Automatic Compound Processing: Compound Splitting and Semantic Analysis for Afrikaans and Dutch

Ben Verhoeven
CLiPS - Computational Linguistics
University of Antwerp
Antwerp, Belgium
ben.verhoeven@uantwerp.be

Menno van Zaanen
TiCC, School of Humanities
Tilburg University
Tilburg, the Netherlands
mvzaanen@uvt.nl

Walter Daelemans
CLiPS - Computational Linguistics
University of Antwerp
Antwerp, Belgium
walter.daelemans@uantwerp.be

Gerhard van Huyssteen
Centre for Text Technology (CTeXT)
North-West University
Potchefstroom, South Africa
gerhard.vanhuyssteen@nwu.ac.za

Abstract

Compounding, the process of combining several simplex words into a complex whole, is a productive process in a wide range of languages. In particular, concatenative compounding, in which the components are “glued” together, leads to problems, for instance, in computational tools that rely on a predefined lexicon. Here we present the AuCoPro project, which focuses on compounding in the closely related languages Afrikaans and Dutch. The project consists of subprojects focussing on compound splitting (identifying the boundaries of the components) and compound semantics (identifying semantic relations between the components). We describe the developed datasets as well as results showing the effectiveness of the developed datasets.

1 Introduction

In many human language technology applications (e.g. machine translators and spelling checkers), many concatenatively written compounds are processed incorrectly. One of the reasons for this is that these applications rely on a predefined lexicon and the productive nature of the process of compound formation automatically results in incomplete lexica. For example, consider the novel Afrikaans (Afr.) compound ministerskatkis ‘treasury of a minister’ that should be segmented as minister+skatkis minister+treasury. Should it be incorrectly segmented as minister+s+kat+kis minister_LINK+cat+coffin1 (where LINK refers to a linking morpheme), one would get the (possible but improbable) interpretation ‘coffin of a minister’s cat’. From a technological perspective, deficiencies related to automatic compound splitting (a.k.a. compound segmentation) are particularly problematic, since many other technologies (such as morphological analysers, or semantic parsers) might rely on highly accurate compound splitting.

For more advanced HLT applications like information extraction, question answering and machine translation systems, proper semantic analysis of compounds might also be required. With semantic analysis of compounds we refer to the task of determining that the Dutch (Du.) compound keuken+tafel kitchen+table construes ‘table in kitchen’, while Du. baby+tafel baby+table means ‘table for a baby’ (and not, fatally so, *‘table in a baby’). Internationally, research on automatic compound analysis has focused almost exclusively on English; very little work in this regard has been done for other languages (see section 4.1).

Concatenative compounding is a highly productive process in many languages of the world, such as West-Germanic languages (Afrikaans, Dutch, Frisian, German, and to a far lesser extent English), Nordic

1Note that compound boundaries are marked using a “+” sign and the start of a linking morpheme is indicated by an “.” sign.
languages (Danish, Icelandic, Norwegian, and Swedish) and Modern Greek; our focus in this research is only on Afrikaans and Dutch. Next to derivation, the process of right-headed, recursive compounding is the most productive word-formation process in these two languages. While almost all parts-of-speech categories can be found as components of compounds, noun+noun compounds are by far the most frequent type, while noun+verb compounding is generally considered to be non-productive in Germanic languages (Don, 2009, p. 378). Components of a compound sometimes need to be “glued” together using linking morphemes. The occurrence of linking morphemes in Afrikaans and Dutch compounds is well-known (Neijt et al., 2010), like Afr. besigheid+s+besluit business_LINK+decision ‘business decision’.

Besides regular compounding, one also finds, amongst others, phrasal compounds (e.g. Afr. help-my-fris-lyk-hemp help-me-strong-look-shirt ‘gym vest’), (neo)classical compounds (e.g. Afr. neuro+wetenskap neuro+science ‘neuroscience’, or Du. bio+brandstof bio+fuel ‘biofuel’), separable verbal compounds (e.g. Du. op+bellen up+call ‘to phone’), reduplicative compounds (e.g. Afr. speel+-+speel play_LINK+play ‘easily’), and compounding compounds (e.g. Du. onder+water+camera under+water+camera ‘under-water camera’). Except for the latter, none of these marginal types of compounds were considered as data for any of the systems developed in this research project.

In section 2 we provide an overview of the automatic compound processing (AuCoPro) project, which forms the background of this research. Sections 3 and 4 provide details of each of the subprojects relating to compound splitting and semantic analysis, with details about related research, the development of datasets, and our experiments. We conclude with a discussion of results and future work in section 5.

2 Overview: The AuCoPro Project

Running from 2012 to 2013, the AuCoPro project was funded by the Dutch Language Union and the Department of Arts and Culture of the South African Government in a programme to support collaborative research in human language technology (HLT) between Belgium, The Netherlands and South Africa. Additional funding was provided by the South African National Research Foundation, and the European Network on Word Structure (NetWordS). The partners involved in the project were the University of Antwerp (Belgium), Tilburg University (The Netherlands), and North-West University (South Africa).

The primary aim of the project was to develop resources (including annotation protocols, and training and testing data) for the development of robust compound splitters (subproject 1), and first-generation compound analysers (subproject 2) for Afrikaans and Dutch, through a combination of cross-language transfer (i.e. technology recycling), data pooling, and various machine learning approaches. In a subpart of subproject 2 we also aimed to gain insight in compound semantics by unifying perspectives from computational semantics (i.e. Ó Séaghdha (2008)), typological studies (i.e. Scalise & Bisetto (2009)), and construction-based approaches to word-formation (i.e. specifically cognitive grammar (Langacker, 2008) and construction morphology (Booij, 2010)); the results of which can be found in Van Huyssteen (2014) and Van Huyssteen & Verhoeven (Submitted).

Deliverables included eight peer-reviewed publications, a technical report on annotation guidelines for compound processing, and six datasets. All deliverables are available in the open-source domain at https://sourceforge.net/projects/aucopro, while more information about the project is available at http://tinyurl.com/aucopro.

3 Compound Splitting

The aim of subproject 1 was to develop datasets that can be used, for instance, to build robust compound splitters for Afrikaans and Dutch, or for a cross-lingual analysis of the use of compounds in the closely related languages Afrikaans and Dutch. Based on existing datasets containing words that are morphologically analysed, we extracted (potential) compounds, removed unwanted morphological information, and reanalysed and corrected them.

In the AuCoPro datasets, compounds are analysed in a shallow manner: no deep hierarchical ordering of components is performed. Compounds consisting of more than two elements are annotated by indicating the location of the boundaries, so for instance, Du. bloem+boll_en+veld flower+bulb_LINK+field
‘bulb field’ consists of four components, viz. bloem, boll-, -en-, and veld, without any indication of their syntagmatic relations. The parts bloem, boll- and veld are all simplex words, which we will call constituents. Constituents are the meaningful parts of a compound. These constituents are prototypically independent words, but in some cases affixoids (i.e. forms that are somewhere between a word and an affix in its development) can also occur in compounds (e.g. boer in Du. krant_en+boer newspaper_LINK+farmer ‘newspaper seller’). In some cases a word may undergo morphophonological changes in the context of a compound. For instance, in the bloembollenveld example, boll- is an allo- morph of bol ‘bulb’.

As mentioned above, some compounds require linking morphemes (indicated by LINK in the examples above) to “glue” components together. Besides ordinary linking morphemes like -e-, -en-, and -s- (in both languages), we also defined hyphens as linking morphemes. In the orthographies of Afrikaans and Dutch in general a hyphen is used in cases of vowel collision, i.e. between compound constituents when the left-hand constituent ends on a vowel, and the right-hand constituent begins with the same vowel, for example Afr. see_e+eend sea_LINK+duck ‘seaduck’.

We also mentioned above that marginal compound types such as phrasal compounds, reduplicative compounds, separable verbal compounds, etc. were not considered as part of the datasets. However, for this subproject we accepted and annotated compounding compounds, since they can generally be split quite easily (e.g. Afr. drie+vlak+regering three+level+government ‘three-level government’). We also excluded synthetic compounds from the datasets, since the right-hand element of a synthetic compound is by definition always a non-word (e.g. in Du. blauw+ogig blue+eye-ADJR ‘blue-eyed’, *ogig is not a valid independent word in Dutch.

To demonstrate the effectiveness of the developed datasets, we have built initial compound splitters for both Dutch and Afrikaans based on the data only. A compound splitter takes a word as input, and provide as output the input string divided in valid compound components. Note that these results are only to illustrate that these datasets can be used successfully as training data for such systems. The results are not necessarily state-of-the-art, as we do not optimize the systems.

3.1 Related Research

In general, the problem of splitting compounds is found in a wide range of languages. Some of these languages show non-concatenative compound formation, such as English. Compounds in these languages fall under the umbrella term multi word expressions (MWEs), which also includes idioms and collocations. Ramisch et al. (2013) show that this is a quite active research field.

Focussing on concatenative compounding, previous work on Afrikaans has been performed in the context of the development of spelling checkers (Van Zaanen and Van Huyssteen, 2002; Van Huyssteen and Van Zaanen, 2004). Van Huyssteen & Van Zaanen (2004) describe a compound splitter for Afrikaans. To our knowledge, no stand-alone compound splitter for Dutch is available. Research done in this field is over ten years old (e.g. Pohlmann & Kraaij (1996)), uses expensive resources (e.g. Ordelman et al. (2003)), does complete morphological analysis (e.g. De Pauw et al. (2004)), and/or has not been released for re-use in the open-source domain.

3.2 Dataset Development

The datasets developed during this subproject are based on compounds taken from existing (morphologically annotated) datasets. For Dutch, a few morphologically annotated datasets exist, although none focus on compounds specifically. For Afrikaans, the situation is more difficult. No dataset containing compound boundary and linking morpheme boundary information is freely available.

The development of the AuCoPro dataset for Dutch is based on the e-Lex dataset. The e-Lex dataset contains words annotated with more morphological information than required for our dataset, but it also contains morphologically annotated non-compound words. After removing non-compound words (and removing duplicates), 71,274 potential Dutch compounds remained.

2This dataset was extended with a compound dataset collected by Lieve Macken (LT3, UGent).
For Afrikaans, the dataset is based on the PUK-Protea corpus as well as the CTexT Afrikaans spelling checking lexicon (CTexT, 2005; Pilon et al., 2008). Both corpora do not describe any compound information. To identify potential compounds, a longest string matching algorithm (Van Huyssteen and Van Zaanen, 2004) is applied. This algorithm identifies compounds by searching for known (simplex) words from the left and right ends of the potential compound, taking the possibility of the occurrence of linking morphemes into account. This algorithm seems to identify most compounds as well as some non-compounds, which resulted in a list of 77,651 potential Afrikaans compounds.

After this automatic collection and cleanup (for Dutch) and automatic identification and annotation (for Afrikaans), annotators checked each compound for correct linking morpheme and compound boundaries. For Afrikaans, seven annotators together checked 25,266 compounds. For Dutch, two annotators checked 26,000 potential compounds. In the end, this resulted in 18,497 and 21,997 true compounds for Afrikaans and Dutch respectively.

To be able to calculate inter-annotator agreement, subsets of approximately 1,000 words were annotated by pairs of annotators. For Dutch in total 6,000 words were used to calculate inter-annotator agreement and for Afrikaans 12,818 words. This leads to an average Cohen’s Kappa of 98.6 and 97.6 for Afrikaans and Dutch respectively.

The annotators had access to an annotation manual (Verhoeven et al., 2014), which was developed specifically for this project. The manual is based on the annotation guidelines that were developed during the CKarma project (CTexT, 2005; Pilon et al., 2008). These initial guidelines only apply to Afrikaans, and was hence extended to handle Dutch compounds as well as more complicated cases not foreseen in the original CKarma guidelines. During the annotation process, regular discussions between the annotators took place, which resulted in changes in the data and (minor) modifications to the annotation guidelines.

3.3 Experiments

One of the reasons for creating the compound splitting datasets is to show their usefulness in the development of automatic compound splitting systems. These systems search for compound boundaries, effectively identifying the simplex words in compounds. This information is essential, for instance, when developing spelling correction systems or machine translation systems for languages that have productive compound formation processes.

As a classifier, we used the algorithm developed by Liang (1983). This system is used as the hyphenation method in the \LaTeX typesetting system. Even though the task of compound boundary detection is different from hyphenation (or syllabification), the tasks are similar enough to use the same method. Since the system is trainable, instead of hyphenation breaks, compound boundaries are provided.

Since no separate annotated gold standard test set is available, we performed leave-one-out evaluation using the full dataset. This approach is preferred over, for instance, 10-fold cross validation, as that effectively removes 10% of the training data. Additionally, it does not depend on a “lucky” selection of test data from the training data, as all compounds are tested.

Evaluating the datasets using this system (which does not have any additional tuning parameters) results in classification accuracies of 88.28% and 91.48% on the word level for Afrikaans and Dutch respectively. We assume that further improvements are possible with alternative systems and parameter optimization.

4 Compound Semantics

The automatic processing of the semantics of compounds (or other complex nominals) is a topic in computational linguistics that, although it has been studied regularly in the past, cannot be considered a solved problem. Although previous research was often promising, it also had an almost exclusive focus on English noun-noun (NN) compounds. In recent years, more languages have been studied (e.g. German (Hinrichs et al., 2013) and Italian (Celli and Nissim, 2009)), and this project added Dutch and Afrikaans to the list.

It is worth noting that a number of different operationalizations of compound interpretation have been
studied. The most notable are semantic classification of the constituent relation according to a limited set of semantic categories (e.g. Ó Séaghdha (2008)), and the generation of possible paraphrases for the compound that express its meaning more explicitly (Hendrickx et al., 2013). Our study adopts the classification model, in which the set of semantic relations to be predicted (the classification scheme) is crucial.

4.1 Related Research

Several attempts have been made in the past to postulate appropriate classification schemes for noun-noun compound semantics. These schemes are mainly inventory-based in that they present a limited list of predefined possible classes of semantic relations a compound can manifest.

In some cases, proposed classes are abstractly represented by a paraphrasing preposition (Girju et al., 2005; Lapata and Keller, 2004). For example, all compounds that can be paraphrased by putting the preposition “of” between the constituents belong to the class OF, e.g. a car door is the ‘door of a car’. Another possibility is using predicate-based classes where the relations between the constituents are not merely described by a preposition, but by definitions or paraphrasing predicates for each class. The class AGENT would contain compounds that could be paraphrased as ‘X is performed by Y’ (Kim and Baldwin, 2005), e.g. enemy activity can be paraphrased as ‘activity is performed by the enemy’. Different schemes vary from 9 to 43 classes with Cohen’s Kappa scores for inter-annotator agreement ranging from 52% to 62% (Barker and Szpakowicz, 1998; Girju et al., 2005; Moldovan et al., 2004; Nakov, 2008; Ó Séaghdha, 2008).

With regard to the information used by the classifier to assign the classes to the compounds (the features of a compound to be analysed), two main approaches are available, viz. taxonomy-based methods, or corpus-based methods.

Taxonomy-based methods (also called semantic network similarity (Ó Séaghdha, 2009)) base their features on a word’s location in a taxonomy or hierarchy of terms. Most of the taxonomy-based techniques use WordNet (Miller, 1995) for these purposes; especially the hyponym information in the hierarchy is used. A bag of words is created of all hyponyms and the instance vector contains binary values for each feature (the feature being whether the considered word from the bag of words is a hyponym of the constituent or not). Kim & Baldwin (2005) reached an accuracy of 53.3% using only WordNet. Other research was based on Wikipedia as a semantic network (Strube and Ponzetto, 2006).

Corpus-based methods use co-occurrence information of the constituents of the selected compounds in a corpus. The underlying idea (the distributional hypothesis) is that the set of contexts in which a word occurs, is an implicit representation of the semantics of this word (Harris, 1968). The lexical similarity measure assumes that compounds have a similar semantic interpretation when their respective constituents are semantically similar. Two compounds, for example flour can and corn bag will be considered similar if they have similar modifying constituents (flour and corn) and similar head constituents (can and bag). The co-occurrences of both constituents will be combined to calculate a measure of similarity for the entire compound. This approach implicitly uses the lexical semantic knowledge also used in taxonomy-based methods but without the need for a taxonomy. Accuracies of 54.98% (Ó Séaghdha and Copestake, 2007) and 61% have been reached (Ó Séaghdha, 2008).

Corpus-based and taxonomy-based methods have also been combined by several researchers. Accuracies of 58.35% (Ó Séaghdha, 2007), 73.9% (Tratz and Hovy, 2010) and even 82.47% (Nastase et al., 2006) were reported.

4.2 Dataset Development

For this project, we developed datasets of semantically annotated compounds for Afrikaans and Dutch. This section describes these new resources.

The annotation scheme and guidelines that we used as basis, were developed by Ó Séaghdha (2008) for semantic annotation of English NN compounds. For purposes of our project, some adaptations were in order, while Dutch and Afrikaans examples were added (Verhoeven et al., 2014). Ó Séaghdha (2008) describes eleven classes of compounds; six of these classes are semantically specific:
Class	Definition	Example
BE | The compound can be rewritten as ‘N2 which is (like) (a) N1’ with N1 and N2 being the two constituents nouns. | woman doctor
HAVE | The compound denotes some sort of possession. Part-whole compounds, typical one-to-many possession, compounds expressing conditions or properties and meronymic compounds belong here. | car door
IN | The compound denotes a location in time or place. | garden party
ACTOR | The compound denotes a characteristic event or situation and one of the constituents is a salient entity. | enemy activity
INST | The compound denotes a characteristic event and there is no salient entity present. | cheese knife
ABOUT | The compound describes a topical relation between its constituents. | film character

The other five categories are less specific. The MISTAG and NONCOMPOUND categories serve to classify compounds that do not belong in the dataset. The REL class describes compounds with a clear meaning that does not belong to any of the other classes, but of which the relation between the constituents seems productive (e.g. sodium chloride). The LEX category is almost the same as REL, but the relation does not seem to be productive (e.g. monkey business). The UNKNOWN category is for correct NN compounds of which the meaning is not clear enough to annotate.

As a subpart of this subproject, we also developed an annotation protocol for nominal compounds that do not have a noun as first constituent (XN) (Verhoeven and Van Huyssteen, 2013). Such XN compounds had thus far mostly been neglected, despite the fact that they are fairly productive in some Germanic languages (although far less frequent than NN compounds). Our annotation guidelines followed the general approach of Ó Séaghdha (2008).

Over the course of the project, several datasets were developed. For both Dutch and Afrikaans there were two annotation rounds for NN compounds and one smaller annotation experiment for XN compounds. This section is a summary of all the semantics data; compare also Table 1 for an overview of the data development, including the average Cohen’s Kappa scores.

The Dutch NN compounds were taken from the same raw compound list of 71,274 compounds described in section 3.2 above. Subsequent annotations were performed by students in linguistics at the University of Antwerp, all native speakers of Dutch. The first dataset was annotated by one student, and a subset of 500 compounds by one of the authors in order to calculate inter-annotator agreement. The second round of data was annotated by three students, with the data divided between them in such a way that we had two annotations for each compound. For the XN compound dataset, only 600 compounds were annotated.

The NN compounds for the Afrikaans dataset were taken from the CKarma list of splitted compounds (see section 3.2 above). The complete Afrikaans dataset was annotated by three undergraduate linguistics students, all native speakers of Afrikaans. This resulted in three annotations for each compound. With regard to the XN compound subpart, a large dataset of 4,553 compounds were annotated.

<table>
<thead>
<tr>
<th>language</th>
<th>annotation type</th>
<th># items</th>
<th># annotators</th>
<th>avg. Kappa score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrikaans</td>
<td>NN-Round1</td>
<td>1449</td>
<td>3</td>
<td>53.4</td>
</tr>
<tr>
<td>Afrikaans</td>
<td>NN-Round2</td>
<td>2328</td>
<td>3</td>
<td>37.6</td>
</tr>
<tr>
<td>Afrikaans</td>
<td>XN</td>
<td>4553</td>
<td>3</td>
<td>33.5</td>
</tr>
<tr>
<td>Dutch</td>
<td>NN-Round1</td>
<td>1766</td>
<td>2</td>
<td>60.0</td>
</tr>
<tr>
<td>Dutch</td>
<td>NN-Round2</td>
<td>2000</td>
<td>3</td>
<td>51.0</td>
</tr>
<tr>
<td>Dutch</td>
<td>XN</td>
<td>600</td>
<td>2</td>
<td>48.6</td>
</tr>
</tbody>
</table>

Table 1: Overview of semantics data.
4.3 Experiments

The data from the first annotation rounds were used for semantic classification experiments that were based on those conducted by Ó Séaghdha (2008). What follows is a description of our own experimental setup. In our classification experiment, classifiers trained by machine learning methods use feature vectors arising from a combination of the distributional hypothesis (as proposed above) with the idea of analogical reasoning. It is assumed that the semantic category of a compound can be predicted by comparing compounds with similar meanings (Ó Séaghdha, 2008).

4.3.1 Vector Creation

For every compound constituent, the co-occurrence context was calculated. For this purpose, for each instance of the constituents in the corpus, the surrounding \(n \) words (that belong to the 10,000 most frequent words of the corpus) were held in memory. The relative frequencies of these context words (the number of times the word appeared in the context of the constituent, divided by the frequency of the constituent in the corpus) for each constituent were stored.

For Dutch, the Twente News Corpus (Ordelman et al., 2007) was used. This is a 340 million word corpus of newspaper articles. For Afrikaans, we used the Taalkommissie corpus (Taalkommissie, 2011), a 60 million word corpus that consists of a variety of text genres.

A concatenation of the constituent data was used to create the instance vector. This is a new but very simple technique of composition whereby each instance vector thus contains the relative frequencies for the 1,000 most frequent words for each constituent (hence 2,000 per compound). Compounds of which one or both of the constituents did not appear in the corpus were excluded from the data.

The classification experiment dealt with those compounds that were annotated with a semantically specific category. This means that only compounds with the category tags BE, HAVE, IN, INST, ACTOR and ABOUT were used for the experiments. The final vector set for Afrikaans contained 1,439 compounds, while the final vector set for Dutch had 1,447 compounds.

4.3.2 Results

As machine learning method, we used the SMO algorithm, which is WEKA’s (Witten et al., 2011) support vector machines (SVM) implementation, in a 10-fold cross-validation setup.

Since this was the first research on both Dutch and Afrikaans (Verhoeven et al., 2012), we assumed a majority baseline which represents the accuracy that can be obtained by always guessing the most frequent class as the output class. For Dutch, this baseline is 29.5% (428 instances of class IN on a total of 1447 compounds) (Verhoeven, 2012). For Afrikaans, this baseline is 28.2% (407 instances of class ABOUT on a total of 1439 instances).

The outcome of these experiments showed that the semantic relation between compound constituents in Dutch and Afrikaans can be learned using our simple new composition method of concatenating the constituent vectors into a compound vector. F-scores of 47.8 (Dutch) and 51.1 (Afrikaans) were achieved using the counts of three context words left and right of the constituent for computing their semantic representation. The approach turned out to be robust for varying sizes of context (different numbers of context words), as well as for the way corpus counts were done: on either lemmas or word forms (Verhoeven, 2012; Verhoeven and Daelemans, 2013). Our results are a good improvement of our baselines, and provide a baseline for future research.

4.3.3 WordNet-based method for Afrikaans

In another subpart of this subproject, we experimented with an alternative approach, namely to use the Afrikaans WordNet (CTexT, 2011) to infer compound semantics of Afrikaans compounds (Botha et al., 2013). We followed the same approach as Kim & Baldwin (2005), and achieved precision results similar to the general approach described above. i.e. 50.49% using the Afrikaans WordNet, vs. 50.80% reported by Verhoeven et al. (2012). However, recall was much worse: 29.27% in this approach, vs. 51.60% using the other approach. This poor recall can be attributed to the small size of the Afrikaans WordNet, which only contains 10,045 synsets, compared to 115,424 synsets in the Princeton WordNet (Miller, 1995).
therefore conclude that a WordNet-approach holds much promise, on the premise that the WordNet is large enough to ensure good coverage.

5 Discussion

We described machine learning approaches to the segmentation and semantic interpretation of compounds in Dutch and Afrikaans, two related languages where concatenative compounding is a highly productive morphological process. Success of machine learning approaches to any natural language processing task is based on the presence of sufficient high quality training data and relevant information sources allowing the classification problem to be solved.

For compound splitting, high annotator agreement in the annotation of the training data and high generalization accuracy could be obtained for both languages using a statistical pattern induction method working on the orthography of the input compounds, without need for other information sources. Further improvement can be achieved here with more and richer training data. Other methods for sequence learning could lead to further improvements as well, although Liang’s method (1983) turns out to be a strong algorithm for this task.

The task of compound interpretation is much more difficult, both for people (who reached relatively low annotation agreement for both languages) and for machine learners, suggesting that crucial information is missing in the semantic representations we used for our compound constituents. Nevertheless, also for this task, we were able to set a standard, well above baseline, for future work in compound interpretation for Dutch and Afrikaans. Further improvement can potentially be found in many directions: more fine-grained and more learnable semantic relation types, more consistently annotated training data (and much more of it from different domains), and better semantic representations for the constituents, for example using deep learning (Mikolov et al., 2013).

Acknowledgements

The AuCoPro project was funded through a research grant from the Nederlandse Taalunie (Dutch Language Union) and the South African Department of Arts and Culture (DAC), as well as grants from the South African National Research Foundation (NRF) (grant number 81794), and the European Network on Word Structure (NetWordS) (European Science Foundation) (Grant number: 5570). Views expressed in this publication cannot be ascribed to any of these funding organisations.

We would also like to acknowledge the contributions of numerous students and colleagues, including Zandre Botha, Roald Eiselen, Joanie Liversage, Benito Trollip, Nanette van den Bergh (North-West University); Natasja Loyens, Maxim Baetens, Frederik Vaassen (University of Antwerp); Chris Emmery, Suzanne Aussems (Tilburg University).

References

CTexT. 2005. CKarma (C5 KompositumAnaliseerder vir Robuuste Morfologiese Analise). [C5 Compound Analyser for Robust Morphological Analysis]. Centre for Text Technology (CTexT), North-West University, Potchefstroom, South Africa.

CTexT. 2011. Afrikaans WordNet. Centre for Text Technology (CTexT), North-West University, Potchefstroom, South Africa.

Taalkommissie. 2011. Taalkommissiekorpus 1.1. Taalkommissie van die Suid-Afrikaanse Akademie vir Wetenskap en Kuns. Centre for Text Technology (CTexT), North-West University, Potchefstroom, South Africa.

