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Abstract

The Shapley value for directed graph (digraph) games, TU games with limited coop-
eration introduced by an arbitrary digraph prescribing the dominance relation among
the players, is introduced. It is defined as the average of marginal contribution vectors
corresponding to all permutations that do not violate the subordination of players. We
assume that in order to cooperate players may join only coalitions containing no players
dominating them. Properties of this solution are studied and a convexity type condition
is provided that guarantees its stability with respect to an appropriately defined core
concept. An axiomatization for cycle digraph games for which the digraphs are directed
cycles is obtained.

Keywords: TU game, Shapley value, directed graph, dominance structure, core, con-
vexity

JEL Classification Number: C71

1 Introduction

In classical cooperative game theory it is assumed that any coalition of players may form.
However, in many practical situations the set of feasible coalitions is limited by some social,
economical, hierarchical, or technical structure. One of the most famous singleton solution
concepts for cooperative games with transferable utility (TU games) is the Shapley value
[7] which is defined as the average of the marginal contribution vectors corresponding to
all permutations on the player set. Several adaptations of the Shapley value for different
models of TU games with limited cooperation among the players are well known in the
literature, see for example Aumann and Drèze [1] and Owen [6] for games with coalition
structure, Myerson [5] for undirected graph games in which the connected subsets of players
form the feasible coalitions, and Faigle and Kern [2] for games with precedence constraints.

In this paper it is assumed that restricted cooperation among the players is determined
by an arbitrary directed graph (digraph) on the player set. The directed links of the digraph
prescribe the subordination among the players. In this setting, the players could be jobs in a
multi-stage machinery process, where the links of the digraph determine the order in which
the jobs can be processed. If at each moment only one job can be performed, then when a
job is completed, the next job to be performed can be any of the jobs that are immediate
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†Ö. Selçuk, University of Portsmouth, Portsmouth Business School, Richmond Building, Portland Street,

Portsmouth PO1 3DE, UK, e-mail: ozer.selcuk@port.ac.uk
‡A.J.J. Talman, CentER, Department of Econometrics & Operations Research, Tilburg University, P.O.

Box 90153, 5000 LE Tilburg, The Netherlands, e-mail: talman@tilburguniversity.edu

1



successors in the digraph or one of those the performance of which is independent of the job
just completed. On the class of digraph games, which are TU games with restricted cooper-
ation prescribed by the dominance relation on the set of players determined by a digraph, we
introduce the so-called Shapley value for digraph games as the average of marginal contri-
bution vectors corresponding to all permutations not violating the subordination of players.
Contrary to the Myerson model, the feasible coalitions are not necessarily connected sub-
sets of the digraph. We show that the Shapley value for digraph games meets efficiency,
linearity, the restricted null player property, the restricted equal treatment property, and
is independent of inessential links. Moreover, under a convexity type condition which is
weaker than the usual convexity guaranteeing the core stability of the Shapley value for TU
games, we prove that the introduced value is stable with respect to the appropriate core
concept. On the subclass of directed cycle graph games an axiomatization is provided.

Since precedence constraints are determined by a partial ordering on the player set which
can be represented by a cycle-free digraph, the TU games under precedence constraints form
a subclass of the class of digraph games. On the subclass of cycle-free digraph games the
Shapley value for digraph games coincides with the Shapley value for TU games under
precedence constraints introduced in Faigle and Kern [2].

The structure of the paper is as follows. Section 2 contains preliminaries. In Section 3 we
introduce the Shapley value for digraph games and discuss its properties and stability. An
axiomatization on the subclass of cycle digraph games for which the digraphs are directed
cycles is obtained in Section 4.

2 Preliminaries

A cooperative game with transferable utility, or TU game, is a pair (N, v), where N =
{1, . . . , n} is a finite set of n ≥ 2 players and v : 2N → IR is a characteristic function with
v(∅) = 0, assigning to any coalition S ⊆ N its worth v(S). The set of TU games with fixed
player set N is denoted by GN . For simplicity of notation and if no ambiguity appears we
write v when we refer to a game (N, v). It is well known (cf. Shapley [7]) that unanimity
games {uT }T⊆N

T 6=∅
, defined as uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise, form a basis in

GN , i.e., every v ∈ GN can be uniquely presented in the linear form v=
∑

T⊆N,T 6=∅
λvT uT . A

value on a subset G of GN is a function ξ : G → IRN that assigns to every game v ∈ G a vector
ξ(v) ∈ IRN where ξi(v) is the payoff to player i ∈ N in game v. The marginal contribution of
player i ∈ N to coalition S ⊆ N\{i} in game v ∈ GN is given by mv

i (S) = v(S∪{i})−v(S).
In the sequel we use standard notation x(S)=

∑
i∈S

xi for any x∈ IRN and S ⊆ N .

For a permutation π : N → N and any i ∈ N , π(i) is the position of player i in π,
Pπ(i) = {j ∈ N | π(j) < π(i)} is the set of predecessors of i in π, and P̄π(i) = Pπ(i)∪{i}. For
a TU game v ∈ GN and a permutation π on N the marginal contribution vector m̄v(π)∈ IRN

is given by m̄v
i (π)=mv

i (Pπ(i))=v(P̄π(i))−v(Pπ(i)) for all i∈N . The Shapley value of a TU
game v∈GN is given by Sh(v)=

∑
π∈Π

m̄v(π)/n!, where Π is the set of all permutations on N .

A graph on N consists of N as the set of nodes and for a directed graph, or digraph,
a collection of ordered pairs Γ ⊆ {(i, j) | i, j ∈ N, i 6= j} as the set of directed links
(arcs) from one player to another player in N , and for an undirected graph a collection
of unordered pairs Γ ⊆ {{i, j} | i, j ∈ N, i 6= j} as the set of links (edges) between two
players in N . Observe that an undirected graph can be considered as a directed graph for
which (i, j) ∈ Γ if and only if (j, i) ∈ Γ. For a digraph Γ on N and coalition S ⊆ N ,
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Γ|S = {(i, j) ∈ Γ | i, j ∈ S} is the subgraph of Γ on S. Given a digraph Γ on N, a
sequence of different players (i1, . . . , ir), r ≥ 2, is a path in Γ between players i1 and ir if
{(ih, ih+1), (ih+1, ih)} ∩ Γ 6= ∅ for h=1, . . . , r−1, and a directed path in Γ from player i1 to
player ir if (ih, ih+1) ∈ Γ for h= 1, . . . , r−1. A directed path (i1, . . . , ir) in Γ is a directed
cycle if (ir, i1) ∈ Γ. Digraph Γ is cycle-free if it contains no directed cycles. Players i and j
in N are connected in Γ if there exists a path in Γ between i and j. Γ is connected if any
two different nodes in N are connected in Γ. A coalition S ⊆ N is connected in Γ if the
subgraph Γ|S is connected. For S ⊆ N , CΓ(S) denotes the collection of subsets of S being
connected in Γ, S/Γ is the collection of maximal connected subsets, called components, of
S in Γ. If there exists a directed path in Γ from player i ∈ N to player j ∈ N , then j
is a successor of i and i is a predecessor of j in Γ. If (i, j) ∈ Γ, then j is an immediate
successor of i and i is an immediate predecessor of j in Γ. For i ∈ N , SΓ(i) denotes the set
of successors of i in Γ and S̄Γ(i) = SΓ(i) ∪ {i}. A line-graph (chain) on N is a connected
cycle-free digraph on N in which each player has at most one immediate successor and at
most one immediate predecessor.

For digraph Γ on N and coalition S ⊆ N , player i ∈ S dominates player j ∈ S in Γ|S ,
denoted i �Γ|S j, if j ∈ SΓ|S (i) and i /∈ SΓ|S (j). Observe that the dominance relation
between two players may differ between different coalitions they both belong to. Player
i ∈ S is an undominated player in Γ|S if no player in S dominates i in Γ|S , i.e., i ∈ SΓ|S (j)
implies j ∈ SΓ|S (i). Notice that a player undominated in Γ|S either has no predecessor in
Γ|S or lies on a directed cycle in Γ|S . The set of players undominated in Γ|S is denoted by
UΓ(S). Since N is finite, UΓ(S) 6= ∅ for any nonempty S ⊆ N .

A pair (v,Γ) of a TU game v ∈ GN and a digraph Γ on N constitutes a directed graph
game or digraph game. The set of digraph games on a fixed player set N is denoted GΓN .
A value on G ⊆GΓN is a function ξ:G→ IRN that assigns to every (v,Γ)∈G a payoff vector
ξ(v,Γ).

3 The Shapley value for digraph games

In a digraph game the digraph prescribes a dominance relation between the players that
puts restrictions on the feasibility of coalitions. Assuming that in order to cooperate players
may join only coalitions containing no players dominating them, the set of feasible coalitions
of a digraph game consists of so-called hierarchical coalitions.

Given a digraph Γ on N , a coalition S ⊆ N is hierarchical in Γ if i ∈ S, (i, j) ∈ Γ and
i /∈ SΓ(j) imply S̄Γ(j) ⊂ S.

If a player in a hierarchical coalition dominates an immediate successor in the digraph,
then the coalition also contains this latter player and all his successors in the digraph. Every
hierarchical coalition preserves the subordination of players and therefore is feasible. For a
cycle-free digraph Γ, a coalition S ⊆ N is hierarchical if and only if every successor of any
player i ∈ S in Γ belongs to S, i.e., S̄Γ(i) ⊆ S for all i ∈ S. So, for a cycle-free digraph
the set of hierarchical coalitions coincides with the set of feasible coalitions in Faigle and
Kern [2] when the precedence constraints are induced by the same digraph. Notice that
both the empty coalition and the grand coalition of all players are always hierarchical. A
hierarchical coalition does not need to be connected in the underlying digraph. Moreover, in
an undirected graph, in particular in the empty graph, every coalition is hierarchical. For a
digraph Γ on N , the set of all coalitions hierarchical in Γ is denoted by H(Γ) and its subset
consisting of all connected hierarchical coalitions by Hc(Γ). Observe that S, T ∈ H(Γ)
implies S ∪ T, S ∩ T ∈ H(Γ).
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Given a digraph Γ on N , a permutation π ∈ Π is consistent with Γ if it preserves the
subordination of players determined by Γ, i.e., π(j) < π(i) only if j �Γ|P̄π(i)

i.

Remark 3.1 In a permutation π consistent with Γ every i ∈ N is an undominated player
in the subgraph of Γ on the set composed by i together with all his predecessors in π, i.e.,
i ∈ UΓ(P̄π(i)) for all i ∈ N .

The set of permutations on N consistent with Γ is denoted by ΠΓ. Since N is finite,
for any digraph Γ on N , ΠΓ 6= ∅. The next proposition shows that for every consistent
permutation both sets of predecessors of any player, with and without this player, form a
hierarchical coalition.

Proposition 3.1 Given a digraph Γ on N , if π∈ΠΓ, then P̄π(i), Pπ(i)∈H(Γ) for all i∈N .

Proof. Since N ∈ ΠΓ, N = P̄π(k) for some k ∈ N , and for each i ∈ N it holds that
Pπ(i) = P̄π(j) for j ∈ Pπ(i) such that π(j) = max

k∈Pπ(i)
π(k), it suffices to show that if

P̄π(k) ∈ ΠΓ for some k ∈ N , then Pπ(k) ∈ ΠΓ as well. Observe that if P̄π(k) ∈ ΠΓ, then
i ∈ Pπ(k), (i, j) ∈ Γ and i /∈ SΓ(j) imply S̄Γ(j) ⊂ P̄π(k). To prove that Pπ(k) ∈ ΠΓ we
need to show that S̄Γ(j) ⊂ Pπ(k). Suppose k ∈ S̄Γ(j). Then (i, j) ∈ Γ implies k ∈ SΓ(i).

From i ∈ Pπ(j) and S̄Γ(j) ⊂ P̄π(k) it follows that k ∈ SΓ|P̄π(k)(i). Since P̄π(k) ∈ ΠΓ,

k ∈ UΓ(P̄π(k)), which implies i ∈ SΓ|P̄π(k)(k), and therefore, i ∈ SΓ(k). Then k ∈ S̄Γ(j)
implies i ∈ SΓ(j), which contradicts i /∈ SΓ(j).

Remark 3.2 If Γ is a directed cycle on N , then for all π∈ΠΓ and i∈N both coalitions P̄π(i)
and Pπ(i) are connected in Γ. Moreover, UΓ(N) = N and UΓ(P̄π(i)) = {i} if P̄π(i) 6= N .

Proposition 3.1 implies that every consistent permutation generates a sequence of fea-
sible coalitions consisting of a player and his predecessors in the permutation. This player
is undominated in the subgraph on such a coalition and receives his marginal contribution
for joining.

We define the Shapley value for digraph games as the average of the marginal contribu-
tion vectors corresponding to all consistent permutations, i.e., for any (v,Γ)∈GΓN ,

Sh(v,Γ) =
1

|ΠΓ|
∑
π∈ΠΓ

m̄v(π). (1)

Example 3.1 Consider the 5-player digraph games (v,Γ), (v,Γ′), and (v,Γ′′) with char-
acteristic function v(S) = |S|2 for all S ⊆ N and digraphs Γ = {(1, 2), (3, 5), (4, 5)},
Γ′ = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}, and Γ′′ = {(1, 2), (2, 3), (3, 4), (4, 1), (4, 5)}, as de-
picted in Figure 1.

1

2

3 4

5

1

2

4 3

5

2 1

3
4 5

a) digraph Γ b) digraph Γ′ c) digraph Γ′′

Figure 1
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For the digraph Γ there are 20 permutations consistent with Γ: π1 = (5, 4, 3, 2, 1), π2 =
(5, 3, 4, 2, 1), π3 = (5, 4, 2, 3, 1), π4 = (5, 2, 4, 3, 1), π5 = (2, 5, 4, 3, 1), π6 = (5, 3, 2, 4, 1), π7 =
(5, 2, 3, 4, 1), π8 =(2, 5, 3, 4, 1), π9 =(5, 2, 4, 1, 3), π10 =(2, 5, 4, 1, 3), π11 =(5, 4, 2, 1, 3), π12 =
(5, 2, 1, 4, 3), π13 = (2, 5, 1, 4, 3), π14 = (2, 1, 5, 4, 3), π15 = (5, 2, 3, 1, 4), π16 = (2, 5, 3, 1, 4),
π17 = (5, 3, 2, 1, 4), π18 = (5, 2, 1, 3, 4), π19 = (2, 5, 1, 3, 4), π20 = (2, 1, 5, 3, 4), and Sh(v,Γ) =
(7, 3, 13/2, 13/2, 2). For the digraph Γ′ there are 5 permutations consistent with Γ′ : π1 =
(5, 4, 3, 2, 1), π2 = (4, 3, 2, 1, 5), π3 = (3, 2, 1, 5, 4), π4 = (2, 1, 5, 4, 3), π5 = (1, 5, 4, 3, 2), and
Sh(v,Γ′)=(5, 5, 5, 5, 5). For the digraph Γ′′ there are 10 permutations consistent with Γ′′ :
π1 = (5, 4, 3, 2, 1), π2 = (5, 1, 4, 3, 2), π3 = (5, 3, 2, 1, 4), π4 = (5, 2, 1, 4, 3), π5 = (1, 5, 4, 3, 2),
π6 = (2, 1, 5, 4, 3), π7 = (2, 5, 1, 4, 3), π8 = (3, 2, 1, 5, 4), π9 = (3, 2, 1, 5, 4), π10 = (3, 2, 5, 1, 4),
and Sh(v,Γ′′)=(5, 2, 4.6, 5.2, 7, 3). To compare, to calculate the Shapley value of TU game
v we need to consider 120 marginal contribution vectors determined by all permutations on
the player set N and Sh(v) = (5, 5, 5, 5, 5). Due to the symmetry of both the game v and
the graph Γ′, Sh(v,Γ′)=Sh(v).

When digraph Γ represents an undirected graph, which means that there is no subordi-
nation between the players in Γ, the Shapley value of the digraph game (v,Γ) coincides with
the Shapley value of the TU game v. Both values also coincide if the TU game is symmetric
and the digraph is a directed cycle, as for the game (v,Γ′) in Example 3.1. In general, the
Shapley value of a digraph game does not coincide with the Myerson value of the corre-
sponding undirected graph game because the Myerson value is defined as the average of all
marginal contribution vectors of the Myerson restricted game. Since a cycle-free digraph
on the player set provides a partial ordering of the players and for a cycle-free digraph the
set of hierarchical coalitions coincides with the set of feasible coalitions considered in Faigle
and Kern [2], it holds that on the subclass of cycle-free digraph games the Shapley value
for digraph games coincides with the Shapley value for cooperative games under precedence
constraints defined in Faigle and Kern [2]. Moreover, if for a connected digraph game all
covering trees of the digraph are line-graphs, the Shapley value for digraph games coincides
with the average covering tree value introduced in Khmelnitskaya, Selcuk, and Talman [4].
In particular, this holds for cycle digraph games for which the digraph is a directed cycle.

A value ξ on G ⊆ GΓN is efficient (E ) if for any (v,Γ) ∈ G it holds that
∑

i∈N ξi(v,Γ) =
v(N).

A value ξ on G ⊆ GΓN is linear (L) if for any (v,Γ), (w,Γ) ∈ G and a, b ∈ IR it holds that
ξ(av + bw,Γ) = aξ(v,Γ) + bξ(w,Γ), where (av+bw)(S)=av(S)+bw(S) for all S ⊆ N .

A value ξ on G⊆GΓN satisfies the restricted equal treatment property (RETP) if for any
(v,Γ)∈G and i, j∈N , i 6=j, hierarchically symmetric in (v,Γ) it holds that ξi(v,Γ)=ξj(v,Γ).

Two different players in N are hierarchically symmetric in (v,Γ) ∈ GΓN if they are both
symmetric in Γ and hierarchically symmetric in v. Given digraph Γ on N , players i, j ∈ N ,
i 6= j, are symmetric in Γ if they have the same sets of immediate successors and immediate
predecessors in Γ, i.e., (i, k) ∈ Γ ⇐⇒ (j, k) ∈ Γ and (k, i) ∈ Γ ⇐⇒ (k, j) ∈ Γ.
Given digraph game (v,Γ) ∈ GΓN , players i, j ∈ N , i 6= j, are hierarchically symmetric
in v if for all S ⊆N\{i, j} such that S, S ∪ {i}, S ∪ {j}, S ∪ {i, j} ∈ H(Γ), it holds that
v(S ∪ {i}) = v(S ∪ {j}), or, equivalently, mv

i (S)=mv
j (S).

A value ξ on G⊆GΓN meets the (restricted) hierarchical null-player property ((R)HNP) if
for all (v,Γ)∈G it holds that ξi(v,Γ)=0 whenever i is a (restricted) hierarchical null-player
in (v,Γ).

A player i ∈ N is a (restricted) hierarchical null-player in (v,Γ) ∈ GΓN if for every
S⊆N\{i} such that S, S ∪ {i}∈H(Γ) (S, S ∪ {i}∈Hc(Γ)) it holds that v(S ∪ {i})=v(S),
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or, equivalently, mv
i (S)=0.

Remark 3.3 Each null-player in v ∈ GN is a hierarchical null-player in any (v,Γ) ∈ GΓN ,
and every hierarchical null-player in (v,Γ) ∈ GΓN is also a restricted hierarchical null-player
in (v,Γ), i.e., RHNP implies HNP.

A value ξ on G ⊆ GΓN is (restricted) hierarchically marginalist ((R)HM ) if for any
(v,Γ), (w,Γ) ∈ G and i ∈ N for which mv

i (S) = mw
i (S) for all S ⊆ N\{i} such that

S, S ∪ {i}∈H(Γ) (S, S ∪ {i}∈Hc(Γ)) and i ∈ UΓ(S ∪ {i}) it holds that ξi(v,Γ)=ξi(w,Γ).

If in a directed cycle digraph game all proper subcoalitions of players are powerless, i.e.,
only the full cooperation within the grand coalition is productive, then since all players are
undominated and have equal power, it is natural to require that all players receive the same
payoff.

A value ξ on G ⊆ GΓN is strongly symmetric on directed cycles (SSDC ) if for any (v,Γ) ∈ G
such that Γ is a directed cycle on N and v(S) = 0 for all S ( N , i.e., v = λuN for some
real λ, it holds that ξi(v,Γ)=ξj(v,Γ) for all i, j∈N , i 6=j.

A value ξ on G ⊆ GΓN is independent of inessential directed links (IIDL) if for any
(v,Γ) ∈ G and inessential directed link (i, j) ∈ Γ it holds that ξ(v,Γ) = ξ(v,Γ \ {(i, j)}).

For a digraph Γ on N , a directed link (i, j) ∈ Γ is inessential if i dominates j in Γ and
there exists a directed path in Γ from i to j different from (i, j), i.e., i /∈ SΓ(j) and there
exists i′ ∈ N such that (i, i′) ∈ Γ, i /∈ SΓ(i′), and j ∈ SΓ(i′).

Proposition 3.2 The Shapley value for digraph games on GΓN meets E, L, RETP, HNP,
HM, SSDC, and IIL.

Proof. (E) Efficiency follows straightforwardly from the efficiency of all marginal contri-
bution vectors on GN .

(L) Since all digraph games (v,Γ), (w,Γ) and (av + bw,Γ) are determined by the same
digraph Γ, the set ΠΓ of consistent permutations is the same for all of them. Then linearity
follows from the linearity of all marginal contribution vectors on GN .

(RETP) Let players i, j ∈ N be hierarchically symmetric in (v,Γ) ∈ GΓ
N . Then π ∈ ΠΓ if

and only if π′ ∈ ΠΓ, where π′(i) = π(j), π′(j) = π(i) and π′(k) = π(k) for all k ∈ N \ {i, j}.
So, to prove RETP it suffices to show that m̄v

i (π) = m̄v
j (π
′) and m̄v

j (π) = m̄v
i (π
′) for any

π, π′ ∈ ΠΓ such that π′(i) = π(j), π′(j) = π(i), and π′(k) = π(k) for all k ∈ N \ {i, j}.
Without loss of generality assume that π(i) > π(j). To show m̄v

i (π) = m̄v
j (π
′) notice that

π′(i) = π(j) and π′(k) = π(k) for all k ∈ N\{i, j} implies P̄π(i) = P̄π′(j) and Pπ(i)\{j} =
Pπ′(j)\{i}. Let S = Pπ(i)\{j} = Pπ′(j)\{i}. By Proposition 3.1, S∪{i}, S∪{j}, S∪{i, j} ∈
H(Γ). Since i and j are hierarchically symmetric in v, v(S ∪ {i}) = v(S ∪ {j}), which
means v(Pπ(i)) = v(Pπ′(j)). Together with P̄π(i) = P̄π′(j), we obtain m̄v

i (π) = v(P̄π(i)) −
v(Pπ(i)) = v(P̄π′(j))− v(Pπ′(j)) = m̄v

j (π
′). In order to show m̄v

j (π) = m̄v
i (π
′) observe that

Pπ(j) = Pπ′(i). Let S = Pπ(j) = Pπ′(i). By Proposition 3.1, S ∪ {i}, S ∪ {j}, S ∈ H(Γ).
Since i and j are hierarchically symmetric in v, v(S ∪ {i}) = v(S ∪ {j}), which means
v(P̄π(j))=v(P̄π′(i)). So, m̄v

j (π)=v(P̄π(j))−v(Pπ(j))=v(P̄π′(i))−v(Pπ′(i))=m̄v
i (π
′).

(HNP) Let i ∈ N be a hierarchical null player in (v,Γ) ∈ GΓ
N and π ∈ ΠΓ. By

Proposition 3.1, P̄π(i), Pπ(i) ∈ H(Γ) and since i is a hierarchical null-player in (v,Γ),
m̄v
i (π) = v(P̄π(i))− v(Pπ(i)) = 0. Hence, Shi(v,Γ) = 0.

(HM) The hierarchical marginality of the Shapley value for digraph games follows straight-
forwardly from (1), Remark 3.1, and Proposition 3.1.
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(SSDC) SSDC results directly from the coincidence of the Shapley value for digraph
games determined by symmetric TU games on directed cycles with the Shapley value of the
underlying TU games because on the subclass of symmetric TU games the Shapley value
coincides with the egalitarian solution.

(IIDL) Let (v,Γ) ∈ GΓN for which (i, j) ∈ Γ is inessential. Then there exists i′ ∈ N
such that (i, i′) ∈ Γ, i /∈ SΓ(i′), and j ∈ SΓ(i′). Let Γ′ = Γ \ {(i, j)}. We show that
ΠΓ = ΠΓ′ , which implies Sh(v,Γ) = Sh(v,Γ′). Take any π ∈ ΠΓ. Since (i, i′) ∈ Γ and i /∈
SΓ(i′), Proposition 3.1 implies P̄π(i′) ⊆ Pπ(i). Hence, for all S ⊇ Pπ(i), UΓ(S) = UΓ′(S).
Moreover, Γ|Pπ(i) = Γ′|Pπ(i). This implies that π ∈ ΠΓ′ . Conversely, take any π′ ∈ ΠΓ′ .

Since Γ′ = Γ\{(i, j)}, it holds that (i, i′) ∈ Γ′ and i /∈SΓ′(i′). From Proposition 3.1 it follows
that P̄π′(i

′)⊆Pπ′(i). Hence, for all S⊇Pπ′(i), UΓ′(S)=UΓ(S). Moreover, Γ′|Pπ′ (i) =Γ|Pπ′ (i).
This implies π′∈ΠΓ.

Under the assumption that in a digraph game the digraph represents the dominance
structure on the player set, only the hierarchical coalitions are feasible. So, we define the
dominance core CD(v,Γ) of a digraph game (v,Γ) ∈ GΓN as the set of efficient payoff vectors
that cannot be blocked by any hierarchical coalition, i.e., CD(v,Γ) = {x ∈ IRN | x(N) =
v(N), x(S)≥v(S) for all S ∈ H(Γ)}.

A value ξ on G ⊆ GΓN is D-stable if for any digraph game (v,Γ) ∈ G it holds that
ξ(v,Γ) ∈ CD(v,Γ).

A digraph game (v,Γ) ∈ GΓN is hierarchically convex if for any S, T ∈ H(Γ) it holds that
v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

Recall that for any two hierarchical coalitions their union and intersection are also
hierarchical. Remark also that the notion of hierarchical convexity for a digraph game (v,Γ)
is weaker than convexity for the underlying TU game v where the inequality is required to
hold for all S, T ⊆ N .

Theorem 3.1 The Shapley value for digraph games is D-stable on the class of hierarchically
convex digraph games.

Proof. Let (v,Γ) ∈ GΓN be hierarchically convex. By definition of the Shapley value for
digraph games and due to its efficiency, it suffices to show that

∑
i∈S m̄

v
i (π) ≥ v(S) for

any S ∈ H(Γ) and π ∈ ΠΓ. Let S1, . . . , Sk be the unique maximal partition of S such
that Sh = {i ∈ S | bh ≤ π(i) ≤ ah}, h = 1, . . . , k, where ah and bh, h = 1, . . . , k, satisfy
ah−1 < bh ≤ ah, with a0 = 0. We define P̄π(0) = ∅. For any given h ∈ {1, . . . , k} consider
the sets S ∪ P̄π(ah−1) and Pπ(bh). By Proposition 3.1 and since S is hierarchical, both sets
are hierarchical coalitions. Moreover, their intersection is equal to P̄π(ah−1) and their union
is equal to S ∪ P̄π(ah). From hierarchical convexity it then follows that

v(S ∪ P̄π(ah)) + v(P̄π(ah−1)) ≥ v(S ∪ P̄π(ah−1)) + v(Pπ(bh)).

By repeated application of this inequality for h = 1, . . . k, we obtain

v(S ∪ P̄π(ak)) +
k∑

h=1

v(P̄π(ah−1)) ≥ v(S ∪ P̄π(a0)) +
k∑

h=1

v(Pπ(bh)).

Because P̄π(a0) = ∅ and S ∪ P̄π(ak) = P̄π(ak), it follows that

k∑
h=1

v(P̄π(ah)) ≥ v(S) +

k∑
h=1

v(Pπ(bh)).
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Since for h = 1, . . . , k it holds that∑
i∈Sh

m̄v
i (π) = v(P̄π(ah)− v(Pπ(bh))

and
∑

i∈S m̄
v
i (π) =

∑k
h=1

∑
i∈Sh m̄

v
i (π), we obtain

∑
i∈S m̄

v
i (π) ≥ v(S).

4 Axiomatization for cycle digraph games

On the subclass of cycle-free digraph games the Shapley value for digraph games coincides
with the Shapley value for TU games with precedence constraints of Faigle and Kern [2].
Thus, the axiomatization of the latter value obtained in [2] serves also as an axiomatization
of the Shapley value for cycle-free digraph games. Now we introduce an axiomatization of
the Shapley value on a distinct subclass of digraph games, the subclass GΓ cN of cycle digraph
games. From Remark 3.2 it follows that a directed cycle on a player set is a connected
digraph every node of which is an undominated player.

Theorem 4.1 The Shapley value for digraph games is the unique value on GΓ cN that meets
E, L, RHM, and SSDC.

Proof. I [Existence]. The proof that the Shapley value for digraph games on GΓ cN meets
E, L, RHM, and SSDC is similar to the proof of Proposition 3.2 concerning E, L, HM,
and SSDC on GΓN . For the proof of RHM we only need to add that due to Remark 3.2 all
hierarchical coalitions involved are connected.
II [Uniqueness]. First prove that on GΓ cN E, RHM, and SSDC imply RHNP. Take any

(v,Γ) ∈ GΓ cN with restricted hierarchical null-player i and let v0 be the zero game on N ,
i.e., v0(S) = 0 for all S ⊆ N . Hence, mv

i (S) = 0 = mv0
i (S) for all S ⊆ N\{i} such that

S, S ∪{i} ∈ Hc(Γ) and i ∈ UΓ(S ∪{i}). Then, RHM implies that ξi(v,Γ) = ξi(v0,Γ). From
E and SSDC it follows that ξj(v0,Γ) = 0 for all j ∈ N . Whence, ξi(v,Γ) = 0.

Since unanimity games uT , T ⊆ N , T 6= ∅, form a basis in GN , due to L it suffices to
show that ξ(uT ,Γ) is uniquely determined for all (uT ,Γ) ∈ GΓ cN .

If T = N , then E and SSDC imply ξi(uN ,Γ) = 1
n for all i ∈ N .

If T ∈ CΓ(N), T 6= N , then due to Remark 3.2 UΓ(T ) = {r} for some r ∈ T . For all
i ∈ T\{r} and S ⊆ N\{i} such that S, S ∪ {i} ∈ Hc(Γ) and i ∈ UΓ(S ∪ {i}), muT

i (S) =
muN
i (S). From RHM it follows that ξi(uT ,Γ)= ξi(uN ,Γ)= 1

n for all i∈T\{r}. Since every
i ∈ N\T is a null-player in uT , then by Remark 3.3 each i ∈ N\T is a restricted hierarchical

null-player in (uT ,Γ) and by RHNP ξi(uT ,Γ)=0. Then E implies ξr(uT ,Γ)=1− |T |−1
n .

Finally, take any T /∈ CΓ(N). Let T/Γ = {T1, . . . , Tk} and UΓ(Th) = {rh} for some
rh ∈ Th, h = 1, . . . , k. Each i ∈ N\T is a restricted hierarchical null-player in (uT ,Γ) and
for all i ∈ T\{r1, . . . , rk} and S ⊆ N\{i} such that S, S ∪ {i} ∈ Hc(Γ) and i ∈ UΓ(S ∪ {i}),
muT
i (S) = muN

i (S). Hence, from RHNP it follows that ξi(uT ,Γ) = 0 for all i ∈ N\T
and from RHM it follows that ξi(uT ,Γ) = 1

n for all i ∈ T\{r1, . . . , rk}. For any given
h ∈ {1, . . . , k}, let T h ∈ CΓ(N) be the unique smallest connected set containing T such
that UΓ(T h) = {rh}. Then each i ∈ N \T h is a restricted hierarchical null player in (uTh ,Γ)
and for all i ∈ T h\{rh} and S ⊆ N\{i} such that S, S ∪ {i} ∈ Hc(Γ) and i ∈ UΓ(S ∪ {i}),
m
u
Th

i (S) = muN
i (S). Hence, from RHNP it follows that ξi(uTh ,Γ) = 0 for all i ∈ N\T h

and from RHM it follows that ξi(uTh ,Γ) = 1
n for all i ∈ T h\{rh}. Then by E, ξrh(uTh ,Γ) =

1− |T
h|−1
n . Since for all S ⊆ N\{rh} satisfying S, S ∪ {rh} ∈ Hc(Γ) and rh ∈ UΓ(S ∪ {rh})

it holds that m
u
Th
rh (S) = muT

rh
(S), from RHM it follows that ξrh(uT ,Γ) = ξrh(uTh ,Γ) =

1− |T
h|−1
n .
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Remark 4.1 Unlike Young’s axiomatization in [8] of the classical Shapley value by effi-
ciency, equal treatment property and marginality without a priori requirement of additiv-
ity, for the axiomatization of the Shapley value for digraph games on the subclass of cycle
digraph games we need both linearity and restricted marginality. The reason why the in-
duction argument of Young does not work in the latter case is that while the decomposition
of a TU game is considered via the unanimity basis determined by all possible coalitions,
restricted marginality as opposed to marginality considers only the hierarchical coalitions
that when the digraph is a directed cycle form a proper subset of the set of all coalitions.
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