

Tilburg University

Forgetting exceptions is harmful in language learning

Daelemans, W.; van den Bosch, A.; Zavrel, J.

Published in:
Machine Learning

Publication date:
1999

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Daelemans, W., van den Bosch, A., & Zavrel, J. (1999). Forgetting exceptions is harmful in language learning.
Machine Learning, 34(1-3), 11-41.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. Dec. 2024

https://research.tilburguniversity.edu/en/publications/c96bd3e1-d2da-40b7-838c-08ecaa69d799

, , 1{34 ()c
 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
Forgetting Exceptions is Harmful in LanguageLearningWALTER DAELEMANS, ANTAL VAN DEN BOSCH, JAKUB ZAVRELfwalter,antalb,zavrelg@kub.nlILK / Computational LinguisticsTilburg UniversityP.O. Box 90153NL-5000 LE TilburgThe NetherlandsPhone +31.13.4663070Editor:Abstract. We show that in language learning, contrary to received wisdom, keeping exceptionaltraining instances in memory can be bene�cial for generalization accuracy. We investigate thisphenomenon empirically on a selection of benchmark natural language processing tasks: grapheme-to-phoneme conversion, part-of-speech tagging, prepositional-phrase attachment, and base nounphrase chunking. In a �rst series of experiments we combine memory-based learning with trainingset editing techniques, in which instances are edited based on their typicality and class predic-tion strength. Results show that editing exceptional instances (with low typicality or low classprediction strength) tends to harm generalization accuracy. In a second series of experimentswe compare memory-based learning and decision-tree learning methods on the same selectionof tasks, and �nd that decision-tree learning often performs worse than memory-based learning.Moreover, the decrease in performance can be linked to the degree of abstraction from exceptions(i.e., pruning or eagerness). We provide explanations for both results in terms of the propertiesof the natural language processing tasks and the learning algorithms.Keywords: memory-based learning, natural language learning, edited nearest neighbor classi�er,decision-tree learning1. IntroductionMemory-based reasoning (Stan�ll and Waltz, 1986) is founded on the hypothesisthat performance in real-world tasks (in our case language processing) is basedon reasoning on the basis of similarity of new situations to stored representationsof earlier experiences, rather than on the application of mental rules abstractedfrom earlier experiences as in rule-based processing. The type of learning associ-ated with such an approach is called lazy learning (Aha, 1997). The approach hassurfaced in di�erent contexts using a variety of alternative names such as example-based, exemplar-based, analogical, case-based, instance-based, locally weighted,and memory-based (Stan�ll and Waltz, 1986; Cost and Salzberg, 1993; Kolodner,1993; Aha, Kibler, and Albert, 1991; Atkeson, Moore, and Schaal, 1997). Histori-cally, lazy learning algorithms are descendants of the k-nearest neighbor (henceforthk-nn) classi�er (Cover and Hart, 1967; Devijver and Kittler, 1982; Aha, Kibler, andAlbert, 1991).

2Memory-based learning is `lazy' as it involves adding training examples (feature-value vectors with associated categories) to memory without abstraction or restruc-turing. During classi�cation, a previously unseen test example is presented to thesystem. Its similarity to all examples in memory is computed using a similaritymetric, and the category of the most similar example(s) is used as a basis for ex-trapolating the category of the test example. A key feature of memory-based learn-ing is that, normally, all examples are stored in memory and no attempt is madeto simplify the model by eliminating noise, low frequency events, or exceptions.Although it is clear that noise in the training data can harm accurate generaliza-tion, this work focuses on the problem that, for language learning tasks, it is verydi�cult to discriminate between noise on the one hand, and valid exceptions andsub-regularities that are important for reaching good accuracy on the other hand.The goal of this paper is to provide empirical evidence that for a range of languagelearning tasks, memory-based learning methods tend to achieve better generaliza-tion accuracies than (i) memory-based methods combined with training set editingtechniques in which exceptions are explicitly forgotten, i.e. removed from memory,and (ii) decision-tree learning in which some of the information from the trainingdata is either forgotten (by pruning) or made inaccessible (by the eager construc-tion of a model). We explain these results in terms of the data characteristicsof the tasks, and the properties of memory-based learning. In our experimentswe compare ib1-ig (Daelemans and Van den Bosch, 1992; Daelemans, Van denBosch, and Weijters, 1997), a memory-based learning algorithm, with (i) editedversions of ib1-ig, and (ii) decision-tree learning in c5.0 (Quinlan, 1993) and inigtree (Daelemans, Van den Bosch, and Weijters, 1997). These learning methodsare described in Section 2. The compared algorithms are applied to a selection offour natural language processing (nlp) tasks (described in Section 3). These taskspresent a varied sample of the complete domain of nlp as they relate to phonologyand morphology (grapheme-to-phoneme conversion); morphology and syntax (partof speech tagging, base noun phrase chunking); and syntax and lexical semantics(prepositional-phrase attachment).First, we show in Section 4 that two criteria for editing instances in memory-based learning, viz. low typicality and low class prediction strength, are generallyresponsible for a decrease in generalization accuracy.Second, memory-based learning is demonstrated in Section 5 to be mostly at anadvantage, and sometimes at a par with decision-tree learning as far as general-ization accuracy is concerned. The advantage is puzzling at �rst sight, as ib1-ig,c5.0 and igtree are based on similar principles: (i) classi�cation of test instanceson the basis of their similarity to training instances (in the form of the instancesthemselves in ib1-ig or in the form of hyper-rectangles containing subsets of partly-similar training instances in c5.0 and igtree), and (ii) use of information entropyas a heuristic to constrain the space of possible generalizations (as a feature weight-ing method in ib1-ig, and as a split criterion in c5.0 and igtree).Our hypothesis is that both e�ects are due to the fact that ib1-ig keeps all train-ing instances as possible sources for classi�cation, whereas both the edited versionsof ib1-ig and the decision-tree learning algorithms c5.0 and igtree make abstrac-

3tions from irregular and low-frequency events. In language learning tasks, wheresub-regularities and (small families of) exceptions typically abound, the latter isdetrimental to generalization performance. Our results suggest that forgetting ex-ceptional training instances is harmful to generalization accuracy for a wide rangeof language-learning tasks. This �nding contrasts with a consensus in supervisedmachine learning that forgetting exceptions by pruning boosts generalization accu-racy (Quinlan, 1993), and with studies emphasizing the role of forgetting in learning(Markovitch and Scott, 1988; Salganico�, 1993).Section 6 places our results in a broader machine learning and language learningcontext, and attempts to describe the properties of language data and memory-based learning that are responsible for the `forgetting exceptions is harmful' e�ect.For our data sets, the abstraction and pruning techniques studied do not succeed inreliably distinguishing noise from productive exceptions, an e�ect we attribute to aspecial property of language learning tasks: the presence of many exceptions thattend to occur in groups or pockets in instance space, together with noise introducedby corpus coding methods. In such a situation, the best strategy is to keep alltraining data to generalize from.2. Learning methodsIn this Section, we describe the three algorithms we used in our experiments. ib1-ig is used for studying the e�ect of editing exceptional training instances, and in acomparison to the decision tree methods c5.0 and igtree.2.1. IB1-IGib1-ig (Daelemans and Van den Bosch, 1992; Daelemans, Van den Bosch, andWeijters, 1997) is a memory-based (lazy) learning algorithm that builds a database of instances (the instance base) during learning. An instance consists of a�xed-length vector of n feature-value pairs, and a �eld containing the classi�cationof that particular feature-value vector. After the instance base is built, new (test)instances are classi�ed by matching them to all instances in the instance base, andby calculating with each match the distance between the new instance X and thestored instance Y .The most basic metric for instances with symbolic features is the overlap metricgiven in Equations 1 and 2; where �(X;Y) is the distance between instances X andY , represented by n features, wi is a weight for feature i, and � is the distance perfeature. The k-nn algorithm with this metric, and equal weighting for all featuresis, for example, implemented in ib1 (Aha, Kibler, and Albert, 1991). Usually k isset to 1.�(X;Y) = nXi=1 wi �(xi; yi) (1)where:

4 �(xi; yi) = 0 if xi = yi; else 1 (2)We have made two additions to the original algorithm in our version of ib1. First, inthe case of nearest neighbor sets larger than one instance (k > 1 or ties), our versionof ib1 selects the classi�cation with the highest frequency in the class distribution ofthe nearest neighbor set. Second, if a tie cannot be resolved in this way because ofequal frequency of classes among the nearest neighbors, the classi�cation is selectedwith the highest overall occurrence in the training set.The distance metric in Equation 2 simply counts the number of (mis)matchingfeature values in both instances. In the absence of information about feature rele-vance, this is a reasonable choice. Otherwise, we can add linguistic bias to weightor select di�erent features (Cardie, 1996) or look at the behavior of features in theset of examples used for training. We can compute statistics about the relevanceof features by looking at which features are good predictors of the class labels.Information theory gives us a useful tool for measuring feature relevance in thisway (Quinlan, 1986; Quinlan, 1993).Information gain (IG) weighting looks at each feature in isolation, and measureshow much information it contributes to our knowledge of the correct class label. Theinformation gain of feature f is measured by computing the di�erence in uncertainty(i.e. entropy) between the situations without and with knowledge of the value ofthat feature (Equation 3).wf = H(C)�Pv2Vf P (v)H(Cjv)si(f) (3)si(f) = �Xv2Vf P (v) log2 P (v) (4)where C is the set of class labels, Vf is the set of values for feature f , and H(C) =�Pc2C P (c) log2 P (c) is the entropy of the class label probability distribution.The probabilities are estimated from relative frequencies in the training set. Thenormalizing factor si(f) (split info) is included to avoid a bias in favor of featureswith more values. It represents the amount of information needed to represent allvalues of the feature (Equation 4). The resulting IG values can then be used asweights in equation 1.The possibility of automatically determining the relevance of features implies thatmany di�erent and possibly irrelevant features can be added to the feature set. Thisis a very convenient methodology if theory does not constrain the choice enoughbeforehand, or if we wish to measure the importance of various information sourcesexperimentally. A limitation is its insensitivity to feature redundancy; althougha feature may be redundant, it may be assigned a high information gain weight.Nevertheless, the advantages far outweigh the limitations for our data sets, andib1-ig consistently outperforms ib1.

52.2. C5.0c5.0, a commercial version of c4.5 (Quinlan, 1993), performs top-down inductionof decision trees (tdidt). On the basis of an instance base of examples, c5.0constructs a decision tree which compresses the classi�cation information in theinstance base by exploiting di�erences in relative importance of di�erent features.Instances are stored in the tree as paths of connected nodes ending in leaves whichcontain classi�cation information. Nodes are connected via arcs denoting featurevalues. Feature information gain (Equation 3) is used dynamically in c5.0 to de-termine the order in which features are employed as tests at all levels of the tree(Quinlan, 1993).c5.0 can be tuned by several parameters. In our experiments, we chose to vary thepruning con�dence level (the c parameter), and the minimal number of instancesrepresented at any branch of any feature-value test (the m parameter). The twoparameters directly a�ect the degree of `forgetting' of individual instances by c5.0:� The c parameter denotes the pruning con�dence level, which ranges between0% and 100%. This parameter is used in a heuristic function that estimatesthe predicted number of misclassi�cations of unseen instances at leaf nodes, bycomputing the binomial probability (i.e, the con�dence limits for the binomialdistribution) of misclassi�cations within the set of instances represented at thatnode (Quinlan, 1993). When the presence of a leaf node leads to a higherpredicted number of errors than when it would be absent, it is pruned from thetree. By default, c = 25%; set at 100%, no pruning occurs. The more pruningis performed, the less information about the individual examples is rememberedin the abstracted decision tree.� The m parameter governs the minimum number of instances represented by anode. By setting m > 1, c5.0 can avoid the creation of long paths disambiguat-ing single-instance minorities that possibly represent noise (Quinlan, 1993). Bydefault, m = 2. With m = 1, c5.0 builds a path for every single instance not yetdisambiguated. Higher values of m lead to an increasing amount of abstractionand therefore to less recoverable information about individual instances.Moreover, we chose to set the subsetting of values (s) parameter at the non-defaultvalue `on'. The s parameter is a
ag determining whether di�erent values of thesame feature are grouped on the same arc in the decision tree when they lead toidentical or highly similar subtrees. We used value grouping as a default for reasonsof computational complexity for the pos, pp, and np data sets, and because thatsetting yields higher generalization accuracy for the gs data set.2.3. IGTREEThe igtree algorithm was originally developed as a method to compress and in-dex case bases in memory-based learning (Daelemans, Van den Bosch, and Weijters,1997). It performs tdidt in a way similar to that of c5.0, but with two important

6di�erences. First, it builds oblivious decision trees, i.e., feature ordering is com-puted only at the root node and is kept constant during tdidt, instead of beingrecomputed at every new node. Second, igtree does not prune exceptional in-stances; it is only allowed to disregard information redundant for the classi�cationof the instances presented during training.Instances are stored as paths of connected nodes and leaves in a decision tree.Nodes are connected via arcs denoting feature values. The global information gainof the features is used to determine the order in which instance feature values areadded as arcs to the tree. The reasoning behind this compression is that whenthe computation of information gain points to one feature clearly being the mostimportant in classi�cation, search can be restricted to matching a test instance tothose memory instances that have the same feature value as the test instance atthat feature. Instead of indexing all memory instances only once on this feature,the instance memory can then be optimized further by examining the second mostimportant feature, followed by the third most important feature, etc. A considerablecompression is obtained as similar instances share partial paths.The tree structure is compressed even more by restricting the paths to thoseinput feature values that disambiguate the classi�cation from all other instancesin the training material. The idea is that it is not necessary to fully store aninstance as a path when only a few feature values of the instance make the instanceclassi�cation unique. This implies that feature values that do not contribute to thedisambiguation of the instance (i.e., the values of the features with lower informationgain values than the lowest information gain value of the disambiguating features)are not stored in the tree.Apart from compressing all training instances in the tree structure, the igtreealgorithm also stores with each non-terminal node information concerning the mostprobable or default classi�cation given the path thus far, according to the book-keeping information maintained by the tree construction algorithm. This extrainformation is essential when processing unknown test instances. Processing anunknown input involves traversing the tree (i.e., matching all feature-values of thetest instance with arcs in the order of the overall feature information gain), andeither retrieving a classi�cation when a leaf is reached (i.e., an exact match wasfound), or using the default classi�cation on the last matching non-terminal nodeif an exact match fails.In sum, in the trade-o� between computation during learning and computationduring classi�cation, the igtree approach chooses to invest more time in organizingthe instance base than ib1-ig, but less than c5.0, because the order of the featuresneeds to be computed only once for the whole data set.3. Benchmark language learning tasksWe investigate four language learning tasks that jointly represent a wide rangeof di�erent types of tasks in the nlp domain: (1) grapheme-phoneme conversion(henceforth referred to as gs), (2) part-of-speech tagging (pos), (3) prepositional-phrase attachment (pp), and (4) base noun phrase chunking (np). In this section,

7we introduce each of the four tasks, and describe for each task the data collectedand employed in our study. First, properties of the four data sets are listed inTable 1, and examples of instances for each of the tasks are displayed in Table 2.Table 1. Properties of the four investigated data sets of the gs, pos, pp, and np learningtasks: numbers of features, values per feature, classes, and instances.# # Values of feature # # Data setTask Features 1 2 3 4 5 6 7 8 9 10 11 Classes instancesgs 7 42 42 42 41 42 42 42 159 675,745pos 5 170 170 498 492 480 169 1,046,152pp 4 3,474 4,612 68 5,780 2 23,898np 11 20,231 20,282 20,245 20,263 86 87 86 89 3 3 3 3 251,124
Table 2. Example of instances of the gs, pos, pp, and np learning tasks. All instances represent�xed-sized feature-value vectors and an associated class label. Feature values printed in bold arefocus features (description in text). FeaturesTask 1 2 3 4 5 6 7 8 9 10 11 labelgs h e a r t s 0A:b o o k i n g 0kt i e s 0za f a r 1fpos sqso VB vbg nn vbnns bez TO/IN be vbn/vbd tonp hvz VB/VBN/VBD rp/in at vbnPP3 md rn pp3pp is chairman of NV nounpour cash into funds verbasked them for views verbcaused swings in prices nounnp de�nitive agreement between the jj nn in dt I I I Owhen they need money wrb pp vbp nn I I O Opose a new challenge vb dt jj nn O I I Iperformance that would compare nn wdt md vb O B I O3.1. GS: grapheme-phoneme conversion with stress assignmentConverting written words to stressed phonemic transcription, i.e., word pronunci-ation, is a well-known benchmark task in machine learning (Sejnowski and Rosen-berg, 1987; Stan�ll and Waltz, 1986; Stan�ll, 1987; Lehnert, 1987; Wolpert, 1989;

8Shavlik, Mooney, and Towell, 1991; Dietterich, Hild, and Bakiri, 1995). We de�nethe task as the conversion of �xed-sized instances representing parts of words toa class representing the phoneme and the stress marker of the instance's middleletter. We henceforth refer to the task as gs, an acronym of grapheme-phonemeconversion and stress assignment. To generate the instances, windowing is used(Sejnowski and Rosenberg, 1987). Table 2 (top) displays four example instancesand their classi�cations. Classi�cations, i.e., phonemes with stress markers, aredenoted by composite labels. For example, the �rst instance in Table 2, hearts,maps to class label 0A:, denoting an elongated short `a'-sound which is not the �rstphoneme of a syllable receiving primary stress. In this study, we chose a �xed win-dow width of seven letters, which o�ers su�cient context information for adequateperformance (in terms of the upper bound on error demanded by applications inspeech technology).From celex (Baayen, Piepenbrock, and van Rijn, 1993) we extracted, on the basisof the standard word base of 77,565 words with their corresponding transcription,a data base containing 675,745 instances. The number of classes (i.e., all possiblecombinations of phonemes and stress markers) occurring in this data base is 159.3.2. POS: Part-of-speech tagging of word forms in contextMany words in a text are ambiguous with respect to their morphosyntactic category(part-of-speech). Each word has a set of lexical possibilities, and the local contextof the word can be used to select the most likely category from this set (Church,1988). For example in the sentence \they can can a can", the word can is tagged asmodal verb, main verb and noun respectively. We assume a tagger architecture thatprocesses a sentence from the left to the right by classifying instances representingwords in their contexts (as described in Daelemans et al. (1996)). The word'salready tagged left context is represented by the disambiguated categories of thetwo words to the left, the word itself and its ambiguous right context are representedby categories which denote ambiguity classes (e.g. verb-or-noun).The data set for the part-of-speech tagging task, henceforth referred to as the postask, was extracted from the LOB corpus1. The full data set contains 1,046,152instances. The \lexicon" of ambiguity classes was constructed from the �rst 90%of the corpus only, and hence the data contains unknown words. To avoid a com-plicated architecture, we treat unknown words the same as the known words, i.e.,their ambiguous category is simply \unknown", and they can only be classi�ed onthe basis of their context2.3.3. PP: Disambiguating verb/noun attachment of prepositional phrasesAs an example of a semantic-syntactic disambiguation task we consider a simpli�edversion of the task of Prepositional Phrase (henceforth pp) attachment: the attach-ment of a PP in the sequence VP NP PP (VP = verb phrase, NP = noun phrase, PP= prepositional phrase). The data consists of four-tuples of words, extracted fromthe Wall Street Journal Treebank (Marcus, Santorini, and Marcinkiewicz, 1993) by

9a group at ibm (Ratnaparkhi, Reynar, and Roukos, 1994).3 They took all sentencesthat contained the pattern VP NP PP and extracted the head words from the con-stituents, yielding a V N1 P N2 pattern (V = verb, N = noun, P = preposition). Foreach pattern they recorded whether the PP was attached to the verb or to the nounin the treebank parse. For example, the sentence \he eats pizza with a fork" wouldyield the pattern:Example: eats, pizza, with, fork, verb.because here the PP is an instrumental modi�er of the verb. A contrasting sentencewould be \he eats pizza with anchovies", where the PP modi�es the noun phrasepizza.Example: eats, pizza, with, anchovies, noun.From the original data set, used in statistical disambiguation methods by Ratna-parkhi, Reynar, and Roukos (1994) and Collins and Brooks (1995), we took thetrain and test set together to form a new data set of 23,898 instances.Due to the large number of possible word combinations and the comparativelysmall training set size, this data set can be considered very sparse. Of the 2390test instances in the �rst fold of the 10 cross-validation (CV) partitioning, only 121(5.1%) occurred in the training set; 619 (25.9 %) instances had 1 mismatching wordwith any instance in the training set; 1492 (62.4%) instances had 2 mismatches;and 158 (6.6 %) instances had 3 mismatches. Moreover, the test set contains manywords that are not present in any of the instances in the training set.The pp data set is also known to be noisy. Ratnaparkhi, Reynar, and Roukos(1994) performed a study with three human subjects, all experienced treebankannotators, who were given a small random sample of the test sentences (either asfour-tuples or as full sentences), and who had to give the same binary decision. Thehumans, when given the four-tuple, gave the same answer as the Treebank parseonly 88.2% of the time, and when given the whole sentence, only 93.2% of the time.3.4. NP: Base noun phrase chunkingPhrase chunking is de�ned as the detection of boundaries between phrases (e.g.,noun phrases or verb phrases) in sentences. Chunking can be seen as a `light'form of parsing. In NP chunking, sentences are segmented into non-recursive NP's,so called baseNP's (Abney, 1991). NP chunking can, for example, be used toreduce the complexity of sub-sequential parsing, or to identify named entities forinformation retrieval. To perform this task, we used the baseNP tag set as presentedin (Ramshaw and Marcus, 1995): I for inside a baseNP, O for outside a baseNP,and B for the �rst word in a baseNP following another baseNP. As an example, theIOB tagged sentence: \The/I postman/I gave/O the/I man/I a/B letter/I ./O" willresult in the following baseNP bracketed sentence: \[The postman] gave [the man][a letter]." The data we used are based on the same material as (Ramshaw andMarcus, 1995) which is extracted from the Wall Street Journal text in the parsedPenn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993). Our NP chunker

10consists of two stages, and in this paper we have used instances from the secondstage. An instance (constructed for each focus word) consists of features referringto words, POS tags, and IOB tags (predicted by the �rst stage) of the focus and thetwo immediately adjacent words. The data set contains a total of 251,124 instances.3.5. Experimental methodWe used 10-fold CV (Weiss and Kulikowski, 1991) in all experiments comparingclassi�ers (Section 5). In this approach, the initial data set (at the level of instances)is partitioned into ten subsets. Each subset is taken in turn as a test set, and theremaining nine combined to form the training set. Means are reported, as well asstandard deviation from the mean. In the editing experiments (Section 4), the �rsttrain-test partition of the 10-fold CV was used for comparing the e�ect on the testset accuracy of applying di�erent editing schemes on the training set.Having introduced the machine learning methods and data sets that we focus onin this paper, and the experimental method we used, the next Section describesempirical results from a �rst set of experiments aimed at getting more insight intothe e�ect of editing exceptional instances in memory-based learning.4. Editing exceptions in memory-based learning is harmfulThe editing of instances from memory in memory-based learning or the k-nn clas-si�er (Hart, 1968; Wilson, 1972; Devijver and Kittler, 1980) serves two objectives:to minimize the number of instances in memory for reasons of speed or storage,and to minimize generalization error by removing noisy instances, prone to beingresponsible for generalization errors. Two basic types of editing, corresponding tothese goals, can be found in the literature:� Editing super
uous regular instances: delete instances for which the dele-tion does not harm the classi�cation accuracy of their own class in the trainingset (Hart, 1968).� Editing unproductive exceptions: deleting instances that are incorrectlyclassi�ed by their neighborhood in the training set (Wilson, 1972), or roughlyvice-versa, deleting instances that are bad class predictors for their neighbor-hood in the training set (Aha, Kibler, and Albert, 1991).We present experiments in which both types of editing are employed within theib1-ig algorithm (Subsection 2.1). The two types of editing are performed onthe basis of two criteria that estimate the exceptionality of instances: typicality(Zhang, 1992) and class prediction strength (Salzberg, 1990) (henceforth referredto as cps). Unproductive exceptions are edited by taking the instances with thelowest typicality or cps, and super
uous regular instances are edited by takingthe instances with the highest typicality or cps. Both criteria are described inSubsection 4.1. Experiments are performed using the ib1-ig implementation of the

11TiMBL software package4 (Daelemans et al., 1998). We present the results of theediting experiments in Subsection 4.2.4.1. Two editing criteriaWe investigate two methods for estimating the (degree of) exceptionality of instancetypes: typicality and class prediction strength (cps).4.1.1. Typicality In its common meaning, \typicality" denotes roughly the oppo-site of exceptionality; atypicality can be said to be a synonym of exceptionality. Weadopt a de�nition from (Zhang, 1992), who proposes a typicality function. Zhangcomputes typicalities of instance types by taking the notions of intra-concept sim-ilarity and inter-concept similarity (Rosch and Mervis, 1975) into account. First,Zhang introduces a distance function which extends Equation 1; it normalizes thedistance between two instances X and Y by dividing the summed squared distanceby n, the number of features. The normalized distance function used by Zhang isgiven in Equation 5.�(X;Y) =vuut 1n nXi=1(�(xi; yi))2 (5)The intra-concept similarity of instance X with classi�cation C is its similarity(i.e., 1�distance) with all instances in the data set with the same classi�cationC: this subset is referred to as X 's family, Fam(X). Equation 6 gives the intra-concept similarity function Intra(X) (jFam(X)j being the number of instances inX 's family, and Fam(X)i the ith instance in that family).Intra(X) = 1jFam(X)j jFam(X)jXi=1 1:0��(X;Fam(X)i) (6)All remaining instances belong to the subset of unrelated instances, Unr(X). Theinter-concept similarity of an instance X , Inter(X), is given in Equation 7 (withjUnr(X)j being the number of instances unrelated to X , and Unr(X)i the ithinstance in that subset).Inter(X) = 1jUnr(X)j jUnr(X)jXi=1 1:0��(X;Unr(X)i) (7)The typicality of an instance X , Typ(X), is X 's intra-concept similarity divided byX 's inter-concept similarity, as given in Equation 8.Typ(X) = Intra(X)Inter(X) (8)

12An instance type is typical when its intra-concept similarity is larger than its inter-concept similarity, which results in a typicality larger than 1. An instance type isatypical when its intra-concept similarity is smaller than its inter-concept similarity,which results in a typicality between 0 and 1. Around typicality value 1, instancescannot be sensibly called typical or atypical; Zhang (1992) refers to such instancesas boundary instances.We adopt typicality as an editing criterion here, and use it for editing instanceswith low typicality as well as instances with high typicality. Low-typical instancescan be seen as exceptions, or bad representatives of their own class and couldtherefore be pruned from memory, as one can argue that they cannot supportproductive generalizations. This approach has been advocated by Ting (1994a) asa method to achieve signi�cant improvements in some domains. Editing atypicalinstances would, in this line of reasoning, not be harmful to generalization, andchances are that generalization would even improve under certain conditions (Aha,Kibler, and Albert, 1991). High-typical instances, on the other hand, may be goodpredictors for their own class, but there may be enough of them in memory, so thata few may also be edited without harmful e�ects to generalization.Table 3 provides examples of low-typical (for each task, the top three) and high-typical (bottom three) instances of all four tasks. The gs examples show that loanwords such as czech introduce peculiar spelling-pronunciation relations; particu-larly foreign spellings turn out to be low-typical. High-typical instances are partsof words of which the focus letter is always pronounced the same way. Low-typicalpos instances tend to involve inconsistent or noisy associations between an unam-biguous word class of the focus word and a di�erent word class as classi�cation:such inconsistencies can be largely attributed to corpus annotation errors. Focustags of high-typical pos instances are already unambiguous. The examples of low-typical pp instances represent minority exceptions or noisy instances in which it isquestionable whether the chosen classi�cation is right (recall that human annota-tors agree only on 88% of the instances in the data set, cf. Subsection 3), while thehigh-typical pp examples have the preposition `of' in focus position, which typicallyattaches to the noun. Low-typical np instances seem to be partly noisy, and oth-erwise di�cult to interpret. High-typical np instances are clear-cut cases in whicha noun occurring between a determiner and a �nite verb is correctly classi�ed asbeing inside an NP.4.1.2. Class-prediction strength A second estimate of exceptionality is to mea-sure how well an instance type predicts the class of all other instance types withinthe training set. Several functions for computing class-prediction strength havebeen proposed, e.g., as a criterion for removing instances in memory-based (k-nn)learning algorithms, such as ib3 (Aha, Kibler, and Albert, 1991) (cf. earlier workon edited k-nn (Hart, 1968; Wilson, 1972; Devijver and Kittler, 1980; Voisin andDevijver, 1987)); or for weighting instances in the Each algorithm (Salzberg, 1990).We use the class-prediction strength function as proposed by Salzberg (1990). Thisis the ratio of the number of times the instance type is a nearest neighbor of an-other instance with the same class and the number of times that the instance type

13Table 3. Examples of low-typical (top three) and high-typical (bottomthree) instances of the gs, pos, pp, and np learning tasks. For each instanceits typicality value is given. gsfeature values class typicalityu r e a u c r 0@U 0.43f r e u d i a 0OI 0.44c z e c h 0- 0.54b j e c t i o 0kS 10.57l k - o v e r 2@U 10.39e y - j a c k 2 9.41posfeature values class typicalitysxm sqsc cc to/in vb fw 0.05cd nnu nn bo aa aq 0.07pp3os do cc vb pp3as cs 0.08cs3 cs4 pp1as nn/jjb/in pp3os pp1as 3531.53cs1 cs2 cd nnu1/in nnu2 cd 2887.29nn2 in2 cd nnu/zz in/cc cd 2526.98ppfeature values class typicalityaccuses Motorola of turnabout verb 0.01cleanse Germany of muck verb 0.01directs
ow through systems noun 0.02excluding categories of food noun 94.52underscoring lack of stress noun 94.52calls frenzy of legislating noun 94.53npfeature values class typicalitygenerally a bit safer rb dt nn jjr O O O O 0.27\ No matter how \ dt nn wrb O O O O 0.27I know that voluntarily pp vbp in rb O O B I 0.27that the legislator wins in dt nn vbz O B B I 6.93that the bank supports in dt nn vbz O B B I 6.94that the company hopes in dt nn vbz O B B I 6.97is the nearest neighbor of another instance type regardless of the class. An instancetype with class-prediction strength 1.0 is a perfect predictor of its own class; aclass-prediction strength of 0.0 indicates that the instance type is a bad predictorof classes of other instances, presumably indicating that the instance type is excep-tional. Even more than with typicality, one might argue that bad class predictorscan be edited from the instance base. Likewise, one could also argue that instances

14with a maximal cps could be edited to some degree too without harming general-ization: strong class predictors may be abundant and some may be safely forgottensince other instance types may be strong enough to support the class predictionsof the edited instance type.In Table 4, examples from the four tasks of instances with low (top three) andhigh (bottom three) cps are displayed. Many instances with low cps are minorityambiguities. For instance, the gs examples represent instances which are completelyambiguous and of which the classi�cation is the minority. For example, thereare more words beginning with algo that have primary stress (class `1ae') thansecondary stress (class `2ae'), which makes the instance ` algo 2ae' a minorityambiguity.To test the utility of these measures as criteria for justifying forgetting of speci�ctraining instances, we performed a series of experiments in which ib1-ig is appliedto the four data sets, systematically edited according to each of four tested criteria.We performed the editing experiments on the �rst fold of the 10-fold CV partitioningof the four data sets. For each editing criterion (i.e., low and high typicality, andlow and high cps), we created eight edited instance bases by removing 1%, 2%, 5%,10%, 20%, 30%, 40%, and 50% of the instance tokens (rounded o� so as to removea whole number of instance types) according to the criterion from a single trainingset (the training set of the �rst 10-fold CV partition). ib1-ig was then trained oneach of the edited training sets, and tested on the original unedited test set (of the�rst 10-fold CV partition).
0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50

O
ve

rla
pp

in
g

in
st

an
ce

 ty
pe

s
(%

)

Removed instance tokens (%)

GS
POS

PP
NP

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50

O
ve

rla
pp

in
g

in
st

an
ce

 ty
pe

s
(%

)

Removed instance tokens (%)

GS
POS

PP
NPFigure 1. The percentage of instance types that are edited by both the typicality and the classprediction strength criterion. The left part of the �gure shows the results for editing exceptionalinstances, the right part shows the results for editing regular instances.To measure to what degree the two criteria are indeed di�erent measures ofexceptionality, the percentage of overlap between the removed types was measuredfor each data set. As can be seen in Figure 1, the two measures mostly have fairlylittle overlap, certainly for editing below 10%. The reason for this is that typicalityis based on global properties of the data set, whereas class prediction strength isbased only on the local neighborhood of each instance. Only for the PP attachmentand POS tagging tasks do the sets of edited exceptional instances overlap up to70% when editing 10%.

15Table 4. Examples of instances with low class prediction strength(top three) and high class prediction strength (bottom three) of thegs, pos, pp, and np tasks. For each instance its class predictionstrength (cps) value is given. gsfeature values class cpsa l g o 2ae 0.00c k - b e n c 1b 0.00e r b y 0aI 0.00w e e k 1w 1.00a i n d e r s 0d 1.00e r a c t e d 0k 1.00posfeature values class cpsscom npt in np np/nn in 0.00== == npt np genm/bez nn 0.00ati nns vbn/vbd in np vbd 0.00sqso wrb xnot vb ati xnot 1.00ber cd nns in nn nns 1.00at jnp nn vbz in nn 1.00ppfeature values class cpsallowed access notwithstanding designations verb 0.00had yield during week noun 0.00make commodity of luxury verb 0.02is one of strategy noun 0.99is one of restructuring noun 0.99is one of program noun 0.99npfeature values class cpsof KLM Royal Dutch in np np np I I O I 0.00in ethics charges against in nns nns in O I O I 0.00assets . The axiom nns stop dt nn I O I I 0.00I drink to your pp vbp to pp I O I I 1.00share price could zoom nn nn md vb I I O O 1.00work force as well nn nn rb rb O I I O 1.004.2. Editing exceptions: ResultsThe general trend we observe in the results obtained with the editing experiments isthat editing on the basis of typicality and class-prediction strength, whether low orhigh, is not bene�cial, and is ultimately harmful to generalization accuracy. Morespeci�cally, we observe a trend that editing instance types with high typicality or

16high cps is less harmful than editing instance types with low typicality or low classprediction strength { again, with some exceptions. The results are summarized inFigure 2. The results show that in any case for our data sets, editing serves neitherof its original goals. If the goal is a decrease of speed and memory requirements,editing criteria should allow editing of 50% or more without a serious decrease ingeneralization accuracy. Instead, we see disastrous e�ects on generalization accu-racy at much lower editing rates, sometimes even at 1%. When the goal is improvinggeneralization accuracy by removing noise, the focus of the editing experiments inthis paper, none of the studied criteria turns out to be useful.
55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

0 10 20 30 40 50

ge
ne

ra
lis

at
io

n
ac

cu
ra

cy
 (

%
)

% of removed instances types

GS

low typicality
high typicality

low CPS
high CPS

85.0

87.5

90.0

92.5

95.0

97.5

100.0

0 10 20 30 40 50

ge
ne

ra
lis

at
io

n
ac

cu
ra

cy
 (

%
)

% of removed instances types

POS

low typicality
high typicality

low CPS
high CPS

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 10 20 30 40 50

ge
ne

ra
lis

at
io

n
ac

cu
ra

cy
 (

%
)

% of removed instances types

PP

low typicality
high typicality

low CPS
high CPS

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

0 10 20 30 40 50

ge
ne

ra
lis

at
io

n
ac

cu
ra

cy
 (

%
)

% of removed instances types

NP

low typicality
high typicality

low CPS
high CPSFigure 2. Generalization accuracies (in terms of % of correctly classi�ed test instances) of ib1-igon the four tasks with increasing percentages of edited instance tokens, according to the fourtested editing criteria.To compute the statistical signi�cance of the e�ect of editing, the output foreach criterion was compared to the correct classi�cation and the output of theunedited classi�er. The resulting cross-tabulation of hits and misses was subjectedto McNemar's �2 test (Dietterich, 1998 in press). Di�erences with p < 0:05 arereported as signi�cant.A detailed look at the results per data set shows the following results. Editingexperiments on the gs task (top left of Figure 2) show signi�cant decreases in gen-eralization accuracy with all editing criteria and all amounts (even 1% is harmful);

17editing on the basis of low and high cps is particularly harmful, and all criteriaexcept low typicality show a dramatic drop in accuracy at high levels of editing.The editing results on the pos task (top right of Figure 2) indicate that editingon the basis of either low typicality or low class prediction strength leads to sig-ni�cant decreases in generalization accuracy even with the smallest amount (1%)of edited instance types. Editing on the basis of high typicality and high cps canbe performed up to 10% and 5% respectively without signi�cant performance loss.For this data set, the drop in performance is radical only for low typicality.Editing on the pp task (bottom left of Figure 2) results in signi�cant decreasesof generalization accuracy with respectively 5% and 10% of edited instance tokensof low typicality and low cps. Editing with high typicality and high cps can beperformed up to 20% and 10% repectively, without signi�cant performance loss,but accuracies drop dramatically when 30% or more of high-typical or high-cpsinstance types are edited.Finally, editing on the np data (bottom right of Figure 2) can be done withoutsigni�cant generalization accuracy loss with either the low or the high cps criterion,up to respectively 30% and 10%. Editing with low or high typicality, however, isharmful to generalization immediately from editing 1% of the instance tokens.In sum, the experiments with editing on the basis of criteria estimating the excep-tionality of instances show that forgetting of exceptional instances in memory-basedlearning while safeguarding generalization accuracy can only be performed to a verylimited degree by (i) replacing instance tokens by instance types with frequency in-formation (which is trivial and is done by default in ib1-ig), and (ii) removingsmall amounts of minority ambiguities with low (0.0) cps. None of the editingcriteria studied is able to reliably �lter out noisy instances. It seems that for thelinguistic tasks we study, methods �ltering out noise tend to also intercept at leastsome (small families of) productive instances. Our experiments show that there islittle reason to believe that such editing will lead to accuracy improvement. Whenlooking at editing from the perspective of reducing storage requirements, we �ndthat the amount of editing possible without a signi�cant decrease in generalizationaccuracy is limited to around 10%. Whichever perspective is taken, there does notseem to be a clear pattern across the data sets favoring either the typicality or classprediction strength criterion, which is somewhat surprising given their di�erentbasis (i.e., as a measure of global or local exceptionality).5. Forgetting by decision-tree learning can be harmful in languagelearningAnother way to study the in
uence of exceptional instances on generalization ac-curacy is to compare ib1-ig, without editing, to inductive algorithms that abstractfrom exceptional instances by means of pruning or other devices. c5.0 and igtree,introduced in Section 2 are decision tree learning methods that abstract in variousways from exceptional instances. We compared the three algorithms for all datasets using 10-fold CV. In this Section, we will discuss the results of this comparison,and the in
uence of some pruning parameters of c5.0 on generalization accuracy.

185.1. ResultsOrdered on a continuum representing how exceptional instances are handled, ib1-ig is at one end, keeping all training data, and c5.0 with default settings (c = 25,m = 2, value grouping on) is at the other end, making abstraction from exceptional(noisy) instances by pruning, constructing features (by grouping subsets of values ofa feature), and enforcing a minimal number of instances at each node. In betweenis igtree, which collapses instances that have the same class and the same valuesfor the most relevant features into one node.Table 5. Generalization accuracies (in terms of per-centages of correctly classi�ed test instances) on thegs, pos, pp, and np tasks, by ib1-ig, igtree, and c5.0with parameter setting c = 25 and m = 2 (defaultsetting). Generalization accuracyib1-ig igtree c5.0Task % � % � % �gs 93.45 0.15 93.09 0.15 92.48 0.14pos 97.94 0.05 97.75 0.03 97.97 0.04pp 83.48 1.16 78.28 1.79 80.89 1.01np 98.07 0.05 97.28 0.08 | |Table 5 displays the generalization accuracies, measured in percentages of cor-rectly classi�ed test instances, for ib1-ig, igtree, and c5.0 on the four tasks. Wewere unfortunately unable to �nish the c5.0 experiment on the np data set formemory reasons (running on a SUN Sparc 5 with 160 Mb internal memory and 386Mb swap space). The statistical signi�cance of the di�erences between the algo-rithms is summarized in Table 6. We performed a one-tailed paired t-test betweenthe results of the 10 CV runs.As the results in these Tables show, ib1-ig has signi�cantly better generalizationaccuracy than igtree for all data sets. In two of the three data sets where thecomparison is feasible, ib1-ig performs signi�cantly better than c5.0. For thepos data set, c5.0 outperforms ib1-ig with a small but statistically signi�cantdi�erence.5.1.1. Abstraction in C5.0 We performed additional experiments with c5.0 withincreasing values for the c and m parameters, to gain more insight into the e�ectof explicitly forgetting feature-value information through pruning (c) or blockingthe disambiguation of small amounts of instances (m). The following space ofparameters was explored for each data set on the �rst fold of the 10 CV partitioning.1. m = 1 and c = 100; 75; 50; 40; 35; 30; 25; 20; 15; 10; 5; 2; 1 to visualize the gradualincrease of pruning, and

19Table 6. Signi�cance of the di�erences between the generalization performances of ib1-ig,c5.0opt, c5.0def, and igtree, for the four tasks. A one-tailed paired t-test (df = 9) wasperformed, to see whether the generalization accuracy of the algorithm to the left is betterthan that of the algorithm to the right (indicated by a greater than \>" sign), or the otherway around (less than sign \<").Algorithm 1 Algorithm 2 gs pos pp npib1-ig c5.0 > (p < 10�6) < (p = 4� 10�4) > (p = 2� 10�4) naib1-ig igtree > (p < 10�6) > (p < 10�6) > (p < 10�6) > (p < 10�6)igtree c5.0 > (p < 10�6) < (p < 10�6) < (p = 10�4) na2. c = 100 and m = 1; 2; 3; 4; 5; 6; 8; 10; 15; 20; 30; 50 to visualize the gradual de-crease in the level of instance granularity at feature tests.Figure 3 displays the e�ect on generalization accuracy of varying the c parameterfrom 1 to 100 (left) and the m parameter from 1 to 50 (right). Performance of c5.0on the pos and pp tasks is only slightly sensitive to the setting of both parameters,while the performance on the gs task is seriously harmed when c is too small (i.e.,when pruning is high), or when m is larger than 1 (i.e., when single instances tobe disambiguated are ignored). The direct e�ect of changing both parameters isshown in Figure 4; small values of c lead to smaller trees, as do large values of m.For the pos, and pp tasks, it is interesting to note that the performance of c5.0,although usually lower than that of ib1-ig, is maintained even with a small numberof nodes: with m = 50 and c = 100, c5.0 needs 1324 nodes for the pos task and 34nodes for the pp task. However, nodes in these trees contain a lot of informationsince grouping of feature values was used.
75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

0 20 40 60 80 100

ge
ne

ra
lis

at
io

n
ac

cu
ra

cy
 (

%
)

c parameter

GS
POS

PP

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

0 10 20 30 40 50

ge
ne

ra
lis

at
io

n
ac

cu
ra

cy
 (

%
)

m parameter

GS
POS

PP

Figure 3. Generalization accuracies (in terms of % of correctly classi�ed test instances) of c5.0with increasing c parameter (left) and increasing m parameter (right), for the gs, pos, and pptasks.

20
0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100

no

de
s

c parameter

GS
POS

PP

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50

no

de
s

m parameter

GS
POS

PP

Figure 4. Tree sizes (number of nodes) generated by c5.0 with increasing c parameter (left) andincreasing m parameter (right), for the gs, pos, and pp tasks.Table 7 compares c5.0 with default settings (c5.0def) to c5.0 with `lazy' pa-rameter setting c = 100 and m = 1 (c5.0lazy). The di�erences are signi�cant atthe p < 0:05 level for the gs and pos data sets, but not for the pp data set.Table 7. 10 fold CV generalizationaccuracies (in terms of percentages ofcorrectly classi�ed test instances) onthe gs, pos, and pp tasks, by c5.0 withparameter setting c = 25 and m = 2(default setting), and c5.0 with pa-rameter setting c = 100 and m = 1(`lazy' setting).Generalization accuracyc5.0lazy c5.0defTask % � % �gs 93.34 0.13 92.48 0.14pos 97.92 0.04 97.97 0.04pp 80.85 1.07 80.89 1.01These parameter tuning results indicate that decision-tree pruning is not bene-�cial to generalization accuracy, but neither is it generally harmful. Only on thegs task are strong decreases in generalization accuracy found with decreasing c.Likewise, small decreases in performance are witnessed with increasing m for thepos and pp tasks, while a strong accuracy decrease is found with increasing m forthe gs task.5.1.2. E�ciency In addition to generalization accuracy, which is the focus of ourattention in this research, e�ciency, measured in terms of training and testing speedand in terms of memory requirements, is also an important criterion to evaluatelearning algorithms. For training, ib1-ig is fastest as it reduces to storing instances

21and computing information gain (although in the implementation we used, variousindexing strategies are used), and c5.0, because of the computation involved inrecursively partitioning the training set, value grouping, and pruning, is the slowest.igtree occupies a place in between, similar to ib1-ig in training time. Memoryrequirements are, in theory, highest in ib1-ig and lowest for c5.0 with defaultparameter settings. Again, igtree is in between, similar to c5.0 in memory usage.However, in practice, the implementations of c5.0 and igtree store the entire dataset during training and hence take up more space than ib1-ig. Finally, for testingspeed, the most important e�ciency measurement, igtree and c5.0 are on a par,and both are some 2 orders of magnitude faster than ib1-ig. In Daelemans, Vanden Bosch, and Weijters (1997), the asymptotic complexity of ib1-ig and igtreeis described. Illustrative timing results on the �rst partition of each of the data setsare provided in Table 8. See Daelemans et al. (1998) for the details of the e�ectsof various optimizations in the TiMBL package.Table 8. Timing results in seconds (elapsed wall clock time) for the �rst par-tition of all four data sets, measured on a SUN Sparc 5 with 160 MB internalmemory. The results for c5.0 were obtained through its own internal timerwhich does not di�erentiate between training and testing time. The results forib1-ig and igtree were obtained using TiMBL and its internal timer.Time (seconds)Task c5.0 igtree ib1-igtrain test total train test total train test totalgs - - 2406 79 9 88 83 2391 2474pos - - 7234 43 18 61 211 6416 6627pp - - 295 6 1 7 7 10 17np - - - 152 8 160 98 19474 19572In this Section, we have shown that when comparing the generalization accuracyof ib1-ig to that of decision tree methods, we see the same results as in our ex-periments on editing: di�erent types of abstraction (some of them explicitly aimedat removing exceptional instances) do not succeed in general in providing a bettergeneralization accuracy than ib1-ig. However, for some data sets, if a lower gener-alization accuracy is acceptable, the pruning and abstraction methods of c5.0 areable to induce compact decision trees without a signi�cant loss in initial general-ization accuracy.6. Why forgetting exceptions is harmfulIn this section we explain why forgetting exceptional instances, either by editingthem from memory or by pruning them from decision trees, is harmful to general-ization accuracy for the language processing tasks studied. We explain this e�ecton the basis of the properties of this type of task and the properties of the learning

22algorithms used. Our approach of studying data set properties, to �nd an explana-tion for why one type of inductive algorithm rather than another is better suitedfor learning a type of task, is in the spirit of Aha (1992) and Michie, Spiegelhalter,and Taylor (1994).6.1. Properties of language processing tasksLanguage processing tasks are usually described as complex mappings betweenrepresentations: from spelling to sound, from strings of words to parse trees, fromparse trees to semantic formulas, etc. These mappings can be approximated by (cas-cades of) classi�cation tasks (Ratnaparkhi, 1997; Daelemans, 1996; Cardie, 1996;Magerman, 1994) which makes them amenable to machine learning approaches.One of the most salient characteristics of natural language processing mappings isthat they are noisy and complex. Apart from some regularities, they contain alsomany sub-regularities and (pockets of) exceptions. In other words, apart from acore of generalizable regularities, there is a relatively large periphery of irregular-ities (Daelemans, 1996). In rule-based nlp, this problem has to be solved usingmechanisms such as rule ordering, subsumption, inheritance, or default reasoning(in linguistics this type of \priority to the most speci�c" mechanism is called theelsewhere condition). In the feature-vector-based classi�cation approximations ofthese complex language processing mappings, this property is re
ected in the highdegree of disjunctivity of the instance space: classes exhibit a high degree of poly-morphism. Another issue we study in this Section is the usefulness of exceptionalas opposed to more regular instances in classi�cation.6.1.1. Degree of polymorphism Several quantitative measures can be used toshow the degree of polymorphism: the number of clusters (i.e., groups of nearest-neighbor instances belonging to the same class), the number of disjunct clusters perclass (i.e., the numbers of separate clusters per class), or the numbers of prototypesper class (Aha, 1992). We approach the issue by looking at the average numberof friendly neighbors per instance in a leave-one-out experiment (Weiss and Ku-likowski, 1991). For each instance in the four data sets a distance ranking of the 50nearest neighbors to an instance was produced. In case of ties in distance, nearestneighbors with an identical class as the left-out instance are placed higher in rankthan instances with a di�erent class. Within this ranked list we count the rankingof the nearest neighbor of a di�erent class. This rank number minus one is thentaken as the cluster size surrounding the left-out instance. If, for example, a left-outinstance is surrounded by three instances of the same class at distance 0.0 (i.e., nomismatching feature values), followed by a fourth nearest-neighbor instance of adi�erent class at distance 0.3, the left-out instance is said to be in a cluster of sizethree. The results of the four leave-one-out experiments are displayed graphicallyin Figure 5. The x-axis of Figure 5 denotes the numbers of friendly neighbors foundsurrounding instances; the y-axis denotes the cumulative percentage of occurrencesof friendly-neighbor clusters of particular sizes.

23

0

20

40

60

80

100

0 10 20 30 40

cu
m

ul
at

iv
e

%
 in

st
an

ce
s

friendly NN cluster size

GS
POS

PP
NP

Figure 5. Cumulative percentages of occurrences of friendly-neighbor clusters of sizes 0 to 45, asfound in the gs, pos, pp, and np data sets.The cumulative percentage graphs in Figure 5 display that for the case of the gstask, many instances have only a handful of friendly neighbors; 59.9% of the gsinstances have �ve friendly neighbors or less, while 35.8% has no friendly neighborsat all. For the case of the pp task, the number of friendly neighbors is larger; 50.1%of the pp instances have 40 or less friendly neighbors. Instances of the pos and nptasks tend to have even more friendly neighbors surrounding them. In sum, the gstask appears to display high disjunctivity (i.e., a high degree of polymorphism) ofits 159 classes; for the other three tasks, disjunctivity appears to be slightly lower,but still the classes are scattered across many unconnected clusters in the instancespace.In sum, we �nd indications for a high disjunctity or polymorphism of the lan-guage data sets investigated in this study. Other studies in which machine learningalgorithms are applied to language data, and in which special attention is payedto learning exceptions, mention similar indications (e.g., Mooney and Cali� (1995;Van den Bosch et al. (1995)). However, the question whether language data in gen-eral exhibits a higher degree of disjunctiveness or polymorphism than comparabledata sets of non-linguistic origin remains an open one, and will be a focal point infuture research.6.1.2. Usefulness of exceptional instances Having established a fairly high degreeof disjunctivity for our data sets, an indication is needed that fully retaining thisdisjunctivity is indeed bene�cial. With this in mind, we can return to our editingexperiments and examine why even instances with low typicality or low prediction

24strength cannot be removed from the training data. For this purpose, we havelooked at the instances that are actually used in the memory-based classi�cationprocess to classify the test instances. We call the nearest neighbors that were usedto classify test instances the support set. The distribution of both typicality andcps over the support set can be seen in Figure 6. The support set can be dividedinto support for correct decisions (Right) and errors (Wrong). The average numberof neighbors for correct decisions is approximately the same as for errors. The�gures clearly show that even instances with respectively low typicality (below 1.0)or low cps (below 0.5) are more often used to support correct decisions than errors.Although this does not present a proof of the detrimental e�ects of their removal,it does show that exceptional events can be bene�cial for accurate generalization.The small disjunctive clusters are productive for classifying new instances.6.2. Properties of learning algorithmsIf we classify instance X by looking at its nearest neighbors, we are in fact esti-mating the probability P (classjX), by looking at the relative frequency of the classin the set de�ned by simk(X), where simk(X) is a function from X to the set ofmost similar instances present in the training data. The simk(X) function givenby the overlap metric groups varying numbers of instances into buckets of equalsimilarity. A bucket is de�ned by a particular number of mismatches with respectto instance X . Each bucket can further be decomposed into a number of schematacharacterized by the position of the mismatch.The search for the nearest neighbors results in the use of the most similar instan-tiated schema or bucket for extrapolation. In statistical language modeling this isknown as backed-o� estimation (Collins and Brooks, 1995; Katz, 1987). The dis-tance metric de�nes a speci�c-to-general ordering (X � Y : read X is more speci�cthan Y , see also Zavrel and Daelemans (1997)), where the most speci�c schema isthe schema with zero mismatches (i.e., an identical instance in memory), and themost general schema has a mismatch on every feature, which corresponds to theentire memory being retrieved.If information gain weights are used in combination with the overlap metric,individual schemata instead of buckets become the steps of the back-o� sequence(unless two schemata are exactly tied in their IG values). The � ordering becomesslightly more complicated now, as it depends on the number of wild-cards and onthe magnitude of the weights attached to those wild-cards. Let S be the mostspeci�c (zero mismatches) schema. We can then de�ne the � ordering betweenschemata in the following equation, where �(X;Y) is the distance as de�ned inEquation 1.S0 � S00 , �(S; S0) < �(S; S00) (9)This approach represents a type of implicit parallelism. The importance of all ofthe 2F schemata is speci�ed using only F parameters (i.e., the IG weights), whereF is the number of features. Moreover, using the schemata keeps the information

25
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.5 1.5-2.0 2.0-4.0 4.0-8.0

nu
m

be
r

of
 c

as
es

typicality

gs

Right
Wrong

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9

nu
m

be
r

of
 c

as
es

class prediction strength

gs

Right
Wrong

0

5000

10000

15000

20000

25000

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.5 1.5-2.0 2.0-4.0 4.0-8.0

nu
m

be
r

of
 c

as
es

typicality

postag

Right
Wrong

0

5000

10000

15000

20000

25000

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9
nu

m
be

r
of

 c
as

es
class prediction strength

postag

Right
Wrong

0

1000

2000

3000

4000

5000

6000

7000

8000

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.5 1.5-2.0 2.0-4.0 4.0-8.0

nu
m

be
r

of
 c

as
es

typicality

ppattach

Right
Wrong

0

1000

2000

3000

4000

5000

6000

7000

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9

nu
m

be
r

of
 c

as
es

class prediction strength

ppattach

Right
Wrong

0

10000

20000

30000

40000

50000

60000

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.5 1.5-2.0 2.0-4.0 4.0-8.0

nu
m

be
r

of
 c

as
es

typicality

npchunk

Right
Wrong

0

5000

10000

15000

20000

25000

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9

nu
m

be
r

of
 c

as
es

class prediction strength

npchunk

Right
Wrong

Figure 6. Histograms per typicality (left) and class-prediction strength (right) of the neighborspresent in support sets for each of the four tasks. For each range (indicated at the x-axes), thenumber of instances leading to a correct classi�cation (Right), and to a misclassi�cation (Wrong),is displayed as a bar.

26from all training instances available for extrapolation in those cases where morespeci�c information is not available.Decision trees can also be described as backed-o� estimators of the class proba-bility conditioned on the combination of the features-values. However, here someschemata are not available for extrapolation. Even in a decision tree without anypruning, such abstraction takes place. Once a test instance matches an arc with acertain value for a particular feature, the set of schemata from which it can receive aclassi�cation is restricted to those for which that feature matches. This means thatother schemata which are more speci�c when judged by the ordering of Equation 9,are unavailable. If pruning is applied, even more schemata are blocked.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

distance

PP
NP

POS
GS

Figure 7. Percentage correct for our data sets plotted as a function of distance between thetest instance and its nearest neighbor. The distances are normalized between zero and one, anddiscretized into a maximum of ten evenly spaced intervals to make a comparison across data setspossible.Figure 7 shows why this elimination of schemata can be harmful. In this �gurethe percentage correct for our data sets is plotted as a function of speci�city. Thedecrease of the accuracy seen in the graph clearly con�rms the intuition that anextrapolation from a more speci�c support set is more likely to be correct. Rea-soning in the other direction, it suggests that any forgetting of speci�c informationfrom the training set will push at least some test instances in the direction of a lessspeci�c support set, and thus of lower accuracy.A more direct illustration of this matter can be given for the limited accessibilityof schemata in igtree. As the ordering of features is constant throughout the tree,the schemas that are accessible at any given node in the tree are limited to thosethat match all features with a higher ig weight. The depth of the igtree nodeat which classi�cation was performed can directly be translated into a distance

27Table 9. The average distance at which classi�cation takes place for ib1-ig(listed under ib1) and igtree (listed under igt). The distances have been splitout into four conditions: FF, FT, TF, and TT; the �rst letter refers to ib1-iggiving a False or True answer, the second refers in the same manner to theoutput of igtree. The third column gives the number of instances for thatcondition. The igtree distances have been computed from an unpruned tree.Average IG Overlap Distance (number of instances)Task FF FT TF TTib1 igt n ib1 igt n ib1 igt n ib1 igt ngs 0.03 0.05 (4083) 0.08 0.14 (249) 0.10 0.19 (552) 0.01 0.02 (62633)pos 0.18 0.23 (1876) 0.26 0.37 (440) 0.27 0.40 (524) 0.07 0.08 (101776)pp 0.06 0.07 (275) 0.06 0.08 (111) 0.06 0.07 (184) 0.05 0.06 (1820)np 0.12 0.19 (343) 0.14 0.24 (160) 0.14 0.26 (324) 0.08 0.15 (24286)between the test pattern and the branch of the tree, using the ig weights. To makethe comparison fair, we have used an unpruned igtree. Table 9 shows the averagedistances at which classi�cations were made for the four tasks at hand. igtreeconsistently classi�es at a larger average distance than ib1-ig. Moreover, throughanalysis of those test instances that were misclassi�ed by igtree, but classi�edcorrectly by ib1-ig (i.e., TF in Table 9), we found that for a majority (69% forgs, 90% for pos, 55% for pp, and 100% for np) of these instances the classi�cationdistance was larger for igtree than for ib1-ig. This means that in all these cases acloser neighbor was available to support a correct classi�cation, but was not used,because its schema was not accesible.6.2.1. Increasing k As an aside, we note that we have reported solely on exper-iments with ib1-ig with k = 1. Although it is not directly related to \forgetting",taking a larger value of k can also be considered as a type of abstraction, becausethe class is estimated from a somewhat smoothed region of the instance space.Only on the basis of the results described so far, we cannot claim that k = 1 isthe optimal setting for our experiments. The results discussed above suggest thatthe average `k' actually surrounding an instance is larger than 1, although manyinstances have only one or no friendly neighbor, especially in the case of the gs task.The latter suggests that a considerable amount of ambiguity is found in instancesthat are highly similar; matching with k > 1 may fail to detect those cases in whichan instance has one best-matching friendly neighbor, and many next-best-matchinginstances of a di�erent class.We performed experiments with ib1-ig on the four tasks with k = 2, k = 3, andk = 5, and mostly found a decrease in generalization accuracy. Table 10 lists thee�ects of the higher values of k. For all tasks except np, setting k > 1 leads to aharmful abstraction from the best-matching instance(s) to a more smoothed bestmatching group of instances.

28 Table 10. Generalization accuracies (in terms of percentages of cor-rectly classi�ed test instances) on the gs, pos, pp, and np tasks, byib1-ig with k = 1, 2, 3, and 5.Generalization accuracy (%)Task k = 1 k = 2 k = 3 k = 5gs 93.45 � 0.15 93.00 � 0.15 92.71 � 0.13 92.30 � 0.12pos 97.86 � 0.05 97.72 � 0.05 97.27 � 0.04 95.91 � 0.05pp 83.48 � 1.16 78.10 � 1.26 75.19 � 1.75 75.67 � 1.53np 98.07 � 0.05 98.05 � 0.05 98.23 � 0.07 98.15 � 0.09In this Section, we have tried to interpret our empirical results in terms of prop-erties of the data and of the learning algorithms used. A salient characteristic ofour language learning tasks, shown most clearly in the gs data set but also presentin the other data sets, is the presence of a high degree of class polymorphism (highdisjunctivity). In many cases, these small disjuncts constitute productive (pocketsof) exceptions which are useful in producing accurate extrapolations to new data.ib1-ig, through its implicit parallelism and its feature relevance weighting, is bet-ter suited than decision tree methods to make available the most speci�c relevantpatterns in memory to extrapolate from.7. Related researchDaelemans (1995) provides an overview of memory-based learning work on phono-logical and morphological tasks (grapheme-to-phoneme conversion, syllabi�cation,hyphenation, morphological synthesis, word stress assignment) at Tilburg Univer-sity and the University of Antwerp in the early nineties. The present paper directlybuilds on the results obtained in that research. More recently, the approach hasbeen applied to part-of-speech tagging (morphosyntactic disambiguation), morpho-logical analysis, and the resolution of structural ambiguity (prepositional-phraseattachment) (Daelemans and Van den Bosch, 1996; Van den Bosch, Daelemans,and Weijters, 1996; Zavrel, Daelemans, and Veenstra, 1997). Whenever these stud-ies involve a comparison of memory-based learning to more eager methods, a clearadvantage of memory-based learning is reported.Cardie (1993; 1994) suggests a memory-based learning approach for both (mor-pho)syntactic and semantic disambiguation and shows excellent results comparedto alternative approaches. Ng and Lee (1996) report results superior to previousstatistical methods when applying a memory-based learning method to word sensedisambiguation. In reaction to Mooney (1996) where it was shown that naive Bayesperformed better than memory-based learning, Ng (1997) showed that with highervalues of k, memory-based learning obtained the same results as naive Bayes.The exemplar-based reasoning aspects of memory-based learning are also promi-nent in the large literature on example-based machine translation (cf. Jones (1996)

29for an overview), although systematic comparisons to eager approaches seem to belacking in that �eld.In the recent literature on statistical language learning, which currently stilllargely adheres to the hypothesis that what is exceptional (improbable) is unimpor-tant, similar results as those discussed here for machine learning have been reported.In Bod (1995), a data-oriented approach to parsing is described in which a treebankis used as a `memory' and in which the parse of a new sentence is computed byreconstruction from subtrees present in the treebank. It is shown that removingall hapaxes (unique subtrees) from memory degrades generalization performancefrom 96% to 92%. Bod notes that \this seems to contradict the fact that prob-abilities based on sparse data are not reliable." (Bod (1995), p.68). In the samevein, Collins and Brooks (1995) show that when applying the back-o� estimationtechnique (Katz, 1987) to learning prepositional-phrase attachment, removing allevents with a frequency of less than 5 degrades generalization performance from84.1% to 81.6%. In Dagan, Lee, and Pereira (1997), �nally, a similarity-based es-timation method is compared to back-o� and maximum-likelihood estimation ona pseudo-word sense disambiguation task. Again, a positive e�ect of events withfrequency 1 in the training set on generalization accuracy is noted.In the context of statistical language learning, it is also relevant to note that asfar as comparable results are available, statistical techniques, which also abstractfrom exceptional events, never obtain a higher generalization accuracy than ib1-ig(Daelemans, 1995; Zavrel and Daelemans, 1997; Zavrel, Daelemans, and Veenstra,1997). Reliable comparisons (in the sense of methods being compared on the sametrain and test data) with the empirical results reported here cannot be made, how-ever.In the machine learning literature, the problem of small disjuncts in conceptlearning has been studied before by Quinlan (1991), who proposed more accurateerror estimation methods for small disjuncts, and by Holte, Acker, and Porter(1989). The latter de�ne a small disjunct as one that has small coverage (i.e., asmall number of training items are correctly classi�ed by it). This de�nition di�ersfrom ours, in which small disjuncts are those that have few neighbors with the samecategory. Nevertheless, similar phenomena are noted: sometimes small disjunctsconstitute a signi�cant portion of an induced de�nition, and it is hard to distinguishproductive small disjuncts from noise (see also Danyluk and Provost (1993)). Amaximum-speci�city bias for small disjuncts is proposed to make small disjunctsless error-prone. Memory-based learning is of course a good way of implementingthis remedy (as noted, e.g., in Aha (1992)). This prompted Ting (1994b) to proposea composite learner with an instance-based component for small disjuncts, and adecision tree component for large disjuncts. This hybrid learner improves upon thec4.5 baseline for several de�nitions of `small disjunct' for most of the data setsstudied. Similar results have recently been reported by Domingos (1996), whererise, a uni�cation of rule induction (c4.5) and instance-based learning (pebls)is proposed. In an empirical study, rise turned out to be better than alternativeapproaches, including its two `parent' algorithms. The fact that rule induction inrise is speci�c-to-general (starting by collapsing instances) rather than general-to-

30speci�c (as in the decision tree methods used in this paper), may make it a usefulapproach for our language data as well.8. Conclusion and future researchWe have provided empirical evidence for the hypothesis that forgetting exceptionalinstances, either by editing them away according to some exceptionality criterionin memory-based learning or by abstracting from them in decision-tree learning, isharmful to generalization accuracy in language learning. Although we found someexceptions to this hypothesis, the fact that abstraction or editing is never bene�cialto generalization accuracy is consistently shown in all our experiments.Data sets representing nlp tasks show a high degree of polymorphism: categoriesare represented in instance space as small regions with the same category separatedby instances with a di�erent category (the categories are highly disjunctive). Thiswas empirically shown by looking at the average number of friendly neighbors perinstance; an indirect measure of the average size of the homogeneous regions ininstance space. This analysis showed that for our nlp tasks, classes are scatteredacross many disjunctive clusters in instance space. This turned out to be the caseespecially for the gs data set, the only task presented here which has extensivelybeen studied in the ML literature before (through the similar nettalk data set).It will be necessary to investigate polymorphism further using more language datasets and more ways of operationalizing the concept of `small disjuncts'.The high disjunctivity explains why editing the training set in memory-basedlearning using typicality and cps criteria does not improve generalization accuracy,and even tends to decrease it. The instances used for correct classi�cation (what wecalled the support set) are as likely to be low-typical or low-class-prediction-strength(thus exceptional) instances as high-typical or high-class-prediction-strength in-stances. The editing that we �nd to be the most harmless (although never ben-e�cial) to generalization accuracy is editing up to about 20% high-typical andhigh-class-prediction-strength instances. Nevertheless, these results leave room forcombining memory-based learning and speci�c-to-general rule learning of the kindpresented in Domingos (1996). It would be interesting further research to test hisapproach on our data.The fact that the generalization accuracies of the decision-tree learning algorithmsc5.0 and igtree are mostly worse than those of ib1-ig on this type of data setcan be further explained by their properties. Interpreted as statistical backed-o�estimators of the class probability given the feature-value vector, due to the waythe information-theoretic splitting criterion works, some schemata (sets of partiallymatching instances) are not accessible for extrapolation in decision tree learning.Given the high disjunctivity of categories in language learning, abstracting awayfrom these schemata and not using them for extrapolation is harmful. This type ofabstraction takes place even when no pruning is used. Apparently, the assumptionin decision tree learning that di�erences in relative importance of features canalways be exploited is, for the tasks studied, untrue. Memory-based learning, on theother hand, because it implicitly keeps all schemes available for extrapolation, can

31use the advantages of information-theoretic feature relevance weighting without thedisadvantages of losing relevant information. We plan to expand on the encouragingresults on other data sets using tribl, a hybrid of igtree and ib1-ig that leavesschemas accesible when there is no clear feature-relevance distinction (Daelemans,Van den Bosch, and Zavrel, 1997).When decision trees are pruned, implying further abstraction from the trainingdata, low-frequency instances with deviating classi�cations constitute the �rst in-formation to be removed from memory. When the data representing a task is highlydisjunctive, and instances do not represent noise but simply low-frequency instancesthat may (and do) reoccur in test data, as is especially the case with the gs task,pruning is harmful to generalization. The �rst reason for decision-tree learningto be harmful (accesability of schemata) is the most serious one, since it suggeststhat there is no parameter setting that may help c5.0 and similar algorithms insurpassing or equaling the performance of ib1-ig in these tasks. The second reason(pruning), less important than the �rst, only applies to data sets with low noise.However, there exist variations of decision tree learning that may not su�er fromthese problems (e.g., the lazy decision trees of Friedman, Kohavi, and Yun (1996))and that remain to be investigated in the context of our data.Taken together, the empirical results of our research strongly suggest that keepingfull memory of all training instances is at all times a good idea in language learning.AcknowledgmentsThis research was done in the context of the \Induction of Linguistic Knowledge"research programme, supported partially by the Foundation for Language Speechand Logic (TSL), which is funded by the Netherlands Organization for Scienti�cResearch (NWO). AvdB performed part of his work at the Department of ComputerScience of the Universiteit Maastricht. The authors wish to thank Jorn Veenstrafor his earlier work on the PP attachment and NP chunking data sets, and theother members of the Tilburg ILK group, Ton Weijters, Eric Postma, Jaap van denHerik, and the MLJ reviewers for valuable discussions and comments.Notes1. The LOB corpus is available from icame, the International Computer Archive of Modern andMedieval English; consult http://www.hd.uib.no/icame.html for more information.2. In our full POS tagger we have a separate classi�er for unknown words, which takes intoaccount features such as su�x and pre�x letters, digits, hyphens, etc.3. The data set is available from ftp://ftp.cis.upenn.edu/pub/adwait/PPattachData/. Wewould like to thank Michael Collins for pointing this benchmark out to us.4. TiMBL, which incorporates ib1-ig and igtree and additional weighting metrics and searchoptimalizations, can be downloaded from http://ilk.kub.nl/.References

32Abney, S. 1991. Parsing by chunks. In Principle-Based Parsing. Kluwer Academic Publishers,Dordrecht.Aha, D. W. 1992. Generalizing from case studies: a case study. In Proceedings of the NinthInternational Conference on Machine Learning, pages 1{10, San Mateo, CA. Morgan Kaufmann.Aha, D. W. 1997. Lazy learning: Special issue editorial. Arti�cial Intelligence Review, 11:7{10.Aha, D. W., D. Kibler, and M. Albert. 1991. Instance-based learning algorithms. MachineLearning, 6:37{66.Atkeson, C., A. Moore, and S. Schaal. 1997. Locally weighted learning. Arti�cial IntelligenceReview, 11(1{5):11{73.Baayen, R. H., R. Piepenbrock, and H. van Rijn. 1993. The CELEX lexical data base onCD-ROM. Linguistic Data Consortium, Philadelphia, PA.Bod, R. 1995. Enriching linguistics with statistics: Performance models of natural language.Dissertation, ILLC, Universiteit van Amsterdam.Cardie, C. 1993. A case-based approach to knowledge acquisition for domain-speci�c sentenceanalysis. In AAAI-93, pages 798{803.Cardie, C. 1994. Domain Speci�c Knowledge Acquisition for Conceptual Sentence Analysis.Ph.D. thesis, University of Massachusets, Amherst, MA.Cardie, C. 1996. Automatic feature set selection for case-based learning of linguistic knowledge.In Proc. of Conference on Empirical Methods in NLP. University of Pennsylvania.Church, K. W. 1988. A stochastic parts program and noun phrase parser for unrestricted text.In Proc. of Second Applied NLP (ACL).Collins, M.J and J. Brooks. 1995. Prepositional phrase attachment through a backed-o� model.In Proc. of Third Workshop on Very Large Corpora, Cambridge.Cost, S. and S. Salzberg. 1993. A weighted nearest neighbour algorithm for learning withsymbolic features. Machine Learning, 10:57{78.Cover, T. M. and P. E. Hart. 1967. Nearest neighbor pattern classi�cation. Institute of Electricaland Electronics Engineers Transactions on Information Theory, 13:21{27.Daelemans, W. 1995. Memory-based lexical acquisition and processing. In P. Ste�ens, editor,Machine Translation and the Lexicon, volume 898 of Lecture Notes in Arti�cial Intelligence.Springer-Verlag, Berlin, pages 85{98.Daelemans, W. 1996. Experience-driven language acquisition and processing. In T. Van derAvoird and C. Corsius, editors, Proceedings of the CLS Opening Academic Year 1996-1997.CLS, Tilburg, pages 83{95.Daelemans, W. and A. Van den Bosch. 1992. Generalisation performance of backpropagationlearning on a syllabi�cation task. In M. F. J. Drossaers and A. Nijholt, editors, Proc. ofTWLT3: Connectionism and Natural Language Processing, pages 27{37, Enschede. TwenteUniversity.Daelemans, W. and A. Van den Bosch. 1996. Language-independent data-oriented grapheme-to-phoneme conversion. In J. P. H. Van Santen, R. W. Sproat, J. P. Olive, and J. Hirschberg,editors, Progress in Speech Processing. Springer-Verlag, Berlin, pages 77{89.Daelemans, W., A. Van den Bosch, and A. Weijters. 1997. igtree: using trees for compressionand classi�cation in lazy learning algorithms. Arti�cial Intelligence Review, 11:407{423.Daelemans, W., A. Van den Bosch, and J. Zavrel. 1997. A feature-relevance heuristic for indexingand compressing large case bases. In M. Van Someren and G. Widmer, editors, Poster Papersof the Ninth European Conference on Machine Learing, pages 29{38, Prague, Czech Republic.University of Economics.Daelemans, W., J. Zavrel, P. Berck, and S. Gillis. 1996. MBT: A memory-based part of speechtagger generator. In E. Ejerhed and I.Dagan, editors, Proc. of Fourth Workshop on Very LargeCorpora, pages 14{27. ACL SIGDAT.Daelemans, W., J. Zavrel, K. Van der Sloot, and A. Van den Bosch. 1998. TiMBL: TilburgMemory-Based Learner, version 1.0, reference guide. Technical report, ILK 98-03, Tilburg, TheNetherlands.Dagan, I., L. Lee, and F. Pereira. 1997. Similarity-based methods for word sense disambiguation.In Proceedings of the 35th ACL and the 8th EACL, Madrid, Spain, pages 56{63.Danyluk, A. P. and F. J. Provost. 1993. Small disjuncts in action: learning to diagnose errors inthe local loop of the telephone network. In Proceedings of the Tenth International Conferenceon Machine Learning, pages 81{88, San Mateo, CA. Morgan Kaufmann.

33Devijver, P. A. and J. Kittler. 1980. On the edited nearest neighbor rule. In Proceedingsof the Fifth International Conference on Pattern Recognition. The Institute of Electrical andElectronics Engineers.Devijver, P. .A. and J. Kittler. 1982. Pattern recognition. A statistical approach. Prentice-Hall,London, UK.Dietterich, T. G. 1998 (in press). Approximate statistical tests for comparing supervised classi�-cation learning algorithms. Neural Computation.Dietterich, T. G., H. Hild, and G. Bakiri. 1995. A comparison of id3 and backpropagation forEnglish text-to-speech mapping. Machine Learning, 19(1):5{28.Domingos, P. 1996. Unifying instance-based and rule-based induction. Machine Learning,24:141{168.Friedman, J. H., R. Kohavi, and Y. Yun. 1996. Lazy decision trees. In Proceedings of theThirteenth National Conference on Arti�cial Intelligence, pages 717{724, Cambridge, MA. TheMIT Press.Hart, P. E. 1968. The condensed nearest neighbor rule. IEEE Transactions on InformationTheory, 14:515{516.Holte, R. C., L. E. Acker, and B. W. Porter. 1989. Concept learning and the problem ofsmall disjuncts. In Proceedings of the Eleventh International Joint Conference on Arti�cialIntelligence, pages 813{818, San Mateo, CA. Morgan Kaufmann.Jones, D. 1996. Analogical natural language processing. UCL Press, London, UK.Katz, S. M. 1987. Estimation of probabilities from sparse data for the language model componentof a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-35:400{401, March.Kolodner, J. 1993. Case-based reasoning. Morgan Kaufmann, San Mateo, CA.Lehnert, W. 1987. Case-based problem solving with a large knowledge base of learned cases.In Proceedings of the Sixth National Conference on Arti�cial Intelligence (AAAI-87), pages301{306, Los Altos, CA. Morgan Kaufmann.Magerman, D. M. 1994. Natural language parsing as statistical pattern recognition. Dissertation,Stanford University.Marcus, M., B. Santorini, and M.A. Marcinkiewicz. 1993. Building a large annotated corpus ofenglish: The penn treebank. Computational Linguistics, 19(2):313{330.Markovitch, S. and P. D. Scott. 1988. The role of forgetting in learning. In Proceedings of theFifth International Conference on Machine Learning, pages 459{465, Ann Arbor, MI. MorganKaufmann.Michie, D., D.J. Spiegelhalter, and C.C. Taylor. 1994. Machine learning, neural and statisticalclassi�cation. Ellis Horwood, New York.Mooney, R. J. 1996. Comparative experiments on disambiguating word senses: An illustrationof the role of bias in machine learning. In Proceedings of the Conference on Empirical Methodsin Natural Language Processing, EMNLP, pages 82{91.Mooney, R. J. and M. E. Cali�. 1995. Induction of �rst-order decision lists: Results on learningthe past tense of english verbs. Journal of Arti�cial Intelligence Research, 3:1{24.Ng, H. T. 1997. Exemplar-based word sense disambiguation: some recent improvements. InProceedings of the Second Conference on Empirical Methods in Natural Language Processing,pages 208{213.Ng, H. T. and H. B. Lee. 1996. Intergrating multiple knowledge sources to disambiguateword sense: An exemplar-based approach. In Proc. of 34th meeting of the Assiociation forComputational Linguistics.Quinlan, J. R. 1991. Improved estimation for the accuracy of small disjuncts. Machine Learning,6:93{98.Quinlan, J.R. 1986. Induction of Decision Trees. Machine Learning, 1:81{206.Quinlan, J.R. 1993. c4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.Ramshaw, L.A. and M.P. Marcus. 1995. Text chunking using transformation-based learning. InProc. of third workshop on very large corpora, pages 82{94, June.Ratnaparkhi, A. 1997. A linear observed time statistical parser based on maximum entropymodels. In Proceedings of the Second Conference on Empirical Methods in Natural LanguageProcessing, EMNLP, pages 1{10.

34Ratnaparkhi, A., J. Reynar, and S. Roukos. 1994. A maximum entropy model for prepositionalphrase attachment. In Workshop on Human Language Technology, Plainsboro, NJ, March.ARPA.Rosch, E. and C. B. Mervis. 1975. Family resemblances: studies in the internal structure ofcategories. Cognitive Psychology, 7:573{605.Salganico�, M. 1993. Density-adaptive learning and forgetting. In Proceedings of the Fifth Inter-national Conference on Machine Learning, pages 276{283, Amherst, MA. Morgan Kaufmann.Salzberg, S. 1990. Learning with nested generalised exemplars. Kluwer Academic Publishers,Norwell, MA.Sejnowski, T. J. and C. S. Rosenberg. 1987. Parallel networks that learn to pronounce Englishtext. Complex Systems, 1:145{168.Shavlik, J. W., R. J. Mooney, and G. G. Towell. 1991. An experimental comparison of symbolicand connectionist learning algorithms. Machine Learning, 6:111{143.Stan�ll, C. 1987. Memory-based reasoning applied to English pronunciation. In Proceedings ofthe Sixth National Conference on Arti�cial Intelligence (aaai-87), pages 577{581, Los Altos,CA. Morgan Kaufmann.Stan�ll, C. and D. Waltz. 1986. Toward memory-based reasoning. Communications of the acm,29(12):1213{1228, December.Ting, K. M. 1994a. The problem of atypicality in instance-based learning. In Proceedings of theThe Third Paci�c Rim International Conference on Arti�cial Intelligence, pages 360{366.Ting, K. M. 1994b. The problem of small disjuncts: Its remedy in decision trees. In Proceedingsof the Tenth Canadian Conference on Arti�cial Intelligence, pages 91{97.Van den Bosch, A., W. Daelemans, and A. Weijters. 1996. Morphological analysis as classi�cation:an inductive-learning approach. In K. O
azer and H. Somers, editors, Proceedings of the SecondInternational Conference on New Methods in Natural Language Processing, NeMLaP-2, Ankara,Turkey, pages 79{89.Van den Bosch, A., A. Weijters, H. J. Van den Herik, and W. Daelemans. 1995. The pro�t oflearning exceptions. In Proceedings of the 5th Belgian-Dutch Conference on Machine Learning,pages 118{126.Voisin, J. and P. A. Devijver. 1987. An application of the Multiedit-Condensing technique to thereference selection problem in a print recognition system. Pattern Recognition, 5:465{474.Weiss, S. and C. Kulikowski. 1991. Computer systems that learn. San Mateo, CA: MorganKaufmann.Wilson, D. 1972. Asymptotic properties of nearest neighbor rules using edited data. Institute ofElectrical and Electronic Engineers Transactions on Systems, Man and Cybernetics, 2:408{421.Wolpert, D. 1989. Constructing a generalizer superior to NETtalk via mathematical theory ofgeneralization. Neural Networks, 3:445{452.Zavrel, J. and W. Daelemans. 1997. Memory-based learning: Using similarity for smoothing. InProc. of 35th annual meeting of the ACL, Madrid.Zavrel, J., W. Daelemans, and J. Veenstra. 1997. Resolving pp attachment ambiguities withmemory-based learning. In M. Ellison, editor, Proc. of the Workshop on Computational Lan-guage Learning (CoNLL'97), ACL, Madrid.Zhang, J. 1992. Selecting typical instances in instance-based learning. In Proceedings of theInternational Machine Learning Conference 1992, pages 470{479.

