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Latent and Manifest Monotonicity
in Item Response Models

Brian W. Junker, Carnegie Mellon University

Klaas Sijtsma, Tilburg University

The monotonicity of item response functions
(IRF) is a central feature of most parametric and
nonparametric item response models. Monotonicity
allows items to be interpreted as measuring a trait,
and it allows for a general theory of nonparametric
inference for traits. This theory is based on monotone
likelihood ratio and stochastic ordering properties.
Thus, confirming the monotonicity assumption is
essential to applications of nonparametric item
response models. The results of two methods of
evaluating monotonicity are presented: regressing
individual item scores on the total test score and
on the "rest" score, which is obtained by omitting
the selected item from the total test score. It was

found that the item-total regressions of some familiar
dichotomous item response models with monotone
IRFs exhibited nonmonotonicities that persist as the
test length increased. However, item-rest regressions
never exhibited nonmonotonicities under the non-
parametric monotone unidimensional item response
model. The implications of these results for ex-
ploratory analysis of dichotomous item response data
and the application of these results to polytomous
item response data are discussed.Index terms:
elementary symmetric functions, essential unidimen-
sionality, latent monotonicity, manifest monotonicity,
monotone homogeneity, nonparametric item response
models, strict unidimensionality.

Most item response theory (IRT) models for dichotomous item scores(X1, X2, . . . , XJ , taking
values in {0,1}) assume that the probability of correctly responding to an item given a latent traitθ

(Pj (θ) = P [Xj = 1|θ ]) is a monotonic, nondecreasing function ofθ . Moreover, Hemker, Sijtsma,
Molenaar, & Junker (1997) showed that for all graded response and partial-creditIRT models
for polytomous items, the item step response functions (ISRFs) P ∗

js(θ) = P [Xj > s|θ ] are also
nondecreasing inθ for eachj ands, wheres is an integer item score on a polytomous item.

Monotonicity plays a central role in most nonparametric and parametric formulations ofIRT

because it captures the intuitive idea that the items measureθ ; higherθs indicate a higher probability
of answering an item correctly. The general nonparametric model discussed here has been studied
before under many different names (e.g., Ellis & Junker, 1997; Hemker et al., 1996, 1997; Holland
& Rosenbaum, 1986; Junker, 1991, 1993; Junker & Ellis, 1997; Mokken, 1971; van der Linden
& Hambleton, 1997); here it is referred to as the nonparametric unidimensional monotone item
response theory (UMIRT) model. It is defined as

P(X1 = x1, . . . , XJ = xJ ) =
∫

P(X1 = x1, . . . , XJ = xJ |θ)dF(θ) , (1)

where
x1, x2, . . . , xJ are the observed values of the item response variablesX1, X2, . . . , XJ ,
Pjx(θ) = P [Xj = x|θ ] are the associated item category response functions, and
dF(θ) is an arbitrary distribution function.

Applied Psychological Measurement,Vol. 24 No. 1, March 2000, 65–81
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TheUMIRT model assumes unidimensionality (θ ∈ R), local independence (LI; P [X1 = x1, x2, . . . ,

xJ = XJ |θ ] = ∏J
j=1 Pjxj (θ), and monotonicity. For the latter, theISRFs P ∗

js(θ) = ∑mj

x=(s+1)
Pjx(θ)

are assumed to be nondecreasing inθ for eachj ands. Throughout most of this paperXj ∈ {0, 1}, so
thatP ∗

j0(θ) = P [Xj = 1|θ ] = Pj (θ), which is the usual item response function (IRF) of dichotomous
IRT.

Grayson (1988) showed that under theUMIRT model for dichotomous items, the likelihoodP [S =
s|θ ] for the total score based on a test withJ items,S = ∑J

1 Xj , has a monotone likelihood ratio
property (see also Huynh, 1994). Two stochastic ordering properties follow from this: stochastic
ordering of the manifest scoreS (SOM; P [S > s|θ ] is nondecreasing inθ for eachs), and stochastic
ordering of the latent traitθ (SOL; P [θ > t |S = s] is nondecreasing ins for eacht).

These properties, which lead to a nonparametric theory of inference forθ , were studied in detail
by Hemker et al. (1996, 1997). They showed thatSOM holds for any monotone unidimensional
IRT model (Equation 1) and thatSOL is surprisingly restrictive when items are polytomous. In the
nonparametric estimation ofIRFs (e.g., Ramsay, 1991; Ramsay & Abrahamowicz, 1989) the shape
of the estimatedIRF can reveal information on exactly how theIRF deviates from the expected
monotonicity. For example, decreasingness at the high end of the scale may suggest that the item
has a flaw that distracts highθ examinees.

Thus,IRF monotonicity must be evaluated as a modeling assumption for data. For dichotomous
items, two functions have been used for this purpose—the regression of the item scoreXj on
the total scoreS (P [Xj = 1|S = s]), and the regression of the item scoreXj on therest score
S(−j) = S − Xj (P [Xj = 1|S(−j) = s]; Junker, 1993). However, using the first function (the item-
total regression) can be problematic. A primary purpose of this paper was to demonstrate some
familiar situations in which the item-total regression can lead to false rejection ofIRF monotonicity.

Background

Omnibus tests of model fit for specific parametric forms of Equation 1 can be ambiguous about
the cause of misfit, e.g., lack ofIRF monotonicity or lack of fit with a particular parametric form. A
more informative alternative would be to investigate the monotonicity of the empirical regression
functionP [Xj = 1|θ̂ ], whereθ̂ is an estimator ofθ that does not depend on the parametric form of
the model. For such investigations, it is not important thatθ̂ be efficient as a point estimator ofθ ,
but rather that it order examinees asθ would.

For example, Stout (1990, Theorem 3.2) showed that the total scoreS is ordinally consistent
for θ . That is, there are monotone transformationsfJ (θ) such that|S − fJ (θ)| becomes small with
high probability asJ increases. Moreover, Clarke & Ghosh (1995) showed that the conditional
distribution ofθ , givenS = s, becomes tighter asJ increases. These results suggest that asJ

increases,S andθ should be similarly ordered, and henceS is a good candidate for an ordinalθ̂ ;
(non)monotonicities ofP [Xj = 1|S = s] should correspond to (non)monotonicities ofPj (θ) =
P [Xj = 1|θ ].

On this basis, some authors have advocated confirming the monotonicity of the item-total re-
gression function as a way to evaluate theUMIRT model (Anastasi, 1988, p. 220; Ramsay, 1991;
Sijtsma, 1988); others have proposed constraining existing models so that this condition is satisfied
(Croon, 1991; Scheiblechner, 1998). More recently Thissen & Orlando (1997; see also Orlando &
Thissen, 1997) proposed item-fit indices and graphical displays based on Friendly’s (1994) mosaic
plots: P [Xj = 1|S = s] is plotted as a step function and the joint probabilitiesP [Xj = 1, S = s]
are plotted as rectangular areas under the step function.

However, there is a strong tradition in classical test theory of omitting the studied item from an
item-total correlation (Lord & Novick, 1968, p. 331; see also Cureton, 1966; Wolf, 1967). The
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uncorrected point-biserial correlation is usually expected to be inflated becauseXj should have a
stronger linear relation with the total scoreS than with the rest scoreS(−j). The item-total regression
has sometimes been replaced with the item-rest regression in studies ofIRF shape and model fit.
For example, Lord (1965) examined item-rest regressions to determineIRF shapes, and Wainer
(1983) and Wainer, Wadkins, & Rogers (1984) used item-rest regressions to explore methods of
identifying incorrectly keyed items.

The practical difference between item-rest and item-total regressions seems to have been con-
fused [e.g., compare Lord (1965) with Lord & Novick (1961, pp. 363–364) and Lord (1980, pp.
27–28)]. However, Junker (1993) compared these two regressions and reported Snijders’ example,
in which three dichotomous items satisfied theUMIRT model and one of the item-total regressions
dramatically failed to be monotone ins. Junker showed that the item-rest regression is guaranteed
to be monotone nondecreasing ins when theUMIRT model holds. Thus, in some cases conditioning
on S is inappropriate;P [Xj = 1|S = s] can be artificially nonmonotone even when allPj (θ) are
nondecreasing. However, conditioning onS(−j) always fixes the problem.

Manifest Monotonicity

The definition of manifest monotonicity (MM; Junker, 1993, p. 1371) can be adapted to a general
scoreR; MM holds for itemj and manifest scoreR if P [Xj = 1|R = r] is nondecreasing inr, where
r is a realization ofR : r = 0, 1, . . . , J − 1. Here, the focus is on the total score (R = S ≡ ∑J

1 Xj )
and the rest score (R = S(−j) ≡ S − Xj ).

Junker (1993; Proposition 4.1) gave a direct proof ofMM for binary items in theUMIRT model,
whenR = S(−j), using

P [XJ = 1|S(−j)] = E
{
P [XJ = 1|S(−j), 2]|S(−j)

} = E[Pj (2)|S(−j)] . (2)

The first equality follows by general properties of conditional expectations. The second equal-
ity follows from the LI assumption thatXj and S(−j) are conditionally independent, givenθ .
E[Pj (θ)|S(−j) = s] is nondecreasing ins by SOL, which clearly holds forS(−j) as well asS
(Lehmann, 1955; see also Stout, 1990, Lemma 3.1).

Junker (1998) outlined an alternative method that reproduced the above results and accounted
better for the Rasch (1960/80) model. The argument thatP [Xj = 1|R = r −1] ≤ P [Xj = 1|R = r]
can be organized as follows:

P(Xj = 1|R = r − 1) = ∫
P(Xj = 1|R = r − 1, θ)dF(θ |R = r − 1)

?≤
∫

P(Xj = 1|R = r, θ)dF(θ |R = r − 1)

?≤
∫

P(Xj = 1|R = r, θ)dF(θ |R = r)

= P(Xj = 1|R = r) ,




(3)

wheredF(θ |R = r) is the conditional distribution ofθ givenR = r, and the first and last equalities
are always true by general properties of conditional expectations.

To establish the first inequality marked by “?” in Equation 3, it is sufficient to show that

P(Xj = 1|R = r, θ) is nondecreasing inr for each fixedθ . (4)

WhenR = S(−j), LI impliesP [Xj = 1|R = r, θ ] = P [Xj = 1|θ ], which is constant inr, a special
case of Equation 4. WhenR = S, Equation 4 still holds by Scheiblechner’s argument (1995;
Theorem 4).

To establish the second inequality marked by “?” in Equation 3, it is sufficient to show that

θ is stochastically ordered byR (5)

 © 2000 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteit van Tilburg on April 25, 2008 http://apm.sagepub.comDownloaded from 

http://apm.sagepub.com


Volume 24 Number 1 March 2000
68 APPLIED PSYCHOLOGICAL MEASUREMENT

and

P(Xj = 1|R = r, θ) is nondecreasing inθ for each fixedr . (6)

The stochastic ordering argument following Equation 2 can also be applied here. ForR = S or
R = S(−j), Equation 5 isSOL. Equation 6 is more difficult; forR = S(−j), it always holds: under
LI, P [Xj = 1|S(−j), θ ] = P [Xj = 1|θ ] = Pj (θ), which is assumed to be nondecreasing. ForR = S,
Equation 6 does not need to hold, in general (see the examples below). However, in the special
case of the Rasch model,R = S is sufficient forθ so thatP [Xj = 1|R = r, θ ] = P [Xj = 1|R = r],
which is constant inθ . This is a special case of Equation 6.

Thus, when theUMIRT model holds for binary items,MM is implied by Equations 4, 5, and 6. In
particular,MM holds for itemXj and rest scoreS(−j) for eachj (j = 1, 2, . . . , J ). For the binary
Rasch model,MM also holds for allXj and the total scoreS. Equations 4 and 5 always hold for the
total scoreS, so that only violations of Equation 6 can lead to violations ofMM for S.

Elementary Symmetric Functions

To more carefully study the behavior ofP [Xj = 1|S = s], the definition of the elementary
symmetric functions used in Rasch models can be extended to general nonparametric item response
models for dichotomous items. The conditional odds of answering itemj correctly, givenθ , is
εj (θ) = Pj (θ)/[1−Pj (θ)], wherePj (θ) is theIRF for thej th item. By slightly extending theory about
symmetric functions for the traditional Rasch model (e.g., Fischer, 1974, p. 226; Scheiblechner,
1995), the elementary symmetric function for total scores, latent variableθ , and the vector of
conditional oddsεεε(θ) = [ε1(θ), ε2(θ), . . . , εJ (θ)] is

γs[εεε(θ)] =
∑
S=s

J∏
j=1

εj (θ)xj =
∑
S=s

J∏
j=1

[
Pj (θ)

1 − Pj (θ)

]xj

, (7)

where the summation is over all score patternsx1, x2, . . . , xJ such thatS = s. Note that this is
exactly the symmetric functionγs of the Rasch model, but it is evaluated atεj (θ) = Pj (θ)/[1−Pj (θ)]
instead of at the exponentiated Rasch item difficultiesεj = exp(−bj ).

Thus,

P(S = s|θ) = γs[εεε(θ)] ·
J∏

j=1

[1 − Pj (θ)] , (8)

and the conditional distribution ofθ , givenS = s, is

dF(θ |S = s) = P(S = s|θ)dF(θ)∫
P(S = s|t)dF(t)

=
γs[εεε(θ)] ·

J∏
j=1

[1 − Pj (θ)]dF(θ)

P (S = s)
. (9)

By first integrating Equation 8 with respect to the latent distributiondF(θ), then multiplying and
dividing on the right by the marginal probabilityP [S = 0], and then applying Equation 9 with
s = 0,
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P(S = s) =
∫

γs[εεε(θ)] ·
J∏

j=1

[1 − Pj (θ)]dF(θ)

=
∫

γs[εεε(θ)]dF(θ |S = 0) · P(S = 0)

= E {γs[εεε(θ)]|S = 0} · P(S = 0) , (10)

where the expected value is with respect to the posterior distribution ofθ , givenS = 0. Equation
10 extends Holland’s (1990)Dutch identityfrom the Rasch model to arbitrary dichotomousIRT

models satisfyingLI.
Note also thatγs [εεε(θ)] satisfies standard identities for the elementary symmetric functions (e.g.,

Molenaar, 1995, pp. 44–45). For example,

d

dεj (θ)
γs[εεε(θ)] = γs−1[ε1(θ), . . . , εj−1(θ), εj+1(θ), . . . , εJ (θ)] ≡ γ

(j)
s−1[εεε(θ)] , (11)

and

γs[εεε(θ)] = εj (θ)γ
(j)
s−1[εεε(θ)] + γ

(j)
s [εεε(θ)] , (12)

for eachj .
To investigate the behavior ofP [Xj = 1|S = s, θ ], an additional identity is needed. From

Equation 8,

P(Xj = 1, S = s|θ) = P [Xj = 1, S(−j) = s − 1|θ ] = εj (θ)γ
(j)
s−1[εεε(θ)]

J∏
j=1

[1 − Pj (θ)] . (13)

By applying the definition of conditional probability and then Equations 13, 8, and 12 (in that
order), the following identity is obtained:

P(Xj = 1|S = s, θ) = P(Xj = 1, S = s|θ)

P (S = s|θ)

=
εj (θ)γ

(j)
s−1[εεε(θ)]

J∏
j=1

[1 − Pj (θ)]

γs[εεε(θ)]
J∏

j=1

[1 − Pj (θ)]
(14)

= εj (θ)γ
(j)
s−1[εεε(θ)]

εj (θ)γ
(j)
s−1[εεε(θ)] + γ

(j)
s [εεε(θ)]

=
[

1 + γ
(j)
s [εεε(θ)]

εj (θ)γ
(j)
s−1[εεε(θ)]

]−1

. (15)

One version of Equation 14 appears in the literature on testing the Rasch model (e.g., Molenaar,
1983, Equation 3.1; van den Wollenberg, 1982, Equation 11). The further development of Equation
15 allows conditions to be specified under whichMM fails.
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Examples and Counterexamples

Application to IRT Models

The Guttman model.The Guttman (1950) model is the simplestIRT model, and it is clear
that P [Xj = 1|S = s] is monotone ins in this model. Suppose that itemsX1, . . . , XJ have
nondecreasingIRFs that step from 0 to 1,

Pj (θ) =
{

0, θ ≤ bj

1, bj < θ
, (16)

that the items are ordered so thatb1 < b2 < · · · < bJ , as well, and thatdF(θ) is aθ distribution for
whichP [S = s] > 0 for all s = 0, 1, . . . , J . Thus,P [Xj = 1, S = s] = P [S = s] whenj ≤ s, and
0 otherwise. Hence,

P(Xj = 1|S = s) =
{

1, if j ≤ s

0, if s < j
, (17)

so that the item-total regression is also a nondecreasing step function.
The Rasch model.For the Rasch (1960/1980) model,εj (θ) = exp(θ − bj ), and the following

can be calculated as in the standard Rasch model:

γs[εεε(θ)] = exp(sθ) · γs[exp(−b1), . . . , exp(−bJ )] . (18)

For the Rasch model, Equation 14 becomes

P(X1 = 1|S = s, θ) = ε1(θ)γ
(1)
s−1[εεε(θ)]

γs[εεε(θ)]

= exp(θ − b1) exp[(s − 1)θ ]γ (1)
s [exp(−b1), . . . , exp(−bJ )]

exp(sθ)γ
(1)
s [exp(−b1), . . . , exp(−bJ )]

= exp(−b1)γ
(1)
s−1[exp(−b1), . . . , exp(−bJ )]

γ
(1)
s [exp(−b1), . . . , exp(−bJ )]

. (19)

This is independent ofθ , as it should be due to the sufficiency ofS for θ in the Rasch model. Thus,
Equation 6 is explicitly established forR = S, soMM holds forS.

The two-parameter logistic model.For the two-parameter logistic model (2PLM; e.g., Lord,
1980),εj (θ) = exp[aj (θ − bj )] = exp(aj θ − βj ), whereβj = aj bj . There is no simple, general
factorization ofγs [εεε(θ)] for the 2PLM as in Equation 18, so a special case is considered here.
Supposea1 is fixed, andaj ≡ a2 for all j . In this special case, Equation 15 becomes

P(X1 = 1|S = s, θ) =
{

1 + γ
(1)
s [εεε(θ)]

ε1(θ)γ
(1)
s−1[εεε(θ)]

}−1

=
{

1 + exp(sa2θ)γ
(1)
s [exp(−β1), . . . , exp(−βJ )]

exp(a1θ − β1) exp[(s − 1)a2θ ]γ (1)
s−1[exp(−β1), . . . , exp(−βJ )]

}−1

=
{

1 + exp[(a2 − a1)θ ] exp(β1)
γ

(1)
s [exp(−β1), . . . , exp(−βJ )]

γ
(1)
s−1[exp(−β1), . . . , exp(−βJ )]

}−1

. (20)
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Note that Equation 20 is itself a2PLM IRF, which can be increasing or decreasing depending on the
sign ofa2 − a1. This leads to the following result, which violates Equation 6: In the special case of
the2PLM in whicha1 is fixed andaj ≡ a2 for all j = 2, 3, . . . , J , P [X1 = 1|S = s, θ ] is decreasing
in θ for each fixeds whenevera2 > a1.

For S, the second expression in Equation 3 is always true. Thus, the above violation of the
third expression must be so great that it dominates the calculation ifMM is violated forS. It is
shown below that this is not only possible, but that the violations can persist and become worse as
J increases.

The nature of the violations produced below is opposite of what might be expected based on
previous experience with corrected point-biserial correlations. Whereas the linear relation between
Xj andS(−j) might be expected to be less strong than that betweenXj andS, E[Xj |S(−j) = s] is
guaranteed to be monotone ins, whereasE[Xj |S = s] might not be.

Some Examples

Snijders’ example. Three binary response variables are considered, with a two-point distribu-
tion for θ , P(θ = θ0) = P(θ = θ1) = .5, whereθ0 < θ1. Let

Pj (θ0) ≡ δ, j = 1, 2, 3; P1(θ1) = 1

2
; andP2(θ1) = P3(θ1) = 1 − δ . (21)

It follows that, asδ → 0, P [X1 = 1|S = s] tends toward 0, .25, 0, and 1 fors = 0, 1, 2, and 3,
respectively, whereasP [X2 = 1|S = s] andP [X3 = 1|S = s] both tend toward 0, 1/3, 1, and 1 for
s = 0, 1, 2, and 3, respectively. Thus,MM using the total scoreR holds forX2 andX3, but fails for
X1.

Figure 1 shows the behavior ofP [X1 = 1|R = r] for the total scoreR = S and the rest score
R = S(−j), for J = 3 andδ = .1. Figure 1a shows the latent structure of Snijders’ model withθ0

andθ1 fixed at 0 and 1, respectively. TheIRFs, which are linearly interpolated between the discrete
values given in Equation 21, are graphed above the horizontal axis (note thatX2 andX3 have the
sameIRF). The three latent distributions—P [θ ] = .5 for θ = 0 or 1 (outline only),P [θ |S = 1],
andP [θ |S = 2]—are shown as histograms with class intervals centered atθ0 andθ1 below the
horizontal axis, withθ0 = 0 andθ1 = 1.

Figure 1b shows the total score distribution below the horizontal axis and the curves forE[X1 =
1|S = s] andE[X1 = 1|S(−j) = s] above the horizontal axis. Whenδ is almost zero, the values of
P [X1 = 1|S = s] are near their limiting values of 0, .25, 0, and 1 fors = 0, 1, 2, and 3, respectively.
However, the lack of monotonicity inP [X1 = 1|S = s] can still be seen. The item-rest correlation
(rt (−1)) was .39 and the item-total correlation (rt ) was .69.

By Equation 15, if this example is extended from 3 toJ items by replicatingP2(θ), then

P(X1|S = s, θ0) =
(

1 + J − s

s

)−1

(22)

and

P(X1|S = s, θ1) =
[
1 +

(
1 − δ

δ

) (
J − s

s

)]−1

. (23)

This violates Equation 6 as expected;(1 − δ)/δ > 1 for 0 < δ < .5. The nonmonotonicity in
P [X1 = 1|S = s] increases asJ increases.

An extreme 2PLM example.In the2PLM,

Pj (θ) = exp[aj (θ − bj )]
1 + exp[aj (θ − bj )] . (24)
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Figure 1
Violation of MM for S in Snijders’ Model

a. Latent Structure

b. Manifest Structure (rt (−1) = .39; rt = .69)

In this example, the differences in discrimination were made to be very large. This highlighted the
effect of having different discriminations for all items. Ifa1 = .01andaj = 9for all j > 1, and if the
difficulty of all items isbj ≡ 0 for all j , thenX1 has a nearly constant probability of being answered
correctly or incorrectly, and all other items are nearly perfect Guttman items. Theθ distribution was
created as a discrete distribution between−2 and 2, which was derived by discretizing a standard
normal distribution. Figures 2 and 3 illustrate the behavior of theIRFs and theθ distributions, and
the manifest curves andS distributions, forJ = 3, 6, 8, and 10 items. Figures 2a, 2c, 3a, and 3c
show that the latent structure ofP1(θ) was essentially constant (.5), and thatPj (θ) for j > 1 are
identical. Below the horizontal axis in each figure are the latent distributionsf (θ), f (θ |S = 1), and
f (θ |S = J − 1). Note thatf (θ) is represented by a normal curve for clarity [f (θ) was actually a
discrete distribution withθ = −2, −1, 0, 1, 2, and withf (θ) proportional to(1/

√
2π)×exp(−θ2/2)

for these five values].
Figures 2b, 2d, 3b, and 3d show the manifest structure of the model. Below the horizontal axis

is the distribution ofS, and above the axis are the curves forP [X1 = 1|S = s] (thin nonmonotone
line) andP [X1 = 1|S(−j) = s]. As J increases, it becomes clear why the decreasingness of
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Figure 2
Violation of MM for S With Extreme Differences in Discrimination (3 and 6 2PLM Items)

a. Latent Structure, 3 Items b. Manifest Structure, 3 Items (rt (−1) = 0.0; rt = .49)

c. Latent Structure, 6 Items d. Manifest Structure, 6 Items (rt (−1) = 0.0; rt = .24)
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Figure 3
Violation of MM for S With Extreme Differences in Discrimination (8 and 10 2PLM Items)

a. Latent Structure, 8 Items b. Manifest Structure, 8 Items (rt (−1) = 0.0; rt = .18)

c. Latent Structure, 10 Items d. Manifest Structure, 10 Items (rt (−1) = .36; rt = .14)

 
©

 2000 S
A

G
E

 P
u

b
licatio

n
s. A

ll rig
h

ts reserved
. N

o
t fo

r co
m

m
ercial u

se o
r u

n
au

th
o

rized
 d

istrib
u

tio
n

.
 at U

niversiteit van T
ilburg on A

pril 25, 2008 
http://apm

.sagepub.com
D

ow
nloaded from

 

http://apm.sagepub.com


B. W. JUNKER and K. SIJTSMA
LATENT AND MANIFEST MONOTONICITY IN IRT MODELS 75

P [X1 = 1|S = s, θ ] in θ for eachs under the2PLM with a1 fixed andaj = a2 for all j > 2 can lead
to nonmonotonicity inP [X1 = 1|S = s] and why the nonmonotonicities can increase. For example,
Figure 3a shows that whenθ was much less than 0,Pj (θ) ≈ 0 for all items exceptj = 1. For this
item,P1(θ) was still approximately .5. Thus, whenS = 1 andθ is low, it is very likely thatX1 = 1,
i.e., P [X1 = 1|S = 1, θ ] ≈ 1. However, whenθ is much greater than 0,Pj (θ) ≈ 1 for j > 1,
andP1(θ) is still approximately .5. Thus, whenS = J − 1, it is very likely that all item responses
exceptX1 equal 1, i.e.,P [X1 = 1|S = J − 1, θ ] ≈ 0. Moreover, the conditional distribution
f (θ |S = 1) concentrates whereP [X1 = 1|S = 1, θ ] ≈ 1, andf (θ |S = J − 1) concentrates where
P [X1 = 1|S = J − 1, θ ] ≈ 0. This leads to the manifest valuesP [X1 = 1|S = 1] ≈ 1 and
P [X1 = 1|S = J − 1] ≈ 0 in Figure 3b.

The observed score distributionP [S = s] in Figure 3b shows that a large proportion of examinees
was actually located at these points of nonmonotonicity of the item-total regression. By comparing
Figures 2c through 3d, it can be seen that the conditional distributionsf (θ |S = 1)andf (θ |S = J−1)

became more separated asJ increased, which increased nonmonotonicity. Although the curve for
P [X1 = 1|S(−j) = s] was always monotone, it can be much flatter overall thanP [X1 = 1|S = s].
This is especially true near the modes of the total score distribution, which leads to a lowerrt (−1)

thanrt .
A less extreme 2PLM example.This case was defined witha1 = 1 andaj = 3 for all j > 1.

The item difficulties wereb1 = 0, andbj , j > 1, uniformly spaced between−1 and 1. Theθ
distribution was the same as in the previous example. The latent and manifest structures for this
example, using the same numbers of items, are shown in Figures 4 and 5.

For smallerJ , (Figure 4) there were no violations of nondecreasingness forP [X1 = 1|S = s].
However, whenJ increased, the conditional distributionsf (θ |S = 1) andf (θ |S = J − 1) pushed
outward into a region whereP [X1 = 1|S = 1, θ ] andP [X1 = 1|S = J − 1, θ ] strongly violated
nondecreasingness. It could be argued that, asJ increases, the conditional distributions will
continue to push out past the region whereP [X1 = 1|S = 1, θ ] andP [X1 = 1|S = J −1, θ ] exhibit
strong reverse monotonicity. Once past this region, these quantities would again be comparable
in size. In this case, conditioning onS = k andS = j − k for suitably selectedk could yield
the same reverse monotonicity inP [X1 = 1|S = k, θ ] andP [X1 = 1|S = J − k, θ ], as well as
P [X1 = 1|S = k] andP [X1 = 1|S = J − k]. The item-rest and item-total correlations again gave
few hints about the monotonicity of the corresponding regressions.

Noncrossing IRFs. Snijders’ example resulted in a specific instance in whichP [X1 = 1|S = s]
failed to be monotone, although theIRFs did not cross. This behavior can be replicated in logistic
models as well. Assume thatf (θ) is distributed the same as above, and theIRFs are the2PLM, where
a1 = .25 andb1 = 2, and forj > 1, aj = 2, wherebj is equally spaced between−3.1 and−2.9.
These curves do not intersect within the range ofθs to whichf (θ) assigns positive probability.

Figure 6a verifies that theIRFs do not cross. Figure 6b shows a nonmonotonicity inP [X1 =
1|S = s] to the left of the major mode of theS distribution. The large disparity between the item-rest
correlation and the item-total correlation in this example is entirely due to the interaction of a large
increase in the item-total relationship froms = 9 to s = 10and the fact that most of the total score
distribution is concentrated on these two values ofs.

Discussion

Dichotomous Items

For dichotomous items, there are three problems with using the item-total regression under the
UMIRT model. First,MM for the total score might fail in realistic situations, e.g., Figures 4 and
5. The degree of decreasingness in the item-total regression seems to depend on the difference
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Figure 4
No Violation of MM for S With Less Extreme Item Parameters (3 and 6 2PLM Items)

a. Latent Structure, 3 Items b. Manifest Structure, 3 Items (rt (−1) = .31; rt = .76)

c. Latent Structure, 6 Items d. Manifest Structure, 6 Items (rt (−1) = .37; rt = .59)
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Figure 5
Violation of MM for S with Less Extreme Item Parameters (8 and 10 2PLM Items)

a. Latent Structure, 8 Items b. Manifest Structure, 8 Items (rt (−1) = .38; rt = .54)

c. Latent Structure, 10 Items d. Manifest Structure, 10 Items (rt (−1) = .38; rt = .52)

 
©

 2000 S
A

G
E

 P
u

b
licatio

n
s. A

ll rig
h

ts reserved
. N

o
t fo

r co
m

m
ercial u

se o
r u

n
au

th
o

rized
 d

istrib
u

tio
n

.
 at U

niversiteit van T
ilburg on A

pril 25, 2008 
http://apm

.sagepub.com
D

ow
nloaded from

 

http://apm.sagepub.com


Volume 24 Number 1 March 2000
78 APPLIED PSYCHOLOGICAL MEASUREMENT

Figure 6
Violation of MM for S for 10 2PLM Items With Noncrossing IRFs in the Rangeθ ∈ [−2,2]

a. Latent Structure

b. Manifest Structure (rt (−1) = .03; rt = .71)

between the slope of the selected item and the slopes of the other items; flatter slopes for the selected
item lead to greater nonmonotonicities.

Second, the nonmonotonicities can persist as the number of test items(J ) increases. C. Lewis
(personal communication, July 8, 1998) conjectured that the graph of the item-total regression
converges pointwise to the graph of the item true-score regression (where true score is expected
total score), asJ increases. If Lewis’s conjecture is correct, the examples presented here show that
the convergence is not likely to be uniform in the total or proportion-correct scores. Examples not
reported here suggest that the situation does not improve when the five-point approximation to a
normalθ distribution is replaced by a more nearly continuous approximation, e.g., with 200 or 500
quadrature points.

Third, the item-total regression can give very misleading results. In particular, items can be
rejected although they have properties that do not contradict theIRT model used to build the test.
Such false negatives can be avoided by using item-rest regressions. (There is no evidence yet
regarding the possibility of false positives for the item-total regression.)
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Despite these problems, item-total regressions continue to be frequently used for evaluating
the monotonicity ofPj (θ). The present results indicate that item-rest regressions should be used
instead. Not only are they guaranteed to be nondecreasing when all theIRFs are nondecreasing,
but they will also be sensitive to some violations of the model inP1(θ) if all items exceptX1 are
known to satisfy theUMIRT model. This sensitivity provides some justification for procedures such
as those of Wainer (1983) and Wainer, Wadkins & Rogers (1984), who studied the probabilities of
distractors of a defective item conditional on number correct for the remaining items.

Polytomous Items

B. T. Hemker (personal communication, July 7, 1997) concluded that the nonparametric graded
response model (np-GRM) does not imply nondecreasing item-rest regressions. For0 ≤ θ ≤ 1 and
two items (X1 andX2) with three answer categories (0, 1, and 2) and identicalISRFs,

P(Xj ≥ 1|θ) =
{

3θ, 0 ≤ θ ≤ 1
4

2
3 + 1

3θ, 1
4 ≤ θ ≤ 1

(25)

and

P(Xj ≥ 2|θ) =




2θ, 0 ≤ θ ≤ 1
4

1
4 + θ, 1

4 < θ ≤ 1
2

1
2 + 1

2θ, 1
2 ≤ θ ≤ 1 .

(26)

TheseISRFs are nondecreasing inθ ; hence, this is aNGRM. Let θ have the discrete distribution on
{.25, .5, 1} with P [θ = .25] = P [θ = .5] = .25, andP [θ = 1] = .5.

Two different definitions of item-rest regression can be considered for the np-GRM. Manifest
ISRFs areP [Xj ≥ x|S(−j) = s] where

S(−j) =
J∑

i=1

Xi − Xj , (27)

and the simpler manifestIRFs areE[Xj |S(−j) = s].
For the manifestISRFP [X1 ≥ x|S(−1) = s] = P [X1 ≥ x|X2 = s],

P(X1 ≥ 1|X2 = s) =




0.7833, s = 0

0.7708, s = 1

0.9231, s = 2

(28)

and

P(X1 ≥ 2|X2 = s) =




0.6000, s = 0

0.5625, s = 1

0.8654, s = 2

. (29)

Both manifestISRFs fail to be nondecreasing ins.
For the manifestIRFs, E[X1|S(−1) = s] = E[X1|X2 = s] andE[X1|X2] = 1(P [X1 ≥ 1|X2] −

P [X1 ≥ 2|X2]) + 2P [X1 ≥ 2|X2] = P [X1 ≥ 1|X2] + P [X1 ≥ 2|X2], so that

E(X1|X2 = 0) = 0.7833+ 0.6000= 1.3833, (30)
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E(X1|X2 = 1) = 0.7708+ 0.5625= 1.3333, (31)

and

E(X1|X2 = 2) = 0.9321+ 0.8654= 1.7975, (32)

so thatE[X1|X2 = s] also fails to be nondecreasing ins.
Part of the problem is thatSOL does not hold for manyUMIRT models for polytomous responses

(Hemker et al., 1997). Indeed, the example showed thatP [θ ≥ .5|X2 = s] was .4, .25, and .85 for
s = 0, 1, and 2, respectively.

Thus, for polytomous item response models the first?≤ in an adaptation of Equation 3 for
polytomous items (not presented here) also fails, in general. It is not known whether there is
a simple and general unidimensional summaryR of polytomous item responses, one for which
P [θc|R = r] can be nondecreasing inr when Equation 1 holds.

It is always possible, however, to reduce polytomous test data with ordered categories to di-
chotomous test data. Each polytomously scoredXj is replaced with a dichotomous variableYjcj

that is equal to 1 whenXj > cj and 0 otherwise. For every choice of the sequence of thresholds
cj (j = 1, 2, . . . , J ), this will produce a set of dichotomous item responses that satisfies Equation
1 (as long as the polytomous responses also satisfied it; e.g., Junker, 1991; Junker & Ellis, 1997;
Samejima, 1969; Scheiblechner, 1995). Thus for each such dichotomization, the monotonicity
of P [Yjcj = 1|S(−j,c) = s] can be examined, whereS(−j,c) is the rest score corresponding to the
sequencec = (c1, c2, . . . , cJ ) and itemj . This leads to a large number of monotonicity conditions
to analyze, but many should be stochastically dependent on one another. Thus, a careful search
strategy could quickly find cases in which monotonicity might be violated.
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