining positive probability ε, where x̃ has full support.

As now the signal that the follower receives is completely uniformative, the follower will

not condition on it, hence, it follows that in the unique pure equilibrium, the Cournot

quantities are played. Hence, there is no longer a first mover advantage. Van Damme

and Hurkens (1996) however show that there is always a mixed equilibrium, that there

are good arguments for viewing this equilibrium as the solution of the game, and that

this equilibrium converges to the Stackelberg equilibrium when the noise vanishes.

We note that, in this approach to the Stackelberg game with perfect information, leader

and follower are determined exogenously. Now it is easy to see that, in Cournot type

games, it is most advantageous to be the leader, while in Bertrand type games, the

follower position is most advantageous. Hence, the question arises which player will

take up which player role. There is a recent literature that addresses this question of

endogenous leadership. In this literature, there are two-stage models in which players

choose the role they want to play in a timing game. The trade-off is between moving

early and enjoy the advantage of commitment, or moving late and having the possibility

to best respond to the opponent. Obviously, when firms are ‘identical’ there will be

no way to determine an endogenous leader, hence, these models assume some type of

asymmetry: endogenous leaders may emerge from different capacities, different efficiency

levels, different information, or product differentiation. In cases like these, one could

argue that player i will become the leader when he profits more from it than player j

does, hence, that player i will lead if

πL

i
− πF

i
> πL

j
− πF

j
,
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or equivalently when

πL

i
+ πF

j
> πF

i
+ πL

j
,

in other words, that the leadership will be determined as if players had joint profits

in mind. Based on such considerations, many papers come to the conclusion that the

dominant or most efficient firm will become the leader, see Ono (1982), Deneckere and

Kovenock (1992), Furth and Kovenock (1993), and Van Cayseele and Furth (1996). To

get some intuition for this result, let consider a simple asymmetric version of the 2-firm

Bertrand game. Assume that the product is perfectly divisible, that the demand curve

is given by D(p) = 1 for p < 1 and D(p) = 0 for p > 1, and that firm 2 has a capacity

constraint of k. If firm 2 acts as a leader, firm 1 will undercut and firm 2’s profit is zero.

Firm 2’s profit is also zero if price setting is simultaneous and in this case firm 1’s profit

is zero as well. If firm 1 commits to be leader, he will be undercut by firm 2, but given

that firm 2 has a capacity constraint, firm 1 is not hurt that much by it. Firm 1 will

simply commits to the monopoly price and profits will be 1−k for firm 1 and k for firm

2. Hence, only in the case where firm 1 takes up the leadership position will profits be

positive for each firm, and we may expect firm 1 to take up the leadership position.

Hurkens and Van Damme (1996, 1999) argue that the above profit calculation is not

convincing and that the leadership position should result from individual risk consider-

ations. Be that as it may, the interesting result that they derive is that these risk con-

siderations do lead to exactly the above inequalities, hence, Van Damme and Hurkens

obtain that both in the price and in the quantity game, the efficient firm will lead. Note

then, that the efficient firm obtains the most preferred position in the case of Cournot

competition, but not in the case of Bertrand competition.

Above, we already briefly referred to the work of Edgeworth on Bertrand competition

with capacity constraints. Edgeworth was also the one who introduced the Core as the

concept that models unbridled competition. Shubik (1959) rediscovered this concept

in the context of cooperative games, and the close relation between the Core of the

cooperative exchange game and the competitive outcome was soon discovered. Hence,

also here we see the close relation between cooperative and non-cooperative theory.

In the remainder of this Section, we illustrate this relationship for the most simple 3-

person exchange game, a game that, incidentally, also was analyzed in Von Neumann

and Morgenstern(1953). The founding fathers indeed already mention the possibility

of applying their theory in the context of an oligopoly. Specifically, in the Sections
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62.1 and 62.4 of their book, they calculated their solutions, the Stable Set, of a three-

person non-constant sum game that arises in a situation with one buyer and two sellers.

Shapley(1958) generalized their analysis to a game with n(≥ 1) buyers and m(≥ 1)

sellers, see also Shapley and Shubik(1969). We will confine ourselves to the case with

m = 2 and n = 1. Furthermore, for simplicity, we will assume that the sellers are

identical, that they each have one single indivisible object for sale, that they do not value

this object, and that the buyer is willing to pay 1 for it. Denoting the consumer by player

3, the situation can be represented by the (cooperative) 3-person characteristic function

game given by v(S) = 1 if 3 ∈ S and | S |� 2; and v(S) = 0 otherwise. In this game,

the Core consists of a single allocation (0,0,1), corresponding to the consumer buying

from either producer for a price of 0, hence, the Core coincides with the competitive

outcome, illustrating the well-known Core equivalence theorem.

When, in the mid 1970s, one of us took his first courses in game theory with Stef Tijs,

he considered the solution prescribed by the Core in the above game to be very natural.

As a consequence, he was bothered very much by the fact that the Shapley value of this

game was not an element of the Core and that it predicted a positive expected utility

for each of the sellers. (As is well-known, the Shapley value of this game is (1,1,4)/6).

Why could the sellers expect a positive utility in this game? The answer is in fact quite

simple: the sellers can form a cartel! Obviously, once the sellers realize that their profits

will be competed away if they do not form a cartel, they will try to form one. Hence,

in this price competition game, coalitions arise quite naturally and, as a consequence,

the Core actually provides a misleading picture. . If the sellers succeed in forming a

stable coalition, they transform the situation into a bilateral monopoly in which case

the negotiated price will be 1

2
. By symmetry, each of the sellers will get 1

4
in this case.

But, anticipating this, the consumer will try to form a coalition with any of the sellers,

if only to prevent these sellers from entering into a cartel agreement. As Von Neumann

and Morgenstern (1953) already realized, and as we discussed in Section 2, the game is

really one in which players will rush to form a coalition and the price that the buyer

will pay will depend on the ease with which various coalitions can form. But then the

outcome will be determined by the coalition formation process, hence, following Nash’s

advise, non-cooperative modelling should focus on that process.

Let us here study one such process. Let us assume that the players bump into each

other at random and that, if negotiations between two players are not successful (which,

of course, will not happen in equilibrium), the match is dissolved and the process starts
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afresh. The remaining question is what price, p, the consumer will pay to the seller if

a buyer-seller coalition is formed. (By symmetry, this price does not depend on which

seller the buyer is matched with.) The outcome is determined by the players’ outside

options, i.e. by what players can expect if the negotiations break down. The next table

provides the utilities players can expect depending on the first coalition that is formed

Utility

First Coalition 1 2 3

{1, 3} p 0 1− p

{2, 3} 0 p 1− p

{1, 2} 1

4

1

4

1

2

For the coalition {1, 3}, the outside option of the seller is 1

3
(p + 1

4
), while the buyer’s

outside option is 2

3
(1−p)+ 1

6
. (This follows since all three 2-person coalitions are equally

likely to form in the next round.) The coalition loses 1

3
(p + 1

4
) if it does not come to

an agreement, hence, it will split this surplus evenly. It follows that the price p must

satisfy

p =
1

3
(p+

1

4
) +

1

6
(p+

1

4
),

Hence, p = 1

4
. Since all coalitions are equally likely, the expected payoff of a seller equals

1

6
, while the buyer’s expected payoff equals 2

3
. The conclusion is that expected payoffs

are equal to the Shapley value of the game. Furthermore, the outcome, naturally, lies

outside of the Core. We refer that reader who thinks that we have skipped over too

many details in the above derivation to Montero (2000), where all such details are filled

in.

Of course, the exact price will depend on the details of the matching process and different

processes may give rise to different prices, hence, different cooperative solution concepts.

Viewed in this way, also Von Neumann and Morgenstern’s solution of this game appears

quite natural. As they write (Von Neumann and Morgenstern (1953, pp. 572, 573), the

solution consists of two branches, either the sellers compete (and then the buyer gets

the surplus), a situation they call the classical solution, or the sellers form a coalition,

and in this case, they will have to agree on a definite rule for how to split the surplus

obtained; as different rules may be envisaged, multiple outcome may be a possibility.
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5 AUCTIONS

In this Section, we illustrate the usefulness of game theory in the understanding of real

life auctions. The Section consists of three parts. First, we briefly discuss some auction

theory. Next,we discuss an actual auction and provide a non-coopertive analysis to

throw light on a policy issue. In the third part, we demonstrate that also in this non-

cooperative domain, insights from cooperative game theory are very relevant.

Four basic auction forms that are typically distinguished. The first type is the Dutch

auction. If there is one object for sale, the auction proceeds by the seller starting the

auction clock and continuously lowering the price until one of the bidders pushes the

button, or shouts ”mine”; that bidder then receives the item for the price at which he

stopped the clock. The other three basic auction forms are the English (ascending)

auction in which the auctioneer continuously increases the price until one bidder is left;

this bidder then receives the item at the price where his final competitor dropped out.

Both the Dutch and the English auction involve a dynamic element. The two basic static

auction forms are the sealed bid first price auction and the Vickrey auction. In the first

price auction, bidders simultaneously and independently enter their bids, typically in

sealed envelopes, and the object is awarded to the highest bidder who is required to

pay his bid. In the Vickrey auction, players enter their bids in the same way, and the

winner is again the one with the highest bid, however, the winner ”only” pays the second

highest bid

As auctions are conducted by following explicit rules they can be represented as (non-

cooperative) games. Milgrom and Weber (1982) have formulated a fairly general auction

model. In this model, there are n bidders, that occupy symmetric positions. The game

is one with incomplete information, each bidder i has a certain type θi that is known

only to this bidder himself. In addition, there may be residual uncertainty, represented

by θ0, where 0 denotes the chance player. If θ = (θ0, θ1, . . . , θn) is the vector of types

(including that of nature), then θ is called the state of the world, and θ is assumed

to be drawn from a commonly known distribution F on a set Θ that is symmetric

with respect to the last n arguments (Symmetry thus means that F is invariant with

respect to permutations of the bidders.) In addition to his type, each player i has a

value function, vi(θ), where again the assumption of symmetry is maintained, i.e. if θi

and θj are interchanged, then vi and vj are interchanged as well. Under the additional

assumption of affiliation (which roughly states that a higher value of θi makes a higher
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value of θj more likely), Milgrom and Weber derive a symmetric equilibrium for this

model. For the Vickrey auction, the optimal bid is characterized by

bi(θi) = E(vi|vi = v1 = v2)

where vk denotes the k-th largest component of the vector v(θ) = (v1(θ), . . . , vn(θ)). In

words, in the Vickrey auction, the player bids the expected value of the object to him,

conditional on his value being the highest, and this value also being equal to the second

highest value. For the Dutch (first price) auction, the optimal bid is lower, and the

formula will not be given here. (See Wilson, 1992). We also note that, in addition to

giving insights into actual auctions, game theory has also contributed to characterizing

optimal auctions, where optimality either is defined with respect to seller revenue or

with respect to some efficiency criterion (Myerson, 1981; Wilson, 1992).

In many cases, the seller will have more than one item for sale. In case the objects are

identical (such as in the case of shares, or treasury bills), the generalizations of the model

and the theory are relatively straightforward: only one price is relevant; players can

indicate how much they demand at each possible price and the seller can adjust price

(either upward, or downward, or in a static sealed bid format) to equate supply and

demand. The issue is more complicated in case the objects are heterogenous. With m

objects, the relevant price region would be Rm

+
and, of course, one could imagine bidders

expressing their demand (di : R
m

+
→ 2{1,...,m}) for all possible price vectors, but this may

get very complicated. Alternatively, each bidder expresses bids for collections of items,

hence, if S ⊂ {1, . . . , m}, then Bi(S) is the maximum that i is willing to pay if he is

awarded set S, where the auction rule would be completed by a winner determination

rule. At present, there is active research on such combinatorial auctions. In connection

with spectrum auctions in the US, game theorists designed the simultaneous multi round

ascending auction, a generalization of the English auction. In this format, the objects are

sold simultaneously in a sequence of rounds with at least one price increasing from one

round to the next. In its most elementary form, each bidder can bid on all items and the

auction continues to raise prices as long as at least one new bid is made; when the auction

ends, the current highest bidders are awarded the objects at these respective prices. To

speed up the auction, activity rules may be introduced that force the bidders to bid

seriously already early on. We refer to Milgrom (2000) for more detailed description

and analysis.
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Having briefly gone over the theory, our aim in the remainder of this Section is to

show how game theory can contribute to better insight and to more rational discussion

in several policy areas. Our examples are drawn from the Dutch policy context, and

our frst example relates to electricity. Electricity prices in the Netherlands are high,

at least they are higher than in the neighboring Germany. As a result of the price

difference, market parties are interested in exporting electricity from Germany into the

Netherlands. Such imports into the Netherlands are limited by the limited capacity of

the interconnectors at the border, which in turn implies that the price difference can

persist. In 2000, it was decided to allocate this scarce capacity by means of an auction;

on the website www.tso-auction.org, the interested reader can find the details about the

auction rules and the auction outcomes. We discuss here a simplified (Cournot) model

that focuses on some of the aspects involved.

As always in auction design, decisions have to be made about what is to be auctioned,

whether the parties are to be treated symmetrically, and what the payment mechanism

is going to be. Of course, these decisions have to be made to contribute optimally to

the ultimate goal. In this specific case, the goal may be taken as to have an as low price

for electricity in the Netherlands as possible. The simple point now is that adopting

this goal implies that players cannot be treated symmetrically. The reason is that they

are not in symmetric positions: some of them have electricity generating capacity in the

Netherlands, while others do not, and members of the first group may have an incentive

to block the interconnector in order to guarantee a higher price for the electricity that

is produced domestically. To illustrate this possibility, we consider a simple example.

Suppose there is one domestic producer of electricity, who can produce at constant

marginal cost c. Furthermore, assume that demand is linear, D(p) = 1 − p. If the

domestic producer is shielded from competition, and is not regulated, he will produce

the monopoly quantity qm, found by solving:

max
qm

qm(1− qm)− cqm,

Hence the quantity qm, the price pm and the profit πm will be given by:

qm = (1− c)/2

pm = (1 + c)/2

πm = (1− c)2/4
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Assume that the interconnector has capacity k > 0, and that in the neighboring country

electricity is also produced at marginal cost c. In contrast to the home country, the

foreign country is assumed to have a competitive market, so that the price in the foreign

country pf = c. As a result pf < pm and there is interest in transporting electricity

from the foreign to the home country. If all interconnector capacity would be available

for competitors of the monopolist, the monopolist would instead solve the following

problem:

max
qm

qm(1− q − k)− cq,

hence, if he produces q, the total production is q + k, and the price 1 − q − k. The

quantity qc that the monopolist produces in this competitive situation is:

qc = (1− k − c)/2,

while the resulting price pc and the profit for the monopolist πc are given by:

pc = (1 + c− k)/2

πc = (1− c− k)2/4

The above calculations allow us to compute how much the capacity is worth for the

competing (foreign) generators. If they acquire the capacity, they can produce electricity

at price c and sell it at price pc, thus making a margin pc− c = (1− c−k)/2 on k units,

resulting in a profit of

πf = k(1− c− k)/2

At the same time, the loss in profit for the monopolist is given by

	π = πm − πc = k(1− c− k/2)/2

We see that

πf < 	π,
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so that the capacity is worth more to the monopolist. The intuition for this result

is simple, and is already given in Gilbert and Newbery (1982): competition results in

a lower price; this price is relevant for all units that one produces, hence, the more

units that a player produces, the more he is hurt. It follows that, if the interconnector

capacity would be sold in an ordinary auction, with all players being treated equally,

then all the capacity would be bought by the home producer, who would then not use it.

Consequently, a simple standard auction would not contribute to the goal of realizing a

lower price in the home electricity market.

The above argument was taken somewhat into account by the designers of the intercon-

nector auction, however it was not taken to its logical limit. In the actual auction rules,

no distinction is being made between those players that do have generating capacity

at home and those that don’t: a uniform cap of 400 Mw of capacity is imposed on all

players, (hence, the rule is that no player can have more than 400 Mw of interconnector

capacity at its disposal, which corresponds with some 25 percent of all available capac-

ity). This rule has obvious drawbacks. Most importantly, the price difference results

because of the limited interconnector capacity that is available, hence, one would want to

increase that capacity. As long as the price difference is positive, and sufficiently large,

market parties will have an incentive to build extra interconnector capacity: the price

margin will be larger than the investment cost. However, in such a situation, imposing

a cap on the amount of capacity that one may hold, may actually deter the incentive to

invest. Consequently, it would be better to have the cap only on players that do have

generating capacity in the home country, and that profit from interconnector capacity

being limited.

To prevent players with home generating capacity from buying, but not using intercon-

nector capacity, the auction rules include ”use it or lose it” clause. Clearly, such clauses

are effective in ensuring that the capacity is used, however, they need not be effective

in guaranteeing a lower price in the home electricity market. This can be easily seen in

the explicit example that was calculated above. Suppose that a ”use it or lose it” clause

would be imposed on the monopolist, how would it change the value of the intercon-

nector capacity for this monopolist? Note that the value is not changed for the foreign

competitors, this is still πf , as they will use the capacity in any way. The important

insight now is that the clause also does not change the value for the monopolist: if the

monopolist is forced to use k units at the interconnector, he will simply adjust by using

k units less of his domestic production capacity. By behaving in this way, he will still
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produce qm in total and obtain monopoly profits of πm. Hence a ”use it or lose it” clause

has no effect, neither on the value of the interconnector for the incumbent, nor on the

value for the entrants. Therefore, the value is larger for the incumbent, the incumbent

will acquire the capacity and the price will remain unchanged, hence, the benefits of

competition will not be realized.

This simple example has shown that the design that has been adopted can be improved:

it would be better to impose capacity caps asymmetrically, and it should not be expected

that ”use it or lose it” clauses are very effective in lowering the price. Of course, the

actual situation is much richer in detail than our model. However, the actual situation

is also very complicated and one has to pick cherries to come to better grips with the

overall situation. We hope it is clear that a simple model like the one that we have

discussed in this section provides an appropriate starting point for coming to grips with

a rather complicated situation.

Our second example relates to the high stakes telecommunications auctions that took

place in Europe at the beginning of te third Millenium. During 2000, various European

countries auctioned licenses for third generation mobile telephony (UMTS) services. Al-

ready a couple of years earlier, some of these countries had auctioned licenses for second

generation (DCS-1800) services. In this subsection, we briefly review some aspects of

the Dutch auctions. For further detail, see Van Damme (1999, 2001, 2002).

Van Damme (1999) describes the Dutch DCS-1800 auction and argues that, as a conse-

quence of time pressure imposed on Dutch officials by the European Commission, that

auction was badly designed. The main drawback was that the available spectrum was

divided into very unequal lots: 2 large ones of 15 MHz each and 16 small ones of on

average 2.5 MHz, which were sold simultaneously by using a variant of the multiround

ascending auction that had been pioneered in the US. The rules stipulated that newcom-

ers could bid on all lots, but that incumbents (at the time, KPN and Libertel) could bid

only on the small lots. In this situation, new entrants had the choice between bidding

on large lots, or trying to assemble a sufficient number of small lots so that enough

spectrum would be obtained in total to create a viable national network. The latter

strategy was risky. First of all, by bidding on the small lots one was competing with

the incumbents. Secondly, one faced the risk of not obtaining enough spectrum. This is

what is called in the literature ”the exposure problem”: if say 6 small lots were needed

for a viable network, one had the risk of finding out that one could not obtain all six

because of the intensity of competition, one might be left with three lots which would
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be essentially worthless. (At the time of auction, it was not clear whether such blocks

could be resold, the auction rules stating that this was up to the Minister to decide.)

The structure of supply that was chosen had an interesting consequence. Most newcom-

ers found it too risky to bid on the small lots, hence, bidding concentrated on the large

lots and the price was driven up there. In the end, the winners of the large lots, Dutch-

tone and Telfort paid Dfl. 600 mln and Dfl. 545 mln, respectively for their licenses.

Compared to the prices paid on the small lots, these prices are very high: Van Damme

(1999) calculates that, on the basis of prices paid for the small lots, these large lots were

worth only Dfl. 246 mln, hence, less than half of what was paid. There was only one

newcomer, Ben, who dared to take the risk of trying to assemble a national license from

small lots and it was successful in doing so; it was rewarded by having to pay only a

relatively small price for its license. It seems clear that if the available spectrum had

been packaged in a different way, say 3 large lots of 15 MHz each and 10 small lots of an

average 2.5 MHz each, the price difference would have been smaller, and the situation

less attractive for the incumbents. Perhaps one might even argue that the design that

was adopted in the Dutch DCS-1800 auction was very favorable for the incumbents.

In any case, the 1998 DCS-1800 auction led to a five player market, at least one player

more than in most other European markets. This provides relevant background for the

third generation (UMTS) auction that took place in the summer of 2000, and which was

really favorable for the incumbents. At that time, the two ”old” incumbents (KPN and

Libertel) still had large market shares, with the market shares of the newer incumbents

(Ben, Dutchtone and Libertel) being between 5 and 10 percent each. In this situation,

it was decided to auction five 3G-licenses, two large ones (of 15 MHz each) and three

smaller ones (of 10 MHz each). It is also relevant to know that the value of a license

is larger for an incumbent than for a newcomer to the market, and this because of two

reasons. First, an incumbent can use its existing network, hence, it will have lower cost

in constructing the necessary infrastructure. Secondly, if an incumbent does not win a

3G-license, it will also risk to lose its 2G-customers. Finally, it is relevant to know that

it was decided to use a simultaneous ascending auction.

The background provided in the previous paragraph makes clear why the Dutch 3G-

auction was unfavorable to newcomers. First, the supply of licenses (2 large, 3 small)

exactly matches the existing market structure (5 incumbents, of which 2 large ones).

Secondly, an ascending auction was used, a format that allows incumbents to react to

bids and thus to outbid new entrants. Thirdly, the value of a license being larger for an
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incumbent than for an entrant implies that an incumbent will also have an incentive to

outbid a newcomer. In a situation like this, an entrant cannot expect to win a license,

so why should it bother to participate in this auction? On the basis of these arguments,

one should expect only the incumbents to participate and, hence, the revenues to remain

small, see Maasland (2000).

The above arguments seem to have been well understood by the players in the market.

Even though many potential entrants had expressed an interest to participate in the

Dutch 3G-auction at first, all but one subsequently decided not to participate. In the

end, only one newcomer, Versatel, participated in the auction. This participant had

equally well understood that it could not win; in fact, it had started court cases (both

at the European and the Dutch level) to argue that the auction rules were ”unfair” and

that it was impossible for a newcomer to win. If Versatel knew that it could not win a

license in this auction, why did it then participate? A press release that Versatel posted

on its website the day before the auction givens the answer to this question.

”We would however not like that we end up with nothing whilst other players

get their licenses for free. Versatel invites the incumbent mobile operators

to immediately start negotiations for access to their existing 2G networks as

well as entry to the 3G market either as a part owner of a license or as a

mobile virtual network operator.”

The press release that Versatel realizes, and want the competitors to realize, that it

has power over the incumbents. By participating in the auction, Versatel drives up the

price that the winners (the incumbents) will have to pay. (Viewed in this light, the

court cases that Versatel had started signals to the incumbents that Versatel know that

it cannot win, hence, that it must participate in the auction with another objective in

mind.) On the other hand, by dropping out, Versatel does the incumbents a favour,

since the auction will end as soon as Versatel does drop out. The press release signals

that Versatel is willing to drop out, provided that the incumbents are willing to let

Versatel share in the benefits that they obtain in this way. All in all then, Versatel

appears to be following a smarter strategy than the newcomers that did not participate

in the auction.
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For the reader who has studied Von Neumann and Morgenstern (1953), the above may

all appear very familiar. Recall the basic three-player non-zero sum game from that

book, with one seller, two buyers, one indivisible object, and one buyer attacking a

higher value to this object than the other. Why would the weaker participate in the

game, if he knows right from the start that he will not get the object anyway. The answer

that the founding fathers give is that he has power over both other players, by being in

the game, he forces the other seller to pay a higher price and he benefits the seller; by

stepping out he benefits the buyer, and by forming a coalition with one of these other

players, he can exploit his power. This argument is also contained, and popularized,

in Brandenburger and Nalebuff (1996), a book that also clearly demonstrates the value

of combining cooperative and competitive analysis. If one knows that Nalebuff was

an advisor to Versatel, then it is no longer that surprising that Versatel has used this

strategy.

One would like to combinue this story with a happy end for game theory, but unfortu-

nately that is not possible in this situation. Even though Versatel’s strategy was clever,

it was not successful. Versatel stayed in the auction, but it did not succeed in reach-

ing a sharing agreement with one of the incumbents, even though negotiations seem to

have been conducted with one of them, the BT-subsidiary Telfort. Perhaps, the other

parties had not fully realized the cleverness of Versatel and, as Edgar Allen Poe already

remarked, it pays to be one level smarter than your opponents, but not more. When

it became clear that negotiations would not be successful, Versatel dropped out. In the

end only the Dutch government was the beneficiary of Versatel’s strategy.

6 Conclusion

In this paper, we have attempted to show that the cooperative and non-cooperative

approaches to games are complementary, not only for bargaining games, as Nash had

already argued and demonstrated, but also for market games. Specifically, we have

demonstrated this for oligopoly games and for auctions. We have shown that these

approaches are not only complementary, but also that each approach may give essential

insights into the situation and that, by combining insights from both vantage points, a

deeper understanding of the situation may be achieved.

The strength of the non-cooperative approach is that allows detailed modelling of actual

institutions. Hence, many different institutional arrangements may be modelled and
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analysed, thus allowing an informed, rational debate about institutional reform. Indeed,

the non-cooperative models show that outcomes can depend strongly on the rules of the

game. The strength of this approach is at the same time its weakness: why would players

play by the rules of the game? Von Neumann and Morgenstern argued that, whenever

it is advantageous to do so, players will always seek for possibilities to evade constraints,

in particular, they will be motivated to form coalitions and make side-payments outside

the formal. This insight is relevant for actual markets and even though competition lows

attempt to avoid cartels and bribes, one should expect these to be not fully successful.

The cooperative approach aims to predict the outcome of the game on the basis of

much less detailed information, it only takes account of the coalitions that can form

and the payoffs that can be achieved. One lesson that the theory has taught us is that

frequently this information is not enough to pin down the outcome. The multiplicity

of cooperative solution concepts testifies to this. Hence, in many situations we may

need a non-cooperative model to make progress. Such a non-cooperative model may

also alert to the fact that the efficiency assumption that frequently is routinely made in

cooperative models may not be appropriate. On the other hand, when the cooperative

approach is really successful, such as in the 2-person bargaining context, it is really

powerful and beautiful.

We expect that that the tension between the two models will continu to be a powerful

engine of innovation in the future.
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