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LINEAR COMPLEMENTARITY SYSTEMS∗

W. P. M. H. HEEMELS† , J. M. SCHUMACHER‡ , AND S. WEILAND§

SIAM J. APPL. MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 60, No. 4, pp. 1234–1269

Abstract. We introduce a new class of dynamical systems called “linear complementarity
systems.” The time evolution of these systems consists of a series of continuous phases separated by
“events” which cause a change in dynamics and possibly a jump in the state vector. The occurrence
of events is governed by certain inequalities similar to those appearing in the linear complementarity
problem of mathematical programming. The framework we describe is suitable for certain situations
in which both differential equations and inequalities play a role; for instance, in mechanics, electrical
networks, piecewise linear systems, and dynamic optimization. We present a precise definition of the
solution concept of linear complementarity systems and give sufficient conditions for existence and
uniqueness of solutions.

Key words. hybrid systems, differential/algebraic equations, inequality constraints, comple-
mentarity problem
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1. Introduction. In many technical and economic applications one encounters
systems of differential equations and inequalities. For a quick roundup of examples,
one may think of the following: motion of rigid bodies subject to unilateral con-
straints; electrical networks with ideal diodes; optimal control problems with inequal-
ity constraints in the states and/or controls; dynamical systems with piecewise linear
characteristics, such as saturation functions, deadzones, relays, Coulomb friction, and
one-sided springs; projected dynamical systems; dynamic versions of linear and non-
linear programming problems; and dynamic Walrasian economies. It has to be noted
that there is considerable inherent complexity in systems of differential equations and
inequalities, since nonsmooth trajectories and possibly jumps have to be taken into
account. As a result of this, even basic issues such as existence and uniqueness of
solutions are difficult to settle. Given the wealth of possible applications, however, it
is of interest to overcome these difficulties.

In the literature one can find many strands of research dealing with dynamics
subject to inequality constraints, some mainly motivated by problems in mechanics,
others more closely connected to operations research and economics. The framework
of differential inclusions (see, for instance, [2]) gives a general setting for the study
of systems in which both differential equations and inequalities play a role. In this
paper, however, we shall be interested in more specific dynamical systems for which
uniqueness of solutions holds. Although, of course, one can get unique solutions from
a differential inclusion by imposing suitable side constraints, we prefer to think of the
systems considered in this paper as systems that switch between modes on the basis of
certain inequality constraints and that behave within each mode as ordinary differen-
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tial systems rather than as differential inclusions. This “multimodal” way of thinking
is natural in a number of applications: in the study of Coulomb friction, one has the
transition between stick mode and slip mode; in the study of electrical networks with
ideal diodes, there is the transition between the conducting and the blocking mode
of each diode; and in the context of dynamic optimization, one has mode transitions
when an inactive constraint becomes active, or vice versa. A similar point of view may
be found in the literature on the so-called “hybrid systems” encompassing both con-
tinuous and discrete dynamics, which have recently been a popular subject of study
both for computer scientists and for control theorists (see, for instance, [1, 27]).

Among the studies that have been made of dynamical systems exhibiting some
sort of switching behavior, one may mention a number that have been inspired by
applications in mechanics [6, 21, 22, 23, 25, 30, 26, 31, 32, 33], in electrical engineering
[4, 20], and in operations research [11, 24], as well as general studies such as [12].
The work in this paper is more general than most of the cited studies in the sense
that we do not a priori impose conditions on the “index” of the constraints. (The
index measures the number of actual constraints following from a given algebraic
constraint within the context of a given set of differential equations; the term comes
from numerical analysis; see, for instance, [5].) Our treatment is also general in that
we allow an arbitrary finite number of state variables and an arbitrary finite number
of constraints. On the other hand, our work is more restricted, since we consider only
linear differential equations; in conjunction with the switching rules, the systems that
we study are therefore piecewise linear dynamical systems.

As a consequence of the fact that we are looking at systems of arbitrary index,
we have to take into account the possibility of solutions containing impulses. The
occurrence of such impulses is state-dependent and in this sense our situation is dif-
ferent from the one in [3] where impulses are externally imposed rather than generated
by the system itself. One of the main reasons for restricting the development in this
paper to linear dynamics within each mode is the fact that this allows us to treat
impulses within a standard distributional framework. Earlier works in the research
program that have led to the current paper [28, 29] have used a nonlinear framework
which made it difficult to treat impulses, so that a complete specification of dynamics
on a general level could in fact not be given. Without a complete solution concept,
issues of existence and uniqueness of solutions can be studied only partially. The con-
tribution of this paper is as follows: (i) It gives a complete definition of what is to
be understood by a solution of a linear complementarity system; (ii) it gives suffi-
cient conditions for well-posedness of linear complementarity systems, in the sense of
existence and uniqueness of solutions; (iii) it presents an effective procedure for gen-
erating solutions to linear complementarity systems. In addition to this, we establish
an explicit connection to the literature on mechanical systems that are subject to
mode-switching by showing that our formulation agrees with the one of Moreau [23]
(see also [6, 22]) for the class of systems covered by both formulations, namely, linear
mechanical systems.

The paper is organized as follows. We start with an example to motivate the
ingredients needed for defining a solution concept for complementarity systems. To
introduce the notion of solution, some mathematical preliminaries as presented in
section 3 are required. A definition of the class of linear complementarity systems
with its solution concept is given in section 4. The definition relies on a mapping
which assigns a “next mode” to each continuous state; several alternative ways of
constructing this mapping are discussed in section 5. Sufficient conditions for local
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existence and uniqueness of solutions follow in section 6. After that, we present a
computational example to illustrate the construction of solutions from the definition.
In section 8, we establish the connection with the sweeping process formulation of
Moreau. Finally, conclusions follow in section 9.

In this paper, the following notational conventions will be in force. R denotes
the real numbers, R+ the nonnegative real numbers, and N := {0, 1, 2, . . .}. For a
positive integer l, l̄ denotes the set {1, 2, . . . , l}. If a is a (column) vector with k real
components, we write a ∈ R

k and denote the ith component by ai. For two vectors
a, b ∈ R

k, the notation a⊥b means that for all i ∈ k̄ either ai = 0 or bi = 0. Given
two vectors a ∈ R

k and b ∈ R
l, then col(a, b) denotes the vector in R

k+l that arises
from stacking a over b. M ∈ R

m×n means that M is a real matrix with dimensions
m × n. M� is the transpose of the matrix M . The kernel of M is denoted by Ker
M and the image by Im M . Given M ∈ R

k×l and two subsets I ⊆ k̄ and J ⊆ l̄, the
(I, J)-submatrix of M is defined as MIJ := (mij)i∈I,j∈J . In case J = l̄, we also write
MI• and if I = k̄, we write M•J . For a vector a, aI := (ai)i∈I . The diagonal matrix
with diagonal entries a1, . . . , ak is denoted by diag(a1, . . . , ak).

The field of rational functions in one indeterminate is denoted by R(s). Rational
vector functions with k components and rational matrices with dimensions m×n are
denoted by R

k(s) and R
m×n(s), respectively. For reasons of clarity, we shall system-

atically use a notation in which vectors over R(s) are written with an argument s to
distinguish between the vector u ∈ R

k and the rational vector u(s) ∈ R
k(s). A rational

matrix is called proper if for all entries the degree of the numerator is smaller than
or equal to the degree of the denominator. A rational matrix is called biproper if it
is square, proper, and has a proper inverse. If two rational vectors u(s), y(s) ∈ R

k(s)
satisfy that for all i ∈ k̄ either ui(s) = 0 or yi(s) = 0, we write u(s)⊥y(s).

The set C∞(R,R) denotes the set of smooth functions, i.e., all functions from R to
R that are arbitrarily often differentiable. For a smooth function u the ith derivative
is denoted by u(i).

A vector u ∈ R
k is called nonnegative, and we write u ≥ 0 if ui ≥ 0, i ∈ k̄, and

positive (u > 0) if ui > 0, i ∈ k̄. If a vector u is not nonnegative, we write u �≥ 0. A
sequence of scalars (u1, u2, . . . , ur) is called lexicographically nonnegative, written as
(u1, u2, . . . , ur) 	 0, if (u1, u2, . . . , ur) = (0, 0, . . . , 0) or uj > 0, where j := min{p ∈
r̄ | up �= 0}. A sequence of scalars is called lexicographically positive, denoted by
(u1, u2, . . . , ur) � 0, if (u1, u2, . . . , ur) 	 0 and (u1, u2, . . . , ur) �= (0, 0, . . . , 0). For
a sequence of vectors (u1, u2, . . . , ur) with ui ∈ R

k, we write (u1, u2, . . . , ur) 	 0
when (u1

i , u
2
i , . . . , u

r
i ) 	 0 for all i ∈ k̄. Likewise, we write (u1, u2, . . . , ur) � 0 when

(u1
i , u

2
i , . . . , u

r
i ) � 0 for all i ∈ k̄.

For sets A and B, A \ B := {x ∈ A | x �∈ B} and P(A) denotes the power
set of A, i.e., the collection of all subsets of A. For two subspaces V, T of R

n, the
notation V ⊕ T = R

n means that V and T form a direct sum decomposition of R
n,

i.e., V + T := {v + t | v ∈ V, t ∈ T} = R
n and V ∩ T = {0}.

2. Example. Before specifying the class of linear complementarity systems, we
illustrate some of the aspects that play a role in the evolution of such systems with
an example of two carts connected by a spring (used also in [28]). The left cart
is attached to a wall by a spring. The motion of the left cart is constrained by a
completely inelastic stop. The system is depicted in Figure 2.1.

For simplicity, the masses of the carts and the spring constants are set equal to
1. The stop is placed at the equilibrium position of the left cart. By x1, x2 we denote
the deviations of the left and right cart, respectively, from their equilibrium positions
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x1x1 x2x2

Fig. 2.1. Two-carts system.

and x3, x4 are the velocities of the left and right cart, respectively. By u, we denote
the reaction force exerted by the stop. Furthermore, the variable y is set equal to x1.
Simple mechanical laws lead to the dynamical relations

ẋ1(t) = x3(t),
ẋ2(t) = x4(t),
ẋ3(t) = −2x1(t) + x2(t) + u(t),
ẋ4(t) = x1(t) − x2(t),
y(t) := x1(t).

(2.1)

To model the stop in this setting, the following reasoning applies. The variable
y(t) = x1(t) should be nonnegative because it is the position of the left cart with
respect to the stop. The force exerted by the stop can act only in the positive direction
implying that u(t) should be nonnegative. If the left cart is not at the stop at time t
(y(t) > 0), the reaction force vanishes at time t, i.e., u(t) = 0. Similarly, if u(t) > 0,
the cart must necessarily be at the stop, i.e., y(t) = 0. This is expressed by the
conditions

0 ≤ y(t)⊥u(t) ≥ 0.(2.2)

The system can be represented by two modes, depending on whether or not the stop is
active. We distinguish between the unconstrained mode (u(t) = 0) and the constrained
mode (y(t) = 0). The dynamics of these modes are given by the following differential
and algebraic equations (DAEs):

unconstrained constrained

ẋ1(t) = x3(t) ẋ1(t) = x3(t)

ẋ2(t) = x4(t) ẋ2(t) = x4(t)

ẋ3(t) = −2x1(t) + x2(t) ẋ3(t) = −2x1(t) + x2(t) + u(t)

ẋ4(t) = x1(t) + x2(t) ẋ4(t) = x1(t) + x2(t)

u(t) = 0 y(t) = x1(t) = 0.

When the system is represented by either of these modes, the triple (u, x, y) is
given by the corresponding dynamics as long as the following inequalities in (2.2):

unconstrained constrained

y(t) ≥ 0 u(t) ≥ 0

are satisfied. A mode change is triggered by violation of one of these inequalities. The
mode transitions that are possible for the two-carts systems are described below.
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• Unconstrained → constrained. The inequality y(t) ≥ 0 tends to be vi-
olated at a time instant t = τ . The left cart hits the stop and stays there.
The velocity of the left cart is reduced to zero instantaneously at the time of
impact: the kinetic energy of the left cart is totally absorbed by the stop due
to a purely inelastic collision. A state for which this happens is, for instance,
x(τ) = (0,−1,−1, 0)�.

• Constrained → unconstrained. The inequality u(t) ≥ 0 tends to be
violated at t = τ . The right cart is located at or moving to the right of its
equilibrium position, so the spring between the carts is stretched and pulls the
left cart away from the stop. This happens, for example, if x(τ) = (0, 0, 0, 1)�.

• Unconstrained → unconstrained with re-initialization according to
constrained mode. The inequality y(t) ≥ 0 tends to be violated at t = τ .
As an example, consider x(τ) = (0, 1,−1, 0)�. At the time of impact, the
velocity of the left cart is reduced to zero just as in the first case. Hence, a
state jump (re-initialization) to (0, 1, 0, 0)� occurs. The right cart is at the
right of its equilibrium position and pulls the left cart away from the stop.
Stated differently, from (0, 1, 0, 0)� smooth continuation in the unconstrained
mode is possible.

This last transition is a special one in the sense that, first, the constrained mode is
active, causing the corresponding state jump. After the jump, no smooth continuation
is possible in the constrained mode resulting in a second mode change back to the
unconstrained mode.

From state x(τ) = (0,−1,−1, 0)�, we can enter the constrained mode by starting
with an instantaneous jump to x(τ+) = (0,−1, 0, 0)�. This jump can be modeled as
the result of a (Dirac) pulse δ exerted by the stop. In fact, u = δ results in the state
jump x(τ+)−x(τ) = (0, 0, 1, 0)�. This motivates the use of distributional theory as a
suitable mathematical framework for describing physical phenomena such as collisions
with discontinuities in the state vector.

To summarize, the motion of the carts is governed by two systems of DAEs called
the constrained mode and the unconstrained mode. A change of mode is triggered by
violation of certain inequalities corresponding to the current mode. The time instants
at which this occurs are called “event times.” At an event time, the system will switch
to a new mode. A mode transition often calls for a state jump or re-initialization. In
the example, velocity jumps occur when the left cart arrives at the stop with negative
velocity. In this paper, the above dynamics will be formalized for the complete class
of linear complementarity systems, and special attention will be paid to the mode
selection problem and well-posedness issues. However, first we recall some facts con-
cerning systems of linear differential and algebraic equations, such as those appearing
in the constrained and unconstrained mode descriptions.

3. Mathematical preliminaries. We consider a linear differential/algebraic
system of the form

ẋ(t) = Kx(t) + Lu(t),(3.1a)

0 = Mx(t) +Nu(t).(3.1b)

The time arguments will often be suppressed for brevity. Throughout this section,
x(t) ∈ R

n and u(t) ∈ R
m. The system parameters K, L, M, and N are constant

matrices of dimensions n× n, n×m, r × n, and r ×m, respectively.
Definition 3.1. A state x0 is said to be consistent for (K,L,M,N) if there

exist smooth functions u and x such that x(0) = x0 and (3.1) is satisfied. The set of
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all consistent states for (K,L,M,N) is denoted by V (K,L,M,N) and is called the
consistent subspace.

The following sequence of subspaces converges in at most n (dimension of state)
steps to V = V (K,L,M,N) (for a proof, see [14]):

V0 = R
n,

Vi+1 = {x ∈ R
n | ∃u ∈ R

m such that Kx+ Lu ∈ Vi, Mx+Nu = 0}.(3.2)

Definition 3.2. The quadruple (K,L,M,N) is called autonomous if for every
consistent state x0 the system (3.1) has a unique solution (x, u).

The system (3.1) is autonomous if the full-column-rank condition

Ker

[
L
N

]
= {0}(3.3)

holds together with

V (K,L,M,N) ∩ T (K,L,M,N) = {0},(3.4)

where T (K,L,M,N) is the subspace that is obtained as the limit of the sequence

T0 = {0},
Ti+1 = {x ∈ R

n | ∃u ∈ R
m, ∃x̄ ∈ Ti such that x = Kx̄+ Lu,Mx̄+Nu = 0}.(3.5)

This sequence converges in maximally n (dimension of state) steps (proof can be
found in [14]). The subspace T = T (K,L,M,N) can be interpreted as the jump space
associated to (K,L,M,N), i.e., the space along which fast motions will occur that
take an inconsistent initial state instantaneously to a point in the consistent subspace
V .

To formalize the interpretation of T as a jump space, we introduce the class of
impulsive-smooth distributions as studied by Hautus and Silverman [14]. The general
form of an impulsive-smooth distribution u (note the different font used for distribu-
tions) is

u =

l∑
i=0

u−iδ(i)

︸ ︷︷ ︸
uimp

+ureg,(3.6)

where δ = δ(0) denotes the delta distribution with support at zero, δ(r) is its rth
distributional derivative, u0, u−1, . . . , u−l are coefficients in R, and ureg is a distri-
bution that can be identified with the restriction to [0,∞) of some smooth function.
The regular part of an impulsive-smooth distribution u is denoted by ureg and its
impulsive part by uimp. The class of impulsive-smooth distributions will be denoted
by Cimp. For an element u of Cimp of the form (3.6), we write u(0+) for the limit
value limt↓0 ureg(t). Having introduced the class Cimp, we can replace the system of
equations (3.1) by its distributional version

ẋ = Kx + Lu + x0δ,
0 = Mx +Nu

(3.7)

in which the initial condition x0 appears explicitly, and we can look for a solution of
(3.7) in the class of vector-valued impulsive-smooth distributions. In [14] it is shown
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that under the conditions (3.3) and (3.4) there exists a unique solution (u, x) ∈ Cm+n
imp

to (3.7) for all x0 ∈ V +T ; moreover, the solution is such that x(0+) is equal to PTV x0,
the projection of x0 onto V along the jump space T . In fact, x(0+) depends only on

the impulsive part of u: if uimp =
∑l

i=0 u
−iδ(i), then

x(0+) = x0 +

l∑
i=0

KiLu−i.(3.8)

Lemma 3.3. Consider the system (3.1) and suppose that the number of inputs (m)
equals the number of constraints (r). Then the following statements are equivalent:

(1) (K,L,M,N) is autonomous.
(2) The system (3.7) admits a unique impulsive-smooth distribution for each ini-

tial condition.
(3) V (K,L,M,N) ⊕ T (K,L,M,N) = R

n and Ker
[

L
N

]
= {0}.

(4) G(s) := M(sI −K)−1L+N is invertible as a rational matrix.
Proof. The implication 2 ⇒ 1 follows from the definition of an autonomous

system. The quadruple (K,L,M,N) is autonomous if and only if the system Σ : ẋ =
Kx+Lu, y = Mx+Nu is left invertible in the sense of [14]. In [14], it is proven that
the statements

• the system Σ is left invertible,
• V (K,L,M,N) ∩ T (K,L,M,N) = {0} and Ker

[
L
N

]
= {0},

• G(s) is left invertible
are equivalent. Since G(s) is assumed to be square (m = r), left invertibility is the
same as invertibility. Hence, 1 ⇒ 4. According to [14, Thm. 3.24], invertibility of G(s)
implies additionally that V (K,L,M,N) ⊕ T (K,L,M,N) = R

n. This proves 4 ⇒ 3.
Finally, 3 ⇒ 2 is a consequence of the fact that the assumptions (3.3)–(3.4) imply
that there is a unique solution (u, x) ∈ Cm+n

imp to (3.7) for all x0 ∈ V +T, as mentioned
earlier. Since V + T is equal to R

n, this implies 2.
The systems studied in this paper are described by standard state space equations

of linear systems together with complementarity conditions, as in the complementarity
problems of mathematical programming. Therefore some concepts from complemen-
tarity theory will be recalled briefly. The linear complementarity problem (LCP) [7]
is defined as follows.

Given a matrix M ∈ R
k×k and q ∈ R

k, find u, y ∈ R
k such that

y = q +Mu,(3.9)

0 ≤ y ⊥ u ≥ 0.(3.10)

This problem is denoted by LCP(q,M).
Let a matrix M of size k×k and two subsets I and J of k̄ of the same cardinality

be given. The (I, J)-minor of M is the determinant of the square matrix MIJ :=
(mij)i∈I,j∈J . The (I, I)-minors are also known as the principal minors. M is called a
P-matrix if all principal minors are positive. A square matrix M is said to be positive
definite if x�Mx > 0 for all nonzero x ∈ R

n. Note that a positive definite matrix is
not necessarily symmetric according to this definition.

We state the following results.
Theorem 3.4. For given M, the problem LCP(q,M) has a unique solution for

all vectors q if and only if M is a P-matrix.
Proof. For the proof see [7, Thm. 3.3.7].
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Theorem 3.5. A positive definite matrix is a P-matrix.
Proof. For the proof see [7, Thms. 3.1.6 and 3.3.7].

4. Linear complementarity systems. In this section, we introduce linear
complementarity systems (LCS) and formulate the notion of a solution for such sys-
tems.

An LCS is governed by the simultaneous equations

ẋ(t) = Ax(t) +Bu(t),(4.1a)

y(t) = Cx(t) +Du(t),(4.1b)

0 ≤ y(t) ⊥ u(t) ≥ 0.(4.1c)

The notation in (4.1c) is consistent with the notation used in complementarity prob-
lems in mathematical programming (see the formulation of the LCP in section 3).
In this section, we will describe how the relations above have to be interpreted to
arrive at a notion of a solution to such a complementarity system. The functions u,
x, and y take values in R

k, R
n, and R

k, respectively; A, B, C, and D are constant
matrices of appropriate dimensions. Note that the dimensions of the variables y(t)
and u(t) are the same. Equation (4.1c) states that for every component i = 1, . . . , k
either ui(t) = 0 or yi(t) = 0. The set of indices for which yi(t) = 0, called the mode
or active index set, may change during the time evolution of the system. The system
may therefore switch from one “operation mode” to another. To define the dynamics
of (4.1) completely, one has to specify when the mode switches occur, what their effect
will be on the state variables, and how a new mode will be selected. We will do this
below, extending earlier treatments in [28] (where only systems with a single con-
straint were considered (k = 1); see also Example 8.3 for a comparison of the mode
selection criteria) and [29], which treated only existence and uniqueness of smooth
continuations while impulsive motions and re-initialization rules were left out of con-
sideration and only a limited discussion of mode selection criteria could be given. A
generalization from smooth to impulsive-smooth continuations is not straightforward.
The interpretation of the inequalities for impulsive motions is not obvious. A require-
ment of such an interpretation will be that it must comply with physical laws for
“real-life” systems included in the class of complementarity systems. In this section,
we will formalize a distributional interpretation of the inequalities that agrees with
Moreau’s re-initialization rules for linear mechanical systems (see section 8).

The system has 2k modes. Each mode is characterized by the active index set
I ⊆ k̄, which indicates that yi = 0, i ∈ I, and ui = 0, i ∈ Ic, where Ic := k̄ \ I =
{i ∈ k̄ | i �∈ I}. For each such mode the laws of motion are given by systems of DAEs.
Specifically, in mode I they are given by


ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),
yi(t) = 0, i ∈ I,
ui(t) = 0, i ∈ Ic,

(4.2)

or equivalently, 


ẋ(t) = Ax(t) +B•IuI(t),
0 = CI•x(t) +DIIuI(t),
yIc(t) = CIc•x(t) +DIcIuI(t),
uIc(t) = 0,
yI(t) = 0.

(4.3)
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The set of consistent states for mode I, denoted by VI , equals V (A,B•I , CI•, DII).
The jump space is given by TI := T (A,B•I , CI•, DII). We call mode I autonomous
if the quadruple (A,B•I , CI•, DII) is autonomous. A standing assumption in the rest
of this paper will be the following.
Assumption 4.1. All modes of the LCS (4.1) are autonomous.
By Lemma 3.3 this is equivalent to saying that GII(s) := CI•(sI−A)−1B•I +DII

is invertible for each index set I ⊆ k̄. Note that the notation GII(s) is consistent in
the sense that GII(s) is the (I, I)-submatrix of the rational matrix G(s) := C(sI −
A)−1B +D. Again by Lemma 3.3, Assumption 4.1 implies that VI ⊕ TI = R

n for all
I ⊆ k̄ and that (4.2) has a unique impulsive-smooth solution for all individual modes
given an arbitrary initial state.

4.1. Continuous phase.
Definition 4.2. Given x0 ∈ R

n and I ⊆ k̄, we denote the unique distributional
solution to (4.2) for mode I and initial state x0 by (ux0,I , xx0,I , yx0,I) ∈ Ck+n+k

imp .
According to [14, Thm. 3.10], there exists a linear mapping FI such that (4.2)

is satisfied for x0 ∈ VI by taking u(t) = FIx(t). Substituting this feedback in (4.2)
transforms the DAE into an ordinary differential equation (ODE). Hence, the regular
part of an impulsive-smooth solution u satisfying (4.2) for a given initial state is a
Bohl function, i.e., ureg is of the form

ureg(t) =

{
0 (t < 0),
EeGtv (t ≥ 0)

(4.4)

for real matrices E, G, and a vector v depending on the initial state and the specific
mode I.

4.2. Re-initialization. If initial states of (4.2) are not consistent, i.e., if x0 �∈ VI ,
then a re-initialization of the initial state will be necessary as pointed out in section 3.
Indeed, if x0 �∈ VI , then the solution to (4.2) will contain a nontrivial impulsive part
resulting in an instantaneous jump or re-initialization of the state variable.

As discussed in section 3, the re-initialized vector xx0,I(0+) is equal to the pro-
jection of x0 onto the consistent subspace VI along the jump space TI . That is,
xx0,I(0+) := PIx0, where PI is the projection operator PTI

VI
.

4.3. Event detection. Suppose that the current time, state, and mode are
τ = 0, x0, and I, respectively. Note that due to the time-invariance of the system
description (4.1), the assumption τ = 0 is just a normalization. The system (4.1) will
be represented by (4.2) for mode I as long as the inequalities in (4.1c),

ux0,I
reg (t) ≥ 0 and yx0,I

reg (t) ≥ 0,(4.5)

are satisfied for t ≥ τ . The function θ : R
n ×P(k̄) → R+ gives the length of the time

interval during which the system evolves in mode I from initial state x0. Note that
we consider only the regular part here. In formal terms, θ is defined as follows.
Definition 4.3. The time-to-next-event function θ : R

n×P(k̄) → R+ is defined
as

θ(x0, I) := inf{t > 0 | ux0,I
reg (t) �≥ 0 or yx0,I

reg (t) �≥ 0},
with the convention inf ∅ = ∞.

The next event time after time τ will be τ + θ(x(τ), I) (by time-invariance) when
the mode and the state at time τ are equal to I and x(τ), respectively. Since smooth
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continuation is not possible in mode I after the event time τ + θ(x(τ), I), a transition
to another mode must occur. An important aspect of the solution concept will be how
to select the new mode.

To illustrate the definition of θ, consider Examples 4.4 and 4.5 of the two-carts
system in the next subsection. In these cases,

θ((0,−1, 0, 0)�, {1}) =
π

2
and θ((0, 1,−1, 0)�, {1}) = 0.

4.4. Mode selection. The mode selection procedure that we propose is based
on the concept of initial solution. Loosely speaking, an initial solution with initial
state x0 is a triple (u, x, y) ∈ Ck+n+k

imp satisfying (4.2) for some mode I and satisfying
(4.5) either on a time interval of positive length or on a time instant at which delta
distributions are active. The idea is that an initial solution is a starting trajectory for
the “global” solution to (4.1).

Example 4.4. Consider the two-carts system with initial state (0,−1, 0, 0)�. The
solution to the constrained mode is u(t) = cos t and y(t) = 0. Hence, it satisfies
(4.2) for I = {1} on [0,∞) and (4.5) on [0, π2 ). Thus, this solution satisfies (4.1) on
[0, π2 ). Therefore, we admit selection of the constrained mode (I = {1}) as smooth
continuation in this mode is possible.

Example 4.5. From the initial state x0 = (0, 1,−1, 0)�, first a state jump occurs
to P{1}x0 = (0, 1, 0, 0)� governed by the laws of the constrained mode, but no smooth
continuation is possible in the constrained mode. Solving the dynamics corresponding
to the constrained mode, i.e., (4.2) with I = {1}, gives (u, x, y) with u = δ + ureg,
where ureg(t) = − cos t. Although (4.5) is not satisfied on a positive time interval,
incorporation of this solution in the definition of initial solutions seems well motivated
on physical grounds. We admit selection of I = {1}.

We now make the notion of initial solution more precise. Given an impulsive-
smooth distribution v ∈ Cimp, we define the leading coefficient of its impulsive part
by

lead(v) :=

{
0 if vimp = 0,

v−l if vimp =
∑l

i=0 v
−iδ(i) with v−l �= 0.

(4.6)

Definition 4.6. We call a scalar-valued impulsive-smooth distribution v ∈ Cimp
initially nonnegative if{

lead(v) > 0 in case vimp �= 0,
there exists an ε > 0 such that for all t ∈ [0, ε) vreg(t) ≥ 0 otherwise.

A vector-valued impulsive-smooth distribution in Ckimp is called initially nonnegative
if each of its components is initially nonnegative. We call an impulsive-smooth distri-
bution u initially positive if u is initially nonnegative and additionally if ui is regular,
then for some ε > 0 ui(t) > 0, t ∈ (0, ε).
Definition 4.7. We call (u, x, y) ∈ Ck+n+k

imp an initial solution to (4.1) with
initial state x0 if

(1) there exists an I ⊆ k̄ such that (u, x, y) satisfies (4.2) with initial state x0 in
the distributional sense; and

(2) u, y are initially nonnegative.
Given a state x0, define the set S(x0) by

S(x0) := {J ⊆ k̄ |there exists an initial solution (u, x, y) to (4.1) with initial state
x0 such that ui = 0, i ∈ Jc, and yi = 0, i ∈ J}.

(4.7)
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The set S(x0) denotes the set of all possible modes in which an initial solution exists
with initial state x0.

Remark 4.8. There may be more than one mode corresponding to a given initial
solution (u, x, y) to (4.1). With the index set I defined by

J := {i ∈ k̄ | ui �= 0},(4.8)

the complementarity conditions require yi = 0 for i ∈ J . Hence, (u, x, y) is an initial
solution in mode J . Consider now the “undetermined index set”

K := {i ∈ k̄ | ui = 0 and yi = 0}.
Any mode J ⊆ I ⊆ J ∪ K may also be selected and the initial solution (u, x, y)
satisfies (4.2) for I = J with initial state x0 as well. As an example consider x0 = 0.
In this case, (u, x, y) = 0 is a possible initial solution. J and K as defined above are
equal to ∅ and k̄, respectively. Consequently, mode I can be chosen arbitrarily, which
means that this initial solution satisfies the mode dynamics for each mode. For a given
initial solution, the freedom in the choice of the mode corresponding to this solution
is exactly characterized by the undetermined index set.

Remark 4.9. If an initial solution (u, x, y) has a nontrivial impulsive part, it
can be the case that the corresponding mode is valid only for the time instant 0
itself. This happens when the smooth part (ureg, yreg) is not initially nonnegative. An
example is provided by Example 4.5, which explains also the special mode transition as
mentioned in section 2. The constrained mode (S((0, 1,−1, 0)�) = {{1}}) is selected
only for the re-initialization of the state (θ((0, 1,−1, 0)�, {1}) = 0). From the re-
initialized state P{1}(0, 1,−1, 0)� = (0, 1, 0, 0)� (see also section 7) a new mode is

selected (S((0, 1, 0, 0)�) = {∅}). In the unconstrained mode a smooth initial solution
exists with the re-initialized state (0, 1, 0, 0)� as initial state.

4.5. Solution concept. We are now in a position to define a solution concept
for (4.1). A point τ ∈ E ⊂ R is called a right-accumulation point of E if there exists a
sequence {τi}i∈N such that τi ∈ E and τi < τ for all i and furthermore, limi→∞ τi = τ .
A left-accumulation point is defined similarly by interchanging “<” with “>.” A set
E ⊂ R is called right-isolated if it contains no left-accumulation points. We call τ ∈ E
isolated if it is not an accumulation point of E .
Definition 4.10. A solution to (4.1) on [0, Te), Te > 0, with initial state x0 is

a quadruple (E , xc, uc, yc), where E , the set of event times, is a right-isolated closed
subset of [0, Te), with empty interior and

xc :(0, Te) \ E→ R
n,

uc :(0, Te) \ E→ R
k,

yc :(0, Te) \ E→ R
k

being arbitrarily often differentiable, that satisfies the following:
(1) 0 ∈ E .
(2) For τ ∈ E , xc(τ+) := limt↓τ,t∈E xc(t) = limi→∞ zi, where {zi}i∈N satisfies{

zi+1 = PIi+1
zi,

Ii+1 ∈ S(zi)
(4.9)

and

z0 :=

{
xc(τ−) := limt↑τ,t∈E xc(t) if τ > 0,
x0 if τ = 0.

(4.10)
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(3) For isolated τ ∈ E there exists an I ∈ S(xc(τ+)) such that

τ∗ := min{t > τ | t ∈ E} = τ + θ(xc(τ+), I)(4.11)

and (uc(t), xc(t), yc(t)) satisfies (4.2) for mode I and for t ∈ (τ, τ∗).
PIi+1 denotes the projection operator corresponding to mode Ii+1 as introduced

in subsection 4.2. The definition requires that the limits in item 2 above and in the
first case of (4.10) exist.

The set E specifies the event times, i.e., the times at which there is a change of
mode. Two successive isolated event times (τ and τ∗) are related by item 3 above in
terms of the time-to-next-event function θ (Definition 4.3). This requirement is in-
cluded in the solution concept to exclude redundant event times. The triple (xc, uc, yc)
denotes the trajectories in the continuous phases of the complementarity system (as
imposed by item 3 above). Item 2 links the continuous phases at the event times by
a series of mode selections and re-initializations. The multiplicity m(τ) of the event
time τ ∈ E is defined as the min{i ∈ N | zi = xc(τ+)}, i.e., the number of re-
initializations needed before smooth continuation (a continuous phase) is possible.
In case m(τ) = ∞, one needs a limiting operation to determine the state just after
the event, xc(τ+). If m(τ) is finite, then only a finite number of mode selections
and re-initializations (projections) in (4.9) are needed. Item 2 specifies also the initial
conditions.

Remark 4.11. In the literature of hybrid dynamical systems it is often assumed
that only a finite number of events exists in a finite time interval. Solutions with
this property are sometimes called non-Zeno solutions. The relaxation of our solution
concept is twofold. First, we allow that there are infinitely many mode switchings and
re-initializations at one time instant. Second, right-accumulation points of event times
are included. We incorporate solutions that could be called right-Zeno to be consistent
with the literature on hybrid systems. As an example of a right-Zeno solution, consider
the example of a bouncing ball with elastic impacts (with restitution coefficient smaller
than one). This system has a right-accumulation point, because the ball is at rest
within a finite time span but after infinitely many bounces. Since our solution concept
complies with mechanical systems with inelastic impacts (see section 8), the bouncing
ball example does not fit in the class of systems that we study, but it indicates that
there exist models of physical systems that require right-Zeno solutions. An example of
a complementarity system allowing right-Zeno solutions is provided by a time reversed
version of a system studied by Filippov [12, p. 116], i.e.,

ẋ1 = −sgn(x1) + 2sgn(x2),(4.12a)

ẋ2 = −2sgn(x1) − sgn(x2),(4.12b)

where “sgn” denotes the signum-function given by sgn(x) = 1 if x > 0 and sgn(x) =
−1 if x < 0. Because this system consists of two relay characteristics, it can be
modeled as a linear complementarity system [16]. Solutions of this piecewise con-
stant systems are spiraling toward the origin, which is an equilibrium point. Since
d
dt (| x1(t) | + | x2(t) |) = −2, solutions reach the origin in finite time. However, solu-
tions cannot arrive at the origin without going through an infinite number of mode
transitions; since these mode switches occur in a finite time interval, the event times
contain a right-accumulation point (i.e., the time that the solution reaches the origin)
after which the solution stays at zero. Left-accumulation points are excluded from
Definition 4.10 due to the requirement that the event set E is right-isolated. However,
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note that the time-reverse of the system (4.12) (which is the original example in [12])
has (infinitely many) left-Zeno solutions corresponding to initial state x0 = 0 in a
generalized solution concept that admits left-accumulation points. Such a generalized
solution concept results in a nondeterministic system and nonuniqueness of solutions,
which is undesirable from the point of view of modeling and simulation. In the solution
concept of Definition 4.10 the only solution emanating from the origin in Filippov’s
original example is the zero solution.

Before we present conditions on the complementarity system to guarantee the
existence and uniqueness of solutions, two algebraic mode selection procedures will
be introduced.

5. Mode selection methods. An essential problem in the definition of the
solution concept and in the time simulation of complementarity systems is to find
the set of possible continuation modes S(x0) for a given state x0. In fact, this is the
construction of a (possibly multivalued) map from the continuous state space R

n to
the discrete space P(k̄). The determination of S(x0) in the previous section is based
on finding all initial solutions and the corresponding modes. In this section, we obtain
two alternative representations of S(x0) that do not require the solution of differential
equations.

5.1. Rational complementarity problem. As noticed in section 4, the solu-
tions to (4.2) are impulsive-smooth distributions whose regular parts are Bohl func-
tions. Such “Bohl distributions” have rational Laplace transforms. Specifically, the
Laplace transform û(s) of u =

∑l
i=0 u

−iδ(i) + ureg with ureg as in (4.4) equals [13]

û(s) =
l∑

i=0

u−isi + E(sI −G)−1v .

Observe that the polynomial part of the Laplace transform corresponds to the impul-
sive part and the strictly proper part to the regular part of the Bohl distribution.
Lemma 5.1. Let v =

∑l
i=0 v

−lδ(i) + vreg ∈ Cimp be a Bohl distribution. The
following statements are equivalent:

(1) v is initially nonnegative.
(2) There exists a σ0 ∈ R such that the Laplace transform v̂(s) satisfies v̂(σ) ≥ 0

for all σ ∈ R, σ ≥ σ0.

(3) The sequence (v−l, v−l+1, . . . , v0, vreg(0), v
(1)
reg(0), v

(2)
reg(0), . . .) is lexicographi-

cally nonnegative.
Also the following statements are equivalent:

(1) v is the zero distribution.
(2) The Laplace transform v̂(s) is the zero function.

(3) The sequence (v−l, v−l+1, . . . , v0, vreg(0), v
(1)
reg(0), v

(2)
reg(0), . . .) is the zero

sequence.
Proof. The proof is evident.
Let (u, x, y) be an initial solution to (4.1) with initial state x0. The Laplace

transforms of u, y, denoted by û(s), ŷ(s), are rational and satisfy

ŷ(s) = C(sI −A)−1x0 + [C(sI −A)−1B +D]û(s) and ŷ(s)⊥û(s)(5.1)

for all i ∈ k̄; moreover, there exists a σ0 ∈ R such that

ŷ(σ) ≥ 0, û(σ) ≥ 0(5.2)
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for all σ ∈ R, σ ≥ σ0. The converse is true as well, so the Laplace transforms are
rational and satisfy (5.1)–(5.2) if and only if the corresponding time functions define
an initial solution to (4.1).

The above observations result in the formulation of the rational complementarity
problem (RCP) (terminology introduced in [29]). Note that the formulation of the RCP
here is a relaxation of the one in [29] because we allow general rational solutions.

Rational complementarity problem (RCP(x0)). Let a system description
(A,B,C,D) and initial state x0 be given. Find rational vector functions y(s) and u(s)
such that the equalities

y(s) = C(sI −A)−1x0 + [C(sI −A)−1B +D]u(s) and y(s)⊥u(s)(5.3)

hold for all i ∈ k̄, and there exists a σ0 ∈ R such that for all σ ≥ σ0 we have

y(σ) ≥ 0, u(σ) ≥ 0.(5.4)

If (u(s), y(s)) is a solution to RCP(x0), any index set J ⊆ k̄ satisfying uJc(s) = 0
and yJ(s) = 0 represents a mode J in which an initial solution exists. Hence, it is easily
observed that due to the one-to-one relation between initial solutions and solutions to
the corresponding RCP the set of possible continuation modes S(x0) must be equal
to SRCP(x0), where

SRCP(x0) = {I ⊆ k̄ |∃(u(s), y(s)) solution to RCP(x0)
such that uIc(s) = 0 and yI(s) = 0}.(5.5)

A second algebraic mode selection method can be derived by using the power
series expansion of the solutions to RCP(x0). This is described next.

5.2. Linear dynamic complementarity problem (LDCP). If (u(s), y(s)) is
a solution to RCP(x0), then it necessarily has to satisfy uIc(s) = 0 and yI(s) = 0 for
some I ⊆ k̄. Consequently,

0 = RI•(s)x0 +GII(s)uI(s),

yIc(s) = RIc•(s)x0 +GIcI(s)uI(s),

where G(s) is the proper transfer function C(sI−A)−1B+D and R(s) is the strictly
proper rational matrix C(sI−A)−1. Note that GII(s) is invertible by Assumption 4.1.
This implies that uI(s) = −G−1

II (s)RI•(s)x0 and

yIc(s) = [RIc•(s) −GIcI(s)G−1
II (s)RI•(s)]x0.

It follows from the representation theory of rational matrix functions (see, for instance,
[18]) that the degree of the polynomial part of G−1

II (s) is at most n. Hence, the
polynomial parts of the rational functions u(s) and y(s) have degree at most n−1. In
terms of time-domain solutions, this means that only derivatives of the Dirac function
up to order n− 1 can appear in initial solutions. Thus we can write

y(s) =

∞∑
i=−n+1

yis−i(5.6)

and likewise for u(s). To translate the nonnegativity conditions (5.4) to the coefficients
of the power series expansion around infinity, we use that y(s) is nonnegative for all
sufficiently large real s, if and only if

(y−n+1, y−n+2, . . .) 	 0(5.7)
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and similarly for u(s).

Given the system description (A,B,C,D), the Markov parameters of the system
are defined by

Hi =

{
D, if i = 0,
CAi−1B if i = 1, 2, . . . .

(5.8)

Note that

G(s) =

∞∑
i=0

His−i.(5.9)

Using the power series expansions of y(s) and u(s) and (5.9), RCP(x0) can be
reformulated as the linear dynamic complementarity problem (LDCP) (terminology
introduced in [29]) by considering the coefficients corresponding to equal powers of
s. The formulation here extends the concept of LDCP as introduced in [29], because
impulsive motions are included.

Linear dynamic complementarity problem (LDCPκ(x0)). Let a system
description (A,B,C,D), an integer κ ≥ −n+ 1, and an initial state x0 be given. Let
Hi, i ≥ 0, be given by (5.8). Find sequences (y−n+1, y−n+2, . . . , yκ) and (u−n+1, u−n+2,
. . . , uκ) such that the equations

yi =

i∑
j=−n+1

Hi−juj if − n+ 1 ≤ i ≤ min(0, κ),(5.10a)

yi = CAi−1x0 +

i∑
j=−n+1

Hi−juj if 1 ≤ i ≤ κ(5.10b)

are satisfied, and for all indices i ∈ k̄ at least one of the following is true:

(y−n+1
i , y−n+2

i , . . . , yκi ) = 0 and (u−n+1
i , u−n+2

i , . . . , uκi ) 	 0,(5.11)

(y−n+1
i , y−n+2

i , . . . , yκi ) 	 0 and (u−n+1
i , u−n+2

i , . . . , uκi ) = 0.(5.12)

LDCP∞(x0) denotes the problem of finding vector sequences (uj)∞j=−n+1 and

(yj)∞j=−n+1 that satisfy LDCPκ(x0) for all κ ≥ −n+ 1.

If (uj)κj=−n+1 and (yj)κj=−n+1 form a solution to LDCPκ(x0), then index sets

J ⊆ k̄ satisfying (5.11), i ∈ J and (5.12), i ∈ Jc represent candidate modes for
selection.

The complete set of candidates for selection, denoted by SκLDCP(x0), is defined by

SκLDCP(x0) := {J ⊆ k̄ |∃(uj)κj=−n+1, (y
j)κj=−n+1 solution to LDCPκ(x0) such that

(5.11) holds for i ∈ J and (5.12) holds for i ∈ Jc}.

Theorem 5.2. Let a system (A,B,C,D) be given. The following statements are
equivalent when Assumption 4.1 holds:

(1) The equations (4.1) have an initial solution for initial state x0.
(2) RCP(x0) has a solution.
(3) LDCP∞(x0) has a solution.



LINEAR COMPLEMENTARITY SYSTEMS 1249

There is a one-to-one correspondence between initial solutions to (4.1), solutions to
RCP(x0), and solutions to LDCP∞(x0). Furthermore, for all x0 ∈ R

n,

S(x0) = SRCP (x0) = S∞
LDCP (x0).

Proof. From the derivation of RCP, it follows that 1 and 2 are equivalent. If
(u(s), y(s)) is a solution to RCP(x0), then the coefficients of the power series expansion
of this solution around infinity form a solution to LDCP∞(x0). Hence, 2 implies 3.

To see that 3 implies 1, suppose that (y−n+1, y−n+2, . . .), (u−n+1, u−n+2, . . .) is a
solution to LDCP∞(x0). Take I ⊆ k̄ such that (5.11) holds for i ∈ I and (5.12) holds

for i ∈ Ic. Define p(0) := x0 +
∑n−1

i=0 A
iBu−i. We first show that p(0) ∈ VI . To this

end, note that yiI = 0 and uiIc = 0 for all i ∈ {−n + 1,−n + 2, . . .}. From (5.10b), it
follows that p(0) satisfies

0 = y1I = CI•p(0) +DIIv(0),
0 = y2I = CI•Ap(0) +DIIv(1) +CI•B•Iv(0),
...

...
0 = yκI = CI•Aκ−1p(0) +DIIv(κ− 1) +CI•B•Iv(κ− 2) + . . .+ CI•Aκ−2B•Iv(0),
...

...
...

(5.13)

where v(i) = ui+1
I , i ≥ 0. Combining algorithm (3.2) and the equations above,

it follows that for l ≥ 0 the states Alp(0) +
∑l−1

i=0A
iB•Iv(l − 1 − i) belong to

Vj(A,B•I , CI•, DII), j ≥ 0. In particular, for l = 0 this means that p(0) ∈
limV j(A,B•I , CI•, DII) = VI . Hence, there exists a smooth solution (ureg, xreg, yreg)
to (4.2) for mode I with initial state x(0) = p(0).

By differentiating (4.2) in time and evaluating the resulting equalities at time

instant 0 for the solution (ureg, xreg, yreg), we observe that ṽ(i) := u
(i)
reg,I(0), i =

0, 1, . . . satisfies (5.13) as well. To show that this implies that ṽi = vi for all i, observe
that due to (5.13) both sequences satisfy the discrete-time analogue of the first two
lines of (4.3), i.e.,

p(i+ 1) = Ap(i) +B•Iv(i), 0 = CI•p(i) +DIIv(i), i = 0, 1, 2, . . . ,(5.14)

with initial state p(0). The difference w(i) := v(i) − ṽ(i) satisfies (5.14) with initial
state 0. We introduce the formal z-transform

w(z) :=

∞∑
i=0

wiz−i.

Using the z-transform GII(z) of the discrete-time system (see, e.g., [19]), we get
0 = GII(z)w(z). The invertibility of GII(z) implies that w(z) = 0 and hence, v(i) =

ṽ(i) for all i ≥ 0, or equivalently, ui+1
I = u

(i)
reg,I(0), i ≥ 0. This also implies that

yi+1 = y
(i)
reg(0), i ≥ 0.

We define u :=
∑n−1

i=0 u
−iδ(i) + ureg, y :=

∑n−1
i=1 y

iδ(i−1) + yreg and let x be the
solution to ẋ = Ax + Bu + x0δ. Obviously, (u, x, y) satisfies 1 in Definition 4.7. We
have only to show that 2 in Definition 4.7 is satisfied. Since (y−n+1, y−n+2, . . .) =

(y−n+1, . . . , y0, y
(0)
reg(0), y

(1)
reg(0), . . .) and (u−n+1, u−n+2, . . .) = (u−n+1, . . . , u0, u

(0)
reg,

u
(1)
reg, . . .) form a solution to LDCP∞(x0), (5.11) or (5.12) is satisfied for all i ∈ k̄.



1250 W. P. M. H. HEEMELS, J. M. SCHUMACHER, AND S. WEILAND

According to Lemma 5.1, this is equivalent to u and y being initially nonnegative.
Consequently (u, x, y) is an initial solution with initial state x0.

The one-to-one correspondence follows easily from the above because solutions to
RCP and initial solutions are related through Laplace transform and its inverse. Solu-
tions to RCP are uniquely transformed to solutions to LDCP by taking the coefficients
of a power series expansion around infinity. Moreover, a solution to LDCP is linked
to an initial solution by setting the derivatives of an initial solution at zero equal to
the LDCP solution as stated above (see also Remark 5.3). The final statement is a
result of the one-to-one correspondence.

Remark 5.3. Note that in the proof of Theorem 5.2, a direct link between initial
solutions and solutions to LDCP∞(x0) is given. If (u, x, y) is an initial solution with

u =
∑n−1

i=0 u
−iδ(i) + ureg and y =

∑n−1
i=0 y

−iδ(i) + yreg for initial state x0, define

ũi := ui, i = −n + 1, . . . , 0, and ũi+1 = u
(i)
reg(0), i ≥ 0, and let ỹi, i ≥ −n + 1, be

defined analogously. Then (ũi)∞i=−n+1, (ỹi)∞i=−n+1 is a solution to LDCP∞(x0). We
shall use the transformations between LDCP∞(x0), RCP(x0), and initial solutions
frequently. The above proof also yields an alternative way of deriving the LDCP:
differentiate the initial solution with incorporation of the impulsive part and evaluate
the results at time instant zero. For smooth continuations, this method can also be
used in the nonlinear case [29, 21].

In the above theorem it is shown that the infinite version of LDCP can be used
to select the correct modes. However, under suitable conditions, already the finite
version LDCPn(x0) selects the right modes, where n is the dimension of the state
variable (see Theorem 6.10 below). In [10], it has been shown that LDCPκ(x0) for
finite κ is a special case of the generalized linear complementarity problem (GLCP)
[8] and the extended linear complementarity problem (ELCP) [9]. In [8], an algorithm
is proposed to find all solutions to GLCP. Such algorithms can be used to efficiently
solve the LDCP.

6. Well-posedness results. Due to the multimodal and nonlinear behavior of
LCS, basic questions like existence and uniqueness of solutions given an initial state
are nontrivial. It is not difficult to find LCS for which no solution exists from certain
initial conditions or for which the solution is not unique (see [28]). In this section we
will derive conditions guaranteeing local well-posedness as defined below.
Definition 6.1. The complementarity system (4.1) is (locally) well-posed if for

each initial state there exists an ε > 0 such that a unique solution on [0, ε) in the
sense of Definition 4.10 exists.

An equivalent way of defining well-posedness is by requiring that for each state
there exists a unique solution on an interval of positive length starting with either a
finite number of jumps or an infinite number of jumps with convergence of the event
states followed by smooth continuation on that interval.
Definition 6.2. Let (A,B,C,D) be a system with Markov parameters Hi, i =

0, 1, 2, . . .. The leading column indices η1, . . . , ηk of the linear system (A,B,C,D) are
defined for j ∈ k̄ as

ηj := inf{i ∈ N | Hi
•j �= 0},

with the convention inf ∅ = ∞. The leading row indices ρ1, . . . , ρk of (A,B,C,D) are
defined for j ∈ k̄ as

ρj := inf{i ∈ N | Hi
j• �= 0}.
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Since we consider only invertible transfer functions (see Assumption 4.1 and Lemma 3.3),
the leading row and column indices are all finite. Due to the Cayley–Hamilton theorem,
we even have ρi ≤ n and ηi ≤ n. The leading row coefficient matrix M(A,B,C,D)
and leading column coefficient matrix N (A,B,C,D) for the system (A,B,C,D) are
defined as

M(A,B,C,D) :=



Hρ1

1•
...
Hρk
k•


 and N (A,B,C,D) := (Hη1

•1 . . . H
ηk
•k ),(6.1)

respectively. We omit the arguments (A,B,C,D) if they are clear from the context.
The main result of this section is stated as follows. Recall that a square matrix is

a p-matrix, if all of its principal minors are strictly positive (see section 3).
Theorem 6.3. If the leading row coefficient matrix M and the leading column

coefficient matrix N are both P-matrices, then the linear complementarity system
(4.1) is well-posed. From each initial condition, at most one state jump occurs before
smooth continuation is possible, i.e., the multiplicity of an event time is at most one.

Remark 6.4. The definition of well-posedness often includes continuous depen-
dence of solutions on initial conditions. Such continuous dependence is not claimed
in the above theorem. An example of a linear complementarity system that displays
discontinuous dependence on initial conditions will be given in section 8.

Remark 6.5. Local existence does not imply “global existence” (i.e., on an a
priori specified interval [0, Te)). There is a problem when the event times have a
right-accumulation point τ∗ < Te and there is no limit for xc(t) as t ↑ τ∗. In fact,
this is the only phenomenon that may prevent a local well-posed system from being
globally well-posed. Note that local uniqueness of solutions and “global uniqueness”
are equivalent using the solution concept of Definition 4.10.

To prove the main result, we first need some auxiliary results.
Lemma 6.6. If the leading row coefficient matrix M has only nonzero princi-

pal minors, then Assumption 4.1 is satisfied, i.e., all modes are autonomous. The
same holds when the leading column coefficient matrix N has only nonzero principal
minors.

Proof. Lemma 3.3 states that it is sufficient to show that GII(s) is invertible
for all I ⊆ k̄. For notational convenience, we assume I = l̄ for some l ∈ k̄. If
M has only nonzero principal minors, then MII is invertible. Hence, GII(s) =
diag(s−ρ1 , . . . , s−ρl)V (s), where V (s) is a biproper matrix, because V (∞) = MII

is invertible [13, Thm. 4.5]. The reasoning is analogous for the case in which N has
only nonzero minors.
Definition 6.7. A state x0 of the complementarity system (4.1) is called regular

if there exists a smooth initial solution with initial state x0.
A state x0 is regular if and only if RCP(x0) has a strictly proper solution or,

equivalently, x0 is regular if and only if LDCP∞(x0) has a solution with u−n+1 =
· · · = u0 = 0.

Under the assumption that the leading row coefficient matrix is a P-matrix, the
following result characterizes the regular states. The result is an extension of a similar
result in [29] which was derived under the additional assumption of “uniform relative
degree” (i.e., ρ1 = ρ2 = · · · = ρk = ρ). In contrast to [29] we restrict ourselves here to
the linear case, but an extension to the nonlinear case is straightforward.
Theorem 6.8. Let a system (A,B,C,D) be given. Suppose that the leading row

coefficient matrix M is a P-matrix. Then x0 ∈ R
n is a regular state if and only if for
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all i ∈ k̄
(Ci•x0, Ci•Ax0, . . . , Ci•Aρi−1x0) 	 0.(6.2)

Moreover, the smooth continuation is unique.

Proof. Note that y
(j)
i (0) = Ci•Ajx0, j = 0, . . . , ρi − 1, i = 1, . . . , k, independently

of the choice of a smooth input u. Hence, the above condition is necessary to guarantee
y(t) ≥ 0, t ∈ [0, ε) for some positive ε.

To prove the converse, we will show that if for all i ∈ k̄ (6.2) holds, the corre-
sponding LDCP∞(x0) has a solution with u−n+1 = · · · = u0 = 0. This is sufficient
to show that a smooth initial solution exists. The idea of the proof is to reduce the
LDCP∞(x0) to a series of LCPs that can all be solved uniquely. This idea originates
in [21].

We will show that LDCP∞(x0) with the additional requirement y−n+1 = · · · =
y0 = 0, u−n+1 = · · · = u0 = 0 has a unique solution. From such a solution, it is
immediately clear that (5.10a) is satisfied. The remaining equalities can be written as

yji = Ci•Aj−1x0, j = 1, 2, . . . , ρi, i = 1, . . . , k,(6.3)

and 

yρ1+p1

...

yρk+p
k


 = ξp(x0, u

1, . . . , up−1) + Mup,(6.4)

where ξ1, ξ2, . . . are certain linear functions. We denote by L(l), l ∈ N, the truncated
problem of finding uj , j = 1, . . . , l, and yji , i ∈ k̄, j = 1, . . . , ρi + l, satisfying (6.3) and
(6.4), p ∈ {1, . . . , l} together with the requirement that for all indices i ∈ k̄ at least
one of the following statements is true:

(y1i , y
2
i , . . . , y

ρi+l
i ) = 0 and (u1

i , u
2
i , . . . , u

l
i) 	 0,(6.5)

(y1i , y
2
i , . . . , y

ρi+l
i ) 	 0 and (u1

i , u
2
i , . . . , u

l
i) = 0.(6.6)

The problem L(l) is a subproblem of LDCP∞(x0) and if we find a solution (y1, y2, . . .),
(u1, u2, . . .) satisfying L(l) for all l ≥ 0, then this solution is a solution to the corre-
sponding LDCP∞(x0) with y−n+1 = · · · = y0 = 0, u−n+1 = · · · = u0 = 0.

We claim that L(l) has a unique solution for all l ≥ 0. This is obvious for l = 0.
We will proceed by induction in the same way as in [29, 21].

We write Il, Jl, Kl for the active (input) index set, the inactive index set, and the
undecided index set, respectively, determined by L(l). Formally, for l ≥ 1, Il = {i ∈
k̄ | (u1

i , . . . , u
l
i) � 0}, Jl = {i ∈ k̄ | (y1i , . . . , y

ρi+l
i ) � 0}, and Kl = k̄ \ (Il ∪ Jl) with yji ,

i = 1, . . . , k, j = 1, . . . , ρi + l, and ui, i = 1, . . . , l determined (uniquely) by L(l). For
convenience we also define I0 := ∅, J0 = {i ∈ k̄ | (y1i , . . . , y

ρi
i ) � 0} and K0 = k̄ \ J0.

Note that L(l − 1) is a subproblem of L(l), so variables uniquely determined by
L(l − 1) are automatically uniquely specified for L(l). As a consequence, Il−1, Jl−1,
Kl−1 are determined as well. Comparing L(l) with L(l − 1), we observe that L(l)
has one additional equation: (6.4) for p = l. We divide this equation into the three
parts given by Il−1, Jl−1, and Kl−1. For notational convenience, we omit all indices
depending on l and all superscripts:

 yI
yJ
yK


 =


 zI
zJ
zK


 +


 MII MIJ MIK

MJI MJJ MJK

MKI MKJ MKK





 uI
uJ
uK


 ,(6.7)
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with z = ξl(x0, u
1, . . . , ul−1). From the definition of Il−1, Jl−1, and Kl−1, we get

yI = 0 and uJ = 0 because (6.5) or (6.6) should hold. By substituting this result in
(6.7), we obtain

0 = zI + MIIuI + MIKuK ,(6.8)

yJ = zJ + MJIuI + MJKuK ,(6.9)

yK = zK + MKIuI + MKKuK .(6.10)

Since MII is a principal submatrix of a P-matrix, it is invertible and hence we get
from (6.8) that uI = −M−1

II (zI+MIKuk). Substituting this expression in (6.10) leads
to

yK = zK −MKIM−1
II zI + (MKK −MKIM−1

II MIK)uK .(6.11)

Due to (6.5) and (6.6) and the definition of Kl−1, the complementarity conditions

0 ≤ uK ⊥ yK ≥ 0(6.12)

hold. Thus, (6.11) and (6.12) constitute an LCP. Since MKK −MKIM−1
II MIK is a

Schur complement of a P-matrix, it is itself a P-matrix by Proposition 2.3.5 in [7].
According to Theorem 3.4, the corresponding LCP has a unique solution. From uK
we can compute uI and yJ . Hence, the induction hypothesis has been proven for l. So
we find a solution of LDCP∞(x0) with u−n+1 = · · · = u0 = 0, y−n+1 = · · · = y0 = 0,
and hence a smooth initial solution corresponding to x0 exists. Since the solution to
LDCP∞(x0) with u−n+1 = · · · = u0 = 0 is unique, the one-to-one correspondence
between initial solutions and solutions of LDCP∞(x0) implies that the corresponding
smooth initial solution is unique.

One can even prove that the initial solution corresponding to a regular initial
state is unique and thus smooth. Our next result is concerned with the uniqueness of
solutions emanating from a not necessarily regular initial state.

Theorem 6.9. Let a system (A,B,C,D) be given. If the leading column coeffi-
cient matrix N is a P-matrix, then for every state x0 and every κ ≥ 0, the problem
LDCPκ(x0) has a solution that is unique except for uji , i ∈ k̄, j = κ − ηi + 1, . . . , κ,
which are left undetermined. Furthermore, u−n+1

i = u−n+2
i = · · · = u−ηii = 0, i ∈ k̄,

and y−n+1 = · · · = y0 = 0.

Proof. The proof is based on separation of the equalities (5.10) into two parts,
(5.10a) and (5.10b), providing the equations for yi, i = −n + 1, . . . , 0, and yi, i =
1, . . . , κ, respectively. For both parts we start an induction that is analogous to the
one used in the previous proof: we reduce the LDCP to a series of LCPs which can
be solved uniquely. This is done by selecting certain equations from (5.10) for each
successive LCP in such a way that only principal submatrices of the leading column
coefficient matrix N appear in these LCPs.

We introduce the index sets Oj := {i ∈ k̄ | ηi = j}, j = 0, 1, . . . , n, and Sj :=⋃j
i=0Oi, j = 0, 1, . . . , n. So, the ηjth Markov parameter is the first Markov parameter

in which the jth column is nonzero. Oj is the set of indices i for which the ith column
in the sequence of Markov parameters (H0, H1, . . .) is nonzero for the first time in
Hj . Sj is the set of indices i for which the matrix (H0

•i, H
1
•i, . . . , H

j
•i) is nonzero.

As noted before, ηi ≤ n. Hence, Sn = k̄. By definition, Hi
•Sc

j
= 0, i ≤ j, and

S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sn.
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After suitable permutation of rows and columns if necessary, there are integers
k0, . . . ,Kn+1 with 0 = k0 ≤ k1 ≤ k2 ≤ · · · ≤ kn ≤ kn+1 = k such that Oj =
{kj + 1, . . . , kj+1}, j = 0, 1, . . . , n. Then

N = [H0
•O0

H1
•O1
, . . . , Hn

•On
].

We claim that for 1 ≤ r ≤ n the problem LDCP−n+r(x0) has a solution with

u−n+1
Sr−1

= u−n+2
Sr−2

=, . . . ,= u−n+r
S0

= 0,(6.13)

y−n+1 = y−n+2 =, . . . ,= y−n+r = 0.(6.14)

The remaining variables u−n+1
Sc
r−1

, u−n+2
Sc
r−2

, . . . , u−n+r
Sc

0
are left undetermined. This will be

the induction hypothesis.
For r = 1, we have only the equation

y−n+1 = H0u−n+1,(6.15)

with the complementarity conditions 0 ≤ y−n+1 ⊥ u−n+1 ≥ 0. The complementarity
conditions follow from the fact that for each index either (5.11) or (5.12) should hold.
Since H0

•Sc
0

= 0, (6.15) reduces to

y−n+1 = H0
•S0
u−n+1
S0

.(6.16)

Since u−n+1
Sc

0
does not appear in this equation, it is left completely undetermined

(except for the condition u−n+1
Sc

0
≥ 0). Considering (6.16) and the complementarity

conditions only for y−n+1
i , i ∈ S0, results in the LCP

y−n+1
S0

= H0
S0S0

u−n+1
S0

= NS0S0u
−n+1
S0

,

0 ≤ y−n+1
S0

⊥ u−n+1
S0

≥ 0.

Since NS0S0 is a principal submatrix of N , it is a P-matrix. Theorem 3.4 then implies
that the above LCP has a unique solution. Obviously, y−n+1

S0
= 0, u−n+1

S0
= 0 is

the unique solution. From (6.16), y−n+1 = 0 follows immediately. This proves the
induction hypothesis for r = 1.

Suppose that the induction hypothesis above holds for r − 1, where 2 ≤ r ≤ n.
Since LDCP−n+r−1(x0) is a subproblem of LDCP−n+r(x0), we consider only the
additional equality in (5.10):

y−n+r = H0u−n+r +H1u−n+r−1 + · · · +Hr−1u−n+1

= H0
•S0
u−n+r
S0

+H1
•S1
u−n+r−1
S1

+ · · · +Hr−1
•Sr−1

u−n+1
Sr−1

= H0
•S0
u−n+r
S0

+H1
•S1\S0

u−n+r−1
S1\S0

+ · · · +Hr−1
•Sr−1\Sr−2

u−n+1
Sr−1\Sr−2

= H0
•O0
u−n+r
O0

+H1
•O1
u−n+r−1
O1

+ · · · +Hr−1
•Or−1

u−n+1
Or−1

.(6.17)

The second equality follows from Hi
•Sc

i
= 0; the third one follows from the induc-

tion hypothesis (6.13). The last equality is a consequence of Sj \ Sj−1 = Oj . Since
u−n+1
Sc
r−1

, u−n+2
Sc
r−2

, . . . , u−n+r
Sc

0
do not appear in this additional equation, these variables

remain undetermined.
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Equation (6.17) consists of k scalar equations. Considering only the equalities for
y−n+r
i , i ∈ Sr−1, we find

y−n+r
Sr−1

=
(
H0
Sr−1O0

H1
Sr−1O1

, . . . , Hr−1
Sr−1Or−1

)



u−n+r
O0

u−n+r−1
O1

...
u−n+1
Or−1




= NSr−1Sr−1




u−n+r
O0

u−n+r−1
O1

...
u−n+1
Or−1




︸ ︷︷ ︸
=:v−r

.

Since (5.11) or (5.12) should hold for all i, it follows that

0 ≤ y−n+r
Sr−1

⊥ v−r ≥ 0.

This is the LCP we are looking for. Since NSr−1Sr−1
(as a submatrix of N ) is

also a P-matrix, the above LCP has a unique solution (Theorem 3.4). Hence, this
solution must be v−r = y−n+r

Sr−1
= 0. Using this in (6.17) shows that y−n+r = 0. In

combination with the induction hypothesis for r − 1, this yields the hypothesis for r.
This completes our induction step and hence the proof of our first claim.

To complete the proof, we start a second induction with hypothesis as stated in the
formulation of the theorem. Note that this is equivalent to saying that LDCPκ(x0) has
a unique solution for every state x0; only uκSc

0
, uκ−1

Sc
1
, . . . , uκ−n+1

Sc
n−1

are left undetermined.

For κ = 0 this hypothesis is true, for it follows from the previous induction by taking
r = n. Suppose the hypothesis is true for κ − 1, κ ≥ 1. Since LDCPκ−1(x0) is
a subproblem of LDCPκ(x0), the variables uκ−1

S0
, . . . , uκ−nSn−1

, uκ−n−1, . . . , u−n+1 are
already uniquely determined. We set

I := {i ∈ k̄ | (u−n+1
i , u−n+2

i , . . . , uκ−ηi−1
i ) � 0},

J := {i ∈ k̄ | (y−n+1
i , y−n+2

i , . . . , yκ−1
i ) � 0}, and

K := k̄ \ (I ∪ J).

In comparison with LDCPκ−1(x0), LDCPκ(x0) has the additional equality

yκ = σ(x0, u
κ−1
S0
, uκ−2

S1
, . . . , uκ−nSn−1

, uκ−n−1, . . . , u−n+1) + N




uκO0

uκ−1
O1

...
uκ−n+1
On−1




for some function σ. Splitting this equation into three parts according to the index
sets I, J,K, we can follow the same reasoning as in the proof of Theorem 6.8 to
conclude that yκ, uκO0

, uκ−1
O1
, . . . , uκ−n+1

On−1
are uniquely determined and thus we prove

the induction hypothesis for κ.
We are now in a position to prove Theorem 6.3.
Proof of Theorem 6.3. Lemma 6.6 implies that all modes are autonomous. Take

an arbitrary initial state x0. It follows from Theorem 6.9 that LDCP∞(x0) has a
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unique solution which satisfies u−n+1
i = u−n+2

i = · · · = u−ηii = 0, i ∈ k̄, and
y−n+1 = · · · = y0 = 0. Due to the one-to-one correspondence between initial solu-
tions and solutions to LDCP∞(x0), an initial solution (u, x, y) exists and the solution
must be unique as well. In case the initial condition is regular, the initial solution
is smooth. In other cases, we have to prove that after the state jump corresponding
to (u, x, y) smooth continuation is possible. Stated otherwise, we have to show that
the re-initialized state x(0+) is regular. The re-initialization is given by the impulsive

part uimp =
∑n−1

i=0 u
−iδ(i), where the coefficients u−i follow from LDCP∞(x0). Since

the impulsive part is unique, the re-initialization is unique; it results in x(0+) :=

x0 +
∑n−1

i=0 A
iBu−i (see (3.8)). The complementarity conditions (5.11) and (5.12) im-

ply that (y1, y2, . . . , yn) 	 0. The right-hand side of (5.10) contains for y1i , . . . , y
ρi
i ,

i ∈ k̄, only coefficients corresponding to the impulsive part, i.e., only u0, . . . , u−n+1.
Hence, observe that (Ci•x(0+), . . . , Ci•Aρi−1x(0+)) = (y1i , . . . , y

ρi
i ) 	 0, i ∈ k̄. Ac-

cording to Theorem 6.8, x(0+) is a regular state. So after at most one re-initialization,
(unique) smooth continuation is guaranteed.

The next theorem states that in case N is a P-matrix, it is sufficient to consider
LDCPn(x0) (instead of LDCP∞(x0)) for selection of a mode. Hence, only an algebraic
problem with a finite number of constraints has to be solved.
Theorem 6.10. Let a system (A,B,C,D) be given. If the leading column coef-

ficient matrix N is a P-matrix, then from every initial state there exists a unique
initial solution to (4.1). This solution evolves in mode I, where I := {i ∈ k̄ |
(u−n+1
i , u−n+2

i , . . . , un−ηii ) � 0}, where (uj)nj=−n+1, (yj)nj=−n+1 constitutes a solu-
tion to LDCPn(x0).

Proof. Let (y−n+1, y−n+2, . . . , yn) and (u−n+1, u−n+2, . . . , un) be a solution to
LDCPn(x0) and let I be defined as in the formulation of the theorem. Define p(0) :=

x0+
∑n−1

i=0 A
iBu−i. Note that this is the state after the jump induced by the impulsive

distribution
∑n−1

i=0 u
−iδ(i) starting from x0. It follows from the definition of I that

(u−n+1
i , . . . , un−ηii ) = 0, i ∈ Ic, and in combination with (5.11), (5.12) the same

definition yields (y−n+1
i , . . . , yni ) = 0, i ∈ I. Using (5.10b), we conclude that p(0)

satisfies

0 = y1I = CI•p(0) +DIIv(1),
0 = y2I = CI•Ap(0) +DIIv(2) +CI•B•Iv(1),
...

...
. . .

0 = ynI = CI•An−1p(0) +DIIv(n) +CI•B•Iv(n− 1) + · · · + CI•An−2B•Iv(1),

(6.18)

with v(i) = uiI . By using (3.2) and the equations above, we can show that for all j =
0, 1, . . . , n the vector p(0) ∈ Vj(A,B•I , CI•, DII). So p(0) ∈ limVj(A,B•I , CI•, DII)
= Vn(A,B•I , CI•, DII) = VI , for the algorithm converges within n steps (similarly as
in the proof of Theorem 5.2). Hence, there exists a regular solution (ureg, xreg, yreg)
to (4.2) in mode I with initial state p(0). We define

ũ :=
n−1∑
i=0

u−iδ(i) + ureg,

ỹ := yreg.

Furthermore, x̃ denotes the solution to (4.2) in mode I corresponding to ũ and initial
state x0. Note that according to Theorem 6.9 y−n+1 = · · · = y0 = 0. Obviously, this
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is a solution to (4.2) in mode I; so it remains only to show that ũ, ỹ are initially

nonnegative. We shall do this by proving that u
(i)
reg(0) = ui+1 for all i = 0, 1, . . . , n−

ηi − 1 and consequently, y
(i)
reg(0) = yi+1.

Notice that both v(i) = u
(i−1)
reg,I (0), i = 1, . . . , n, and v(i) = uiI , i = 1, . . . , n, satisfy

(6.18). We extend the solution of LDCPn(x0) with zeros to get an infinite sequence

(u−n+1, . . . , un, 0, 0, . . .). The difference w(i) = u
(i)
reg,I(0) − ui+1

I , i ≥ 0, can be taken
as an input to the discrete-time system

q(i+ 1) = Aq(i) +B•Iw(i), q(0) = 0,

ȳ(i) = CI•q(i) +DIIw(i)(6.19)

satisfying ȳ(0) = · · · = ȳ(n − 1) = 0. Taking the z-transform of the discrete-time
system (6.19) (see, e.g., [19]) with input w(i) gives (with some abuse of notation, the
z-transform of w is denoted by w(z))

GII(z)w(z) =

∞∑
i=0

ȳ(i)z−i = z−np(z)(6.20)

for some proper rational vector function p(z). For notational simplicity, we set I = l̄,
l ∈ k̄. Since NII is a P-matrix (and hence invertible), GII(z) can be written as

GII(z) = V2(z)diag(z−η1 , . . . , z−ηl),(6.21)

where V2 is biproper (i.e., proper rational with proper rational inverse), because
V2(∞) = NII is invertible (see Theorem 4.5 in [13]). Hence, (6.20) yields

w(z) = G−1
II (z)p(z) = diag(z−η1−n, . . . , z−ηl−n)p̃(z),

where p̃(z) = V −1
2 (z)p(z) is proper. The definition of w(i) now implies that u

(i)
reg,j(0) =

ui+1
j , j ∈ I, i = 0, 1, . . . , n− ηj − 1.

Since for j ∈ I,
(u−n+1
j , . . . , u0

j , u
(0)
reg,j(0), . . . , u

(n−ηi−1)
reg,j (0)) = (u−n+1

j , . . . , un−ηij ) � 0

the distribution ũj ∈ Cimp is initially positive for j ∈ I. Note that ỹI = 0 by con-
struction of ỹ: ỹ = yreg satisfies, together with ureg, the condition (4.2) for mode I
and initial state p(0). Similarly, for j ∈ Ic, ũj = 0. Note that

(y−n+1, . . . , y0, y(0)
reg, . . . , y

(n−1)
reg ) = (y−n+1, . . . , yn) 	 0

because u
(i)
reg,j = ui+1

j for j ∈ I and i = 0, 1, . . . , n−ηj−1. Hence, if (y−n+1
j , . . . , ynj ) �

0, then ỹj ∈ Cimp is initially positive. For j ∈ Ic, it may happen that (y−n+1
j , . . . , ynj )

= 0; however, this implies that ỹj is identically zero. To see this, note that yreg,Ic can
be written as the output of the system

ẋ = (A+BFI)x,

yreg,Ic = (CIc +DIc•FI)x

because the input u satisfying (4.2) can be given in feedback form by u(t) = FIx(t) (see
section 4). By the Cayley–Hamilton theorem and because the state space dimension of

the system is equal to n, (y−n+1
j , . . . , y0j , yreg,j(0), y

(1)
reg,j(0), . . . , y

(n−1)
reg,j (0)) = 0 implies

(y−n+1
j , y−n+2

j , . . . , y0j , yreg,j(0), y
(1)
reg,j(0), . . .) = 0.
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Since yreg,j is a Bohl function, ỹj = yreg,j ∈ Cimp is identically zero (see Lemma 5.1).
Hence, (ũ, x̃, ỹ) is an initial solution to (4.1).

Uniqueness follows from the fact that LDCP∞(x0) has a unique solution (Theo-
rem 6.9). Indeed, the one-to-one correspondence between initial solutions and solutions
to LDCP∞(x0) implies that there is only one initial solution, which must evolve in
the above mode.

Remark 6.11. Since LDCP∞(x0) has a unique solution, the mode I as de-
fined in the previous theorem (selected by LDCPn(x0)) is obviously contained in
S∞

LDCP(x0) = SRCP(x0). Since there is only one corresponding initial solution, it
evolves in all the modes contained in S∞

LDCP(x0). Hence, all selected index sets in
S∞

LDCP(x0) are appropriate. Of course, the additional modes contained in S∞
LDCP(x0)

are characterized by the undetermined index set K as in Remark 4.8.
Remark 6.12. Solving LDCPn(x0) can be simplified by using Theorem 6.9. This

theorem states that the variables y−n+1, y−n+2, . . . , y0 and u−n+1
i , u−n+2

i , . . . , u−ηii ,
i ∈ k̄, can immediately be set to zero, which reduces the number of equations to be
solved.

In the section below, we illustrate the above theory by means of the two-carts
example.

7. Algorithm for constructing solutions. In this section, a method will be
proposed to construct analytical solutions to LCS. The method will be illustrated by
applying it to the two-carts example of section 2. We emphasize that it is not the
purpose of this paper to give a numerical scheme for the simulation of complemen-
tarity systems, although the analytical algorithm may be used as a guideline for the
development of such a scheme.

The algorithm is described by the following procedure.
Algorithm 7.1. Let x0 be the initial state and Te the final time.

Initialization: Set z := x0, E := {0}, and t′ := 0 as the initial state and
time.

Step one: Select for initial state z a mode I ∈ S(z).
Step two: Consider the following two possibilities:

(1) From the state z smooth continuation is possible in mode I, i.e.,
z ∈ VI . Go to Step four.

(2) No smooth continuation is possible in mode I from z, i.e., z �∈ VI .
Go to Step three.

Step three: Compute the projection PI of z along TI onto VI (see subsec-
tion 4.2). Set z := PIz. Go to Step one.

Step four: Compute the solution (uz,I , xz,I , yz,I) (see subsection 4.1).
Step five: Determine the next event time θ(z, I). Define (uc(t), xc(t), yc(t)) :=

(uz,I(t − t′), xz,I(t − t′), yz,I(t − t′)) for t ∈ (t′, t′ + θ(z, I)). Set t′ :=
t′ + θ(z, I), E := E ∪ {t′} and z := xc(t

′−). If t′ ≥ Te the algorithm
terminates. Otherwise, go to Step one.

The algorithm can be visualized by the flow diagram as given by Figure 7.1.
Remark 7.2. Algorithm 7.1 produces a solution on [0, Te) if the following condi-

tions are satisfied:
(1) The algorithm does not get into a situation with t′ < Te and S(z) = ∅. Such

a situation is called “deadlock.”
(2) All encountered event times have a finite multiplicity. Stated otherwise, the al-

gorithm does not end up in an infinite loop consisting of only re-initializations
and mode selections, where a limiting operation is required.
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Continuous phaseContinuous phase

Event detectionEvent detection

Mode selectionMode selection

Re-initialization

z:=x (t -)c event
z:=x (t -)c event

NoYes

z:=PzIz:=PzI
z

z,I

Is smooth

continuation possible
in the selected mode

without
re-initialization ?

Fig. 7.1. Schematic description of complete dynamics.

(3) The event times do not have a finite accumulation point strictly smaller than
Te.

Theorem 7.3. Let a system (A,B,C,D) be given satisfying the conditions of
Theorem 6.3. Algorithm 7.1 produces a solution on [0,∞) if and only if accumulation
of events does not occur.

Proof. By Theorem 6.3 the first two conditions mentioned in Remark 7.2 are
satisfied (deadlock cannot occur and the maximal multiplicity of an event time is
one). Therefore the result follows.

Returning to the two-carts system of section 2, we suppose that the initial state
equals

x0 = e−A(0 − 1 − 1 0)� ≈ (0.3202,−0.4335, 0.3716,−1.0915)�

and Te = 3. Note that for this system the Markov parameters are given byH0 = H1 =
0 andH2 = M = N = 1. Hence, the two-carts system satisfies the sufficient conditions
for local well-posedness presented in this paper. Consequently, Algorithm 7.1 can fail
only if the set of event times contains a finite accumulation point τ < 3. According
to Algorithm 7.1, we start by setting E := {0}, z := x0, and t′ := 0:

Step one: This step selects the unconstrained mode (I = ∅ ∈ S(z)) because the
only initial solution for initial state z is (u, x, y) given by (0, eAtz, CeAtz). Note that
y is initially nonnegative because y(0+) = x01 ≈ 0.3202 is equal to the distance of
the cart from the stop which is strictly positive.
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Step two: This step leads to the decision that smooth continuation in the selected
mode is possible because z ∈ V∅ = R

4 (every state is consistent for the unconstrained
mode).

Step four: The unconstrained dynamics is specified by a linear ordinary differ-
ential equation; the solution is equal to uz,I(t) = 0, xz,I(t) = eAtz, yz,I(t) = CeAtz.

Step five: Determining the zero crossing of yz,I gives θ(z, I) := 1. The cor-
responding state is equal to (0,−1,−1, 0)�, which is not regular for the uncon-
strained mode. Note that yz,Ireg(1) = 0, ẏz,Ireg(1) < 0, so continuing in the uncon-
strained mode would violate the inequality constraint y(t) ≥ 0. Hence, uc(t) = 0,
xc(t) = eA(t−1)(0 − 1 − 1 0)�, yc(t) = CeAt(0 − 1 − 1 0)� for t ∈ (0, 1), E = {0, 1},
t′ := 1, and z := (0 − 1 − 1 0)�. Since t′ < Te, we go to Step one.

Step one: For the purpose of illustrating mode selection by RCP, the dynamical
system is transformed to the Laplace domain:

(s4 + 3s2 + 1)y(s) =
(
s(s2 + 1), s, s2 + 1, 1

)


x10

x20

x30

x40


 + (s2 + 1)u(s).(7.1)

Substituting z for (x10, x20, x30, x40)� results in

(s4 + 3s2 + 1)y(s) = −s− s2 − 1 + (s2 + 1)u(s).

Since y(s) or u(s) should be zero, there are only two possibilities:

unconstrained mode: u(s) = 0 ; y(s) =
−s2 − s− 1

s4 + 3s2 + 1
,

constrained mode: y(s) = 0 ; u(s) = 1 +
s

s2 + 1
.

Since the RCP requires nonnegativity for sufficiently large values of the indeterminate
s, the combination y(s) = 0, u(s) = 1 + s

s2+1 is the unique solution to RCP(z); thus
S(z) = SRCP(z) = {{1}}. Hence, the constrained mode must be selected (I := {1}).

Step two: Since the solution to RCP(z) is not strictly proper, the answer to the
question in the decision block in Figure 7.1 is negative, so we have to re-initialize.

Step three: Using (3.2) and (3.5), we can compute the consistent states and the
jump space

T{1} = Im




0 1
0 0
1 0
0 0


 ; V{1} = Ker

(
1 0 0 0
0 0 1 0

)
= Im




0 0
1 0
0 0
0 1


 .

To re-initialize we have to project z onto V{1} along T{1}, which results in

z := P{1}z = P
T{1}
V{1} z = (0,−1, 0, 0)�.

Step one: We have to solve RCP(z):

(s4 + 3s2 + 1)y(s) = −s+ (s2 + 1)u(s)

together with the complementarity conditions. The only solution is y(s) = 0, u(s) =
s

s2+1 resulting in I := {1}.
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Step two: Since the solution to RCP(z) is strictly proper, smooth continuation
in the selected mode is possible. The physical interpretation is clear: the left cart hits
the stop. Instantaneously, the velocity is put to zero and the right cart keeps the left
cart pushed against the stop.

Step four: The dynamics of the constrained mode is given by a set of DAEs.
However, these can easily be translated into an ODE (note that there must exist
a linear mapping F{1} such that u(t) = FIx(t) satisfies the mode dynamics; see
subsection 4.1). The input u must be chosen in such a way that it keeps y identically
zero. Since y = x1, ẏ = x3, ÿ = 2x1 + x2 + u, u should equal −2x1 − x2. (Note that
FI = (−2 − 1 0 0) is a possible choice, but is not the only choice. FI = (α − 1 β 0) is
an alternative for every α and β, because x1 = x3 = 0 for consistent states.) Hence,
the dynamics in the constrained mode is given by x1 = x3 = 0, ẍ2 = −x2, u = −x2.
Solving this set of equations for initial state z gives uz,I(t) = cos t, xz,I1 (t) = 0,

x
z,I
2 (t) = − cos t, and yz,I(t) = 0. Note that we could have also concluded this by

taking the inverse Laplace transform of the solution (u(s), y(s)) to the RCP in the
last mode selection.

Step five: An event is detected at θ(z, I) = inf{t ≥ 0 | cos(t) < 0} = π
2 .

The piece of (uc(t), xc(t), yc(t)) on (1, 1 + π
2 ) is given by the initial solution above as

described in Algorithm 7.1. E := {0, 1, 1 + π
2 }, t′ := 1 + π

2 , and z := (0, 0, 0, 1)�. Since
t′ < 3 = Te, we proceed with Step one.

Step one: This time LDCP will be demonstrated as a mode selection tool. Since
the conditions of Theorem 6.10 are satisfied, a finite version of the LDCP can be used
for mode selection: LDCP4(z) reads

y−3 = 0,

y−2 = 0,

y−1 = u−3,

y0 = u−2,

y1 = u−1 − 2u−3,

y2 = u0 − 2u−2 + u−3,

y3 = u1 − 2u−1 + u−2 + 3u−3,

y4 = 1 + u2 − 2u0 + u−1 + 3u−2 − 3u−3,

together with complementarity conditions (5.11) and (5.12). Setting yi = 0, i ∈
{−3, . . . , 4}, leads to (u−3, . . . , u1, u2) = (0, . . . , 0,−1) ≺ 0. Hence, (5.11) does not
hold. It is obvious that setting ui = 0, i ∈ {−3, . . . , 4}, leads to (y−3, . . . , y3, y4) =
(0, . . . , 0, 1) 	 0 so that (5.12) holds. Hence, S4

LDCP(z) = {∅} and the unconstrained
mode must be selected (I := ∅).

Step two: Since the impulsive part of u is zero, i.e., u−3 = u−2 = u−1 =
u0 = 0, smooth continuation is possible. This can also be observed from the fact that
(0, 0, 0, 1)� is a consistent state for the unconstrained mode. In terms of the physical
system, the right cart is on the right of its equilibrium and pulls the left cart away
from the stop.

Steps four and five: Determining a new piece of (uc(t), xc(t), yc(t)) leads to
uc(t) = 0, xc(t) = eA(t−1−π

2 )(0, 0, 0, 1)�, and yc(t) = CeA(t−1−π
2 )(0, 0, 0, 1)� in the

same way as before. The next event time 1 + π
2 + θ(z, I) is strictly larger than Te = 3

so that the algorithm halts with a complete solution on [0, 3).
The computed trajectory is plotted in Figure 7.2. Note the complementarity be-

tween u and x1 and the discontinuity in the derivative of x1 at time t = 1.
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Fig. 7.2. Solution trajectory of two-carts system.

To show that the particular mode transition mentioned in section 2 can be handled
properly by the proposed algorithm, we take the initial state z0 = x0 = (0, 1,−1, 0)�

(labeling of z0 as in (4.9)). Substituting this initial condition in (7.1) results in

(s4 + 3s2 + 1)y(s) = s− s2 − 1 + (s2 + 1)u(s).

Solving RCP(z0) (Step one) leads to y(s) = 0 and u(s) = 1 − s
s2+1 and so

SRCP(z0) = {{1}}. We select the constrained mode (I1 = {1}). Smooth continuation
is not possible in the selected mode (Step two), because the solution to RCP is not
strictly proper. Re-initialization (Step three) leads to z1 := P{1}z0 = (0, 1, 0, 0)�.
RCP(z1) has to be considered (Step one):

(s4 + 3s2 + 1)y(s) = s+ (s2 + 1)u(s).

Notice that setting y(s) equal to zero results in u(s) = − s
s2+1 , the strictly proper part

of the solution of RCP(x0). This is not a valid choice. The only solution is u(s) = 0
and y(s) = s

(s4+3s2+1) , which corresponds to the unconstrained mode, i.e., I2 = ∅.

Since the solution of RCP(z1) is strictly proper, smooth continuation is possible in
the unconstrained mode (Step two) and we can go to Steps four and five to compute
the smooth continuation.

8. Mechanical systems. In this section, it will be shown that the proposed
mode selection rule coincides with the one of Moreau [22, 23] when these rules are
applied to the class of systems that are covered by both frameworks; to wit, linear
mechanical systems.

We will focus on linear mechanical systems whose dynamics in free motion are
given by the differential equations

Mq̈(t) +Dq̇(t) +Kq(t) = 0,(8.1)
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where q denotes the vector of generalized coordinates. Furthermore, M denotes the
generalized mass matrix, which is assumed to be positive definite, D denotes the
damping matrix, and K is the elasticity matrix. The system is subject to unilateral
constraints given by

Eq(t) ≥ 0,(8.2)

where E has full row rank. Furthermore, we assume that impacts are purely inelastic.
To obtain a complementarity formulation, we introduce the constraint forces u

needed to satisfy the unilateral constraints and introduce the state vector x = col(q, q̇).
According to the rules of classical mechanics, the system can then be written as follows
(with omission of all time arguments):

ẋ =

(
0 I

−M−1K −M−1D

)
︸ ︷︷ ︸

A

x+

(
0

M−1E�

)
︸ ︷︷ ︸

B

u,(8.3a)

y = (E 0)︸ ︷︷ ︸
C

x,(8.3b)

0 ≤ y ⊥ u ≥ 0(8.3c)

for all i. This systems satisfies ρi = ηi = 2, i ∈ k̄; note that M = N = EM−1E� is
positive definite and hence a P-matrix (Theorem 3.5). Hence, the system is well-posed
(Theorem 6.3).

We consider only initial states x0 = col(q0, q̇0) with Eq0 ≥ 0. We call these points
feasible. In the two-carts system, this means that we do not consider initial states for
which the left cart starts on the left of the stop. In Moreau’s sweeping process (see
[23, 22]) no jumps occur in q itself, but jumps can occur in the velocities q̇. These jumps
are governed by the following minimization problem, where J := {i ∈ k̄ | Ei•q0 = 0}.
Minimization problem 8.1. Let an initial state x0 = col(q0, q̇0) be given. The

new state after re-initialization, denoted by x(0+) = col(q(0+), q̇(0+)), is determined
by

q(0+) = q0,

q̇(0+) = arg min
{w|EJ•w≥0}

1

2
(w − q̇0)�M(w − q̇0).

The notation “arg min” denotes the set of vectors in the constrained set that
minimize the criterion over the constrained set. Note that the minimization problem
has a unique solution. The problem reflects a kind of “principle of economy”: among
the kinematically admissible right velocities, the one is chosen that is nearest in the
kinetic metric [22, p. 75]. Observe that if we prove that jumps in our formulation
correspond to the above minimization problem, then it follows that the feasible set
{x ∈ R

n | Cx ≥ 0} is invariant under the dynamics as introduced in section 4, since
the smooth dynamics do not take the solution outside this set.

The Kuhn–Tucker conditions [17] for the minimization problem give necessary
conditions for optimality. The vector q̇(0+) is the minimizing argument only if there
exists a Lagrange multiplier λ such that

M(q̇(0+) − q̇0) − E�
J•λ = 0,(8.4)
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0 ≤ λ ⊥ EJ•q̇(0+) ≥ 0.(8.5)

The equality (8.4) is equivalent to

q̇(0+) = q̇0 +M−1E�
J•λ,(8.6)

and therefore ẏ(0+) = Eq̇(0+) and λ satisfy the following LCP with ẏ0 := Eq̇0:

ẏJ(0+) = ẏ0 + EJ•M−1E�
J•λ,(8.7)

0 ≤ ẏJ(0+) ⊥ λ ≥ 0.(8.8)

According to Theorem 3.4, this LCP has a unique solution, because EJ•M−1E�
J•

is a P-matrix. Since Minimization Problem 8.1 is convex, the Kuhn–Tucker conditions
are even sufficient for optimality. Hence, the LCP (8.7)–(8.8) is equivalent to the
minimization problem for determining the jumps. Notice that once this LCP is solved,
the required jumps are known, because q̇(0+) then follows from (8.6).

We will prove now that LDCPn(x0) (and hence also LDCP∞(x0) and RCP(x0))
are equivalent to the optimization problem in the sense that both methods produce
the same state jumps and select the same mode.
Theorem 8.2. For linear mechanical systems of the form (8.3) with M positive

definite and E of full row rank, the re-initialization by means of LDCPn(x0) (or
LDCP∞(x0) or RCP(x0)) agrees with Moreau’s sweeping process [22, 23] for feasible
initial states. Linear mechanical complementarity systems are well-posed.

Proof. Since the row coefficient matrix and the column coefficient matrix are P-
matrices, well-posedness follows from Theorem 6.3. Furthermore, Theorem 6.9 states
that u−2 = u−3 = · · · = u−n = 0. Because we start from a feasible state x0, it follows
also that u−1 = 0. Indeed, the first relevant LCP in the LDCPn(x0) (as in the proof
of Theorem 6.8) is given by

y1 = Cx0 + CABu−1

with the corresponding complementarity conditions. Since this LCP has a unique
solution, the solution must satisfy u−1 = 0, because Cx0 ≥ 0. Hence, y−n+1 =
y−n+2 = · · · = y0 = 0 and y1 = Cx0. The next relevant equality in (5.10) is

y2 = CAx0 + CABu0.(8.9)

We define J again as {i ∈ k̄ | Cix0 = 0}. Since one of the expressions (5.11) or (5.12)
has to be satisfied for i ∈ J, the conditions

y2i ≥ 0, u0
i ≥ 0, y2i ⊥ u0

i , i ∈ J
have to hold. Because y1i > 0 for elements i ∈ Jc, 0 = u0

i = u1
i = · · · = uni must hold

to satisfy (5.12). Considering only i ∈ J, we can write the LCP following from (8.9)
and the above complementarity conditions:

y2J = CJ•Ax0 + CJ•AB•Ju0
J ,(8.10)

0 ≤ y2J ⊥ u0
J ≥ 0.(8.11)

This LCP is identical to the LCP (8.7)–(8.8). This shows that the re-initialization by
means of LDCPn(x0) leads to the same result as Minimization Problem 8.1.
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x1x1 x2x2

Fig. 8.1. Two-carts system with hook.

From this proof, we see that for feasible initial states only proper rational solutions
to RCP occur; i.e., jumps take place only along Im B.

Example 8.3. To illustrate the equivalence of Moreau’s rule and the comple-
mentarity rule, consider the two-carts system of section 2 extended with a hook. See
Figure 8.1.

The complementarity description is given by

ẋ1(t) = x3(t),

ẋ2(t) = x4(t),

ẋ3(t) = −2x1(t) + x2(t) + u1(t) + u2(t),

ẋ4(t) = x1(t) − x2(t) − u2(t),

y1(t) := x1(t),

y2(t) := x1(t) − x2(t),

where u1, u2 denote the reaction forces exerted by the stop and hook, respectively.
These equations are completed by the complementarity conditions (4.1c). Taking

M =

(
1 0
0 1

)
; D =

(
0 0
0 0

)
; K =

(
2 −1
−1 1

)
; E =

(
1 0
1 −1

)
(8.12)

leads to a description as in the beginning of this section.
Using the minimization problem to determine the re-initialization and mode se-

lection in case of an initial state (x10, x20, x30, x40)� with x10 = x20 = 0 results in
the alternatives shown in Figure 8.2. Note that the minimization problem consists of
finding the minimal distance to the feasible set (area indicated by “unconstrained”).
The arrows denote the re-initialization directions.

To illustrate that RCP(x0) gives the same results, the equations corresponding
to (5.1) are given below:

(s4 + 3s2 + 1)y1(s) = (s2 + 1)x30 + x40 + (s2 + 1)u1(s) + s2u2(s),

(s4 + 3s2 + 1)y2(s) = s2x30 − (s2 + 1)x40 + s2u1(s) + (2s2 + 1)u2(s).

To determine the continuous states x0 for which the stop-constrained mode (I = {1})
is selected, y1(s) ≡ 0 and u2(s) ≡ 0 are inserted in the equations above. Next we solve
for u1(s) and y2(s), which leads to

u1(s) = −x30 − 1

s2 + 1
x40,

y2(s) =
1

s4 + 3s2 + 1

[
−s2 − 1 − −s2

s2 + 1

]
x40.
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x3

x4

stop-constrained

unconstrained

hook/stop

hook-constrained 

Fig. 8.2. Re-initialization scheme.

Entering the stop-constrained mode is allowed only if for sufficiently large values
of the indeterminate s the above two expressions are nonnegative (see (5.2)). This
requires x30 ≤ 0 and x40 ≤ 0. This indeed corresponds to the indicated area for the
stop-constrained mode in Figure 8.2. Note that the polynomial parts of u1 and u2

equal −x30 and 0, respectively. Hence, uimp = (−x30, 0)�δ for the corresponding
initial solution (u, x, y). According to (3.8), the state jump equals B(−x30, 0)� =
(0, 0, −x30, 0)�. This agrees with the direction of the arrows in Figure 8.2. Similarly,
the other modes and re-initialization directions can be verified.

This example shows also that the mode selection procedure that was suggested in
[28] does not always agree with Moreau’s sweeping process. It is proposed there that
if I is the current mode and violation of (4.5) occurs at time τ in state x(τ), the new
mode is given by

J := (I \ Γ2) ∪ Γ1,

where

Γ1 := {i ∈ Ic | yx(τ),Ireg,i < 0, t ∈ (τ, τ + ε) for some ε > 0},
Γ2 := {i ∈ I | ux(τ),Ireg,i < 0, t ∈ (τ, τ + ε) for some ε > 0}.

In other words, this means that constraints that are active or inactive according to
mode I will become inactive or active, respectively, if their corresponding inequalities
would be violated by continuation of the solution in mode I. In the example, this
means that if we are in the unconstrained mode (I = ∅) and we arrive in x(τ) =
(0, 0,−1, 2)�, the selected mode should be J = {1, 2}, the hook/stop constrained
mode. This does not agree with the minimization problem illustrated in Figure 8.2,
which indicates the hook-constrained mode. A physical argument against the choice
in [28] in the indicated situation might be that removing the stop does not lead to
violation of y1(t) ≥ 0.
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The above example also illustrates the fact that the solutions of linear comple-
mentarity systems do not always depend continuously on the initial state. The dis-
continuous dependence is caused by the sensitivity of solutions to the order in which
constraints become active. Consider the initial states x0(ε) = (ε, ε,−2, 1)�, ε ≥ 0.
For ε = 0 the solution is a jump to (0, 0, 0, 0)�, after which the system stays in
its equilibrium position. For ε > 0, first the hook becomes active, resulting in a
jump to (ε, ε,− 1

2 ,− 1
2 )�. This is followed by a regular continuation in the hook-

constrained mode until the left cart hits the stop. The state just before the impact
is (0, 0,− 1

2 + g(ε),− 1
2 + g(ε))� for some continuous function g(ε) with g(0) = 0. Re-

initialization yields the new state (0, 0, 0,− 1
2+g(ε))�, which converges to (0, 0, 0,− 1

2 )�

if ε ↓ 0. Obviously, the system has a discontinuity in (0, 0,−2, 1)�. One may also note
that the sequence of initial states x0(ε) = (0,−ε,−2, 1), ε ≥ 0, leads after two re-
initializations for ε ↓ 0 to the limit state (0, 0, 1

2 ,
1
2 ). This alternative limit corresponds

to a situation in which first the stop-constrained and then the hook-constrained mode
is active.

9. Conclusions. The main purpose of this paper has been to define a new class
of dynamical systems called “linear complementarity systems” (LCS). The definition
builds on ideas from linear system theory and from mathematical programming and
is motivated in part by systems of differential equations and algebraic inequalities
that have been studied in mechanics and in electrical network theory. Applications
are envisaged, for instance, in the modeling of power converters and other electrical
networks that depend on controlled switching; in linear-quadratic control problems
subject to linear inequality constraints; and in the study of piecewise linear systems.

An LCS can be viewed as a dynamical system that switches between several
operating modes and behaves as a linear system within each mode. The state spaces
corresponding to different modes are in general not all of the same dimension, although
they are naturally embedded in one encompassing space; in relation to this, state
trajectories may exhibit discontinuities when a mode switch takes place. To give a
precise definition of what is to be understood by a solution of a complementarity
system, one has to be precise about the conditions under which a transition from
one given mode to another given mode can take place, and one has to specify the
associated jumps of the state variable. For mode selection, we have used ideas from
mathematical programming, in particular from the theory of the LCP [7]; for the
determination of jumps we have relied on linear system theory, more specifically the
geometric theory of linear systems [14].

When a class of dynamical systems is introduced, a first concern should be to give
conditions for existence and uniqueness of solutions. We have given such conditions
in terms of leading row and column coefficient matrices. Several methods for mode
selection have been discussed, and a method for generating solutions has been pre-
sented. Also, we have shown that our notion of solution agrees with the one proposed
by Moreau [22, 23] for the class of systems to which both solution concepts apply.

In spite of the length of this paper, it is clear that many issues remain to be
investigated. The method that we have shown for constructing solutions allows us
only to establish existence of solutions on intervals that do not contain accumulation
points of the set of event times. To overcome this problem it seems necessary to work
with sequences of approximating solutions, which may be generated, for instance, by
time-stepping methods; compare the work by Stewart and Trinkle [31, 32]. A related
issue is to provide conditions under which numerical solution methods for piecewise
linear systems (see, for instance, [20]) can be shown to be consistent. The rational
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complementarity problem (RCP) that has been discussed only briefly here is expected
to play a crucial role in such investigations; see [15] for a more extensive treatment of
the RCP.

Of course, all of the well-known topics of interest in dynamical systems theory can
also be addressed in the context of complementarity systems: conditions for stability,
existence of limit cycles, occurrence of chaos, and so on. Control of mechanical systems
with unilateral constraints is discussed by Brogliato [6]. Perhaps the main challenge is
to effectuate the interaction between the various fields of research that find a common
meeting ground in complementarity systems.
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