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Abstract

Programming languages are at the foundation of computer science, as they provide abstractions
that allow the expression of the logic of a program independent from the underlying hardware
architecture. In particular scenarios, it can be convenient to employ Domain-Specific Languages,
which are capable of providing an even higher level of abstraction to solve problems which
are common in specific domains. Examples of such domains are database programming, text
editing, 3D graphics, and game development. The use of a domain-specific language for the
development of particular classes of software may drastically increase the development speed and
the maintainability of the code, in comparison with the use of a general-purpose programming
language. While the idea of having a domain-specific language for a particular domain may be
appealing, implementing such a language tends to come at a heavy cost: as it is common to
all programming languages, domain-specific languages require a compiler which translates their
programs into executable code. Implementing a compiler tends to be an expensive and time-
consuming task, which may very well be a burden which overshadows the advantages of having
a domain-specific language.

To ease the process of developing compilers, a special class of compilers called “meta-compilers”
has been created. Meta-compilers have the advantage of requiring only the definition of a lan-
guage in order to generate executable code for a program written in that language, thus skipping
the arduous task of writing a hard-coded compiler for the new language. A disadvantage of
meta-compilers is that they tend to generate slow executables, so they are usually only employed
for rapid prototyping of a new language. The main aim of this thesis is to create a meta-compiler
which does not suffer from the disadvantage of inefficiency. It presents a meta-compiler called
“Metacasanova”, which eases the development cost of a compiler while simultaneously generating
efficient executable code.

The thesis starts by analysing the recurring patterns of implementing a compiler, to define a
series of requirements for Metacasanova. It then explains the architecture of the meta-compiler
and provides examples of its usage by implementing a small imperative language called C--
, followed by the reimplementation of a particular, existing domain-specific language, namely
Casanova, which has been created for use in game development. The thesis presents a novel way
to optimize the performance of generated code by means of functors; it demonstrates the effect
of this optimization by comparing the efficiency of Casanova code generated with and without it.
Finally, the thesis demonstrates the advantages of having a meta-compiler like Metacasanova, by
using Metacasanova to extend the semantics of Casanova to allow the definition of multiplayer
online games.
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Chapter 1

Introduction

About the use of language: it is
impossible to sharpen a pencil with
a blunt axe. It is equally vain to
try to do it with ten blunt axes
instead.

Edsger Dijkstra

The number of programming languages available on the market has dramatically increased
during the last years. The tiobe index [3], a ranking of programming languages based on their
popularity, lists 50 programming languages for 2018. This number is only a small glimpse
of the real amount, since it does not take into account several languages dedicated to specific
applications. This growth has brought a further need for new compilers that are able to translate
programs written in those languages into executable code. The goal of this work is to investigate
how the development speed of a compiler can be boosted by employing meta-compilers, programs
that generalize the task performed by a normal compiler. In particular the goal of this research
is creating a meta-compiler that significantly reduces the amount of code needed to define a
language and its compilation steps, while maintaining acceptable performance.

This chapter introduces the issue of expressing the solution of problems in terms of algorithms
in Section 1.1. Then we proceed by defining how the semi-formal definition of an algorithm must
be translated into code executable by a processor (Section 1.2). In this section we discuss the
advantages and disadvantages of using different kinds of programming languages with respect to
their affinity with the specific hardware architecture and the scope of the domain they target.
In Section 1.3 we explain the reason behind compilers and we explain why building a compiler
is a time-consuming task. In Section 1.4 we introduce the idea of meta-compilers as a further
step into generalizing the task of compilers. In this section we also explain the requirements,
benefits, and the relevance as a scientific topic. Finally in Section 1.5 we formulate the problem
statement and the research questions that this work will answer.

1.1 Algorithms and problems

Since the ancient age, there has always been the need of describing the sequence of activities
needed to perform a specific task [17], to which we refer with the name of Algorithm. The
allegedly most ancient known example of this dates back to the Ancient Greek, when Hero
invented an algorithm to perform the factorization and the approximation of the square root,
discovered also by other civilizations [15, 98] . Regardless of the specific details of each algorithm,
one needs to use some kind of language to define the sequence of steps to perform. In the past
people used natural language to describe such steps but, with the advent of the computer era,

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Flow chart for the sum of a sequence of numbers

the choice of the language has been strictly connected with the possibility of its implementation.
Natural languages are not suitable for the implementation, as they are known to be verbose and
ambiguous [31, 91]. For this reason, several kind of formal solutions have been employed, which
are described below.

Flow charts

A flow chart is a diagram where the steps of an algorithm are defined by using boxes of different
kinds, connected by arrows to define their ordering in the sequence. The boxes are rectangular-
shaped if they define an activity (or processing step), while they are diamond-shaped if they
define a decision. A rectangle with rounded corners denotes the initial step. An example of a
flow chart describing how to sum the numbers in a sequence is described in Figure 1.1.

Pseudocode

Pseudocode is a semi-formal language that might contain also statements expressed in natural
language and omits system specific code like opening file writers, printing messages on the stan-
dard output, or even some data structure declaration and initialization. It is intended mainly
for human reading rather than machine reading. The pseudocode to sum a sequence of numbers
is shown in Algorithm 1.1.

Advantages and disadvantages

Using flow charts or pseudo-code has the advantage of being able to define an algorithm in
a way which is very close to the abstractions employed when using natural language: a flow
chart combines both the use of natural language and a visual interface to describe an algorithm,
pseudo-code allows to employ several abstractions and even define some steps in terms of natural
language. The drawback of these two formal representations is that, when it comes to the
implementation, the definition of the algorithm must be translated by hand into code that the
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Algorithm 1.1 Pseudocode to perform the sum of a sequence of integer numbers

function SumIntegers(l list of integers)
sum 0
for all x in l do

sum sum+ x
end for
return sum

end function

hardware is able to execute. This could be done by implementing the algorithm in a low-level
or high-level programming language. This process affects at different levels how the logic of the
algorithm is presented, as explained further.

1.2 Programming languages

A programming language is a formal language that is used to define instructions that a machine,
usually a computer, must perform in order to produce a result through computation [35, 79, 82].
There is a wide taxonomy used to classify programming languages depending on their use [58,
80, 81], but all can be grouped according to two main characteristics: the level of abstraction, or
how close to the specific targeted hardware they are, and the domain, which defines the range
of applicability of a programming language. In the following sections we give an exhaustive
explanation of the aforementioned characteristics.

1.2.1 Low-level programming languages

A low-level programming language is a programming language that provides little to no abstrac-
tion from the hardware architecture of a processor. This means that it is strongly connected
with the instruction set of the targeted machine, the set of instructions a processor is able to exe-
cute. These languages are divided into two sub-categories: �rst-generation and second-generation
languages:

First-generation languages

Machine code falls into the category of first-generation languages. In this category we find
all those languages that do not require code transformations to be executed by the processor.
These languages were used mainly during the dawn of computer age and are rarely employed
by programmers nowadays. Machine code is made of stream of binary data, that represents
the instruction codes and their arguments [52, 95]. Usually this stream of data is treated by
programmers in hexadecimal format, which is then remapped into binary code. The programs
written in machine code were once loaded into the processor through a front panel, a controller
that allowed the display and alteration of the registers and memory (see Figure 1.2). An example
of machine code for a program that computes the sum of a sequence of integer numbers can be
seen in Listing 1.1.
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Figure 1.2: Front panel of IBM 1620

1 00075 c7 45 b8 00 00
2 00 00
3 0007c eb 09
4 0007e 8b 45 b8
5 00081 83 c0 01
6 00084 89 45 b8
7 00087 83 7d b8 0a
8 0008b 7d 0f
9 0008d 8b 45 b8

10 00090 8b 4d c4
11 00093 03 4c 85 d0
12 00097 89 4d c4
13 0009a eb e2

Listing 1.1: x86 Machine code to compute the sum of a sequence of numbers

Second-generation languages

The languages in this category provides an abstraction layer over the machine code by expressing
processor instructions with mnemonic names both for the instruction code and the arguments.
For example, the arithmetic sum instruction add is the mnemonic name for the instruction
code 0x00 in x86 processors. Among these languages we find Assembly, that is mapped with an
Assembler to machine code. The Assembler can load directly the code or link different object �les
to generate a single executable by using a linker. An example of assembly x86 code corresponding
to the machine code in Listing 1.1 can be found in Listing 1.2. You can see that the code in
the machine code 00081 83 c0 01 at line 5 has been replaced by its mnemonic representation
in Assembly as add eax, 1.
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1 mov DWORD PTR _i$1[ebp], 0
2 jmp SHORT $LN4@main
3 $LN2@main :
4 mov eax , DWORD PTR _i$1 [ebp]
5 add eax , 1
6 mov DWORD PTR _i$1[ebp], eax
7 $LN4@main :
8 cmp DWORD PTR _i$1[ebp], 10 ; 0000000 aH
9 jge SHORT $LN3@main

10 mov eax , DWORD PTR _i$1 [ebp]
11 mov ecx , DWORD PTR _sum$ [ebp]
12 add ecx , DWORD PTR _numbers$ [ebp+eax *4]
13 mov DWORD PTR _sum$ [ebp], ecx
14 jmp SHORT $LN2@main

Listing 1.2: Assembly x86 code to compute the sum of a sequence of numbers

Advantages and disadvantages

Writing a program in low-level programming languages might produce programs that are gener-
ally more efficient than their high-level counterparts, as ad-hoc optimizations are possible. The
high-performance, however, comes at great costs: (i) the programmer must be an expert on
the underlying architecture and of the specific instruction set of the processor, (ii) the program
loses portability because the low-level code is tightly bound to the specific hardware architec-
ture it targets, (iii) the logic and readability of the program is hidden among the details of the
instruction set itself, and (iv) developing a program in assembly requires a considerable effort in
terms of time and debugging [44]: assembly lacks any abstraction from the concrete hardware
architecture, such as a type system, that partially ensures the correctness of the program or
high-level constructs that allow to manipulate the execution of the program.

1.2.2 High-level programming languages

A high-level programming language is a programming language that offers a high level of abstrac-
tion from the specific hardware architecture of the machine. Unlike machine code (and in some
way also assembly), high-level languages are not directly executable by the processor and they
require some kind of translation process into machine code. The level of abstraction offered by
the language defines how high level the language is. Several categories of high-level programming
language exist, but the main one are described below.

Imperative programming languages

Imperative programming languages model the computation as a sequence of statements that alter
the state of the program (usually the memory state). A program in such languages consists then
of a sequence of commands. Notable examples are FORTRAN, C, and PASCAL. An example
of the program used in Listing 1.1 and 1.2 written in C can be seen in Listing 1.3. Line 5 to 9
corresponds to the Assembly code in Listing 1.2.

1 int main ()
2 {
3 int numbers [10] = { 1, 6, 8, -2, 4, 3, 0, 1, 10, -5 };
4 int sum = 0;
5 for (int i = 0; i < 10; i++)
6 {
7 sum += numbers [i];
8 }
9 printf ("%d\n", sum);

10 }
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Listing 1.3: C code to compute the sum of a sequence of numbers

Declarative programming languages

Declarative programming languages are antithetical to those based on imperative programming,
as they model computation as an evaluation of expressions and not as a sequence of commands
to execute. Declarative programming languages are called as such when they are side-effects
free or referentially transparent. The definition of referential transparency varies [90], but it is
usually explained with the substitution principle, which states that a language is referentially
transparent if any expression can be replaced by its value without altering the behaviour of the
program [77]. For instance, the following sentences in natural language are both true

Cicero = Tullius

’’Cicero ‘‘ contains six letters

but they are not referentially transparent, since replacing the last name with the middle name
falsifies the second sentence.

A similar situation in programming languages is met when considering variable assignments:
the statement

x = x + 5

is not referentially transparent. Let us assume this statement appears twice in a program and
that at the beginning x = 0. Clearly the expression x + 5 results in the value 5 the first time, but
the second time the same statement is executed the expression has value 10. Thus replacing all
the occurrences of x + 5 with 5 is wrong, which is why imperative languages are not referentially
transparent. A more rigorous definition of referential transparency can be found in [99].

Declarative programming languages are often compared to imperative programming lan-
guages by stating that declarative programming defines what to compute and not how to compute
it. This family of languages include functional programming, logic programming, and database
query languages. Notable examples are F#, Haskell, Prolog, SQL, and Linq (which is a query
language embedded in C#). Listing 1.4 shows the code to perform the sum of a sequence of
integer numbers in F# with a recursive function. Higher-order functions, such as fold, allow
even to capture the same recursive pattern into a single function as shown in Listing 1.5. Both
implementations are referentially transparent.

let rec sumList l =
match l with
| [] -> 0
| x :: xs -> x + ( sumList xs)

Listing 1.4: Recursive F# code to compute the sum of a sequence of numbers

let sumList l = l |> List.fold (+) 0

Listing 1.5: F# code to compute the sum of a sequence of numbers using higher-order functions

1.2.3 General-purpose vs Domain-speci�c languages

General-purpose languages are defined as languages that can be used across different application
domains and lack abstractions that specifically target elements of a single domain. Example
of these are languages such as C, C++, C#, and Java. Although several applications are still
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being developed by using general-purpose programming languages, in some contexts it is more
convenient to rely on domain-speci�c languages, because they offer abstractions relative to the
problem domain that are unavailable in general-purpose languages [104, 106]. Notable examples
of the use of domain-specific languages are listed below.

Graphics programming

Rendering a scene in a 3D space is often performed by relying on dedicated hardware. Modern
graphics processors rely on shaders to create various effects that are rendered in the 3D scene.
Shaders are written in domain-specific languages, such as GLSL or HLSL [54, 72, 73], that offer
abstractions to compute operations at GPU level that are often used in computer graphics,
such as vertices and pixel transformations, matrix multiplications, and interpolation of textures.
Listing 1.6 shows the code to implement light reflections in HLSL. At line 4 you can, for example,
see the use of matrix multiplication provided as a language abstraction in HLSL.

1 VertexShaderOutput VertexShaderSpecularFunction ( VertexShaderInput input ,
float3 Normal : NORMAL )

2 {
3 VertexShaderOutput output ;
4 float4 worldPosition = mul( input .Position , World );
5 float4 viewPosition = mul( worldPosition , View);
6 output . Position = mul( viewPosition , Projection );
7 float3 normal = normalize (mul(Normal , World ));
8 output . Normal = normal ;
9 output .View = normalize ( float4 ( EyePosition ,1.0 f) - worldPosition );

10 return output ;
11 }

Listing 1.6: HLSL code to compute the light reection

Game programming

Computer games are a field where domain-specific languages are widely employed, as they contain
complex behaviours that often require special constructs to model timing event-based primitives,
or to execute tasks in parallel. These behaviours cannot be modelled, for performance reasons, by
using threads. Therefore, in the past, domain-specific languages which provide these abstractions
have been implemented [23, 41, 45, 53]. In Listing 1.7 an example of the SQF domain-specific
language for the game ArmA2 is shown. This language offers abstractions to wait for a specific
amount of time, to wait for a condition, and to spawn scripts that run in parallel to the callee,
that you can respectively see at lines 18, 12, and 10.

1 " colorCorrections " ppEffectAdjust [1, pi , 0, [0.0 , 0.0 , 0.0 , 0.0] , [0.05 ,
0.18 , 0.45 , 0.5] , [0.5 , 0.5 , 0.5 , 0.0]];

2 " colorCorrections " ppEffectCommit 0;
3 " colorCorrections " ppEffectEnable true;
4
5 thanatos switchMove " AmovPpneMstpSrasWrflDnon ";
6 [[] ,( position tower ) nearestObject 6540 ,[[" USMC_Soldier ",west ]],4,true ,[]]

execVM " patrolBuilding .sqf ";
7 playMusic " Intro ";
8
9 titleCut ["" , " BLACK FADED ", 999];

10 [] Spawn
11 {
12 waitUntil {!( isNil " BIS_fnc_init ") };
13 [
14 localize " STR_TITLE_LOCATION " ,
15 localize " STR_TITLE_PERSON ",
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16 str(date select 1) + "." + str(date select 2) + "." + str(date select
0)

17 ] spawn BIS_fnc_infoText ;
18 sleep 3;
19 " dynamicBlur " ppEffectEnable true;
20 " dynamicBlur " ppEffectAdjust [6];
21 " dynamicBlur " ppEffectCommit 0;
22 " dynamicBlur " ppEffectAdjust [0.0];
23 " dynamicBlur " ppEffectCommit 7;
24 titleCut ["" , " BLACK IN", 5];
25 };

Listing 1.7: ArmA 2 scripting language

Shell scripting languages

Shell scripting languages, such as the Unix Shell script, are used to manipulate files or user input
in different ways. They generally offer abstractions to the operating system interface in the form
of dedicated commands. Listing 1.8 shows an example of a program written in Unix shell script
to convert an image from JPG to PNG format. At line 3 you can see the use of the statement
echo to display a message in the standard output.

1 for jpg; do
2 png ="${jpg %. jpg }. png"
3 echo converting "$jpg" ...
4 if convert "$jpg" jpg.to.png ; then
5 mv jpg.to.png "$png"
6 else
7 echo ’jpg2png : error : failed output saved in "jpg.to.png ".’ >&2
8 exit 1
9 fi

10 done
11 echo all conversions successful
12 exit 0

Listing 1.8: Unix shell code

Advantages and disadvantages

High-level programming languages offer a variety of abstractions over the specific hardware the
program targets. The obvious advantage of this is that the programmer does not need to be an
expert on the underlying hardware architecture or instruction set. A further advantage is that
the available abstractions are closer to the semi-formal description of the underlying algorithm as
pseudo-code. This produces two desirable effects: (i) the readability of the program is increased
as the available abstractions are closer to the natural language than the equivalent machine code,
and (ii) that being able to mimic the semi-formal version of an algorithm, which is generally
how the algorithm is presented and on which its correctness is proven, grants a higher degree of
correctness in the specific implementation.

The use of a high-level programming language might, in general, not achieve the same high-
performance as writing the same program with a low-level programming language [29], but
modern code-generation optimization techniques can generally mitigate this gap [10, 110].

The portability of a high-level programming language depends on the architecture of the
underlying compiler, thus some languages are portable and the same code can be run on different
machines (for example Java), while others might require to be compiled to target a specific
architecture (for example C++).
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1.3 Compilers

A compiler is a program that transforms source code defined in a programming language into
another computer language, which usually is object code but can also be code in a high-level
programming language [9, 11]. Writing a compiler is a necessary step to implementing a high-
level programming language. Indeed, a high-level programming language, unlike low-level ones,
are not executable directly by the processor and need to be translated into machine code, as
stated in Section 1.2.1 and 1.2.2.

The first complete compiler was developed by IBM for the FORTRAN language and required
18 person-years for its development [14]. This clearly shows that writing a compiler is a hard
and time-consuming task.

A compiler is a complex piece of software made of several components that implement a
step in the translation process. The translation process performed by a compiler involves the
following steps:

1. syntactical analysis: In this phase the compiler checks that the program is written according
to the grammar rules of the language. In this phase the compiler must be able to recognize
the syntagms of the language (the “words”) and also check if the program conforms to the
syntax rules of the language through a grammar specification.

2. type checking: In this phase the compiler checks that a syntactically correct program per-
forms operations conform to a defined type system. A type system is a set of rules that
assign properties called types to the constructs of a computer program [89]. The use of
a type system drastically reduces the chance of having bugs in a computer program [28] .
This phase can be performed at compile time (static typing) or the generated code could
contain the code to perform the type checking at runtime (dynamic typing).

3. code generation: In this phase the compiler takes the syntactically and type-correct program
and performs the translation step. At this point an equivalent program in a target language
will be generated. The target language can be object code, another high-level programming
language, or even a bytecode that can be interpreted by a virtual machine.

All the previous steps are always the same regardless of the language the compiler translates
from and they are not part of the creative aspect of the language design [24]. Approaches to
automating the construction of the syntactical analyser are well known in literature [69, 83, 84], to
the point that several lexer/parser generators are available for programmers, for example all those
belonging to the yacc family such as yacc for C/C++, fsyacc for F#, cup for Java, and Happy
for Haskell. On the other hand, developers lack a set of tools to automate the implementation
of the last two steps, namely the type checking and the code generation.

For this reason, when implementing a compiler, the formal type system definition and the
operational semantics, which is tightly connected to the code generation and defines how the
constructs of the language behave, must be translated into the abstractions provided by the
host language in which the compiler will be implemented. Other than being a time-consuming
activity itself, this causes that (i) the logic of the type system and operational semantics is lost
inside the abstraction of the host-language, and (ii) it is difficult to extend the language with
new features.

1.4 Meta-compilers

In Section 1.3 we described how the steps involved in designing and implementing a compiler
do not require creativity and are always the same, regardless of the language the compiler is
built for. The first step, namely the syntactical analysis, can be automated by using one of
the several lexer/parser generators available, but the implementation of a type checker and a
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code generator still relies on a manual implementation. This is where meta-compilers come
into play: a meta-compiler is a program that takes the source code of another program written
in a specific language and the language definition itself, and generates executable code. The
language definition is written in a programming language, referred to as meta-language, which
should provide the abstractions necessary to define the syntax, type system, and operational
semantics of the language, in order to implement all the steps above.

1.4.1 Requirements

As stated in Section 1.4, a meta-compiler should provide a meta-language that is able to define
the syntax, type system, and operational semantics of a programming language. In Section 1.3 we
discussed how methods to automate the implementation of syntactical analyser are already known
in scientific literature. For this reason, in this work, we will focus exclusively on automating the
implementation of the type system and of the operational semantics. Given this focus, we
formulate the following requirements:

� The meta-language should provide abstractions to define the constructs of the language.
This includes the possibility of defining control structures, operators with any form of
prefix or infix notation, and the priority of the constructs that is used when evaluating
their behaviour. Furthermore, it must be possible to define the equivalence of language
constructs. For instance, an integer constant might be considered both a value and a basic
arithmetic expression.

� The meta-language must be able to mimic as close as possible the formal definition of a
programming language. This will bring the following benefits: (i) Implementing the lan-
guage in the meta-compiler will just involve re-writing almost one-to-one the type system
or the semantics of the language with little or no change; (ii) the correctness and soundness
[28, 74] of the language formal definition will be directly reflected in the implementation
of the language; indeed if a meta-program allows to mimic directly the type system and
semantics of the language their correctness is transferred also in the implementation, while
this might not be trivial when translating them in the abstractions of a high-level pro-
gramming language; (iii) any extension of the language definition can be just added as an
additional rule in the type system or the semantics.

� The meta-compiler must be able to embed libraries from external languages, so that they
can be used to implement specific behaviours such as networking transmission or specific
data structure usage.

1.4.2 Bene�ts

Programming languages usually are released with a minimal (but sufficient to be Turing-complete)
set of features, and later extended in functionality in successive versions. This process tends to
be slow and often significant improvements or additions are only seen years after the first re-
lease. For example, Java was released in 1996 and lacked an important feature such as Generics
until 2004, when J2SE 5.0 was released. Furthermore, Java and C++ lacked constructs from
functional programming, which is becoming more and more popular with the years [100], such
as lambda abstractions until 2016, while a similar language like C# 3.0 was released with such
capability in 2008. The slow rate of change of programming languages is due to the fact that
every abstraction added to the language must be reflected in all the modules of its compiler:
the grammar must be extended to support new syntactical rules, the type checking of the new
constructs must be added, and the appropriate code generation must be implemented. Given the
complexity of compilers, this process requires a huge amount of work, and it is often obstructed
by the low flexiblity of the compiler as piece of software. Using a meta-compiler would speed up



1.5. PROBLEM STATEMENT 11

the extension of an existing language because it would require only to change on paper the type
system and the operational semantics, and then add the new definitions to their counterpart
written in the meta-language. This process is easier because the meta-language should mimic
as close as possible their behaviour. Moreover, backward compatibility is automatically granted
because an older program will simply use the extended language version to be compiled by the
meta-compiler.

To this we add the fact that, in general, for the same reasons, the development of a new
programming language is generally faster when using a meta-compiler. This could be beneficial
to the development of a high variety of domain-specific languages. Indeed, such languages are
often employed in situations where the developers have little or no resources to develop a fully-
fledged hard-coded compiler by hand. For instance, it is desirable for game developers to focus
on aspects that are strictly tied to the game itself, for example the development of an efficient
graphics engine or to improve the game logic. At the same time they would need a domain-
specific language to express some behaviours typical of games, things that could be achieved by
using a meta-compiler rather than on a hand-made implementation.

1.4.3 Scienti�c relevance

Meta-compilers have been researched since the 1960’s [93] and several implementations have been
proposed [25, 27, 61, 86, 105]. In general meta-compilers perform poorly compared to hard-coded
compilers because they add the additional layer of abstraction of the meta-language. Moreover, a
specific implementation of a compiler opens up the possibility of implementing language-specific
optimizations during the code generation phase. Meta-compilers have been used in a wide range
of applications, such as source code analysis and manipulation and physical simulations [56],
but no use up to our knowledge was made in the field of domain-specific languages for games.
Since games are pieces of software that are very demanding in terms of performance, we think
that it could be of interest to investigate the applicability of meta-compilers in the scope of
domain-specific languages for games and the development speed up introduced by the use of
such a tool. In this work we present Metacasanova, a meta-compiler based on natural semantics
that was born from the intent of easing the development of the domain-specific language for
game development Casanova, and we analyse the benefit of using it for a re-implementation and
extension of Casanova.

1.5 Problem statement

In Section 1.2 we showed the advantages of using high-level programming languages when im-
plementing an algorithm. Among such languages, it is sometimes desirable to employ domain-
specific languages that offer abstractions relative to a specific application domain (Section 1.2.3).
In Section 1.3 we described the need of a compiler for such languages, and that developing one is
a time-consuming activity despite the process being, in great part, non-creative. In Section 1.4
we introduced the role of meta-compilers to speed up the process of developing a compiler and
we listed the requirements and the benefits that one should have. In Section 1.4.3 we explained
why we believe that meta-compilers are a relevant scientific topic if coupled with the problem
of of developing domain-specific languages in response to the their increasing need. We can now
formulate our problem statement:

Problem statement: To what extent does a meta-compiler bene�t the development of a
domain-speci�c language for game development?
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The first parameter we need to evaluate in order to answer this question is the size of the code
reduction needed to implement the domain-specific language. At this purpose, the following
research question arises:

Research question 1: To what extent can a meta-compiler reduce the amount of code required
to create a compiler for a domain-speci�c language for game development?

The second parameter we need to evaluate is the possible performance loss caused by introduc-
ing the abstraction layer provided by the meta-compiler. This leads to the following research
question:

Research question 2: How much is the performance loss introduced by the meta-compiler
with respect to an implementation written in a language typically used in game development and
is this loss acceptable in this context?

In case of a performance loss, we need to identify the cause of this performance loss and if an
improvement is possible. This leads to the following research question:

Research question 3: What is the cause of the performance degradation when employing a
meta-compiler and how can this be improved?

1.6 Thesis structure

This thesis describes the architecture of Metacasanova, a meta-compiler whose meta-language
is based on operational semantics, and a possible optimization for such meta-compiler. It also
shows its the capabilities by implementing a small imperative language and re-implementing
the existing domain-specific language for games Casanova 2, extending it with abstractions to
express network operations for multiplayer games.

In Chapter 2 we provide background information in order to understand the choices made
for this work. The chapter presents the state of the art in designing and implementing compilers
and existing research on meta-compilers.

In Chapter 3 we present the architecture of Metacasanova by extensively describing the
implementation of all its modules.

In Chapter 4 we show how to use Metacasanova to implement two languages: a small imper-
ative language, and Casanova 2, a language for game development. At the end of the chapter we
provide an evaluation of the performance of the two languages and their implementation length
with respect to existing compilers, thus answering to Research Question 1 and 2.

In Chapter 5 we discuss the performance loss of the implementation of the presented languages
and we propose an extension of Metacasanova that aims to improve the performance of the
generated code.

In Chapter 6 we show how to use functors to improve the performance of Casanova imple-
mented in Metacasanova, comparing this approach and the one presented in Chapter 4 with
respect to the execution time of a sample in Casanova, thus answering Research Question 3.

In Chapter 7 we propose an extension of Casanova 2 for multiplayer game development. We
first provide its hard-coded compiler solution and then we show how to extend the implementation
in the meta-compiler to include the same extension. In this chapter we evaluate the performance
of a multiplayer game implemented in Casanova with this extension with respect to the same
game implemented in C#, and we measure the effort of realising such extension in the hard-
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coded compiler of Casanova versus the implementation with Metacasanova, thus further backing
up the results about the implementation length obtained in Chapter 4.

In Chapter 8 we discuss the result and answer the research questions.
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Chapter 2

Background

Trying to outsmart a compiler
defeats much of the purpose of
using one.

Kernighan and Plauger - The
Elements of Programming Style.

This chapter provides background information on compiler construction and the existing
knowledge on meta-compiles. The goal of this chapter is dual: (i) it provides the reader with
sufficient information to understand the implementation choices done when developing Metaca-
sanova, and (ii) outlines the complexity of the process of designing and implementing a compiler,
thus giving further motivation to this research work.

In Section 2.1 we outline the general architecture of a compiler by giving a short descriptions
of all its components and how they work. In Section 2.2 we give a detailed explanation about
regular expressions necessary to define the “words” of a language, and the lexer, showing how
to implement one. In Section 2.3 we introduce the notion of context-free grammars and we
show how to implement a parser able to process the grammatical rules of such grammar. In
this chapter we present a parser generator for the language F# that has been used for the
implementation of Metacasanova, and then show an alternative to standard parsers in functional
programming languages. We then explain how a type system and semantics of a language is
expressed, and finally we introduce the concept of metaprogramming and we show examples
using metaprogramming in the abstractions provided by a general purpose language (C++), and
with existing dedicated metacompilers. As a side note, we want to point out that definitions
below are mainly reformulations of what is presented in [11] and [9].

2.1 Architectural overview of a compiler

Compilers are software that read as input a program written in a programming language, called
source language, and translate it into an equivalent program expressed with another programming
language, called target language. Usually the target language is machine code, but this is not
mandatory. A special kind of compilers are interpreters, that directly execute the program
written in the source language rather than translating it into a target language. Some languages,
like Java, use a hybrid approach, that is they compile the program into an intermediate language
that is later interpreted by a virtual machine. Another approach involves the translation into a
target high-level language.

Although the architecture of a compiler may slightly vary depending on the specific imple-
mentation, the translation process usually consists of the following steps:

15
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1. Lexical analysis: this phase is performed by a module called lexer that is able to process
the text and identify the syntactical elements of the language, called tokens.

2. Syntactical analysis: this phase is performed by a module called parser, that checks
whether the program written in the source language is compliant to the formal syntax of
the language. The parser is tightly coupled with the lexer, as it needs to identify the tokens
of the language to correctly process the syntax rules. The parser outputs a representation
of the program, called Abstract Syntax Tree, for later use.

3. Type checking: this phase is performed by the type checker that uses the rules defined
by a type system to assign a property to the elements of the language called type. The
types are used to determine whether the abstractions of the language, in a program that
is syntactically correct, are used in a meaningful way.

4. Code generation: the code generation phase requires to choose one or more target lan-
guages to emit. In the latter case, the code generator must have a modular structure to
allow to interchange the output language. For this reason this step is usually preceded
by an intermediate code generation step, that converts the source program into an inter-
mediate representation close to the target language. This phase can later be followed by
different kinds of code optimization phases.

In what follows we extensively describe each module that was summarized above.

2.2 Lexer

As stated above, the lexer task is to recognize the words or tokens of the source language. In
order to perform this task the token structure must be expressed in a formal way. Below we
present such formalization and we describe the algorithm that actually recognizes the token.

Let us consider a finite alphabet Σ, a language is a set of strings, intended as sequences of
characters in Σ.

De�nition 2.1. A string in a language L in the alphabet Σ is a tuple of characters a 2 Σn .

A notable difference between languages in this context and human-spoken languages is that,
in the former, we do not associate a meaning to the words but we are only interested to define
which words are part of the language and which are not. Regular expressions are a convenient
formalization to define the structure of sets of strings:

De�nition 2.2. The following are the possible ways to define regular expressions [11]:

� Empty: The regular expression � is a language containing only the empty string.
� Symbol: 8a 2 Σ, a is a string containing the character a.
� Alternation: Given two regular expressions M and N , a string in the language of M jN ,

called alternation, is the sets of strings in the language of M or N .
� Concatenation: Given two regular expressions M and N , a string in the language of M �N

is the language of strings � � � such as � 2M and � 2 N .
� Repetition: Given a regular expression M , its Kleene Closure M � is formed by the con-

catenation of zero or more strings in the language M .

The regular expressions defined in Definition 2.2 can be combined to define tokens in a
language.

Regular expressions can be processed by using a finite state automaton. Informally a finite
state automaton is made of a finite set of states, an alphabet Σ of which it is able to process the
symbols, and a set of symbol-labelled edges that connect two states and define how to transition
from one state to another. Automata can be divided into two categorise: non-deterministic
�nite state automata (NFA) and deterministic �nite state automata (DFA). Formally we have
the following definitions:



2.2. LEXER 17

De�nition 2.3. A non-deterministic finite state automaton (NFA) is made of:

� A finite set of states S.
� An alphabet Σ of input symbols.
� A state s0 2 S that is the starting state of the automaton.
� A set of states F � S called final or accepting states.
� A set of transitions T � S � (Σ [ f�g)� S.

De�nition 2.4. A deterministic finite state automaton (DFA) is a NFA where the transition is
a function, i.e.

� : S � Σ! S
�(si ; c) = sj

and @�(s; ci ); �(s; cj ) j ci = cj 8i; j.

Informally, in NFA’s there might be two transitions from the same state that can process the
same symbol, while in DFA’s for the same state there exists one and only one transition able
to process a symbol and no transition processes the empty string. Regular expressions can be
converted in NFA by using translation rules. The formalization of the algorithm can be found
in [68], here we just show an informal overview for brevity.

2.2.1 Finite state automata for regular expressions

In this section we present an informal overview of the translation rules for regular expressions
into NFA’s, and an algorithm to convert an NFA into a DFA.

Conversion for Symbols A regular expression containing just one symbol a 2 Σ can be
converted by creating a transition �(si ; a) = sj .

Conversion for concatenation The conversion for concatenation is recursive: the base case
of the recursion is the symbol conversion. The conversion of a concatenation of n symbols
a1a2 ; :::; an is obtained by adding a transition from the last state of the conversion for the first
n�1 symbols into a new state through a transition processing the n-th symbol, �(sn � 1 ; an ) = sn .

Conversion for alternation The alternation M jN is obtained by creating an automata with
a �-transition into a new state, that we call s� . From s� we recursively generate the automata
for both M and N . Both automata can finally reach the same state through an �-transition.

Conversion for Kleene closure The Kleene Closure M � is obtained by initially creating an
�-transition into a state s� . s� can recursively transition to the automaton for M , which in turn
transitions through an �-transition to s� .

Conversion for M+ The regular expression M+ contains the concatenation of one or more
strings in M . This can be translated by translating M �M � .

Conversion for M? The regular expression M? is a shortcut for M j�, thus it can be translated
by using the conversion rule for the alternation.
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2.2.2 Conversion of a NFA into a DFA

As stated in Section 2.2, a NFA might have, for the same state, a set of transitions that process
the same symbol (including the empty string since �-transitions are allowed). This means that a
NFA must be able to guess which transition to follow when trying to process a token. This is not
efficient to implement in a computer, thus it is better to use a DFA where there can be only one
way of processing a symbol for a given state. An algorithm to automate such conversion exists
and is presented in [9]. Another possible approach is an algorithm to directly convert regular
expressions into DFA’s, as shown in [8]. Below we present the algorithm to convert NFA’s into
DFA’s.

The informal idea behind the algorithm is the following: since a DFA cannot contain �-
transitions or transitions from one state into another containing the same symbols, we have to
construct an automaton that skips the �-transitions and pre-calculates the calculation of the sets
of states in advance. In order to do so, we need to be able to compute the closure of a set of
states. Informally the closure of a set of states S is the sates that can be reached by one of the
states of S through an �-transition. The formal definition is given below:

De�nition 2.5. The closure C(S) of a set of states S is defined as

� C(S) = S [

 
[

s2 T

�(s; �)

!

� if 9 C0(S) j C(S) � C0(S)) C0(S) = C(S).

Algorithm 2.1 Closure of S
T  S
repeat

T 0 T
T  [

� S
s2 T 0 �(s; �)

�

until T = T 0

Algorithm 2.1 computes the closure of a set of states. Note that the algorithm termination
is granted because we are considering finite-state automata.

At this point we can build the set of all possible states reachable by consuming a specific
character. We call this set edge of a set of states d.

De�nition 2.6. Let d be a set of states, then the edge of d is defined as

E(d; c) = C

 
[

s2 d

�(s; c)

!

Now we can use the closure and edge to build the DFA from a NFA.
Algorithm 2.2 performs the conversion into a DFA but we need to adjust it in order to mark the
final states of the automaton. A state d is final in the DFA if it is final if any of the states in
state[d] is final. In addition to marking final states, we must also keep track of what token is
produced in that final state.

2.3 Parser

Regular expressions are a concise declarative way to define the lexical structure of the terms of
a language, but they are insufficient to describe its syntax, i.e. how to combine tokens together
to make “sentences” [9, 11]. For example, trying to define an arithmetic expression with chained
sums would lead to the following (recursive) regular expression:
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Algorithm 2.2 NFA into DFA conversion

states[0] ;
states[1] C(s1)
p 1
j  0
while j � p do

for all c 2 Σ do
e E(states[j]; c)
if 9 i � p j e = states[i] then

trans[j; c] i
else

p p+ 1
states[p] e
trans[j; c] p

end if
end for
j  j + 1

end while

expr = "(" expr "+" expr ")" | digits

Now we would need to replace the regular expression with itself, thus obtaining

expr = "(" "(" expr "+" expr ")" | digits "+" "(" expr "+" expr ")" |
digits ")" | digits

It is easy to see that this substitution would never end, as the regular expression keeps growing
at each replacement.

A compiler uses the parser module to check the syntactical structure of a program. As we
will see more in depth below, the parser is tightly coupled with the lexer, which is used by it to
recognize tokens. In order to present the structure of the parser, it is first necessary to introduce
context-free grammars.

As before we consider a language as a set of tuples of characters taken from a finite al-
phabet Σ. Informally, a context-free grammar is a set of productions of the form symbol !
symbol1 symbol2 :::symboln , where the left argument can be replaced by the sequence of sym-
bols contained in the right argument. Some productions are terminal, meaning that they cannot
be replaced any longer, while the others are non-terminal. Terminal symbols can only appear on
the right side, while non-terminals can appear on both sides. Formally a context free grammar
is defined as follows

De�nition 2.7. A context-free grammar is made of the following elements:

� A set of non-terminal symbols N .
� A finite set of terminal symbols Σ, called alphabet.
� A non-terminal symbol S 2 N called starting symbol.
� A set of productions P in the form N ! (N [ Σ)� .

Note that Definition 2.7 allows context-free grammars to process also regular expressions, thus
context-free grammars are more expressive than regular expressions. In what follows we assume
that the terminal symbols are treated as tokens with regular expressions that can be processed by
a lexer, but in general a context-free grammar does not require a lexer DFA to process terminal
symbols.
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In order to check if a sentence is valid in the grammar defined for a language, we perform a
process called derivation: starting from the symbol S of the grammar, we recursively replace non-
terminal symbols with the right side of their production. The derivation can be done in different
ways: we can start expanding the leftmost non-terminal in the production or the rightmost one.
The result of the derivation usually generates a data structure called parse tree or abstract syntax
tree, which connects a non-terminal symbol to the symbols obtained through the derivation; the
leaves of the tree are terminal symbols.

2.3.1 LR(k) parsers

Simple grammars can be parsed by using left-to-right parse, leftmost-
derivation, k-tokens lookahead (alse called LL(k) parsers), meaning that the parser processes a
symbol by performing a derivation starting from the leftmost symbol of the production, and
looking at the first k tokens of a string of the language. The weakness of this technique is that
the parser must predict which production to use only knowing the first k tokens of the right side
of the production. For instance, consider the two expression

(15 � 3 + 4)� 6
(15 � 3 + 4)

and the grammar

S ! E eof
E ! E + T
E ! E � T
E ! T � F
E ! T=F
E ! T
T ! F
F ! id
F ! num
F ! (E)

In the first case the parser should use the production E ! E � T while in the second it should
use the production E ! T . This grammar cannot be parsed by a LL(k) parser because it is
not possible to decide which of the two productions must be used just by looking at the first k
leftmost tokens. Indeed expressions of that form could have arbitrary length and the lookahead
is, in general, insufficient. In general LL(k) grammars are context-free, but not all context-free
grammars are LL(k), so such a parser is unable to parse all context-free grammars.

A more powerful parser is the left-to-right parse, rightmost-derivation, k-tokens lookahead or
LR(k). This parse maintains a stack and an input (which is the sentence to parse). The first k
tokens of the input are the lookahead. The parser uses the stack and the lookahead to perform
two different actions:

� Shift : The parser moves the first input token to the top of the stack.

� Reduce: The parser chooses a grammar production Ni ! s1 s2 :::sj and pop sj ; sj � 1 ; :::; s1

from the top of the stack. It then pushes Ni at the top of the stack.

The parser uses a DFA to know when to apply a shift action or a reduce action. The DFA is
insufficient to process the input, as DFA’s are not capable of processing context-free grammars,
but it is applied to the stack. The DFA contains edges labelled by the symbols that can appear
in the stack, while states contain one of the following actions:

� sn : shift the symbol and go to state n.
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� gn : go to state n.
� rk : reduce using the production k in the grammar.
� a: accept, i.e. shift the end-of-file symbol.
� error: invalid state, meaning that the sentence is invalid in the grammar.

The automaton is usually represented with a tabular structure, which is called parsing table. The
element pi;s in the table represents the transition from state i when the symbol at the top of the
stack is s.

In order to generate the parsing table (or equivalently the DFA for the parser) we need two
support functions, one to generate the possible states the automaton can reach by using grammar
productions, and one to generate the actions to advance past the current state. We introduce
an additional notation to represent the situation where the parser has reached a certain position
while deriving a production.

De�nition 2.8. An item is any production in the form N ! �:X�, meaning that the parser is
at the position indicated by the dot where X is a grammar symbol.

At this point we are able to define the Closure function, that adds more items to a set of
items when the dot is before a non-terminal symbol, which is shown in Algorithm 2.3. Note
that, for brevity, we present the version to generate a LR(0) parser, for a LR(1) parser a minor
adjustment must be made.

Algorithm 2.3 Closure function for a LR(0) parser

function Closure(I)
repeat

for all N ! �:X� 2 I do
for all X !  do

I  I [ fX ! :g
end for

end for
until I0 6= I
return I

end function

The algorithm starts with an initial set of items I and adds all grammar productions that
contain X as left argument as items with the dot at the beginning of their right argument,
meaning that the symbols of the production must still be completely parsed.

Now we need a function that, given a set of items, is able to advance the state of the parser
past the symbol X. This is shown in Algorithm 2.4.

Algorithm 2.4 Goto function for a LR(0) parser

function Goto(I;X)
J  ;
for all N ! �:X� 2 I do

J  J [ fN ! �X:�g
end for
return Closure(J)

end function

The algorithm starts with a set of items and a symbol X and creates a new set of items where
the parser position has been moved past the symbol X. It then compute the closure of this new
set of items a returns it.
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We can now proceed to define the algorithm to generate the LR(0) parser, which is shown in
Algorithm 2.5. The initial state is made of all the productions where the left side is the starting
symbol, which is equivalent to compute the closure of S0! :S eof . It then proceeds to expand
the set of states and the set of actions to perform. Note that we never compute GOTO(I; eof)
but we simply generate an accept action. Now, for all actions in E where X is a terminal, we
generate a shift action at position (I;X), for all actions where X is non-terminal we put a goto
action at position (I;X), and finally for a state containing an item Nk ! : (the parser is at the
end of the production) we generate a rk action at (I; Y ) for every token Y .

In general parsing tables can be very large, for this reason it is usually wise to implement a
variant of LR(k) parsers called LALR(k) parsers, where all states that contain the same actions
but different lookaheads are merged into one, thus reducing the size of the parsing table. LR(1)
and LALR(1) parsers are very common, since most of the programming languages can be defined
by a LR(1) grammar. For instance, the popular family of parser generators Yacc produces
LALR(1) parsers.

Algorithm 2.5 LR(0) parser generation

T  Closure(fS0! :S eofg)
E  ;
repeat

T 0 T
E0 E
for all I 2 T do

for all N ! �:X� 2 I do
J  Goto(I;X)
T  T [ fJg
E  E [ fI X�! Jg

end for
end for

until E0 = E and T 0 = T

2.3.2 Parser generators

The process of creating a parser can be automated by using a Parser Generator. A Parser
generator is a programming language that accepts the definition of the grammar of a language
and generates a parser (and a lexer) for it. As programming languages generally have a LALR(1)
grammar [11], most of parser generators produce a LALR(1) parser. Since in this research work
we used F# as a development language, in this section we present the F# lexer and parser
generators, belonging to the Yacc generator family, known ans FsLex and FsYacc.

De�nition of a lexer in FsLex

FsLex allows to define the tokens with the regular expression syntax. Each FsLex program begins
with a header, where the programmer can specify auxiliary modules and functions to use in the
lexer. After the header, it is possible to specify relevant regular expressions that are used by the
lexer to analyse the tokens with the standard let-binding syntax of F# [70]. The right argument
of this binding is a regular expression, which can be composed with the combinators for regular
expressions seen in Section 2.2.1. For example the following regular expression can define the
syntax for variable names in a programming language:

let simpleId = [’a’-’z’ ’A’-’Z ’] [’a’-’z’ ’A’-’Z’ ’_’ ’0’-’9’]+
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Regular expression bindings can be used as alias in the lexer definition. A lexer definition
is identified by the keyword rule for the binding. The right side of a lexer definition contains
a call to the function parse, which tries to execute one of the rules specified below to parse a
token. Each lexer rule generates a result which is a token data structure. Token data structures
are specified at parser level (see below). For instance, the following is a lexer able to recognize
comparison operators:

rule comparisonOperators = parse
| "=" { Parser . EQUAL }
| ">" { Parser .GT }
| " >=" { Parser .GEQ }
| "<" { Parser .LT }
| " <=" { Parser .LEQ }
| "<>" { Parser .NEQ }

Note that, in order to provide useful information about the lexing phase, we might need to
access, for instance, the position of the lexer (for error reporting), or to get the string read by
the lexer (for example to generate literals when reading numbers or strings). This information
is provided by the lexer bu�er, which is a data structure generated automatically by the parser
generator. For example, if the token needs to store its row and column position in the file for
error reporting, the definition above can be changed in this way (note the use of the header to
define the function range):

{
module Lexer

let range ( lexbuf : LexBuffer <_ >) = lexbuf . EndPos .Line + 1, lexbuf . EndPos
. Column

}

rule comparisonOperators = parse
| ">" { Parser .GT ( range lexbuf ) }
| " >=" { Parser .GEQ ( range lexbuf ) }
| "<" { Parser .LT ( range lexbuf ) }
| " <=" { Parser .LEQ ( range lexbuf ) }
| "<>" { Parser .NEQ ( range lexbuf ) }

Another useful feature of FsLex is the capability of defining recursive lexers. Let us consider
the case of skipping multi-line comments: usually such comments are delimited by a start and
end symbol, and the comments spread across multiple lines. For example in C++/Java/C# a
multi-line comment is delimited by the symbols /* */. The lexer must detect the left delimiter
of the multi-line comment, and then keep skipping all the symbols until it detects the right
delimiter. This means that the lexer must call itself multiple times, using different lexing rules:
one to detect the left delimiter, one to handle new lines or characters inside the comment, and
one to detect the right delimiter. Furthermore, after handling the comment, the lexer must go
back to processing the program normally. The following code shows how to implement such
lexer:

{
module Lexer

let newline ( lexbuf : LexBuffer <_ >) = lexbuf . EndPos <- lexbuf . EndPos .
NextLine

let range ( lexbuf : LexBuffer <_ >) = lexbuf . EndPos .Line + 1, lexbuf . EndPos
. Column

}
let newline = (’\n’ | ’\r’ ’\n ’)

rule comment = parse
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| "*/" { programTokens lexbuf }
| newline { newline lexbuf ; comment lexbuf }
| _ { comment lexbuf }

and programTokens = parse
| "/*" { comment lexbuf }
...
// other token definitions

Note that programTokens calls comment when it detects the left delimiter of a multi-line com-
ment. comment keeps calling itself until the right delimiter is detected, where it jumps back to
programTokens.

De�nition of a parser in FsYacc

FsYacc allows to define the grammar of a language in terms of productions of a context free
grammar. As for the lexer, the parser definition starts with a header where the programmer
can specify custom code and modules to use. The grammar defines terminal symbols as tokens,
identified by the keyword %token. A token specified the name to be used in the grammar
productions, and a series of type parameters that are used to store data in a token. For example,
the following tokens might be used in a parser for arithmetic expressions:

% token PLUS MINUS MUL DIV LPAR RPAR
% token <double > NUMBER

Whenever a terminal symbol is encountered during the parsing phase, the parser calls the lexer
to generate the data structure for the token. The lexer tries to match the string provided by the
parser by using one of its rule and, if it succeeds, it returns the appropriate token data structure.
In this part of the grammar we must also specify the starting symbol. This symbol is defined
through the keyword %start. Since usually we want to generate an abstract syntax tree for
the grammar (which must be manually defined), we can specify a return type generated by the
parser with the keyword %type. For an arithmetic expression this would be, for instance

% start start
%type <Expr > start

In this section it is also possible to define the operators associativity and precedence, through
the keywords %left, %right, and %nonassoc. Terms defined in the same associativity line have
the same precedence, and the precedence is ordered according to the line number, so if a term
associativity is defined below another, it has higher precedence.

After the terminal symbol definitions, the grammar must specify productions. A production
is defined in the following way:

productionName :
| rule_1 { action_1 }
| rule_2 { action_2 }
...
| rule_n { action_n }

Each action defines the code that the parser executes when that rule is matched. Usually this
part is used to build the nodes of the syntax tree, but there is no restriction in what the action
can perform, as long as it is valid F# code. It is possible to access the result of evaluating a
term in the production by using an index preceded by the symbol %, where %1 refers to the first
term in the right hand-side of the production. For example this code might be used to parse an
arithmetic expression:

%{
open AST
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%}

% token PLUS MINUS MUL DIV LPAR RPAR EOF
% token <float > NUMBER

%left PLUS MINUS
%left MUL DIV

% start start
%type <Expr > start

start : Expression EOF { %1 }

Expression :
| NUMBER { Number %1 }
| Expression PLUS Expression { Plus (%1 ,%3) }
| Expression MINUS Expression { Minus (%1 ,%3) }
| Expression MUL Expression { Mul (%1 ,%3) }
| Expression DIV Expression { Div (%1 ,%3) }
| LPAR Expression RPAR { Nested (%2) }

module AST

type Expression =
| Number of float
| Plus of Expression * Expression
| Minus of Expression * Expression
| Mul of Expression * Expression
| Div of Expression * Expression
| Nested of Expression

2.3.3 Monadic parsers

Monadic parsing is an alternative to traditional parsers, such as LR(k) and LALR(k) presented
above. Monadic parsers have inferior performance with respect to LR(k) and LALR(k) [51]
parsers but they are extensible, i.e. they do not rely on a limited set of combinators to describe
the grammar of a language as for parser generators. Monadic parsers were extensively explained
in [51, 108], here we present a variation that can deal also with error handling. Before explaining
how to implement a monadic parser, we introduce the concept of Monad:

De�nition 2.9. A Monad is a triplet made of the following elements:

� A type constructor M .
� A unary operation Return :: a!M a.
� A binary operation Bind :: M a ! (a ! M b) ! M b. The bind can also be written by

using the symbol >>=.

where both operations satisfy the following properties:

� a >>= Return � a.
� (a >>= f) >>= g � a >>= (�x:fx >>= g).

In other words, a monad is a functional design pattern that consists of a data container
that provides two operations: one that takes an element whose type is compatible with the
element of the container, and returns an instantiation of the container itself, and the other
that defines a transformation between two data containers. Monads are a concept borrowed by
functional programming language that comes from the much wider concept from category theory
[13, 19, 20, 88], whose usage is shown for example in [78, 87, 107, 108]. We now proceed to define
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a parser monad by defining (i) the type constructor for the parser, (ii) the unary operator,
(iii) the binary operator, and (iv) parser combinators as an example of the extensibility of the
parser monad. Note that below we provide an implementation in F#, which does not have type
classes as Haskell, so the parser monad does not use any type argument and directly defines the
operators for this specific instance of monad.

Parser type constructor and monadic operations

A parser is defined in literature as a function that takes as input a text and returns a list of pairs
made of the parsing result and the rest of the text to process. The parsing result is usually the
syntax tree generated by the parser. The result is a list because the same syntactical structure
might be processed in different ways. By convention, an empty list denotes a parser failure.
Here we propose a variation of this traditional implementation in order to provide a better error
report.

In this alternative implementation, the parser is a function that takes as input the text to
process, a parsing context that might hold auxiliary information necessary for the parsing, the
current position of the parser in the text, and returns either a tuple containing the parsing result,
the text left to process, an updated context, and the updated position, or an error in case of a
parser failure.

type Parser <’a, ’ctxt > = { Parse : List <char > -> ’ctxt -> Position ->
Either <’a * List <char > * ’ctxt * Position , Error >}

static member Make(p:List <char > -> ’ctxt -> Position -> Either <’a * List <
char > * ’ctxt * Position , Error >) : Parser <’a,’ctxt > = { Parse = p }

The return operation should take as input a generic value of type ’a and return a
Parser<’a,’ctxt>. The return simply creates the parser function for the given input:

member this. Return (x:’a) : Parser <’a,’ctxt > =
(fun buf ctxt pos -> First (x, buf , ctxt , pos)) |> Parser .Make

According to the Definition 2.9, the bind operator must take as input a Parser<’a>, a function
’a -> Parser<’b> and return Parser<’b>. The bind generates a function that runs the input
parser on the text. The result of the input parser can, according to its definition, contain a
parsing result or an error in case of failure. The function generated by the bind must be able to
handle these two situations: in case of a correct result the function creates a new parser using
the parsing result and runs it on the remaining portion of the text, while in case of an error it
simply outputs the error. In this way, when parsing fails, the error will be propagated ahead.

member this.Bind(p:Parser <’a,’ctxt >, k:’a->Parser <’b,’ctxt >) : Parser <’b,’
ctxt > =

(fun buf ctxt pos ->
let all_res = p. Parse buf ctxt pos
match all_res with
| First p1res ->

let res , restBuf , ctxt ’, pos ’ = p1res
(k res). Parse restBuf ctxt ’ pos ’

| Second err -> Second err ) |> Parser .Make

Parser combinators

With the parser monad implemented above, we can implement several parser combinators that
can be used to define the grammar of a language. Here we show only a small glimpse of the
possible combinators that can be implemented.
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The first parser combinator that we present is the choice. The choice takes as input two parsers
and runs the first. If the first parser succeeds than its result is returned, otherwise the second
is run. If it succeeds its result is return, otherwise the whole parser outputs an error. This
combinator is useful, for instance, when there might be two possible choices for a token in a
statement. For instance, in both Java and C# is possible to exchange the order of the access
modifier and the static modifier in the method declaration, thus both public static or static
public are valid combinations. This combinator would try to parse the declaration in the first
way, and if it fails it will try also the second option. Of course if the syntax of both combinations
is wrong the parser will fail completely. The code for the combinator is shown below:

static member (++) (p1:Parser <’a,’ctxt >, p2:Parser <’a,’ctxt >) : Parser <’a,’
ctxt > =

(fun buf ctxt p ->
match p1. Parse buf ctxt p with
| Second err1 ->

match p2. Parse buf ctxt p with
| Second err2 -> Second err2
| p2res -> p2res

| p1res -> p1res ) |> Parser .Make

A useful variation of this combinator, is the one that executes two parsers with different generic
types and returns a Either data type, containing either the result of the first or the second.

static member (+) (p1:Parser <’a,’ctxt >, p2:Parser <’b,’ctxt >) : Parser <
Either <’a,’b>,’ctxt > =

(fun buf ctxt p ->
match p1. Parse buf ctxt p with
| Second err1 ->

match p2. Parse buf ctxt p with
| Second err2 -> Second (err2)
| First p2res ->

let res ,restBuf ,ctxt ’,pos = p2res
First ( Second res , restBuf , ctxt ’, pos)

| First p1res ->
let res , restBuf , ctxt ’, pos = p1res
First (( First res), restBuf , ctxt ’, pos)) |> Parser .Make

Other combinators are possible, but for brevity we have only shown two. It should appear clear
how this approach is completely extensible with no limitations. Any combinator would take as
input two parsers and define the type of the resulting parser. The implementation will contain the
logic to combine two parsers together. For example, another parser combinator is the application
of zero or more times of the same parser.

To complete this discussion, we now show how to parse a specific character and a keyword.
The parser for a character takes as input the text to process and the character to match. If
the input text is empty of course the parser immediately fails because no character will ever be
matched. Otherwise if the first character of the text matches the one provided then we return
the matched character as result and the rest of the text to process, otherwise we output an error.
The function also takes care of updating the position of the parser accordingly and to skip line
breaks.

let character (c:char) : Parser <char , ’ctxt > =
(fun buf ctxt (pos: Position ) ->

match buf : List <char > with
| x:: cs when x = c ->

let pos ’ =
if x = ’\n’ then

pos. NextLine
else

pos. NextCol
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First ( c, cs , ctxt , pos ’)
| _ ->

Second ( Error (pos , sprintf " Expected character %A" c))) |> Parser .
Make

The word parser takes as input the text to process and the word to match. It then applies the
character parser to the word until it has all been processed. In the code below the syntax let!
x = y is a syntactical sugar for y >>= fun x -> ... in the fashion of Haskell do notation.

let rec word (w:List <char >) : Parser <List <char >, ’ctxt > =
p{

match w with
| x:: xs ->

let! c = character x
let! cs = word xs
return c:: cs

| [] ->
return []

}

2.4 Type systems and type checking

Being able to verify the correctness of a program is a crucial aspect of programming. When
dealing with low-level languages, it is generally difficult to verify and grant the correctness of
a program since a language such as assembly does not provide abstractions for the purpose.
Modern high-level programming languages, on the other hand, generally provide a way to type
their constructs. A type system is a syntactic method that assigns a property called type to the
constructs of a programming language, in order to prove that a program does not have certain
unwanted behaviours [89]. Type systems are generally expressed in the form of inference rules
[28, 89], made of a set of premises, that must be verified in order to assign to the language
construct the type defined in the conclusion. An inference rule is a logical rule in the form:

premise1

premise2

...
premisen

conclusion

where all the premises must be true in order to evaluate the conclusion. Usually the type rules
make use of a typing environment, which is an association between language constructs and types.
For example the following rule defines the typing of an if-then-else and a while-do statement
in an imperative language.

Γ ‘ c : bool Γ ‘ t Γ ‘ e
Γ ‘ if c then t else e

Γ ‘ c : bool Γ ‘ w
Γ ‘ while c do w

In these rules Γ is the environment. The type rule first evaluates the premises, which means
that if the condition of the if-then-else has type bool and the evaluation of the then and else



2.5. SEMANTICS AND CODE GENERATION 29

block succeeds, then the whole if-then-else is correctly typed. Analogously, for the while-do,
if the condition has type bool and the evaluation of the while block is correctly typed, then
the whole while-do is correctly typed. Note that control structures code blocks are usually not
given a type, rather they are considered correct if all their statements are correctly typed. An
equivalent way of expressing this is using a special type called unit for constructs that do not
return a value. This expedient is widely used in hybrid functional programming languages such
as F# or CamL. The equivalent rules for the construct above would be:

Γ ‘ c : bool Γ ‘ t : unit Γ ‘ e : unit
Γ ‘ if c then t else e : unit

Γ ‘ c : bool Γ ‘ w : unit
Γ ‘ while c do w : unit

Typing a construct of the language requires to evaluate its corresponding typing rule. Unlike
for parsers, there exist no tools capable of automatically generating a type checker given the
type rules definition, thus the behaviour of each type rule must be implemented in the host
language in which the compiler is defined. Independently of the chosen language, the behaviour
will always be the following : (i) evaluate a premise, (ii) if the evaluation of the premise fails
then the construct fails the type check and an error is returned, (iii) repeat step 1 and 2 until
all the premises have been evaluated, and (iv) assign the type to the construct that is defined in
the rule conclusion.

During this process the compiler generates a data structure called symbol table, which contains
information about the type checking process and maintains the type environment.

At the end of the type check, the program is correct with respect to types. At this point, de-
pending on the chosen target language, the compiler might discard or keep the information about
the typing process. Usually when targeting a high-level programming language, the information
about the types is kept because they are necessary during the code generation process in order
to, for instance, generate the proper variable declaration statements. On the other hand, when
targeting a low-level untyped programming language, such as assembly, the type information can
be discarded.

2.5 Semantics and code generation

Semantics define how the language abstractions behave and can be expressed in different ways,
for example with a term-rewriting system [62], reduction semantics [42] or with the operational
semantics [46]. Below we provide a description of these three possible representations for the
semantics:

Term-rewriting semantics Term-rewriting semantics define a set of rewriting rules that take
as input a construct of the language and define how to rewrite it into another form. The rewriting
process usually ends when a rewrite rule is replaced by itself. For example the if-then-else
statements and while-do statements can be rewritten with these rules (the ; symbol denotes a
sequence of statements):

if true then t else e ; k ! t;k
if false then t else e ; k ! e;k
while (c = true) do w ; k ! w ; while (c) do w ; k
while (c = false ) do w; k ! k
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Reduction semantics Reduction semantics use a reduction context, which is a program or a
fragment of program with a hole (denoted by the symbol � ) as placeholder to mark where the
next computational step is taking place. For example the if-then-else and while-do statements
semantics can be represented in the following way1 :

if � then s1 else s2 ; k
if true then t else e ! t
if false then t else e ! e
while � do w
while true do w ! w ; while � do w
while false do w ! skip

Operational semantics Operational semantics define the behaviour of language constructs
in terms of logical rules similar to those used for type systems. For instance, the if-then-else
and while-do semantics are expressed as

hci ) true
hif c then T else E ; ki ) T ; k

hci ) false
hif c then T else E ; ki ) E ; k

hci ) true
hwhile c do L ; ki ) L ; while c do L ; k

hci ) false
hwhile c do L ; ki ) k

Regardless of the formal representation chosen for the semantics, this must be encoded in
the abstractions of the target language during the code generation phase. When choosing a
high-level target language encoding the operational semantics of a similar high-level language
might be trivial, but generating for instance the code for a functional programming language into
an imperative language might prove difficult. For this reason, the code generation step might
be preceded by an intermediate code generation step. The intermediate language is usually a
simple programming language close to the target language. Notable examples of this are the
three-address code [9], and the intermediate language used in the Glasgow Haskell Compiler [50]
and Utrecht Haskell Compiler [39].

2.6 Metaprogramming and metacompilers

This section aims to provide the reader with sufficient information to understand the concept
of metaprogramming. In this section we explain what metaprogramming is and present existing
metacompilation approaches existing in scientific literature. We start by giving the characteriza-
tion of metaprogramming and we present related techniques in existing programming languages.
We then proceed by presenting how different existing metacompilers work.

Metaprogramming is the process of writing computer programs with the ability to treat
programs as their data [34]. Metaprogramming takes as input a program written in a meta-
language to define a programming language called object language, a program written in the

1 skip is a statement that simply skips to the next statement in a sequence of statements
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object language, and outputs executable code able to run the program. Metaprogramming can
be achieved in two different ways: (i) by using opportune language abstractions provided by a
general-purpose programming language, or (ii) using a dedicated metacompiler. In what follows
we provide examples in both areas.

2.6.1 Template metaprogramming

Template metaprogramming uses class templates to operate on numbers and types as data. In
this section we provide examples in C++ templates, but other languages allow template metapro-
gramming, with notable examples being Lisp macros and Haskell templates [96]. The template
language uses template recursion as loop construct and template specialization as decisional
construct.

To better understand how this works, we will implement the factorial function with templates.
It is well known that, by definition, the factorial of 0 is 1, while the factorial of a number n is n
multiplied by the factorial of n�1. Our template meta-program will thus contain two templates:
one for the base case of the recursion and one for the recursive step. The base case of the
recursion uses template specialization to stop the computation and immediately return 1:

template <>
struct Factorial <0>
{

enum { RET = 1 };
};

This template contains an enumeration type whose only value is 1. The recursive step will
take as input a generic template parameter and recursively call the template definition.

template <int n>
struct Factorial
{

enum { RET = Factorial <n - 1 >:: RET * n }
};

When the Factorial template is instantiated with a value different from 0, the non-specialized
version is used by the C++ compiler. The enumeration case RET then gets the value of RET for the
same template instantiated for n - 1 and multiplied by n. The generation of templates and their
enumeration cases will stop when the template instantiation will be invoked with Factorial<0>,
which will use the specialized version. Note the use of the scope resolution operator to access
the value of the enumeration case. This template can be used instantiating the template with
an integer constant, for instance:

int main ()
{

cout << Factorial <5 >:: RET << endl;
}

Note that template instantiation is performed at compile-time, so the result of the factorial is
actually inlined by the compiler every time the template is instantiated.

A more interesting example is about how to define recursive data structures. Let us consider
the implementation of lists in a functional programming language:

type List <’a> =
| Empty
| Cons of ’a * List <’a>
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where the list [3,4,5,6] can be built as Cons(3,Cons
(4,Cons(5,Cons(6,Empty)))). This list representation can be defined with template metapro-
gramming by defining a template specialization for the empty list, and a non-specialized template
for a non-empty list.

struct NIL
{

typedef NIL Head;
typedef NIL Tail;

};

template < class T, class Tail_ = NIL >
struct Cons
{

typedef T Head;
typedef Tail_ Tail;

};

Note that the assignment in the template definition specifies an optional template parameter, in
the same way as optional method arguments.

Now let us try to define a function to calculate the length of an arbitrary list. This function
will have as a base case the empty list, for which it returns 0, otherwise it returns 1 plus the length
of the tail. Again this can be implemented with a specialized template and a non-specialized
template.

template < class List >
struct Length
{

static const unsigned int RET = Length <List :: Tail >:: RET + 1;
};

template <>
struct Length <NIL >
{

static const unsigned int RET = 0;
};

The first template recursively class the Length template with the type of the tail of the list,
extracts the RET field and adds 1. The second template is a specialization created with the NIL
type and immediately sets the field RET to 0.

In order to test this function we must create a template for a data type (which is a meta-data)
that we want to store in the list. In this example we show how to test the function for a list of
integers. First of all we must create a template for an integer:

template <int n>
struct Int
{

static const int Value = n;
};

This is necessary in order to be able to store the values of the list elements. At this point, the
list can be created by calling Cons and passing the Int data type as argument. Length can then
be used with the type of the list that has been created and then we can access its RET field.

typedef Cons <Int <3>, Cons <Int <4>, Cons <Int <5>, Cons <Int <6>>>>> testList ;
cout << Length <testList >:: RET << endl;

Template metaprogramming complexity can grow exponentially, for example when we want
to get the values of the list elements, to the point that a simple function as nth requires several
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templates. We omit the details here, but the reader can find additional information in Appendix
A.

2.6.2 Metacompilers

Metacompilers are a special class of compilers used to implement other compilers. A metacom-
piler takes as input the definition of the syntax, semantics, and possibly the type system of the
object language, a program written in the object language, and outputs executable code for it.
Metacompilers are written either in a general purpose programming language or in their own
meta-language through the process of self-hosting. Self-hosting compilation requires to write a
prototypical version of the compiler in another language or an interpreter for it and then use it
to compiler the implementation of a subsequent version. In this section we present four existing
meta-compilers: (i) META-II for historical reasons to show that research on meta-compilation
had actually been made in early 1970’s but the capability of early meta-compilers were limited,
(ii) RML that is based on natural semantics and, for some aspects, similar to Metacasanova,
the meta-compiler that we describe in this work, (iii)Stratego, a meta-compiler that is based
on term-rewriting semantics, to show an alternative approach to meta-compilers based on natu-
ral semantics, and (iv) Rascal a meta-programming language used for source code analysis and
transformation as well as for Domain-Specific language implementation.

META-II

META-II is one of the earliest metacompilers and, for this reason, quite limited in its capabilities.
META-II allows to express the syntax of the object language and actions for the code generation.
A meta-program in META-II is made of grammatical symbols, meta-variables, and equations
that define the terms of the grammar. A symbol is written as a string surrounded by quotes and
beginning with a period, a meta-variable is a string starting with a alphabetical character and
followed by an arbitrary amount of alphanumerical characters, and an equation is a sequence of
consecutive symbols or ids to indicate concatenation. Alternation is defined with the symbol /,
which can be used together with the keyword .EMPTY to define alternation. For instance

BOOLEAN = ’.TRUE ’ / ’.FALSE ’

defines boolean literals. The meta-language is able to recognize built-in symbols such as identi-
fiers, denoted with .ID, strings represented by .STRING, and numbers represented by .NUMBER.
These are to be intended as identifiers, strings, and numbers in the object language. For example
the family of expressions:

A
A + B
A + B * C
(A + B) * C

can be encoded by the following equations in META-II

EX3 = .ID / ’(’ EX1 ’)’,
EX2 = EX3 (’*’ EX2 / . EMPTY ),
EX1 = EX2 (’+’ EX1 / . EMPTY )

Sequences (as in the Kleene closure for regular expressions) can be expressed using the symbol
$. For example

SEQA = $ ’A’,

represents a sequence containing the letter A. META-II allows to associate actions to equations
for the code generation. Each action generates assembly code for an interpreter called META-II
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machine, which is able to execute it. The action of code generation is marked with the keyword
.OUT, for instance

EX3 = .ID .OUT(’LD ’ *) / ’(’ EX1 ’)’

generates the literal output and the special symbol found in EX3.
META-II is a self-hosting compiler, i.e. it is implemented in META-II itself.

RML

RML [86] (Relational Meta-Language) uses a meta-language based on operational semantics. A
program in RML consists of data definitions in a syntax similar to CamL variants [75] or F#
discriminated unions [71], and relations containing axioms and inference rules. An axiom is
an inference rule without premises, while an inference rule generates an output if the premises
correctly evaluate. For example the following snippet defines the data type for an arithmetic
expression and a symbol table for the evaluation.

datatype Expr =
| INT of int
| VAR of string
| ADD of Expr * Expr

type Env = ( string * int) list

Axioms and inference rules are grouped together into a relation. For example, the following
relation can be used to evaluate an arithmetic expression:

relation eval =
axiom eval(env , INT i) => i

rule
lookup (env , x) => i
---------------------
eval(env , VAR x) => i

rule
eval (env , left) => i1 &
eval (env , right ) => i2
i1 + i1 => v
---------------------------------
eval (env , ADD(left , right )) => v

During the code generation phase, each relation is translated into a first-order logic representa-
tion, which consists of a series of match structures that check the structure of the arguments.
For example the rule above would be translated into:2

(and ( match [( arg1 env)
(arg2 ADD(left , right ))]))

(and ( call eval [env left] [ result1 ]))
(and match [ result1 i1 ])
(and ( call eval [env right ] [ result2 ]))
(and match [ result2 i2 ])
(and call [i1 + i2] [ result3 ])
(and match [ result3 v])
( return v)

This code is later translated into a continuation-passing style form, which is later generated as
C code. The compiler performs heavy optimization on tail calls generated code through the use
of a technique called dispatching switches.

2 We use a pre�x notation in Lisp style



2.6. METAPROGRAMMING AND METACOMPILERS 35

Stratego

Stratego [27] is a metacompiler that uses a term-rewriting semantics as meta-language to define
its programs. A stratego program consists of a series of terms in the form

t := c(t1 ; t2 ; :::; tn )

where c is a constructor that accepts n other terms as arguments. The syntax of Stratego has
been enriched with additional syntax to handle “traditional” data structures, such as string,
integer, float, constants, and lists:

pt := s j i j jf j [t1 ; t2 ; :::; tn ] j (t1 ; t2 ; :::; tn ) j c(t1 ; t2 ; :::; tn )

Terms can be extended with a list of annotations that are terms themselves:

t := pt j pt ft1 ; t2 ; :::; tn g

Stratego requires that the meta-program specifies the signature of term constructors. For example
simple arithmetic expressions can be defined as

signature
sorts Id Expr
constructors

Var : Id -> Exp
Plus : Exp * Exp -> Exp

Note that Stratego is an untyped language, so types are not statically checked and the compiler
only checks that constructors are declared and have the correct arity.

Rewrite rules define how terms are evaluated, for example the following is a rewrite rule to
evaluate a binary operator in an arithmetic expression:

EvalBinOp : Plus (Int(i), Int(j)) -> Int(k) where k := <add >(i, j)

Note that rewrite rules support conditionals, i.e. in the rule above we are able to specify that k
is the result of adding the numbers i and j given as arguments.

Stratego compiler is a self-hosting compiler, meaning that the Stratego meta-language is
defined in the meta-language itself. A first version of Stratego was written in SML, which was
then re-used to compile a further iteration written in Stratego. Stratego compiles programs to
C, where the code generation transformations were expressed in Stratego itself.

Rascal

Rascal [26, 61] is a meta-language born with the main goal of simplifying the task of implementing
soure-code analysis and transformation tools. It has also been used to develop domain-specific
languages as show in [21]. It features a static type system that integrates both the analysis and
transformation domain and where nodes of the AST are fully typed. The type system of Rascal
is quite rich: it features functions as first-class values [94] in both defined and anonymous forms.
It supports parametric polymorphism, algebraic data types, and several built-in data structures
such as sets, lists, and relationships.

As said above, AST nodes are typed as well, and can be implemented through algebraic data
types. For example, we could define a statement as follows:

data Statement =
| Assignment (Id name , Expr expression )
| If(Expr condition , list [ Statement ] _then ,

list [ Statement ] _else )
| While (Expr condition , list [ Statement ] body)
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Notice that it is possible to give names to the single components of algebraic data types. In
Rascal it is possible to define the syntax of the language in the meta-language itself. The
syntax is defined by grammar productions that are identified by the keyword syntax. The main
difference with traditional parser generators, such as Yacc, is that, in each production we add
constructor names to algebraic data types to link the syntax definition to the corresponding node
in the AST that will be generated. For instance, the production for the example above can be
defined as follows:

syntax Statement =
| Assignment : Id var ":=" Expression expression
| If: "if" Expression condition " then"

{ Statement ";"}* _then "else" { Statement ";"}* _else "end"
| While : " while " Expression condition "do" { Statement ";"}* "end"

In Rascal it is possible to generate the target code by writing functions that use string templates
to format the target code for a high-level programming language, as shown in [21]. This phase
might be preceded by a code transformation step. Rascal library allows also to compile and run
Java byte code directly from Rascal itself.

2.7 Di�erences with Metacasanova

In this section we describe the main differences between Metacasanova, the meta-compiler de-
scribed in this thesis work, and the meta-compilers presented in this chapter.

Di�erences with META-II

META-II allows to define the syntax and the steps to perform for the code generation whenever
the syntax is matched. Its meta-language is untyped, which means that the meta-compiler does
not check for malformed AST nodes. On the the other hand, in Metacasanova the syntactical
elements of the meta-program are statically typed. Furthermore, as we will show in Chapter
5, the type system of a language implemented in Metacasanova can be embedded in that of
its meta-language. In this way the type checker of Casanova can, at the same time, verify the
correctness of the meta-program to define a programming language and a program written in it.

Di�erences with RML

RML and Metacasanova use the same formal specification for the meta-program: the operational
semantics. RML expresses the syntax of the implemented language as discriminated unions
similar to those of CamL. Metacasanova can at the same time provide the option to define
syntactical elements as operators with custom ariety, providing better readability. Moreover,
RML does not feature a system of higher-kinded modules that allows to embed the type system
of a programming language in the type system of the meta-language itself. Finally, the target
code of RML is C, while Metacasanova targets C# so that its generated code can be plugged in
popular game engines, such as Monogame or Unity.

Di�erences with Stratego

Stratego meta-language is based on term-rewriting semantics in contrast with Metacasanova,
which uses operational semantics. Another main difference is that Stratego is untyped while Me-
tacasanova is typed. Stratego offers the capability of defining the grammar rules of the language,
while Metacasanova lacks a way of defining the syntax in terms of grammar productions.
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Di�erences with Rascal

Rascal meta-language is oriented towards the imperative paradigm, although it supports im-
mutability as well, while operational semantics grants, by construction, referential transparency.
Metacasanova and Rascal both statically type meta-programs. As shown in [21], the type check-
ing and code generation requires to explicitly define functions that perform the necessary steps.
In Metacasanova we provide language abstractions to express the type checking and code gen-
eration of a programming language based on operational semantics. This has the benefit of
capturing recurring patterns in hard-coded implementations of the compiler at language level.
As Stratego, Rascal offers powerful tools to define the syntax of a programming language and
its transformation to the AST, a feature that Metacasanova lacks. Moreover, Rascal features
abstractions to define code transformations, which Metacasanova lacks as well due to the fact
that it has been designed mainly for the development of domain-specific languages (DSL’s) and
not also for code transformation techniques and code analysis like Rascal.

2.8 Summary

In this chapter we presented the fundamental topics necessary to understand this thesis work.
We started by defining the general architecture of a compiler and then we proceeded to show how
to implement its single components. We explained how to use regular expressions to define the
syntactical elements of a language and how to build a lexer for them. We explained how grammars
are described and how to implement a Parser with different techniques (Parser generators based
on LR(k) grammars and Monadic Parsers). We explained how to define a type system for a
language and how to express its operational semantics. We concluded by presenting examples
of existing meta-compilers and we compared them to Metacasanova, the meta-compiler that
we describe in this thesis work. In the next chapter we present the detailed architecture of
Metacasanova.
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Chapter 3

Metacasanova

Typing is no substitute for thinking

Dartmouth Basic manual, 1964

This chapter aims to provide the reader with additional motivation for employing meta-
compilers and details of the Metacasanova compiler architecture. We begin by showing that the
activity of building a compiler presents recurring patterns, in particular during the process of
implementing the formalization of the language type system and semantics with the language
abstractions provided by a general-purpose programming language. Based on our observations,
we proceed to outline the requirements of Metacasanova and give an informal overview of the
structure of a meta-program. Moreover, we provide a formalization of its semantics moving on to
the explanation of its working principles and the involved compilation stages . We then present
in detail all the stages of the compilation of a meta-program written in the Metacasanova meta-
compiler: (i) the Metacasanova grammar and parser focusing also on the subsequent parsing
post-processing phase and how the post-processor re-processes the generated AST, (ii) the type
checking of a meta-program and in what cases it fails, and (iii) the code generation into the
abstractions of the C# target code.

3.1 Repetitive steps in compiler development

In Chapter 2 we gave on overview of the necessary steps involved in developing a compiler. We
showed that the lexing/parsing phase is simple enough to be automated using a lexer/parser
generator. Such software takes as input the grammar and the definitions of regular expressions
to define the tokens of the language and produces output code containing that is able to parse
a program written in a programming language defined by that grammar. However, the steps
involved in the following phases, namely the type checking and operational semantics imple-
mentation follow a recurring pattern, but in general the behaviour of the type system and the
code generation reflecting the behaviour of the operational semantics must be hard-coded in the
host language in which the compiler is being implemented. Below we present two examples to
show how these behaviours can be implemented in two different general purpose programming
languages and show that both follow the same pattern.

3.1.1 Hard-coded implementation of type rules

As shown in Section 2.4, type rules can be expressed in the form of logical rules. Let us consider
the type rules for the if-then-else and while-do statements presented in Section 2.4 in the
version that assigns the type unit to the code blocks for convenience. In a programming language

39
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that supports discriminated unions as a language abstraction (like Haskell or F#), the syntactical
element in the abstract syntax tree of the language can be expressed as

type Statement =
| If of Expr * List < Statement > * List < Statement >
| While of Expr * List < Statement >
... // other statements

The type checking of the if statement requires checking the condition has type bool and that
both code blocks have type unit (or void). The type checking of the while-do is analogous,
except that only one code block is used. We can then define a function eval that, given the
environment (here we call it symbol table) and a statement as input, returns the type given
by the rule or an error if all type rules for that statement fail to correctly evaluate. For the
if-then-else the implementation is the following:

let rec evalStmt ( symbolTable : SymbolTable ) (stmt : Statement ) : Type =
match stmt with
... // other statements
| If ( condition ,_then , _else ) ->

let conditionType = evalExpr symbolTable condition
let thenType = evalStmt symbolTable _then
let elseType = evalStmt symbolTable _else
if conditionType <> Boolean then

failwith " Invalid condition type"
elif thenType <> Unit then

failwith "The type of then must be unit"
elif elseType <> Unit then

failwith "The type of else must be unit"
else

Unit
... // other statements

The function first executes pattern matching on the statement to identify the correct inference
rule to use during the typing. It then proceeds to evaluate the premises (type of the condition
and of the statement blocks) and to check their result. If all premises evaluate successfully the
type contained in the conclusion is returned. Note that the function evalExpr is a function
able to evaluate the type rule for expressions and return their type. The implementation of the
while-do follows the same logic:

let rec evalStmt ( symbolTable : SymbolTable ) (stmt : Statement ) : Type =
match stmt with
... // other statements
| While ( condition ,_do) ->

let conditionType = evalExpr symbolTable condition
let doType = evalStmt symbolTable stmt
if conditionType <> Boolean then

failwith " Invalid condition type"
elif doType <> Unit then

failwith "The type of the do block must be unit"
else

Unit
... // other statements

In languages that do not provide abstractions such as discriminated unions, the type of the
data structure used for statements must exploit polymorphism to implement the logic of the
code above. A statement will be represented as an interface exhibiting the behaviour of a visitor
pattern:

public interface Statement
{
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Type Visit ( StatementVisitor visitor );
}

public interface StatementVisitor
{

... // other statements
Type OnIf( Expression condition , List < Statement > _then , List < Statement >

_else );
Type OnWhile ( Expression condition , List < Statement > _do);
... // other statements

}

The behaviour of the inference rule for the if-then-else statement is modelled by a class im-
plementing the StatementVisitor interface. This class contains a method OnIf that implements
the behaviour of the type rule itself.

public class StatementEvaluator : StatementVisitor
{

... // evaluation of other statements
public Type OnIf( Expression condition , List < Statement > _then , List <

Statement > _else )
{

Type conditionType = condition . visit (new ExpressionEvaluator ());
Type thenType = _then . Visit (new StatementEvaluator ());
Type elseType = _else . Visit (new StatementEvaluator ());
if (! conditionType . Equals (new Boolean ()))
{

throw new TypeException (" Invalid condition type ");
}
else if (! thenType . Equals (new Unit ()))
{

throw new TypeException (" The type of then must be unit ");
}
else if (! elseType . Equals (new Unit ()))
{

throw new TypeException (" The type of else must be unit ");
}
else
{

return new Unit ();
}

}

... // evaluation of other statements
}

public class If : Statement
{

Expression Condition ;
List < Statement > Then;
List < Statement > Else;

public Type Visit ( StatementVisitor visitor )
{

return visitor .OnIf( this. Condition , this.Then , this.Else)
}

}

Analogously for the while-do we have

public class StatementEvaluator : StatementVisitor
{

... // evaluation of other statements
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public Type OnWhile ( Expression condition , List < Statement > _do)
{

Type conditionType = condition . Visit (new ExpressionEvaluator ());
Type doType = _do. Visit (new StatementEvaluator ());
if (! conditionType . Equals (new Boolean ()))
{

throw new TypeException (" Invalid condition type ");
}
else if (! doType . Equals (new Unit ()))
{

throw new TypeException (" The type of do must be unit ");
}
else
{

return new Unit ();
}

}
... // evaluation of other statements

}

public class While : Statement
{

Expression Condition ;
List < Statement > Do;

public Type Visit ( StatementVisitor visitor )
{

return visitor . OnWhile (this. Condition , this.Do);
}

}

Generalization

In general, for a node of the abstract syntax tree (AST) � (like Statements) containing syntactical
structures �i constructed with a certain number of arguments of type �� i 1

; :::; �� i m
(such as the

condition or the statement block in a control structure), the general representation of a hard-
coded type rule in a language with discriminated unions is obtained by creating a union type �
having a case �i with arguments �� i j

for each syntactical element.

type � =
|� 1 of � � 11

� ::: � � � 1m
...
|� n of � � n 1

� ::: � � � n m

Evaluating the inference rule through an evaluation function requires first to find out which
must be applied by matching the pattern of the syntactical structure from the node of the AST.
Later, we need to evaluate each of the premises with the appropriate evaluation function: if
the result of each evaluation is what the rule expects (for instance, that the condition has type
boolean in the if-then-else) then we return the result of the evaluation rule contained in the
right part of the conclusion.

Let us consider a conclusion �j (�� j 1
::: �� j m

) (where each � is one of the arguments used to
construct the case of the discriminate union) with a result of the evaluation �� j a set of premises
�1 ; :::; �k that are evaluated through an evaluation function ’� i ; i = 1; :::; k returning a result
�� i . Let us assume that �0

� i is the expected result for the premise evaluated through ’� i . As
usual, Γ defines the environment (symbol table). The type rule that we are trying to execute
will thus have the following structure:



3.1. REPETITIVE STEPS IN COMPILER DEVELOPMENT 43

Γ ‘ ’� 1 �1 : �0
� 1

...
Γ ‘ ’� i �i : �0

� i

...
Γ ‘ ’� k �k : �0

� k

Γ ‘ �j (�� j 1
; :::; �� j m

) : �� j

Given the considerations above, the code necessary for the evaluation will be the following:

let rec ' � j � � =
match � with
... // other pattern matching expressions for other rules
| � j (� � j 1

; :::; � � j m
) ->

let � � 1 = ' � 1 � � 1
.
.
.
let � � i = ' � i � � i
.
.
.
let � � k = ' � k � � k
if � 1 <> � 0

1 then
failwith "Type error "

.

.

.
elif � i <> � 0

i then
failwith "Type error "

.

.

.
elif � m <> � 0

m then
failwith "Type error "

else
� � j

... // other pattern matching expressions for other rules

Each evaluation function is recursive because a premise might need to run the same evaluation
function (see the example of the statements above). The function contains a pattern matching
that selects the correct inference rule to be used for that syntactical structure. For example,
in the case of the statements, it will try to match all the possible syntactical structures for the
statements and select the correct one for the input; for instance, if we are running the rule for
the if-then-else then the pattern matching will select the match case for if-then-else. Note
that � will surely be matched by one of the match cases because at this point we have a correctly
generated AST after the parsing phase.

Each premise runs the appropriate evaluation function and returns a result. This result is
compared with the one expected by the inference rule, and if the comparison fails the function
reports a type error. If all comparisons succeed, then the result of the conclusion is returned.

In a language that does not provide discriminated unions and pattern matching the general-
ization is more complex: the abstract syntax tree element must be represented by an interface
containing the signature of a method Visit used to perform an operation on a specific (polymor-
phic) syntactical structure. We also require the interface for the visitor pattern with the signature
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of the functions to run for each polymorphic instance of Statement. In this version we assume
that the type of the result of the evaluation function for �j returns a type �� � j

(which in the
previous version could be omitted thanks to the type inference typical of functional programming
languages):

public interface �
{

public � � j Visit ( Visitor visitor )
}

public interface Visitor <T>
{

T ' � j (� � �; � � j 1
� � j 1

; :::; � � j m
� � j m

);
... // other statements

}

Then we have to implement the visitor for the type rule for statements and a class for a specific
statement:

public class Evaluator : Visitor <� � � j
>

{
... // evaluation of other statements
public � � � j

' � j (� � �; � � j 1
� � j 1

; :::; � � j m
� � j m

)
{

� � � 1
� � 1 = ' � 1 (�; � 1);

.

.

.
� � � i

� � i = ' � i (�; � i );
.
.
.
� � � k

� � k = ' � k (�; � k )
if (!� � 1 . Equals (� 0

� 1
))

throw new TypeError (" Type error ");
.
.
.
else if (!� � i . Equals (� 0

� i
))

throw new TypeError (" Type Error ");
.
.
.
else if (!� � k . Equals (� 0

� k
))

throw new TypeError (" Type Error ");
else

return new � � j ();
}
... // evaluation of other statements

}

public � j : �
{

� � j 1
� � j 1

;
...
� � j m

� � j m
;

public � � � j
Visit (Visitor <� � � j

> visitor )
{

return visitor .' � j (� � j 1
; :::; � � j m

);
}
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}

A general pseudo-code representation of the rule evaluation is shown in Algorithm 3.1.

Algorithm 3.1 Pseudocode of rule evaluation

function Evaluate rule(R inference rule , I input of the rule )
if not R:Conclusion matches I then

return error
end if
for all p in R:Premises do

p0 textbf evaluate p
if not p:Result matches p then

return error
end if

end for
return R:Result

end function

A graphical representation of the rule evaluation can be found in Figure 3.1.

3.1.2 Hard-coded implementation of Semantics

As shown in Section 2.5, there are multiple ways to express the semantics of a programming
language. In this work we choose to make use of the operational semantics representation to
have a uniform way of expressing both the type system and the semantics of a language. Let
us consider again the semantics rule for if-then-else and while-do presented in Section 2.5.
The operational semantics can be implemented generating the code in the object language that
emulates the behaviour of the semantics rule, in the same fashion of a type rule. This process
might first pass through an intermediate language, closer to the target language. In the case of an
interpreter, the behaviour of the semantics must be implemented using the abstractions available
in the host language. As an example, we show a possible implementation of the semantics of the
two statements mentioned above in an interpreter both in a functional programming language
and in an object-oriented language, as for the type rule.

For convenience, let us make a separate rule for the semantics of a sequence of statements
from the specific semantics of the control structure. Also, we introduce the statement skip that
performs no operation

hskip; ksi ) hksi

hki ) k0

hk; ksi ) hk0; ksi

hci ) true
hif c then T else Ei ) T

hci ) false
hif c then T else Ei ) E

hci ) true
hwhile c do Li ) L ; while c do L
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Figure 3.1: Diagram of rule evaluation: on the left side the structure of an inference rule, on the right
side its evaluation expressed as a ow chart. The components of the rule are coloured to match the parts
in which they are used in the ow chart.
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hci ) false
hwhile c do Li ) skip

As for the type rules, we assume that the data type representing a statement is implemented
by a discriminate union. The evaluation function first performs the pattern matching on the
argument to select the correct rule to execute, in the same fashion of the type rule, but instead
of analysing the types this time executes the specific behaviour of the statement, as specified by
the semantics rule. For inference rules above we use the following code:

let rec interpretStmt ( symbolTable : SymbolTable ) (stmt : Statement ) :
Statement =

match stmt with
... // other statements semantics
| Sequence (Skip ,ks) -> interpretStmt symbolTable ks
| Sequence (k,ks) ->

let k’ = interpretStmt symbolTable k
interpretStmt symbolTable Sequence (k’,ks)

| If (cond ,_then , _else ) ->
let condEvaluation = interpretExpr symbolTable cond
if condEvaluation = True then

_then
else

_else
| While (cond ,_do) ->

let condEvaluation = interpretExpr symbolTable cond
if condEvaluation = true then

Sequence (_do , While (cond ,_do))
else

Skip
... // other statements semantics

As for the type evaluation, we assume that interpretExpr is another function that is able
to process expressions and return their value.

The function matches the kind of statement that we want to execute. In the case of a
sequence of statements starting with a skip, we simply return the interpretation of the remaining
part of the sequence (we indeed skip to the next statement), otherwise we have to run the first
statement and then recursively evaluate the sequence formed by the result of the execution of the
statement and the rest of the statements. This is needed, for instance, to correctly evaluate the
body of a control structure. The body of each match case is responsible of emulating the intended
behaviour described in the semantics of the control structure: the if returns the correct block
to execute depending on the boolean value of the condition, instead the while returns either its
body followed by the same while loop when the condition is true, otherwise skip to jump past
the loop.

In the case of an object-oriented language, it is necessary to add a new implementation of
the visitor pattern implementing the behaviour of the semantics for each statement:

public class StatementInterpreter : StatementVisitor
{

... // other statements semantics
public Statement OnSequence ( SymbolTable symbolTable , Sequence seq)
{

Statement k = seq.Head;
Statement ks = seq.Tail;
if (k. Equals (Skip))

return ks. Visit (new StatementInterpreter ());
else
{

Statement k1 = k. Visit (new StatementInterpreter ());
Statement seq1 = new Sequence (k1 ,ks)
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return seq1. Visit (new StatementInterpreter ());
}

}
public Statement OnIf( Expression cond , Statement _then , Statement _else )
{

Value condValue = cond. Visit (new ExpressionInterpreter ());
if ( condValue . Equals (new True ()))

return _then ;
else

return _else ;
}
public Statement OnWhile ( Expression cond , Statement _do)
{

Value condValue = cond. Visit (new ExpressionInterpreter ());
if ( condValue . Equals (new True ()))

return new Sequence (_do ,new While (cond ,_do))
else

return new Skip ();
}
... // other statement semantics

}

A further remark is that, for the sake of simplicity, here the interpretation only returns a new
statement to execute obtained by processing the current statement, but in a real application it
should also return a data structure representing the state of the program.

At this point it is possible to observe that this pattern can be generalized as well in a way
analogous to that used for type rules for both implementations, which we omit for brevity.

3.1.3 Discussion

In Section 3.1.1 and 3.1.2 we have shown two implementations, one functional and one object-
oriented, of type rules and semantics in a possible hard-coded compiler. We have also shown
that the pattern can be generalized in both versions. Indeed, their behaviour must be hard-
coded in the language chosen for the compiler implementation, regardless of the fact that the
pattern is constantly repeated in every rule. This pattern can be captured in a meta-language
that is able to process the type system and operational semantics definition of the language and
generates the code in the target language necessary to execute the behaviour of the rules. In
the following sections we describe the meta-language for Metacasanova, a meta-compiler that is
able to read a program written in terms of type system/operational semantics rules defining a
programming language, a program written in that language, and output executable code that
mimics the behaviour of the semantics. The goal of this language is relieving the programmer
from writing boiler-plate code when implementing a compiler for a (Domain-Specific) language.

3.2 Metacasanova overview

In this section we present the general idea behind Metacasanova. We start by defining the
requirements of Metacasanova, then we proceed to give a general overview of the language, and
finally we formalize the semantics of the language.

3.2.1 Requirements of Metacasanova

In order to relieve programmers of manually defining the behaviour described in Section 3.1.1
and 3.1.2 in the back-end of the compiler, we propose the following features for Metacasanova:

� It must be possible to define custom operators (or functions) and data containers. This is
needed to define the syntactic structures of the language we are defining.
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� It must be typed: each syntactic structure can be associated to a specific type in order to
be able to detect meaningless terms (such as adding a string to an integer) and notify the
error to the user.

� It must be possible to have polymorphic syntactical structures. This is useful to define
equivalent “roles” in the language for the same syntactical structure; for instance we can
say that an integer literal is both a Value and an Arithmetic expression.

� It must natively support the evaluation of semantics rules, as those shown above. This
will allow the programmer to faithfully implement the formal definition of the language
expressed as logical rules.

We can see that these specifications are compatible with the definition of meta-compiler, as
the software takes as input a language definition written in the meta-language, a program for
that language, and outputs runnable code that mimics the code that a hard-coded compiler
would output.

3.2.2 Program structure

In this section we give an informal idea of how a Metacasanova program is organized. A program
in meta-casanova contains the language definition and the rules to evaluate its semantics and/or
type system. Further ahead this idea is expanded with additional details when we present the
implementation details of the parser.

A Metacasanova program is organized in four parts:

1. Includes: in this part it is possible to include other modules written in Metacasanova and
.NET libraries that can be used in the current meta-program.

2. Data and function declarations: in this part it is possible to specify data structures, that
define the syntactic constructs of the language, and functions used to evaluate terms of the
language through rules.

3. Subtype declarations: in this part it is possible to specify sub-typing by stating that a type
T1 is a subtype of another type T2 .

4. Rule de�nitions: in this part the programmer defines the type or semantics rules necessary
to describe the type system or behaviour of the abstractions of the programming language.

A data structure or function declaration specifies the types of the arguments to construct the
data structure or to pass to the function, their name, and the type of the data structure or the
function itself

Data Expr -> "+" -> Expr : Expr

Note that Metacasanova allows you to specify any kind of notation for data types in the language
syntax, depending on the order of definition of the argument types and the constructor name.
In the previous example we used an infix notation. The equivalent prefix and postfix notations
would be:

Data "+" -> Expr -> Expr : Expr
Data Expr -> Expr -> "+" : Expr

Optionally, it is possible to specify a precedence priority and the associativity. For example,
the following code specifies that the multiplication has a higher precedence over the sum and
that both are left-associative.
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Data Expr -> "+" -> Expr : Expr Priority 0 <|
Data Expr -> "*" -> Expr : Expr Priority 1 <|

A function definition is similar to a data definition but it also has a return type. For instance
the following is the evaluation function definition for the arithmetic expression above:

Func "eval" -> Expr : Value

Subtyping is defined through the keyword is, which specifies that a type T1 can be used in place
of another type T2 . For example the following code specifies that a data structure of type Value,
such as a list, can be used also as an expression of type Expr.

Data "$l" -> List : Value
Value is Expr

Metacasanova also allows to embed C# code into the language by using double angular
brackets. This code can be used to embed .NET types when defining data or functions, or to
run C# code in the rules. For example in the following snippet we define a floating point data
which encapsulates a floating point number of .NET to be used for arithmetic computations:

Data "$f" -> <<float >> : Value

Note that this might be handy for domain-specific languages that need to be used in conjunc-
tion with external libraries or frameworks supporting .NET. For example, the domain-specific
language Casanova, which we are going to re-implement in Metacasanova in Chapter 4, works in
conjunction with game engines such as Monogame or Unity.

A rule in Metacasanova may contain a sequence of premises and a conclusion. The rule is
executed if the input matches the pattern of the conclusion and all the premises return a result
that matches the one specified in their rightmost part. In the following snippet we have the rule
to evaluate the sum of two floating point numbers:

eval a => $f c
eval b => $f d
<<c + d>> => res
------------------------
eval (a + b) => $f res

Note that if one of the two expressions does not return a floating point value, then the entire
rule evaluation fails. Also note that we can embed C# code to perform the actual arithmetic
operation. Metacasanova selects a rule by means of pattern matching (in order of declaration
of rules) on the function arguments. This means that both of the following rules will be valid
candidates to evaluate the sum of two expressions:

...
---------------
eval expr => res

...
----------------
eval (a + b) => res

A more exhaustive explanation of the syntax of Metacasanova is given in Section 3.4, while an
overview of the general shape of a program can be found in Figure 3.2.
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Figure 3.2: Structure of a program in Metacasanova

3.2.3 Formalization

In what follows we assume that the pattern matching of the function arguments in a rule succeeds,
otherwise a rule will fail to return a result. The informal semantics of the rule evaluation in
Metacasanova is the following:

R1 A rule with no clauses or function calls always returns a result.
R2 A rule returns a result if all the clauses evaluate to true and all the function calls in the

premise return a result.
R3 A rule fails if at least one clause evaluates to false or one of the function calls fails

(returning no results).

We will express the semantics, as usual, in the form of logical rules, where the conclusion is
obtained when all the premises are true. In what follows we consider a set of rules defined in the
Metacasanova language R. Each rule has a set of function calls F and a set of clauses (boolean
expressions) C. We use the notation f r to express the application of the function f through the
rule r. We will define the semantics by using the notation hexpri to mark the evaluation of an
expression, for example hf r i means evaluating the application of f through r. The following is
the formal semantics of the rule evaluation in Metacasanova, based on the informal behaviour
defined above:
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R1:

C = ;
F = ;

hf r i ) fxg

R2:

8ci 2 C ; hci i ) true
8fj 2 F ; 9rk 2 R j hf r k

j i ) fxr k g
hf r i ) fxr g

R3(a):
9ci 2 C j hci i ) false

hf r i ) ;

R3(b)
8rk 2 R ;9fj 2 F j hf r k

j i ) ;
hf r i ) ;

Note that, in the context of the premise result, we use either a set containing one element
or the empty set symbol to denote that the evaluation might succeed and return a result or fail
and return no result. R1 says that, when both C and F are empty (we do not have any clauses
or function calls), the rule in Metacasanova returns a result. R2 says that, if all the clauses in C
evaluates to true and, for all the function calls in F we can find a rule that returns a result (all
the function applications return a result for at least one rule of the program), then the current
rule returns a result. R3(a) and R3(b) specify when a rule fails to return a result: this happens
when at least one of the clauses in C evaluates to false, or when one of the function applications
does not return a result for any of the rules defined in the program.

3.3 Architectural overview

In this section we provide a general overview of the architecture of Metacasanova compiler.

The compiler has a modular structure: in the front-end we find the the lexer/parser and
a parser post-processing module. The latter is required because not all information necessary
to build all the elements of the AST is immediately available during the parsing phase. For
instance, some data structures store the file name that is being compiled and the name of the
current module, but this information is available only after the parsing itself.

The generated AST is passed to the type checker to check the type correctness. Note that
the type checker of the metacompiler checks the meta-types, i.e. the types defined in the meta-
program, and not the types of the terms of the language that is being implemented in Meta-
casanova. For instance, if one were to re-implement the language C in Metacasanova, the type
checker of Metacasanova would be able to type check the elements of the language definition
written in Metacasanova (i.e the meta-program), but not a program written in C, which can
be checked only by writing a type checker in the meta-program itself. This module checks the
correctness of the declarations and the terms used in rules. The type checker outputs a data
structure containing information about the types of the declarations and terms used in rules (in
short a typed program de�nition).

The output of the AST is passed to the code generator that uses information about the types
to correctly generate the target code. This is needed because Metacasanova generates C# code,
which is a typed high-level language that requires information about the types to define variables,
methods, and classes representing the elements of the meta-program.

Note that also, with this implementation choice, it is possible to support different high-level
programming languages, both typed and untyped: the only component that changes will be
the generation of the behaviour of the rules in the abstractions provided by the different target
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languages. A possible improvement of this architecture is generating a common intermediate
language that is later translated into the target code, but this falls outside the scope of this
work.

3.4 Parsing

In this section we explain in detail the grammar of Metacasanova and we present the architecture
of its parser. A full description of the Metacasanova grammar in BNF can be found in Appendix
B. The parser has been built in FsYacc (see Section 2.3.2) and completed by a post-processing
module that executes some required transformation on the generated AST that are not convenient
to perform during the parsing phase. As explained informally in Section 3.2, a Metacasanova
program is made of four main sections: (i) a part containing inclusion directives, (ii) a part
containing the declarations of the meta-data stracutures and evaluation functions used in the
program, (iii) a part containing subtype definitions, and (iv) a part containing evaluation rules
that define the behaviour of the meta-program. The definition of the first part is trivial, because
it is just a sequence of directives starting with the keyword include and followed by a file name.
We will instead describe in detail the other parts.

3.4.1 Declarations

Declarations contain function or data declarations. A meta-data structure is a meta-language
representation of an abstraction of the language implemented in the metacompiler and contains
both syntactical and structural information. For example, an arithmetic operator in a program-
ming language can be represented as a meta-data structure containing both its symbol and the
values of its arguments. Meta-data structures can be recursive, i.e. it is possible to have argu-
ments that are instances of the same meta-data structure. This is done in order to allow recursive
data structures such as lists. A meta-data structure declaration begins with the keyword Data
and is followed by a series of arguments, which are separated by arrows, that can be both type
names and strings representing the name of the meta-data. It is possible to declare an infix or
suffix operator by placing its name after the first position of the arguments. For instance, the
following code defines a sum operator for arithmetic expressions with an infix notation.

Data Expr -> "+" -> Expr : Expr

Type names are identifiers that begin with an alphabetic character followed by one or more
alphanumeric characters or underscores. The regular expression defining this syntax is expressed
as

ID ::= [’a’-’z’ ’A’-’Z ’] [’a’-’z’ ’A’-’Z’ ’_’ ’0’-’9’]+

Type names can also contain external code enclosed by double angular brackets (<< and >>)
to make use of external types such as .NET primitive types (int, float, etc.). The operator
names offer a rather high level of customization, since they can be expressed as strings that may
contain any symbol usually allowed in strings in programming languages.

The arguments are followed by a type name defining the type of the meta-data structure.
Optionally it is possible to specify a priority and the associativity, otherwise the default priority
will be -1 and the operator will be left-associative.

Function declarations have the same structure except they begin with the keyword Func
instead.

Both data and function declarations may define generic arguments. In order to specify generic
arguments, they must be enclosed between square brackets after the declaration keyword. For
instance the following code defines a data structure representing a tuple

Data[a,b] a -> "," -> b : Tuple [a,b]
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Finally, each declaration must end with a line break. Line breaks are used in Metacasanova
to separate different language elements, as in this case.

The grammar production used to describe the syntax of declarations is the following:

declaration :
| FUNC genericSeq typeOrNameDeclarations COLON typeDeclaration priority

associativity newLineSeq {
Func( processParsedArgs $3 $5 (fst $1) (snd $1) $2 $6 $7) }
| DATA genericSeq typeOrNameDeclarations COLON typeDeclaration priority

associativity newLineSeq {
Data( processParsedArgs $3 $5 (fst $1) (snd $1) $2 $6 $7) }

Since type names and data or function names can appear in any order, the parser generates
a support polymorphic data structure in F#.

type TypeDeclOrName =
| Type of TypeDecl
| Name of string

This data structure is later transformed by the parser post-processor in a symbol declaration.
A symbol declaration contains all the information about a declaration, including the data or
function name, the types of the arguments, the priority, and the generic types. This information
is later exploited by the type checker to verify the consistency of the declarations and type check
the rest of the program.

Subtype declarations

Subtyping has been presented as a separate part of the program but it has a tight relationship
with the declarations. A subtype definition has the form

T1 is T2

where T1 and T2 are two meta-type names. They are used to specify that meta-type T1
is a subtype of the meta-type T2 and can replace any argument of type T2 while constructing
meta-data structures or calling functions. The grammar rule that defines a subtype declaration
is

ID IS ID newLineSeq

where ID is the same regular expression used for type names. Again successive subtype declara-
tions should be separated by one or more line breaks. The grammar production generates a list
of pairs in the AST containing the types involved in the subtyping. This data structure will be
processed at a later stage by the type checker to generate an equivalence table.

3.4.2 Rules

Rules in Metacasanova are the language elements used to define the behaviour of the meta-
program. A rule consists of a set of premises followed by a conclusion. Premises and conclusion
are separated by a fraction line. Premises and conclusion are made of a left part consisting of
a sequence of arguments, and a right part that can contain either a variable or a sequence of
arguments. We call the left part of this syntactical structure the function call, while the right
part is the result. Premises differ from the conclusion as, besides function calls, they can also
contain bindings and clauses. Bindings are simply ways to rename values in the premises in
the fashion of bindings in functional languages, while clauses are boolean predicates. Moreover,
premises can also contain .NET code to be directly emitted, which can contain any C# code.
The syntax of emitted code is the same as that of a normal premise, except the function call is
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replaced by the code to emit enclosed in double angular brackets. The following is the grammar
production defining a premise1 :

premise :
| emit premises { $1 :: $2 }
| functionCall premises { $1 :: $2 }
| ID BIND arg newLineSeq premises { (Bind ({ Namespace = ""; Name = fst $1

}, Position . Create (snd $1 ,"") ,$3)) :: $5 }
| arg comparisonOp arg newLineSeq premises { ( Conditional ($1 ,$2 ,$3)) :: $5

}
| { [] }

functionCall :
| argSeq ARROW argSeq newLineSeq { FunctionCall ($1 ,$3) }

Note that premises are optional (axioms do not have any premise in a logical rule), so an
empty list is returned when none is given. Note that the namespace required for variables,
such as in the binding, is left empty because at this point the namespace of the program is not
available yet. The namespace will be later filled in by the parser post-processor. Also note that,
in this stage, we do not check if each function call actually contains a function name, and we
simply parse a premise (and a conclusion) as a sequence of arguments, that could be function
or data names, variables, literals, or nested expressions. Nested expressions are expressions
enclosed in brackets and are themselves sequences of arguments. The actual check that premises
and conclusions contain a function name is performed by the type checker, because to correctly
identify the function name a complete symbol table, unavailable in this moment, is required. A
conclusion has the same syntax as a function call:

conclusion :
| argSeq ARROW argSeq newLineSeq { ValueOutput ($1 ,$3) }

The parser generates a data structure for a rule containing a representation of the premises
and the conclusion:

� function call : A function call is simply a pair of list of arguments, where the left element
is the call itself, while the right element is the result.
� emit : Emitted code contains the code in string format and the variable it is assigned to

(used to save the result of expressions or function calls).
� bind : Bindings contain the variable name used for the binding and its argument, which

can be a literal, the constructor of a meta-data structure, or another variable.
� conditional : Conditionals are boolean expressions that may contain comparison operators.

Their representation stores their left and right argument and the comparison operator.

3.4.3 Parser post-processor

The parser post-processor is responsible for integrating in the AST all the information that is
not directly available during the parsing phase. It is also responsible for re-arranging the terms
appearing in the data and function declarations, and those appearing in function calls. Its main
functions are the following: (i) insert the namespace and file information in the elements of the
AST, (ii) rearrange the terms parsed from a declaration in a symbol declaration data structure,
and (iii) parenthesize the function call terms according to their priority and associativity and
rearrange them in a prefix notation.

The first task is trivial as it requires just to traverse the syntax tree and insert the namespace
in all the nodes that should store its value. The process scans the AST starting from the root
and recursively adding the namespace and file name into all the nodes that must contain such

1 BIND is the symbol :=
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information until a leaf is reached. Below we explain in detail the other how to accomplish the
other two tasks.

Building the declaration data structure

As anticipated in Section 3.4.1, the name of the data or function and the types of its arguments
can appear in any order. For convenience, the AST stores a data structure called symbol decla-
ration that separates all the information about a declaration for further use, which is made of
the following components:

� The name of the data or function.
� The type of the arguments of the data or function.
� The return type of the declaration: in the case of a data declaration this defines the type

of the meta-data structure itself, while in a function declaration this defines the type of
the result returned by the function.
� The operator arguments order, which can be prefix, infix, or suffix.
� The priority of the operator.
� The associativity of the operator.
� Possible generic arguments.
� The arity (number of arguments) to the left and right of the operator symbol.

When the parser processes the arguments of a declaration, it creates a list of terms that can
be either a type declaration or a name assigned to the meta-data or function in string format.
The different arguments must be recognized and stored appropriately in the symbol declaration.
In order to do so, the post-processor scans the arguments. If the argument is a string, then
it places it as a first element of a pair, otherwise it places the type declaration in a list of
declarations. Algorithm 3.2 shows the details of this process. Note that it might be possible
that the programmer commits the mistake of defining more than one name for the declaration,
since we are still checking the syntax of the program. Thus the algorithm checks that the result
of the function does not already contain a declaration name as, if it does, it means that a name
argument has already been encountered while scanning the list.

The symbol declaration needs also to store the order of the declaration, its left and right
arity, and the type of the declaration.

For the declaration order we have three options:

1. The first element of the parsed arguments is the declaration name. The declaration is then
pre�x.

2. The last element of the parsed arguments is the declaration name. The declaration is
su�x.

3. If both 1 and 2 are false, then the name is in the middle and the declaration is in�x.

Finding the left and right arity of an operator can be done simply by splitting the list of
arguments in correspondence of the declaration name and then counting the elements of the two
lists obtained by the split.

Finally, the post-processor must build the type of the declaration. Types in Metacasanova are
represented in a way similar to typed lambda calculus [18, 30]: if a declaration as type arguments
T1 ; T2 ; :::; Tn , then its type representation is given as T1 ! T2 ! ::: ! Tn . This will allow at
a later stage the type checking of partial function applications. The post-processor scans the
arguments list and recursively adds the element to a data structure representing an arrow type.
The arrow type contains two elements corresponding to the elements to the left and right of the
arrow. It is possible to build a chain of arrow types by recursively adding an arrow type as right
argument of another arrow. For instance, to represent the type A! B ! C we use.

Arrow (A, Arrow (B, Arrow (C)))
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The algorithm to build the type arrow simply scans the argument list and recursively add
the current argument to the left of an arrow type and the result of the recursive call to the
remaining part of the list as its right part. This process is shown in Algorithm 3.3. Note that in
Metacasanova a declaration might contain no type arguments (only the name), thus we return
an empty type as placeholder. If a declaration contains only one type argument then there is no
need to build an arrow type and the type argument itself is returned. This is also used as a base
case for the recursive build of an arrow type.

Algorithm 3.2 Arguments construction in a symbol declaration

function argSeparation(A list of arguments returned by the parser)
name ""
D  ;
for all a 2 A do

if a is a string then
if name 6= "" then

error: duplicate function name
else

name a
end if

else
D  D [ fag

end if
end for
return (name;D)

end function

Algorithm 3.3 Type construction in a symbol declaration

function buildDeclarationType(A list of arguments returned by the parser)
if A = ; then

return Empty
else if A = fxg then

return x
else

h head(A)
t tail(A)
r  buildDeclarationType(t)
return h! r

end if
end function

Parenthesization of function calls

As explained above, Metacasanova allows the declaration of functions and data types expressed
with any notation (prefix, suffix, or infix) and with arbitrary associativity and precedence. Fur-
thermore, this is possible regardless of the number of arguments that the data type or the function
call uses. Parsing operators according to precedence is a well-known problem that must be solved
in order to avoid ambiguity in the language grammar. For instance, the expression 3 + 5 / 4
can generate two different parse trees: (3 + 5) / 4 or 3 + (5 / 4). This ambiguity can be
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Symbol Priority Left arity Right arity Associativity
% 2 1 2 Left

$ 1 0 3 Left

-> 0 1 1 Left

Table 3.1: Precedence relation for Listing 3.1

solved by setting the division operator to have a higher precedence over the sum operator, as in
traditional arithmetic.

The first attempt to solve this problem was Dijkstra’s Shunting-Yard algorithm [40] that
takes an expression containing operators and a priority table and returns the same expression
in Reverse Polish Notation. This approach was later generalised by operator-precedence parsing
which is available in all LALR(1) parser generators. Unfortunately, these approaches deal with
binary operators, and are unsuitable for operators of arbitrary arity. Moreover, parse generators
such as Yacc allow to define a set of pre-defined language operators but do not allow to specify
“custom” operators to extend the language with. A notable effort in parsing mix�x operators
(i.e. operators with an arbitrary position in an expression) using precedence graphs has been
done in [36].

In this work we use an AST-transformation technique that changes a function call expressed as
a sequence of arguments into a parenthesized version based on defined priorities and associativity.
A function call, as defined in Section 3.4.2, can be the left part of a premise or a conclusion, and
is parsed as a sequence of arguments. Each argument can be represented in the following way:

� A literal.
� An identifier, that can start with an alphabetic character (simple id), or a symbol (such as

%, #, &, @, ...) followed by a sequence of alphanumeric characters.
� A nested expression, which is any sequence of arguments enclosed between brackets (such

as (5 + x)).

We now give the definition of parenthesization of an argument sequence. In what follows
we use the term symbol to indicate the name of functions or meta-data structure used in an
argument sequence.

De�nition 3.1. An argument sequence is parenthesized if all its arguments are (i) literals, (ii)
identifiers, or (iii) a nested expressions containing a parenthesized argument sequence, and the
nesting depth of a symbol is directly proportional to its priority (i.e. the highest-precedence
operator is at maximum nesting depth).

For instance, given the precedence relation in Table 3.1, the following argument sequence is
parenthesized

x -> ($ a1 (b1 % b2 b3) a2)

Listing 3.1: Example of parenthesization

The algorithm takes as input a precedence table with the structure of Table 3.1 and the
argument sequence to parenthesize, and returns the parenthesized argument sequence. We adopt
a recursive approach to the parenthesization problem, whose base case is that the sequence
contains only identifiers and literals. Note that a sequence that contains a nested expression is in
general not parenthesized because the sequence enclosed in brackets has not been parenthesized
yet.

At this point we have two different possibilities for an argument sequence: (i) the sequence
contains no symbol, or (ii) the sequence contains one ore more symbols.
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Parenthesization of sequences with no symbols When there are no symbols in the se-
quence of arguments, each argument can be a literal or identifier corresponding to no definition,
or a nested expression. In the first case the argument is automatically parenthesized according
to Definition 3.1. In the second case we must recursively parenthesize the sequence contained in
the nested expression. If the result of this parenthesization is a single nested expression, than we
take its content and store it into a single nested expression, to avoid redundant nesting paren-
theses of the form ((...(a1 a2, ..., an)...)). If the result is a series of arguments than we
just place it inside a nested expression, obtaining something of the form (a1 a2 (b1 b2 ...)
a3 (c1 c2 ...) ...). It might be possible that the recursive algorithm tries to parenthesize
a sequence containing no arguments (see the details of the algorithm below). In this case the
algorithm simply returns an empty sequence.

Parenthesization of sequences with symbols Dealing with sequences containing symbols
is more complex, since we must parenthesize them keeping into account the symbols priorities
and associativity. According to Definition 3.1, in a parenthesized sequence the operator with
the lowest priority must be at the top of the sequence nesting. The idea is then that at the
current depth we should find the symbol with the lowest priority and a series of parenthesizations
containing sequences with symbols of higher priority. The algorithm extracts the symbol in the
sequence with the lowest priority and the positions in the sequence where it appears. Note
that the same symbol might appear more than once. If the symbol associativity is left then we
consider its rightmost occurrence in the sequence, otherwise its leftmost one. Now we split the
sequence in two parts using this occurrence as separator and we recursively try to parenthesize
these two parts. For instance, let us consider again the Precedence Table 3.1 and the following
sequence of arguments

x -> $ a1 b1 % b2 b3 a2

The algorithm will select the symbol -> as a separator, as it is the symbol with the lowest priority
(there is only one occurrence, thus we neglect the part that selects the appropriate occurrence).
It will then recursively parenthesize the sequences x and $ a1 b1 % b2 b3 a2. At this point we
have two parenthesizations of the left and right part: fl1 ; l2 ; :::; ln g and fr1 ; r2 ; :::; rm g respectively
for the left and right sequence. Assuming that the left arity of the current symbol is al and the
right one is ar , then the parenthesization of the current operator will contain the elements
fln � a l +1 ; :::; ln g and fr1 ; :::; ra r g. Assuming that the current symbol is �, we now consider three
cases:

1. The symbol uses a prefix notation: in this case the parenthesization will not contain any
elements from fln � a l +1 ; :::; ln g, thus the final parenthesization will be

fl1 ; l2 ; :::; ln (�; r1 ; :::; ra r ) ra r +1 ; :::; rm g

.

2. The symbol uses an infix notation: in this case the parenthesization will contain elements
from both fln � a l +1 ; :::; ln g and fr1 ; :::; ra r g. The final parenthesization will be

l1 ; :::; ln � a l (ln � a l +1 ; :::; ln ; �; r1 ; :::; ra r ) ra r +1 ; :::; rm

3. The symbol uses a suffix notation: in this case the parenthesization will not contain any
elements from fr1 ; :::; ra r g and the final parenthesization will be

l1 ; :::; ln � a l (ln � a l +1 ; :::; ln ; �) r1 ; :::; rm

.
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In order to clarify this process, let us consider again the argument sequence

x -> $ a1 b1 % b2 b3 a2

and let us apply the algorithm to it (again using the Priority Table 3.1). The algorithm will
test the whole sequence looking for symbols, and of course will find one. We then fall in the
second part of the algorithm. The symbol with the lowest priority is ->, so the algorithm will
recursively parenthesize x and $ a1 b1 % b2 b3 a2. The left one is a base case of the recursion
since the sequence contains only one identifier that is not a symbol, thus its parenthesization is
the sequence itself. The right one contains other symbols so we have to recursively apply the
algorithm. The operator with the lowest priority is now $. The symbol is the first element of
the sequence, thus the left subsequence obtained by the partitioning phase is empty (and the
result of its parenthesization an empty sequence as well). The right subsequence is a1 b1 % b2
b3 a2. In this sequence there is only one symbol, which is %, thus the algorithm will try to
parenthesize a1 b1 and b2 b3 a2. Their parenthesization is trivial and returns the sequences
themselves. At this point we have to consider the arity of %, which accepts one left argument and
two right arguments. The algorithm will then enclose between brackets b1 % b2 b3. The full
parenthesization leads then to a1 (b1 % b2 b3) a2. At this point this result is used to build the
parenthesization of $. This symbol accepts three right arguments (and no left argument), so the
parenthesization will be ($ a1 (b1 % b2 b3) a2) . Finally we have to use the result to build
the parenthesization of %. This symbol accepts one left argument and one right argument. The
parenthesization of its left subsequence was x, while its right parenthesization is ($ a1 (b1 %
b2 b3) a2) , thus the final parenthesization will be (x -> ($ a1 (b1 % b2 b3) a2)). At this
point, the outer parenthesization can be removed for better readability.
The details of the algorithm are shown in Algorithm 3.4.

3.5 Type checking

The type checker of Metacasanova is responsible for two tasks: (i) checking that the declarations
are correctly formed and (ii) checking that the premises and conclusions of rules respect the
meta-types defined in the declarations. We will now proceed to explain in detail how the two
processes are implemented in the metacompiler.

3.5.1 Checking declarations

Checking declarations requires to check the consistency of meta-type declarations in each one of
the function or data declarations. Note that, from now on, we will refer to meta-types simply
as types for simplicity. Also we assume that, at this point, we have already built the symbol
table for the meta-program containing all the symbol declarations with the complete information
about the declaration itself. A type declaration in Metacasanova can have five different forms:

� Zero: A place-holder type used for function or meta-data that do not use any arguments.

� External: Used for embedded types from .NET.

� Unsafe: Unsafe type is a place-holder for external function calls, i.e. function defined in
an external embedded language.

� Argument: A type argument is a simple type identifier followed by an optional list of generic
arguments used for generic types. For example the type Tuple[a,b] is a type argument
whose identifier is Tuple and whose generic arguments are a and b.

� Arrow: An arrow type has the form T1 -> T2 -> ... -> Tn and is used to represent the
type of the arguments used when calling a function or when constructing a meta-data. For
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Algorithm 3.4 Parenthesization of a sequence of arguments. The operators :: and @ are
respectively prepend and append on a list. With the notation hSi we denote a sequence S
enclosed by parentheses.

function parenthesize(S symbols in the sequence, A arguments sequence)
if A = ; then

return A
else

if S 6= ; then
let s0 be the symbol with lowest priority in S
let I be the set of indices at which s0 occurs in S.
l  ;
r  ;
if s0 is left-associative then

I 0  last(I )
l; r  splitAt(I 0)
r  tail(r )

else
I 0  first(I )
l; r  splitAt(I 0)
r  tail(r )

end if
let lsym be the symbols in l
let rsym be the symbols in r
lpar  parenthesize(lsym ,l)
rpar  parenthesize(rsym ,r )
let larity be left arity of s0

let rarity be right arity of s0

largs; plargs  splitAt(j largs j � larity )
rargs; prargs  splitAt(rarity )
if larity + rarity > 0 then

if s0 is pre�x then
e  s0 :: prargs

else if s0 is su�x then
e  plargs @ s0

elses0 is in�x
e  plargs @ s0 @ prargs

end if
return largs @ hei @ rargs

else
return largs @ s0 @ rargs

end if
else

p  ;
for all a 2 A do

if a = hei then
let S0 be symbols in e
p0  parenthesize(S0) e
if p0 = he0i then

p  p @ e0

else
p  p @ hp0i

end if
else

p  p @ f ag
end if

end for
end if

end if
end function
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example the function declaration Func Num -> "+" -> Num : Num has the Arrow type
Num -> Num. Note that the symbol declaration, for convenience, stores two different type
declarations: the arguments types separated from the function returned type or the meta-
data type and a full type that combines the type of the arguments and the returned type
or data type into a single arrow. For example, for the function above, its full type would
be Num -> Num -> Num.

The algorithm to check the type declarations behaves differently depending on the form of
the type declaration. For Zero, External, or Unsafe type declarations the check always succeeds.
For Arrow the algorithm recursively checks the left and right part of the arrow. In the case of an
Argument we have two sub-cases: (i) the argument is an identifier with no generic arguments,
or (ii) the argument is an identifier followed by a number of generic arguments. The first
case is simple, as it is enough to check whether the type is defined in the symbol table or
not. If the type cannot be found in the symbol table then it is undefined and an error is
returned. In the case of a type with generic arguments we must check that the number of
provided generics matches the number required for the generic type; then we must check if the
provided generic arguments have a correct form. A generic argument can be an identifier or again
a type accepting other generic arguments. This is the case, for instance, of a type declaration
such as Tuple[List[int],Tuple[a,List[float]]]. In the case of a simple generic identifier we
must only check that the generic identifier is in the scope of the declaration. For instance the
declaration

Func[a,b] "foo" -> a -> b : b

would be a valid declaration since the generic identifiers are in the scope of the declaration, while

Func[a,b] "foo" -> a -> b : c

would be invalid if c is not a data type defined in the meta-program. In the case of nested types
the algorithm must recursively check again that the type exists and that the generic arguments
are valid. The procedure details are described in Algorithm 3.5.

3.5.2 Checking rules

Type checking a rule requires type checking its conclusion and all of the premises. In what
follows we assume that the parser post-processor has already parenthesized and normalized all
the function calls, so that every function call is parenthesized according to symbol priority and
associativity and that the symbol name is in the first position of an argument sequence. Moreover,
we use the following definition relative to meta-data arguments:

De�nition 3.2. An argument is said to be an explicit data argument when it is an expression
constructing a meta-data.

For example, in the following meta-program

Data Expr -> "+" -> Expr : Expr
Func "eval" -> Expr -> Environment : Value
...

eval a env -> a’
eval b env -> b’
<<a’ + b’>> -> v
------------------
eval (a + b) env -> v

Listing 3.2: Example of an explicit data argument in Metacasanova
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Algorithm 3.5 Type checking of a symbol declaration

function checkDeclaration(S symbol table, G declared generic arguments, d type decla-
ration)

if d = Empty or d = Zero then
return

else
let G0 be the generics required for d
if G0 6= ; then

if jG0j 6= jGj then
error: invalid amount of generic arguments

else
for all g 2 G0 do

checkDeclaration(S,G,g)
end for

end if
else

if d 2 S or d 2 G then
return

else
error: undefined type

end if
end if

end if
end function

the first argument of eval in the conclusion is an explicit data argument. Moreover we use the
following definition to define the compatibility of two types.

De�nition 3.3. Let T be the set of types defined in a meta-program and E = f(ti ; tj ) j t1 2
T ^ t2 2 Tg the set of subtype declarations, then we say that the type t1 is compatible with t2 if
either t1 = t2 or 9(ti ; tj ) 2 E j t1 = ti ^ t2 = tj .

Checking the conclusion

A conclusion must always contain a function call. In order to type-check the function call
correctly, we must check that (i) the arity of the function is respected, i.e. that the arguments
are not more than what the function expects (the type system of Metacasanova supports partial
function application, so it is allowed to pass fewer arguments), and (ii) that the type of each
argument is compatible with what provided in the declaration. Moreover, since a conclusion
might contain explicit data arguments, we have to recursively add all the variables contained in
the explicit data arguments to the local variables of the current function, as they could be used
in the premises. As an example, refer to Listing 3.2, where the variables a and b are defined
in the argument of eval and later used in the premises. Checking the arity of the function is
trivial: it is sufficient to compare the length of the given argument sequence with the length of
the arguments provided in the declaration. If the length of the argument sequence is greater than
the arguments defined in the declaration then an error is returned. Checking type compatibility
is more complex and the details are explained below.

The right hand-side of a conclusion might contain a variable or an explicit data argument. In
both cases its type checking must be delayed until all premises are processed because a variable
appearing in one of them might be used. For example, in Listing 3.2, variable v is used in the
right hand-side of the conclusion and defined in the result of the last premise.
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Checking a premise

A premise, as explained in Section 3.4.2, can be (i) a function call, (ii) a binding, or (iii) a clause.

In the case of a function call we have to type check the arguments of the function call in the
same fashion of the conclusion but with a slight difference: when encountering a variable this
must not be added to the local variable set but rather looked up in it. If the lookup fails then the
variable is undefined and cannot be used. The same happens when checking the arguments of
explicit data arguments. If the call is correctly typed, then we must check its result. The result
of a call can be either a variable or an explicit data argument. In the first case the variable is
added to the local variables and its type set to the return type of the function. In the case of an
explicit data argument then all the arguments that are variable are added to the local variables
with the appropriate type read from the meta-data structure declaration and, in case of a nested
explicit data argument, the procedure is recursively applied.

A binding is correctly typed if its right argument is correctly typed. The right argument can
be a variable or an explicit data argument so we apply the same method that we used to check
variables and explicit data arguments in function calls. If this test succeeds then the left argu-
ment of the binding, which is always a variable, is added to the local variables with the type of
the right argument.

A clause is correctly typed if the types of the arguments used in the comparison operator are
compatible with respect to the operator itself and if they are themselves correctly typed. For
example, for the equality comparison, we must ensure that both arguments are correctly typed.
As always, if external types are involved, the test automatically succeeds because nothing can
be known at this point about the compatibility of the provided types. Of course the test fails if
we use a comparison operator combining external types with types defined in the meta-program,
because they will always be incompatible.

Checking a single argument

When checking the type of an argument we have to consider several cases depending on what
kind of argument we are inspecting. The reader can find the details of each case below. Note
that we will never consider external types as their type checking is delegated to the external
code compiler that is used when compiling the generated code, so their type checking in the
Metacasanova type checker is always successful.

Checking literals If the argument is a literal then we have to consider three sub-cases:

1. The expected type is generic. In this case, since we are providing explicitly a literal, the
generic can be assigned the specific type of the literal.

2. The expected type is non-generic. In this case we have to check if the type of the literal is
compatible with the expected type. This only happens if the expected type is one of the
native types supported by Metacasanova.

3. The expected type is a meta-data structure requiring generic arguments. In this case the
type is always incorrect, since a literal is always incompatible with meta-data.

Checking identi�ers When we have an identifier as argument, this might be either a symbol
for a meta-data structure taking no arguments, or simply a variable. In the first case we simply
check that the type of the meta-data structure is compatible with the expected type. In the
second case the result depends on whether we are type checking a conclusion or a premise. If we
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are checking a conclusion, then the variable must be added to the local variables in the scope of
the rule, otherwise we must look up the local variables to check if it was previously defined. If
the lookup fails then the variable is undefined and an error is returned.

Checking nested expressions Checking a nested expression requires, in the first place, to
recursively type check the arguments used in the nested expression. If this check succeeds than
we must also ensure that the type of the meta-data structure that we are analysing is compatible
with the expected type.

Checking the type compatibility According to Definition 3.3, a type is compatible with
another if they are equal or if, in the symbol table, there exists a specified equivalence between
the first type and the second. We have thus to distinguish two cases: (i) check if the types are
equal and, if this fails, (ii) check if the provided type is paired with the expected type in an
equivalence table. For the following considerations refer to the type structure defined in Section
3.5.1.

Testing type equality Checking type must consider three options: (i) the type is a simple
identifier, (ii) the type is an Arrow type , and (iii) the type is External, Unsafe or Zero.

In case (i) we must compare two Type Arguments t1 and t2 other wise the test fails imme-
diately. In this case it is enough to simply check that t1 = t2 .

In case (ii) we must compare two Arrow types otherwise the test fails immediately. Let us
assume that we have T ::= t1 ! t2 ! :::! tn and U ::= u1 ! u2 ! :::! um , then we check if
t1 = t2 and recursively apply the type equality test on t2 ! :::! tn and um ! :::! um . Note
that if n 6= m at some point the test will fail because we will compare a Type Argument with an
Arrow Type, which will always fail.

In case (iii) the test succeeds if one of the types (either the provided one or the expected
one) is external or unsafe; it also succeeds if both types are Zero types.

Testing type compatibility Compatibility might succeed in only two cases: (i) when
testing two Argument Types, and when testing two Arrow Types; in all other cases the test fails
immediately. In what follows we write t1 � t2 to say that t1 is compatible with t2 .

In case (i) we have to check if the provided type is paired with the expected type in a subtype
map stored in the symbol table. If the lookup in the map is unsuccessful then an error is returned.

In case (ii) again we consider T ::= t1 ! t2 ! ::: ! tn and U ::= u1 ! u2 ! ::: ! um .
This time we check if t1 � t2 and then we recursively check the equivalence of t2 ! :::! tn with
um ! :::! um . Again, the equivalence test fails if n 6= m because we will end up comparing an
Argument Type with an Arrow Type.

3.6 Code generation

Metacasanova uses C# as target language and generates code compatible with any library com-
piled in the .NET framework. In this phase we must (i) generate the appropriate abstractions in
C# to represent meta-data structures and their subtyping, and (ii) generate the code to imple-
ment the semantics of the rule evaluation, as described in Section 3.2.3. Note that the modularity
of the architecture of the Metacasanova meta-compiler is flexible enough to replace the C# code
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generation with another language of choice, provided that the proper code generation functions
are re-written for the new target language.

3.6.1 Meta-data structures code generation

The type of each data structure is generated as an interface in C#. Each data structure defined
in Metacasanova is mapped to a class in C# that implements such interface. The class contains
as many fields as the number of arguments the data structure contains. Each field is given an
automatic name argC where C is the index of the argument in the data structure definition. The
data structure symbols used in the definition might be pre-processed and replaced in order to
avoid illegal characters in the C# class definition. The class contains an additional field that
stores the original name of the data structure before the replacement is performed, used for its
“pretty print”. For example the data structure.

Data "$i" -> int : Value

will be generated as

public interface Value { }

public class __opDollari : Value
{

public string __name = "$i ";
public int __arg0 ;

5
public override string ToString ()
{
return "(" + __name + " " + __arg0 + ") ";
}

}

3.6.2 Code generation for rules

Each rule contains a set of premises that in general call different functions to produce a result, and
a conclusion that contains the function evaluated by the current rule and the result it produces.
The code generation for the rules follows the steps below:

1. Generate a data structure for each function defined in the meta-program.

2. For each function f extract all the rules whose conclusion contains f .

3. Create a switch statement with a case for each rule that is able to execute the function
(the function is in its conclusion).

4. In the case block of each rule, define the local variables defined in the rule.

5. Apply pattern matching to the arguments of the function contained in the conclusion of
the rule. If it fails, jump immediately to the next case (rule).

6. Store the values passed to the function call into the appropriate local variables.

7. Run each premise by instantiating the class for the function used by it and copying the
values into the input arguments.

8. Check if the premise outputs a result and, in the case of an explicit data structure argument,
check the pattern matching. If the premise result is empty or the pattern matching fails
for all the possible executions of the premise then jump to the next case.
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9. Generate the result for the current rule execution.

In what follows, we use as an example the code generation for the following rule (which computes
the sum of two integer expressions in a programming language):

eval a -> $i c
eval b -> $i d
<< c + d >> -> e
----------------
eval (a + b) -> $i e

From now on we will refer to an argument as explicit data argument when its structure
appears explicitly in the conclusion or in one of the premises, as in the case of a + b in the
example above.

Data structure for the function

As first step the meta-compiler generates a class for each function defined in the meta-program.
This class contains one field for each argument the function accepts. It also contains a field to
store the possible result of its evaluation. This field is a struct generated by the meta-compiler
defined as follows:

public struct __MetaCnvResult <T> { public T Value ; public bool HasValue ; }

The result contains a boolean to mark if the rule actually returned a result or failed, and a
value which contains the result in case of success.

For example, the function

Func eval -> Expr : Value

will be generated as

public class eval
{

public Expr __arg0 ;
public __MetaCnvResult <Value > __res ;
...

}

Rule execution

The class defines a method Run that performs the actual code execution. The meta-compiler
retrieves all the rules whose conclusion contains a call to the current function, which define
all the possible ways the function can be evaluated. It then creates a switch structure where
each case represents each rule that might execute that function. The result of the rule is also
initialized here (the struct will contain a default value and the boolean flag will be set to false).
Each case defines a set of local variables, that are the variables used within the scope of that
rule.

Local variables de�nitions and pattern matching of the conclusion

At the beginning of each case, the meta-compiler defines the local variables initialized with their
respective default values. It also generates then the code necessary for the pattern-matching of
the conclusion arguments. Since variables always pass the pattern-matching, the code is gener-
ated only for arguments explicitly defining a data structure (see the examples about arithmetic
operators in Section 3.2.2) and literals. If the pattern matching fails then the execution jumps
to the next case (rule). For instance, the code for the following conclusion
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...
-------------
eval (a + b) -> $i e

is generated as follows

case 0:
{

Expr a = default (Expr);
Expr b = default (Expr);
int c = default (int);
int d = default (int);
int e = default (int);
if (!( __arg0 is __opPlus )) goto case 1;
...

}

Note that an explicit data argument, such in the example above, might contain other nested
explicit data arguments, so the pattern-matching is recursively performed on the data structure
arguments themselves.

Copying the input values into the local variables

When each function is called by a premise, the local values are stored into the class fields of the
function defined in Section 3.6.2. These values must be copied to the local variables defined in
the case block representing the rule. Particular care must be taken when one argument is an
explicit data argument. In that case, we must copy, one by one, the content of the data argument
into the local variables bound in the pattern matching. For example, in the rule above, we must
separately copy the content of the first and second parameter of the explicit data argument into
the local variables a and b. The generated code for this step, applied to the example above, will
be:

__opPlus __tmp0 = ( __opPlus ) __arg0 ;
a = __tmp0 . __arg0 ;
b = __tmp0 . __arg1 ;

Note that the type conversion from the polymorphic type Expr into opPlus is now safe because
we have already checked during the pattern matching that we actually have opPlus.

Generation of premises

Before evaluating each premise, we must instantiate the class for the function that they are invok-
ing. The input arguments of the function call must be copied into the fields of the instantiated
object. If one of the arguments is an explicit data argument, then it must be instantiated and
its arguments should be initialized, and then the whole data argument must be assigned to the
respective function field. After this step, it is possible to invoke the Run method of the function
to start its execution. The first premise of the example above then becomes (the generation of
the second is analogous):

eval a -> $i c

eval __tmp1 = new eval ();
__tmp1 . __arg0 = a;
__tmp1 .Run ();
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Checking the premise result

After the execution of the function called by a premise, we must check if a rule was able to
correctly evaluate it. In order to do so, we must check that the result field of the function object
contains a value, and if not the rule fails and we jump to the next case (rule), which is performed
in the following way:

if (!( __tmp1 . __res . HasValue )) goto case 1;

If the premise was successfully evaluated by one rule, then we must check the structure of
the result, which leads to the following three situations:

1. The result is bound to a variable.

2. The result is constrained to be a literal.

3. The result is an explicit data argument.

In the first case, as already explained above, the pattern matching always succeeds, so no
check is needed. In the second case, it is enough to check the value of the literal. In the last
case, all the arguments of the data argument must be checked to see if they match the expected
result. In general this process is recursive, as the arguments could be themselves other explicit
data arguments. If the result passes the check, then the result is copied into the local variables,
in a fashion similar to the one performed for the function premise. For instance, for the premise

eval a -> $i c

the meta-compiler generates the following code to check the result

if (!( __tmp1 . __res . Value is __opDollari )) goto case 1;
__MetaCnvResult <Value > __tmp2 = __tmp1 . __res ;
__opDollari __tmp3 = ( __opDollari ) __tmp2 . Value ;
c = __tmp3 . __arg0 ;

Generation of the result

When all premises correctly output the expected result, the rule can output the final result. In
order to do that, the generated code must copy the right part of the conclusion (the result) into
the res variable of the function class. If the right part of the conclusion is, again, an explicit
data argument, then the data object must first be instantiated and then copied into the result.
For example the result of the rule above is generated as follows:

res = c + d;
__opDollari __tmp7 = new __opDollari ();
__tmp7 . __arg0 = res;
__res . HasValue = true;
__res . Value = __tmp7 ;
break ;

After this step, the rule evaluation successfully returns a result.

This implementation choice is due to the fact that we plan to support partial function ap-
plications, thus, when a function is partially applied, there is the need to store the values of the
arguments that were partially given. This could still be implemented with static methods and
lambdas in C#, but not all programming languages natively support lambda abstractions, so we
chose to have a set-up that allows us to change the target language without dramatically altering
the logic of code generation.
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3.7 Summary

In this chapter we presented the detailed architecture of the Metacasanova meta-compiler. We
started by showing that the process of implementing a compiler exhibits recurring patterns that
are always the same independently of the implemented language. We show how to hard-code
in different programming languages examples of type and semantics rules for a programming
language and then we showed that this process differs only in how we encode these rules int the
abstractions of the chosen language, and not in their working logic. Based on these observations,
we then defined a list of requirements for Metacasanova. We then proceeded to illustrate the
various components of the meta-compiler itself: the parser, the type checker, and the code gener-
ator. In the next chapter we will show two examples of languages implemented in Metacasanova:
C--, which is a small imperative language, and Casanova, which is a Domain-Specific Language
for game development.



Chapter 4

Language Design in Metacasanova

A language that doesn’t a�ect the
way you think about programming
is not worth knowing.

Alan J. Perlis

In this chapter we show how to implement languages in Metacasanova. The first language that
we implement is a small imperative language called C--. Although tiny, this language contains
many common features typical of imperative languages such as control structures, program states,
variable scoping, and type annotations. We then proceed to re-implement the semantics of
Casanova, a DSL for game development, in Metacasanova, similar to the work shown also in
[37]. Finally, we evaluate the length of the language implementation in Metacasanova against a
hard-coded implementation of the same language in a general-purpose programming language,
and the runtime performance of programs written in the meta-compiled version against Python.

4.1 The C-- language

In this section we present the implementation of a small imperative language called C--. Note
that, although the name might suggest this, we do not claim any resemblance with the C pro-
gramming language, as it lacks several features such as pointer arithmetic, arrays, and functions.

C-- allows the use of four built-in values: integers, strings, boolean values, and floating-point
numbers in double precision. The language provides three kinds of control structures: if-then-
else, while-do, and for loops with the same semantics as usual for imperative languages. The
language supports variable scoping and shadowing.

The memory is represented using a dictionary that pairs variable names with their value. In
what follows we omit the details of the lookup of entries in the dictionary for brevity. Suffice to
say that the meta-program makes use of the ImmutableDictionary data structure available in
.NET. Also note that C-- defines scopes for variables, so that if a variable is declared inside the
scope of a code block in a control structure, that is usable only within the scope itself.

The core of the meta-program is made of the evaluation of both expressions and statements.
We proceed below to present the details of both kinds of evaluations.

4.1.1 Expression Semantics

As explained above C-- supports boolean, string, integer, and floating-point values. These are
represented through the following meta-data structures in the meta-program.

Data "$i" -> <<int >> : Value Priority 300

71
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Data "$d" -> <<double >> : Value Priority 300
Data "$s" -> <<string >> : Value Priority 300
Data "$b" -> <<bool >> : Value Priority 300

Note that we are using the .NET data types to represent the actual values stored in the meta-data
structures. We also define the following subtype, since values are atomic cases of expressions and
can be used as such:

Value is Expr

Expressions can also contain variables, thus we need a meta-data structure to represent them as
well.

Data "$" -> <<string >> : Id Priority 300

Variables can be used as atomic expressions as well, so we need an additional subtype

Id is Expr

We now define a data structure to represent the state of the program. The state is simply a map
where the key is a variable name and the stored element a valid value in C--. In the declaration
we will define the meta-type SymbolTable, and from now on we will refer use the term “symbol
table” as a synonym of “state”.

Data "$m" << ImmutableDictionary <Id , Value > >> : SymbolTable

Since we want to allow variable scoping, the state of the program is not represented by a single
map, but by a list of maps. Each time the program enters a different scope context, an empty
map is added to this list, and removed when the program exits the scope. This process will be
further explained below. We define a meta-data structure to represent this list of states (note
that the operator for the construction of the list is infix).

Data SymbolTable -> "::" -> TableList : TableList
Data "[]" -> TableList

We can now proceed to define a meta-data structure to represent the operations for expressions.
First we define the arithmetic operators in the language:

Data Expr -> "+" -> Expr : Expr
Data Expr -> "-" -> Expr : Expr
Data Expr -> "*" -> Expr : Expr
Data Expr -> "/" -> Expr : Expr

then we can define operators for boolean expressions:

Data Expr -> "&&" -> Expr : Expr
Data Expr -> "||" -> Expr : Expr
Data "!" -> Expr : Expr

and finally comparison operators:

Data Expr -> " equals " -> Expr : Expr
Data Expr -> "neq" -> Expr: Expr
Data Expr -> "ls" -> Expr : Expr
Data Expr -> "leq" -> Expr : Expr
Data Expr -> "grt" -> Expr : Expr
Data Expr -> "geq" -> Expr : Expr

We now have to define the function that evaluates an expression through rules in the program.
This function takes as input the list of symbol tables (needed to read possible variables), an
expression, and returns the value after computing the expression.
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Func " evalExpr " -> TableList -> Expr : Value

Now we have to proceed to define the rules to compute the actual evaluation of an expression.
Clearly the base cases of the evaluation are the atomic values, where we immediately return the
value itself.

-----------------------------
evalExpr tables ($i v) -> ($i v)

-----------------------------
evalExpr tables ($d v) -> ($d v)

-----------------------------
evalExpr tables ($s v) -> ($s v)

-----------------------------
evalExpr tables ($b v) -> ($b v)

Evaluating variables is more complex: we have to look at the table currently in the head of
the list of tables (which is the one relative to the current scope). If we do not find the required
variable we have to recursively look it up in the tail of the list, since we could have an arbitrary
number of nested scopes. When the variable is found we return its value. This behaviour is
implemented by the following code:

symbols contains ( $name ) -> Yes
symbols lookup ( $name ) -> val
-------------------------------------------
evalExpr ( symbols :: tables ) ( $name ) -> val

symbols contains ( $name ) -> No
evalExpr tables ( $name ) -> val
-------------------------------------------
evalExpr ( symbols :: tables ) ( $name ) -> val

We proceed now to define the evaluation of arithmetic operators. We show only the example
of the sum for brevity, the other rules differ only in the operator. Evaluating the arithmetic
expression requires to recursively call evalExpr on the right and left argument. These recursive
calls will eventually return two values that are the result of the two evaluations. After we obtain
these values, we can compute their sum and return it as result.

evalExpr tables expr1 -> ($i val1)
evalExpr tables expr2 -> ($i val2)
<<val1 + val2 >> -> v
---------------------------------------
evalExpr tables expr1 + expr2 -> ($i v)

Note that we have used .NET external code in the third premise to compute the result of the
arithmetic operation. Evaluating arithmetic operations involving floating-point expressions can
be done in an analogous way, except in the premises we expect to have the meta-data structure
for floating-point values as result of evalExpr:

evalExpr tables expr1 -> ($d val1)
evalExpr tables expr2 -> ($d val2)
<<val1 + val2 >> -> v
---------------------------------------
evalExpr tables expr1 + expr2 -> ($d v)

The same can be said for the string concatenation. The evaluation of boolean expression is
analogous: we show again only the evaluation for AND as the other rules are analogous:
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evalExpr tables expr1 -> ($b val1)
evalExpr tables expr2 -> ($b val2)
<<val1 && val2 >> -> b
----------------------------------
evalExpr tables expr1 && expr2 -> b

Again we rely on external code to compute the actual boolean value. As for the comparison
operators, we can use a clause in the premise to avoid using external code in the following way:

evalEpxr tables expr1 -> val1
evalExpr tables expr2 -> val2
val1 == val2
-----------------------------------------------
evalExpr tables ( expr1 equals expr2 ) -> $b true

evalEpxr tables expr1 -> val1
evalExpr tables expr2 -> val2
val1 != val2
------------------------------------------------
evalExpr tables ( expr1 equals expr2 ) -> $b false

The first rule checks that the values computed by evaluating the left and right argument of the
equality comparison are the same. If this happens then the rule returns a meta-data structure
containing the boolean representation of true. Otherwise the first rule fails and the second one
is executed. This one will return a boolean representation of false when the values are different.

For inequality operators we must rely on external code for the computation is Metacasanova
only allows equality comparisons in clauses:

evalExpr tables expr1 -> ($i val1)
evalExpr tables expr2 -> ($i val2)
<< val1 < val2 >> -> boolResult
---------------------------------------------------
evalExpr tables ( expr1 ls expr2 ) -> ($b boolResult )

The evaluation of the other comparison operators is implemented through analogous rules, which
differ only in the operators.

4.1.2 Statement Semantics

Statement evaluation requires the definition of a different function, eval, that processes each
statement and returns the result of the statement evaluation and the updated state. Note that,
even if the evaluation of statements does not always change the state, in general we have to
assume that this will happen.

The function eval takes as input a statement to process and the current state (list of symbol
tables), and returns the updated list of symbol tables

Func "eval" -> TableList -> Stmt : TableList

We now proceed to define the meta-data structures necessary to represent the statements of
the language: C-- supports (i) variable declarations, (ii) variable assignment, (iii) if-then-else,
(iv) while loops, and (v) for loops.

Variable declarations follow the same structure of standard C, that is a type name followed
by an identifier. Thus, the corresponding meta-data structure can be defined as:

" variable " -> Type -> Id : Stmt

Analogously, variable assignment follows the C convention and uses the = symbol.
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Id -> "=" -> Expr : Stmt

The control structure if-then-else does not follow the standard C representation, rather we
use the keywords then and else to delimit its code blocks. Note that nothing prevents us from
implementing the conventional C syntax, but we prefer this “lightweight” representation. The
keywords then and else are meta-data structures that take no arguments and do not have any
functional utility other than syntactical mark-ups.

Data "then" : Then
Data "else" : Else
Data "if" -> Expr -> Then -> Stmt -> Else -> Stmt : Stmt

Analogously we can define the meta-data structure for While and For

Data "do" : Do
Data " while " -> Expr -> Do -> Stmt : Stmt
Data "for" -> Expr -> Expr -> Epxr -> Do -> Stmt : Stmt

Up to this point we are able to define single statements in the language, but we need a way to
concatenate a sequence of statements to form code blocks, in the fashion of C. This is done by
introducing an additional meta-data structure, which is the ”;” symbol. For convenience, we
also introduce a nop statement, which does not do anything, but it will be useful to express the
semantics of statements evaluation.

Data Stmt -> ";" -> StmtList : StmtList
Data "nop" -> :Stmt

StmtList is Stmt

We now proceed to define the semantics of statement evaluation.

Evaluating a Sequence of Statements

The evaluation of a sequence of statements require to evaluate the first statement in a sequence
and then recursively evaluate the rest of the sequence. The recursive evaluation returns the final
program state. The base case of the recursion is met when the sequence contains only nop. In
this case we terminate the evaluation and return the unchanged program state.

--------------------------
eval tables nop -> tables

eval tables a -> tables ’
eval table ’ b -> res
---------------------------
eval tables (a;b) -> res

Variable Declarations and Assignments

Evaluating a variable declaration simply adds the variable to the symbol table of the current
scope. Note that we allow variable shadowing, so it is possible to redefine the same symbol in
different scopes.

symbols defineVariable id -> symbols ’
-------------------------------------
eval ( symbols nextTable tables ) ( variable t id) -> symbols ’ nextTable

tables
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This rule is executed whenever the processed statement matches the structure of a variable
declaration statement. The premise adds the symbol to the symbol table of the current scope
(we omit the details for brevity), and returns an updated symbol table. The list of symbol tables
is rebuilt to include the updated table and returned as result.

Variable assignment is more complex, since the variable we are trying to use might not be in
the symbol table of the current scope. We must then define two lookups functions, that behave
differently depending on whether the variable is in the symbol table in the head of the symbol
table list or not. We declare the function updateTable that performs this lookup and updates
the table list accordingly.

Func " updateTables " -> TableList -> TableList -> Id -> Expr :
EvaluationResult

In the case that the variable is in the symbol table in the head of the list of tables we have the
following rule:

symbols contains id -> Yes
evalExpr vars expr -> val
symbols add id val -> symbols ’
-------------------------------
updateTables vars ( symbols :: tables ) id expr -> symbols ’ :: tables

The first premise checks if the symbol is contained in the table in the head of the list. If the
answer is Yes (a meta-data structure returned by the function contains, not described here again
for brevity), then the second premise proceeds to evaluate the expression in the right hand-side
of the assignment. The third premise adds the value obtained as result of the second premise
to the current symbol table and returns the modified table. The new table is then placed in
the head of the table list and the whole list is returned. Note that, at this point, all the tables
in the list remain unchanged except the one that was in the head. Note that updateTables
carries two copies of the list of tables. One of them is passed to eval because the right-hand side
of the assignment might contain other variables. The process of looking up the left hand-side
variable pops symbol tables from the head of list (see next rule) but the original list of tables is
necessary when assigning the values of variables located in inner scopes. For instance, consider
the following program in C--:

int x;
...
if (x > 0) then

int y;
y = 4
x = y;

else
x = x - 1;

Listing 4.1: C-- sample program

assume that before the if-then-else x > 0. The program will enter the then block and declare
y. In the current state we have to symbol tables, one for the scope of the if-then-else and
one for the outer scope. When assigning y to x the symbol table tries to look up x in the table
of the current scope and fails. This will pop the head of the list of tables (which is the table
of if-then-else) and recursively look in the tail. During the second attempt x is retrieved but
now we do not have the symbol table where y is defined anymore to evaluate the right hand-side.
We thus need the original list of tables to be able to retrieve y. In general, if we call dl the depth
of scoping of the left hand-side and dr the depth of scoping of the right hand-side, the process
pops the table of the right hand-side whenever dl > dr and this is when we need the original list
of tables to retrieve the value of the right hand-side.
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Variable Value
x undefined

Variable Value
y 4

Variable Value
x 4

Table 4.1: Symbol table at the beginning and after the execution of the program in Listing 4.1 with
x > 0

If the variable is not contained in the head of the list, i.e. it has not been declared in the
current scope, we have the following rule:

symbols contains id -> No
updateTables vars tables id expr -> tables ’
----------------------------------------------
updateTables vars ( symbols :: tables ) id expr -> symbols :: tables ’

The first premise tries to lookup the variable in the symbol table of the current scope and
does not find it. Thus we recursively call updateTables with the tail of the list. The recursive
call will eventually find the variable in one of the symbol tables associated with outer scopes.
This process will produce an updated list of tables that is returned as a new tail for the current
list.

At this point, the rule for the evaluation of the variable assignment simply class the up-
dateTables function in its premise:

updateTables tables tables id expr -> res
----------------------------------------
eval tables (id = expr) -> res

Conditionals

Evaluating if-then-else requires two rules, depending on the result of the evaluation of its
condition. The following rule implements the semantics when the condition is false:

evalExpr tables condition -> $b true
emptyDictionary -> table
eval ( table :: tables ) thenBlock -> table ’ :: tables ’’
-------------------------------------------
eval tables (if condition then thenBlock else elseBlock ) -> tables ’’

The first premise evaluates the condition of the control structures and succeeds if the result
is a meta-data structure containing the boolean value true. The second premise uses an utility
function to initialize an empty symbol table. This is required to define a new table for the scope
of the conditional. The third premise evaluates the statements contained in the then block after
pushing the symbol table for the current scope in the list of symbol tables. This process will
eventually produce a new list of symbol tables. The result returns only the tail of this list, since
when we exit the scope of the conditional we must pop its symbol tables.

For instance, consider again the program in Listing 4.1 and again assume that x > 0. After
executing the then block, the state of the program is made of the symbol tables shown in Table
4.1. After exiting the then block, variable y exits the scope, thus we have to pop the symbol
table for the current scope. However, the symbol table of the outer scope has been changed
because x got the value of y. Thus the evaluation returns the list containing this updated table.
In general, the process should consider that an arbitrary number of symbol tables for each outer
scope has been changed, thus we return this updated list.

The rule that evaluates conditionals when the condition is false is analogous, except this time
we evaluate the else block:
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evalExpr tables condition -> $b false
emptyDictionary -> table
eval ( table :: tables ) elseBlock -> table ’ :: tables ’’
--------------------------------------------
eval tables (if condition then thenBlock else elseBlock ) -> tables ’’

While Loops

Evaluating the while loops require to check its condition first. When the condition is false we
simply skip the loop without changing the state. The rule to implement this behaviour is thus
straightforward:

evalExpr tables condition -> $b false
--------------------------------------------
eval tables ( while condition do block ) -> tables

The semantics when the condition is true is more complex:

evalExpr tables condition -> $b true
emptyDictionary -> table
eval ( table :: tables ) block -> table ’ :: tables ’’
eval tables ’’ ( while condition do block ) -> res
---------------------------------------------------
eval tables ( while condition do block ) -> res

The first premise succeeds when the evaluation of the condition returns a true boolean value in
C--. Analogously to what we did for conditionals, we initialize an empty symbol table for the
current scope and we push it into the list of symbol tables. We then evaluate the body of the
loop. This process will, in general, produce an updated list of symbol tables. Again we pop the
symbol table for the current scope because we are exiting the loop. We then evaluate again the
whole loop to test its condition again.

For Loops

For loops follow the C convention and are made of four parts: (i) an initialization, (ii) a condition
(ii), (iii) a step, and (iv) a block of code. The initialization is evaluated once before entering
the loop, the condition is tested before each iteration of the loop, and the step is evaluated at
the end of each iteration. In order to implement this behaviour we make use of an additional
support function called loopFor:

Func " loopFor " -> TableList -> Expr -> Stmt -> Stmt : TableList

The evaluation of the for-loop evaluates the initialization in its premise. It then calls loopFor
after the initialization has been evaluated. Again the initialization might define additional vari-
ables that enter the scope of the loop, so the updated table of the current scope is pushed into
the list of symbol tables. Note that possible variables defined in the initialization part of the
loop might be used after the loop itself, according to the semantics of C, so we have to insert
them into the symbol table of the current scope and not the one of the loop itself.

eval tables init => tables ’
loopFor tables ’ condition step block => res
-------------------------------------------------------
eval tables (for init condition step do block ) => res

The rules for loopFor are two, since we must consider the case when the condition is false
and the one where it is true. When the condition is false the loop is completely skipped, thus
we simply return the current state without any changes, in the same fashion of the while-loop:
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evalExpr tables condition -> $b false
--------------------------------------
loopFor tables condition step block -> tables

When the condition is true, we create as usual a symbol table for the scope of the loop and we
push it into the list of symbol tables. The third premise evaluates the block of the loop returning
an updated list of tables. As usual we pop the table of the scope of the loop and we evaluate the
step. This again might change the list of symbol tables. We then run again the loop with the
updated list of tables.

evalExpr tables condition -> $b true
emptyDictionary -> table
eval ( table :: tables ) block -> table ’ :: tables ’’
eval tables ’’ step -> tables3
loopFor tables3 condition step expr -> res
-------------------------------------------------
loopFor tables condition step block -> res

4.1.3 Type Checker

Type checking can be performed by using a representation of the type system of C-- in terms of
rules, in the same fashion of the semantics. In this section we explain the details of how each
language construct is type-checked according to its type rule. We begin by defining an alternative
version of the symbol table defined in Section 4.1.1 that contains a mapping between variable
names and types:

Data "$m" << ImmutableDictionary <Id , Type > >> : TypeTable

and a constructor for the meta-data representing a sequence of type tables.

Data TypeTable -> "::" -> TypeTableList : TypeTableList
Data "[]" : TypeTable

We now start by defining the meta-data structures for the types in C--:

Data " t_int " : Type
Data " t_double " : Type
Data " t_string " : Type
Data " t_bool " : Type
Data " t_unit " : Type

We also defined a special meta-data representing a type error to correctly report errors if the
program contains invalid types:

Data " error " -> <<string >> : Type

Typing expressions

We now proceed to define the type rules for expressions. We initially need to define a function
to use in the conclusion of a type rule that is able to evaluate type of an expression:

Func " typeExpr " -> TypeTableList -> Expr : Type

The axioms of expression typing are those that return the type of a literal. In this case the
rule immediately returns the type associated to the specific literal.
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-----------------------------
typeExpr tables ($i v) -> t_int

-----------------------------
typeExpr tables ($d v) -> t_double

-----------------------------
typeExpr tables ($s v) -> t_string

-----------------------------
typeExpr tables ($b v) -> t_bool

Type checking variables require to perform a lookup for the variable name in the list of type tables
that we carry along during the typing process. The variable could be in the table associated
with the current scope or in the table of an outer scope. Therefore, we start by first looking in
the table of the current scope, and if we do not find the variable we recursively look it up in
the subsequent table. If we traverse the whole list of tables without finding the variable, then it
means that the program contains an undefined variable and an appropriate error notifying the
problem should be returned.

-------------------------------------
typeExpr [] ($ name) -> error <<" Undefined variable :" + name >>

types contains ($ name) -> Yes
types lookup ($ name) -> varType
------------------------------------------------
typeExpr ( types :: tables ) ($ name) -> varType

types contains ($ name) -> No
typeExpr tables ($ name) -> error msg
------------------------------------------
typeExpr ( types :: tables ) ($ name) -> error msg

types contains ($ name) -> No
typeExpr tables ($ name) -> varType
------------------------------------------
typeExpr ( types :: tables ) ($ name) -> varType

Note that we had to include a rule in whose premise we check whether the recursive lookup
returned an error. If this is the case the entire rule returns the error message rather than the
type of the variable.

Type-checking expression operators require to perform the following steps:

1. Type-check the left and right argument.
2. Check that the types obtained at the previous step are compatible with the operator

definition.
3. Return the type of the operator.

The process fails when the type-checking of one of the two expressions fails or when the types
are incompatible with the operator definition. For brevity we only present the case of the sum,
the rules for the other operators are analogous:

typeExpr tables expr1 -> error msg
----------------------------------
typeExpr tables expr1 + expr2 -> error msg

typeExpr tables expr2 -> error msg
----------------------------------
typeExpr tables expr1 + expr2 -> error msg
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typeExpr tables expr1 -> t_int
typeExpr tables expr2 -> t_int
--------------------------------------
typeExpr tables expr1 + expr2 -> t_int

typeExpr tables expr1 -> t_double
typeExpr tables expr2 -> t_double
--------------------------------------
typeExpr tables expr1 + expr2 -> t_double

typeExpr tables expr1 -> t_string
typeExpr tables expr2 -> t_string
--------------------------------------
typeExpr tables expr1 + expr2 -> t_string

-----------------------------------
typeExpr tables expr ->

error << " Incompatible types given to operator +" >>

Note that the last rule is executed only if all the previous failed, so when the recursive check did
not fail or when the returned types were incompatible with the sum operator.

Typing a sequence of statements

Typing a sequence of statements requires to type check the first statement in the sequence and
then recursively type check the remaining statements in the sequence. We also need a different
type-checking function that is able to process statements and meta-data structure for its result.

Data TypeTableList -> "," -> Type : TypeResult
Func " typeStmt " -> TypeTableList -> Stmt : TypeResult

This function in general returns an updated list of type tables and a type, since variable decla-
rations might change them. We use t unit for the type of statements, which is a place holder
for language constructs that just change the state of the program.

The base case of the recursion is when the sequence contains only nop, which returns imme-
diately the same type tables.

------------------------------------
typeStmt tables nop -> tables , t_unit

Type-checking a sequence of statements initially checks the first statement. This might return an
updated list of tables. Then it recursively checks the other statements with the result of the first
step and returns the final type tables. If either of the process returns an error we just propagate
the error.

typeStmt tables a -> tables ’, error msg
------------------------------------------
typeStmt tables (a;b) -> tables ’, error msg

typeStmt tables a -> tables ’, t_unit
typeStmt tables ’ b -> finalTables , error msg
----------------------------------------------
typeStmt tables (a;b) -> finalTables , error msg

typeStmt tables a -> tables ’
typeStmt tables b -> finalTables , t_unit
--------------------------------
typeStmt tables (a;b) -> finalTables , t_unit
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Note that we are sure that the final rule succeeds because the type-checking of a statement always
returns unit if the type-checking succeeds, according to the type rules of the language; this is
further explained in the sections below.

Typing variable declarations and assignments

When we encounter a variable declaration we have to add the variable name and its type to
the table of the current scope, unless the variable is already defined in the current scope, in
which case we return an error. We must also prevent the declaration of variable with type unit,
because that is a reserved type for statements. This is implemented with the following rules:

-----------------------------------
typeStmt types ( variable t_unit id) -> [], error << "The type unit cannot be

used as a variable type" >>

types contains id -> Yes
------------------------------------
typeStmt ( types :: tables ) ( variable t ($ name)) -> [], error << " Variable "

+ name " already defined " >>

types add id t -> types ’
------------------------------------------
typeStmt ( types :: tables ) ( variable t id) -> types ’ :: tables

In the case of a variable assignment, the type checker must first look up in the type tables for
the variable type. If the variable cannot be found then an error is returned because the program
is trying to use an undefined variable. Otherwise we check the type of the right expression,
and if it is compatible with the type of the variable then the declaration succeeds. Note that
the process of checking the right side of the assignment might fail and, in this case, we have to
propagate the error.

-------------------------------
typeStmt [] (($ name) = expr) -> [], error << " Variable " + name + "

undefined " >>

typeExpr tables expr -> error msg
-------------------------------------------
typeStmt tables (id = expr) -> [], error msg

types contains id -> No
typeStmt tables (id = expr) -> res
-------------------------------------
typeStmt ( types :: tables ) (id = expr) -> res

types getValue id -> tvar
typeExpr ( types :: tables ) expr -> te
tvar <> te
-------------------------------------
typeStmt ( types :: tables ) (($ name) = expr) -> [], error << " Trying to

assign an incompatible value to " + name >>

types getValue id -> tvar
---------------------------------------------
typeStmt ( types :: tables ) (id = expr) -> ( types :: tables ),tvar

Typing conditionals

Type-checking if-then-else requires to first check the type of the expression provided as con-
dition. This process might fail and in this case we propagate the returned error. If the type
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checking of the expression succeeds but the returned type is not boolean, we have to return an
error as well. Otherwise we can proceed to type-check the body of then and else. This process
can again fail and we must again propagate a possible error. If no errors are returned after this
step we return a possible updated list of type tables and the type unit.

typeExpr tables condition -> error msg
---------------------------------
typeStmt tables (if condition then thenBlock else elseBlock ) ->

[], error msg

emptyDictionary -> table
typeStmt ( table :: tables ) thenBlock -> t, error msg
---------------------------------
typeStmt tables (if condition then thenBlock else elseBlock ) ->

[], error msg

emptyDictionary -> table
typeStmt ( table :: tables ) elseBlock -> t, error msg
---------------------------------
typeStmt tables (if condition then thenBlock else elseBlock ) ->

[], error msg

typeExpr tables condition -> tc
tc <> t_bool
---------------------------------
typeStmt tables (if condition then thenBlock else elseBlock ) ->

[], error << "The condition of an if -then -else must be boolean " >>

---------------------------------
typeStmt tables (if condition then thenBlock else elseBlock ) ->

t_unit , tables

Note that the last rule does not type check again the code blocks of if-then-else because
the only statement that can change a type table is a variable declaration, but after we exit the
scope of the block the local declarations are removed. At this point we are sure that the type-
checking of the blocks has succeeded, otherwise we would have triggered one of the rules above
returning an error, thus we can immediately return the result.

Typing while-loops

Type-Checking a while loop is similar to the procedure of evaluating a conditional statement.
We must first check that the provided condition is boolean. This might fail either because type-
checking the condition itself returns an error or because the type of the expression is not boolean.
After this step we have to check the body of the loop, which might fail as well. If no error is
reported then we can safely return the correct result.

evalExpr tables condition -> error msg
------------------------------------------------
typeStmt tables ( while condition do block ) -> [], error msg

evalExpr tables condition -> tc
tc <> t_bool
------------------------------------------------
typeStmt tables ( while condition do block ) ->

[], error << "The condition of a while loop must be boolean " >>

evalExpr tables condition -> tc
emptyDictionary -> table
typeStmt ( table :: tables ) condition -> t, error msg
-----------------------------------------------------
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typeStmt tables ( while condition do block ) -> [], error msg

-------------------------------------------
typeStmt tables ( while condition do block ) -> tables , t_unit

Again note that the last rules can immediately return the result because we know that, at this
point, we cannot have any error and we do not need to keep the type table of the scope of the
code block.

Typing for loops

Type-checking a for loop requires to first type-check the initialization. This might fail and we
must propagate the error. We must then type-check the condition and the step. This process
can fail either because of an error in the condition or in the statement in the step, or because
the condition is not boolean. If it succeeds we then proceed to type-check the body of the loop.

typeStmt tables init -> t, error msg
-----------------------------------------------
typeStmt tables (for init condition step do block ) -> [], error msg

typeExpr tables condition -> error msg
---------------------------------------------------
typeStmt tables (for init condition step do block ) -> [], error msg

typeExpr tables condition -> tc
tc <> t_bool
---------------------------------------------------
typeStmt tables (for init condition step do block ) ->

[], error << "The condition of a for loop must be boolean " >>

typeExpr tables condition -> tc
tc <> t_bool
---------------------------------------------------
typeStmt tables (for init condition step do block ) ->

[], error << "The condition of a for loop must be boolean " >>

emptyDictionary -> table
typeStmt ( table :: tables ) step -> t, error msg
-----------------------------------------------------
typeStmt tables (for init condition step do block ) -> [], error msg

emptyDictionary -> table
typeStmt ( table :: tables ) block -> t, error msg
-----------------------------------------------------
typeStmt tables (for init condition step do block ) -> [], error msg

-----------------------------------------------------
typeStmt tables (for init condition step do block ) -> tables , t_unit

4.1.4 Discussion

In this section we have presented a small imperative language called C-- that supports variable
scoping, a decisional control structure, and two different iterative control structures (while and
for loops). We have shown how to define its semantics in term of Metacasanova rules and, in the
same fashion, how to define its type system and build a type checker. Although being a complete
language rather complex on its own, C-- lacks some features like functions that programmers
would expect. Although it would not be hard to extend this language with these additional
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features, in the next section we opt to introduce an existing domain-specific language for game
development called Casanova. This language presents interesting and unusual language features,
such as the possibility to use built-in control structures that interrupt the flow of parts of its
programs, thus we believe it would be a better example to show the capabilities of Metacasanova
in terms of language design.

4.2 The Casanova language

In the previous section we have shown how to implement a small imperative language using
Metacasanova. In this section we show the implementation in Metacasanova of Casanova, a
Domain-Specific Language for game development. We first give an informal explanation about
how the language works and then we show an implementation of the language semantics.

4.2.1 The structure of a Casanova program

In this section we give an informal overview of a program in Casanova, leaving aside for brevity
many of the details about the language itself, which can be found in [4, 5, 6, 7].

A program in Casanova is structured as a tree of entities that represent the dynamic elements
of a game, where the root entity is special and called world. For instance, the following code
snippet shows an entity depicting a movable character:

entity Character = {
Position : Vector2
Velocity : Vector2

...

Create (p : Vector2 ) = {
Position = new Vector2 (3.0f, 5.0f)
Velocity = Vector2 .zero

}
}

An entity is similar to a class in an object-oriented programming language, containing fields
and a constructor. However, the difference lies in how the language implements the dynamic
behaviour of an entity: each entity defines a set of rules that describe the temporal evolution of
an entity instance. A rule operates on a set of fields of an entity called domain, and it is allowed
changed only the values of the fields in its domain. A rule can write in a field of the domain
only through a dedicated statement called yield. On the other hand, reading fields outside the
domain is always possible. Each rule in an entity is run periodically up to a maximum refresh
rate, which is usually set to 60Hz. One update cycle is called frame. Each rule is automatically
passed two special identifiers, this and dt, where the former is a reference to the current instance
of the entity and the latter the time elapsed between the last and the current frame.

Rules have mechanics similar to threads: they can be paused for a specific amount of time
or until a certain condition is met. Furthermore, every time the rule executes a yield statement
(thus changing the values of the fields in the entity) or its body has been completely evaluated,
it is suspended until the next frame. Casanova also features interruptible control structures,
such as if-then-else, while-do, and list comprehensions in a syntax similar to SQL or Linq
(from-where-select).

The Casanova compiler generates the code to simulate the rule suspension and restart in the
form of states machines. In the following section we show how to implement the same behaviour
in the form of natural semantics in Metacasanova by using continuation-passing style.
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4.2.2 Casanova semantics in Metacasanova

The memory in is represented using three maps, where the key is the variable/field name, and the
value is the value stored in the variable/field. The first dictionary represents the global memory
(the fields of the world entity or Game State), the second dictionary represents the current entity
fields, and the third the variable bindings local to each rule.

The core of the entity update is the tick function. This function evaluates in order each rule
in the entity by calling the evalRule function. This function executes the body of the rule and
returns a result depending on the set of statements that has been evaluated. This result is used
by tick to update the memory and rebuild the rule body to be evaluated at the next frame.
The result of tick is a State containing the rules updated so far, and the updated entity and
global fields. Since a rule must be restarted after the whole body has been evaluated, we need
to store a list containing the original rules, which will be restored when evaluation returns Done.
At each step the function recursively calls itself by passing the remaining part of original rules
(the rules which body was not altered by the evaluation of the statements) and modified rules
(which body has been altered by the evaluation of the statements) to be evaluated. The function
stops when all the rules have been evaluated, and this happens when both the original and the
modified rule lists are empty.

Interruption is achieved by using Continuation passing style: the execution of a sequence
of statements is seen as a sequence of steps that returns the result of the execution and the
remaining code to be executed. Every time a statement is executed we rebuild a new rule whose
body contains the continuation which will be evaluated next. For example, consider the following
rule:

rule X,Y =
while X > 0 do

wait 1.0f
yield X - 1,Y + 1

The code is executed atomically until the wait statement (assuming that the while condition is
true). At that point we rebuild a new rule containing the code to execute at the next iteration:

rule X,Y =
wait (1.0f - dt)
yield X - 1, Y + 1
while X > 0 do

wait 1.0f
yield X - 1,Y + 1

Note that while is placed at the end of the continuation because it must be re-evaluated after the
first iteration is complete, and that we have decreased the waiting time by dt (the time elapsed
between one frame and the previous one). This is analogous to the semantics of while imple-
mented in Section 4.1.2. We now proceed to describe the implementation of Casanova semantics
in detail. In what follows we assume that we already have evaluation rules for expressions and
for the symbol table as shown for C--, which we will not repeat for brevity.

4.2.3 Rule update

As explained in Section 4.2.2, the rule update is implemented through a tick function that
executes all the statements of the rule until an interruption statement (i.e. a statement that might
pause the rule execution) is met. Thus, the possible results returned by the tick function are the
following: (i) Suspend contains a wait statement with the updated timer, the continuation, and
a data structure called Context which contains the updated local variables, the entity fields, and
the global fields. The function rebuilds a rule which body is the sequence of statements contained
by the Suspend data structure. (ii) Resume is returned when the rule must resume after the last
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Figure 4.1: Possible results of the tick function

waited frame. In order not to skip a frame we must still re-evaluate the rule at the next frame
and not immediately (see the semantics of the wait statement). In this case the argument of
Resume is only the remaining statements to be executed. (iii) Yield stops evaluation for one
frame. This is summarized in Figure 4.1. We use the continuation to store the rule body that
has yet to be evaluated. The function definition is thus the following:

Data "rule" -> List[<<string >>] -> stmt -> stmt -> <<ImmutableDictionary <
string , Value > >> -> <<float >> : Rule

Data "Done" -> ctxt : ExecutionResult
Data " Suspend " -> stmt -> ctxt : ExecutionResult
Data " Yield " -> stmt -> List[ Value ] -> ctxt : ExecutionResult
Data " Resume " -> stmt -> ctxt : ExecutionResult
Data " Atomic " -> stmt -> ctxt : ExecutionResult
Func "tick" -> List[Rule] -> List[Rule] ->

<< ImmutableDictionary <string , Value > >> -> << ImmutableDictionary <string ,
Value > >> -> <<float >> : GameState

Note that in the implementation we use a generic meta-data structure List instantiated with
the meta-type Rule. A rule is a meta-data structure containing a list of strings representing
the domain, a sequence of statements representing the rule body, a second sequence of statement
representing the continuation (i.e. the statements to be evaluated in the next frame), a symbol
table of local variables, and the frame time difference.

As stated above, the tick function stops when all the rules have been evaluated, thus when
both lists of rules are empty. In this case we return the unchanged state of the program:
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--------------------------------------------
tick nil nil fields globals dt -> ( State nil fields globals )

When the rule evaluation returns Resume, we build a rule containing the code to execute at
the next frame, when the rule restarts, an empty continuation, because the current one has been
moved into the body of the new rule, and the updated symbol table, since generally the rule
evaluation might define some local variables. We then recursively update the remaining rules,
and finally we build a new state with the rule that has to been resumed and all the other updated
rules, that are stored in the state returned by the recursive call. Note that we will present the
detail of evalRule further ahead.

evalRule (rule dom body k locals delta ) fields globals -> Resume cont (
Context newLocals newFields newGlobals )

r := rule dom cont nop newLocals dt
tick originals rs newFields newGlobals dt -> ( State updatedRules

updatedFields updatedGlobals )
st := State (r:: updatedRules ) updatedFields updatedGlobals
------------------------------------------------------
tick ( original :: originals ) (( rule dom body k locals delta ):: rs) fields

globals dt -> st

For instance, consider the rule in Listing 4.2 and assume that dt = 1.0.

rule X =
wait 1.0f
yield X + 1

Listing 4.2: Rule example with interruption

After evaluating the wait statement, the rule evaluation would return Resume containing the
following continuation:

cont = yield X + 1

The new rule that will be generated is therefore

rule X =
yield X + 1

In the case of Yield the procedure is analogous, since yield pauses the rule execution for one
frame and thus the continuation must be used to rebuild a new rule with the continuation in its
body.

evalRule (rule dom body k locals delta ) fields globals -> Yield cont values
( Context newLocals newFields newGlobals )

r := rule dom cont nop newLocals dt
tick originals rs newFields newGlobals dt -> ( State updatedRules

updatedFields updatedGlobals )
st := State (r:: updatedRules ) updatedFields updatedGlobals
------------------------------------------------------
tick ( original :: originals ) (( rule dom body k locals delta ):: rs) fields

globals dt -> st

For instance, let us consider again the rule

rule X =
yield X + 1

Its evaluation will generate a rule with an empty body, such as

rule X = nop
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When the rule evaluation returns Done, it means that the rule statements have been completely
evaluated. In this case the rule must pause for one frame. It is also necessary to rebuild the body
of the rule as it was before its execution started. Indeed, during the execution, the rule body
is “broken” when evaluating the body because the executed statements are thrown away during
the recursive calls. In the previous examples we have seen this process in action (see Listing 4.2).
As we can see in the meta-language rule below, this time we build a new set of rules by placing
the rule in its original state.

evalRule r fields globals -> Done ( Context newLocals newFields newGlobals )
tick originals rs newFields newGlobals dt -> ( State updatedRules

updatedFields updatedGlobals )
st := State ( original :: updatedRules ) updatedFields updatedGlobals
---------------------------------------------
tick ( original :: originals ) (r:: rs) fields globals dt -> st

Finally, when the rule evaluation returns Suspend, we obtain the updated state of the wait
statement (when the timer is updated) and a continuation. In this case we rebuild a rule whose
body contains the updated wait statement and the continuation.

evalRule (rule dom body k locals delta ) fields globals -> Suspend (s;cont)
( Context newLocals newFields newGlobals )

r := rule dom s cont newLocals dt
tick originals rs newFields newGlobals dt -> ( State updatedRules

updatedFields updatedGlobals )
st := State (r:: updatedRules ) updatedFields updatedGlobals
------------------------------------------------------
tick ( original :: originals ) (( rule dom body k locals delta ):: rs) fields

globals dt -> st

For instance, consider again the rule in Snippet 4.2 but this time with dt = 0.5. The rule update
this time returns Suspend (because the timer has not elapsed yet) with:

s = wait 0.5f
cont = yield X + 1

thus the new rule will look like:

rule X =
wait 0.5f
yield X + 1

A summary of this process can be seen in Figure 4.2.

4.2.4 Rule evaluation

The function evalRule takes as input a rule and the symbol tables for the current entity and
the world and returns an execution result, as seen in Section 4.2.3.

Func " evalRule " -> Rule -> << ImmutableDictionary <string , Value > >> -> <<
ImmutableDictionary <string , Value > >> : ExecutionResult

Semantics rules having evalRule in their conclusion call in one of their premises the function
eval s. This function is able to process a sequence of statements and return a result depending on
the current statement being executed. When eval s returns Done, Suspend, or Resume, evalRule
simply forwards the result to tick as it is. On the other hand, eval s can also return Yield
and an additional result called Atomic. This kind of result represents a statement that does not
pause the rule execution. Atomic statements are evaluated within the current frame until an
interruption statement or the end of the rule is reached.

In the case of Yield, the function must update the fields of the entity before returning the
result to tick, as shown below:
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Figure 4.2: Cases of rule update

eval_s b k ( Context locals fields globals ) dt -> Yield ks values context
updateFields dom values context -> updatedContext
-----------------------------------------
evalRule (rule dom b k locals dt) fields globals -> Yield ks values

updatedContext

We omit the implementation details of updateFields for brevity; suffice to say that this function
evaluates the expressions contained in yield and writes their values in the symbol table.

In the case of Atomic, the rule must immediately be re-evaluated in the current frame. This
is obtained by recursively calling evalRule again with the current rule whose body has been
replaced by the continuation returned by Atomic (which is simply the remaining code in the rule
body).

eval_s b k ( Context locals fields globals ) dt -> Atomic z ( Context
newLocals newFields newGlobals )

evalRule (rule dom z nop newLocals dt) newFields newGlobals -> res
-----------------------------------------
evalRule (rule dom b k locals dt) fields globals -> res

A schematic representation of the interaction between tick and
evalStatement can be seen in Figure 4.3.

4.2.5 Statement evaluation

Statement evaluation is implemented through the function eval s. This function takes as input
a sequence of statements or a single statement and returns a different result depending on the
statement semantics. This function takes as input the current body of the rule, its continuation
and the context of the program made by the symbol tables of world, the current entity, and the
local variables of the rule.

Func " eval_s " -> stmt -> stmt -> ctxt -> <<float >> : ExecutionResult
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Figure 4.3: Rule update in Metacasanova

The base case of eval s is when the body of the rule is empty and there is no continuation. This
is the case when the whole rule body has been executed and thus we have to return Done.

-------------------------------
eval_s nop nop ctxt dt -> Done ctxt

When the rule body is non-empty, then we must extract the first statement in the statement
sequence. We then combine the remaining body of the rule with the current continuation into a
single statement sequence by using the function addStmt. This function has two cases: (i) both
the remaining body of the rule and the continuation are empty, or (ii) the body of the rule is
non-empty. The first case happens when we are executing the last statement in the rule body.
In this case we generate an empty continuation containing nop. In the second case we simply
combine the remaining body of the rule and the continuation into a single statement sequence.

a != nop
---------------------
addStmt a b -> a;b

-------------------
addStmt nop nop -> nop

Note that the case where only b is nop cannot be generated, because executing a statement
will always generate a non-empty continuation, unless it is the last statement of the rule to be
executed. This case is captured by eval s (as shown above), which will return Done. When Done
is forwarded as result to tick, the body of the rule will be regenerated by replacing it with the
initial code of the rule (we reset the rule) as shown in Section 4.2.3.

After the new continuation has been generated, we recursively call eval s by giving it as
input the first statement in the rule body.

addStmt b k -> cont
eval_s a cont ctxt dt -> res
-------------------------------
eval_s (a;b) k ctxt dt -> res

We now proceed to show how the semantics of the statements is implemented
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Interruptible statements

Interruptible statements are statements that can pause the execution of a rule: wait and yield.
As briefly pointed out before, yield returns as result a meta-data structure Yield containing
the continuation of the rule to resume at the next frame, the values to write in the domain fields,
and the current program context (the symbol tables). Since the arguments of yield can be
expressions, its semantics must evaluate them one by one and return their values.

-------------------------
evalYield nil ctxt -> nil

eval expr ctxt -> v
evalYield exprs ctxt -> vs
-------------------------------------------
evalYield (expr :: exprs ) ctxt -> v :: vs

evalYield exprs ctxt -> values
------------------------------------------------------
eval_s ( yield exprs ) k ctxt dt -> Yield k values ctxt

The statement wait in Casanova has double semantics: one waits for a timer to elapse and the
other until a certain condition is met. In Metacasanova we do not have overloading, thus we are
forced to use a different name to model both cases of its semantics. We use wait for the timed
and when for the conditional version of the statement.

For the timed version we have two cases: (i) the timer has elapsed and we can resume
the execution of the rule at the next frame, or (ii) the timer is still running, thus we have to
suspend the rule. In the first case we return Resume containing the current continuation of the
rule body. In the other case we have to suspend the rule, thus we return Suspend where the
continuation contains wait, whose timer has been updated by removing dt, concatenated to the
current continuation of the rule.

eval expr ctxt -> ($f t)
t > dt
<<t - dt >> -> t’
----------------------------------
eval_s (wait expr) k ctxt dt -> Suspend (wait $f t ’);k ctxt

eval expr ctxt -> ($f t)
t <= dt
----------------------------------
eval_s (wait expr) k ctxt dt -> Resume k ctxt

The implementation of when is analogous: if the condition is not met then we simply return
Suspend where the continuation contains when concatenated with the previous continuation.
Otherwise we return Resume containing the current continuation.

eval expr ctxt -> ($b true)
---------------------------------------------
eval_s (when expr) k ctxt dt -> Atomic k ctxt

eval expr ctxt -> ($b false )
------------------------------------------
eval_s (when expr) k ctxt dt -> Suspend (when expr);k ctxt

Control strucutres

Casanova supports a conditional control structure (if-then-else), and two iterative control
structures (while-do and for-do). The only difference with the usual semantics of control
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structures lies in for-do, which is like that of Python and F# as it takes as input a variable that
is used to iterate through the elements of a list.

The implementation of the control structures is similar to that of C-- with the difference that
their body can be interrupted as well. At this purpose, the semantics rules must generate an
appropriate continuation that will be handled by tick. The conditional control structure checks
if the condition is true or false to select the appropriate code block to execute. After that it
returns an Atomic result containing the concatenation of the selected code block with the current
continuation of the rule. This is because the evaluation of the condition is an atomic process,
i.e. must not pause the execution of the rule. The first statement of the selected code block will
be executed immediately after.

eval cond ctxt -> $b true
---------------------------------------------
eval_s (if cond then b else c) k ctxt dt -> Atomic b;k ctxt

eval cond ctxt -> $b false
---------------------------------------------
eval_s (if cond then b else c) k ctxt dt -> Atomic c;k ctxt

while-do follows the same behaviour described in C--, thus if the condition is false we simply
skip the loop, otherwise we execute the body followed by the same loop. This time we must
encapsulate the code built after the evaluation of the condition in an Atomic result, because the
body must be immediately evaluated after checking the condition, as for conditionals.

eval cond ctxt -> $b true
----------------------------------------------
eval_s ( while cond b) k ctxt dt -> Atomic b;(( while cond b);k) ctxt

eval cond ctxt -> $b false
----------------------------------------------
eval_s ( while cond b) k ctxt dt -> Atomic k ctxt

The semantics of for-do loop are quite different than what we had defined for C--. The loop
defines a variable that is used to iterate each element of a list. The list can be given directly or
be an expression that returns a list. Thus, we have to first add to the local variables the one
defined in the loop, then evaluate the expression for the list, and finally evaluate the body of
the loop itself. Note that lists here are considered lists in the Casanova language and not lists of
Metacasanova (thus they are values in Casanova and not meta-data structures).

eval expr ctxt -> ($l nil)
------------------------------------------
eval_s (for v in expr b) k ctxt dt -> Atomic k ctxt

eval expr ( Context locals e w) -> ($l (x :: xs))
locals add var x -> updatedLocals
------------------------------------------
eval_s (for ($ var) in expr b) k ( Context locals e w) dt -> Atomic b;(( for

($ var) in ($l xs) b);k) ( Context updatedLocals e w)

The base case of the evaluation is when the list is empty. In this case we simply return Atomic
containing the current continuation because the loop can be skipped. The recursive case is when
the list is non-empty: in this case we first evaluate the expression of the list, then we add the
variable defined in the loop to the local variables, assigning it the value of the head of the list. We
finally return an Atomic that contains a continuation where the body of the loop is concatenated
to the loop itself and the current continuation. Atomic will also contain a program context where
the locals now contain the new variable defined in the loop.
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Note that, for simplicity, we do not have code block scoping like in C--. This feature can
be implemented by replacing the local symbol table with a list of tables as previously shown in
Section 4.1.1.

4.3 Evaluation

In this section we compare the runtime performance of a program written for C-- and Casanova
implemented in Metacasanova with their equivalent implementation in Python. Moreover, we
evaluate the length of the language definition in Metacasanova with respect to their hard-coded
implementation. In total we ran one test for several executions of a program written in C--
against the same implementation in Python, and five tests for a program in the meta-compiled
version of Casanova against the Python implementation by varying the entity number. The
details of the setup are described below.

4.3.1 Experimental Set-up

We evaluated C-- and the meta-compiled Casanova runtime performance against an equivalent
implementation of equivalent programs in Python. C-- was tested running a program to compute
the factorial, while we implemented a program in Metacasanova where some entities patrol an
area according to pre-defined checkpoints. In the case of Casanova, this language was chosen
based on its use in game development: Python has been used extensively in several games such
as Civilization IV [43] and World in Conflict [66] because of the native support for coroutines
that allow to implement a behaviour similar to that of Casanova rules. In the case of C--, we
still use Python because, as we discuss further ahead, the behaviour of this language is much
more similar to that of a dynamic language (the name was chosen mainly because of a lack of
creativity from the author than because of its similarity with C). As for the code length, we
compare the length of the semantics definition of C-- with a hard-coded implementation, while
we compare the definition of Casanova in Metacasanova with respect to its hard-coded compiler
written in F#.

For Casanova we use a program where a Casanova entity patrols a set of checkpoints. When
the entity reaches the position of a checkpoint it will move to the next one. The same code
has been re-implemented in Python using coroutines to simulate the interruption mechanism of
rule statements that is built-in in Casanova. The code generated by the version of Casanova
implemented in Metacasanova was imported in a C# program for Monogame but tested in
isolation to actually measure only the running time of the logic, which would otherwise be
influenced by the rendering time and the overhead of Monogame itself. We run the Casanova
program and the Python version with a variable number of entities (that will be updated) ranging
from 100 to 250. For each execution we measure the time taken to update them all for each frame,
and we average this time on the number of total frames. As for the code length of the language
definition, we measure the length of the language specification in Metacasanova and we compare
it with the relative parts of code in the hard-coded version of the compiler.

This code has also been tested by including it in a Monogame project. The program code
generated with the Metacompiler updates the logic of the entities that are drawn using the
Monogame framework. In this way the logic of the game is written in the meta-compiled version
of Casanova and the external framework is used only for the graphical part. This has the
advantage that the same code can be re-used in another game engine that is able to run .NET
code (for instance Unity). A schematic representation of the integration with Monogame is shown
in Figure 4.4
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Figure 4.4: Integration of meta-compiled Casanova in Monogame
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4.3.2 Motivation for the Experimental Set-up

In this section, Metacasanova is being compared performance-wise to a scripting language com-
monly used in game development. This choice derives from the fact that the hard-coded version
of Casanova compiler generates code that is faster than C# [7]. Achieving the same order of
performance of Casanova hard-coded in its meta-compiled version would be unlikely, thus the
goal of Metacasanova (also according to the research questions) is not to be a “competitor” of
the hard-coded compiler, but to ease the Casanova language development and extension at the
same time keeping performance acceptable in the scope of game development. For this reason,
the performance of the code of a Casanova program generated by Metacasanova will always be
compared with an idiomatic implementation of the same program in a language used in the
industry of game development, and not with the hard-coded version of Casanova.

4.3.3 Performance

From Table 4.3 we see that the implementation of Casanova 2.0 language in Metacasanova is
almost 5 times shorter in terms of lines of code than the hard-coded implementation of the
Casanova compiler written in F#, while the C-- implementation is 11 times shorter (Table
4.4). We believe it is worthy noticing that structures with complex behaviours, such as wait
or when, require hundreds of lines of codes with a standard approach (the code lines to define
the behaviour of the structure plus the support code to correctly generate the state machine),
while in the meta-compiler we just need tens of lines of codes to implement the same behaviour.
Moreover we want to point out that the previous Casanova compiler was written in a functional
programming language: these languages tend to be more synthetic than imperative languages,
so the difference with the same compiler implemented in languages such as C/C++ might be
even greater.

The readability with respect to the hard-coded compiler code is also improved: we managed
to implement the behaviour of synchronization and timing primitives almost imitating one to
one the formal semantics of the language definition. In the hard-coded compiler implementation
for Casanova 2.0 the semantics are lost in the code for generating finite state machines. Just for
comparison, Figure 4.5 shows the code from the Casanova hard-coded compiler to generate part
of the state machine necessary to simulate the behaviour of the timed version of wait (the code
generation of when has about the same size).

The performance results are shown in Table 4.2. We see that the generated code has perfor-
mance on the same order of Python, although 3 times slower. This gap is accentuated in the
case of C--, which is 50 times slower than Python, because in the case of a simple imperative
program, where the use of virtual tables for polymorphic types (as coroutines) is limited, the
speed of Python greatly increases.

4.3.4 Discussion

Even though the size of the code required to implement the language has been drastically reduced
(almost 1/5 shorter), performance dropped dramatically. The problem lies in the fact that, in
order to implement a memory model, in the current version of Casanova we must rely on dynamic
access to a symbol table at runtime. Indeed, when we define a new variable or read its value,
the semantics contain a rule defining the insertion or the lookup of the variable. Metacasanova
generates the code able to run those rules, but the memory operations are thus executed at
runtime as dictionary operations.

In order to encode a symbol table in the meta-compiler in the current implementation (used
for example to store the variables defined in the local scope of a control structure or to model
a class/record data structure), we are left with two options: (i) define a custom data structure
made of a list of pairs, containing the field/variable name as a string and its value, in the following
way
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Figure 4.5: Code generation of wait in the Casanova compiler
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Meta-compiled Casanova
Entity # Average update time (s) Frame rate

100 0.00349 286.53

250 0.00911 109.77

500 0.01716 58.275

750 0.02597 38.506

1000 0.03527 28.353

Python
Entity # Average update time (s) Frame rate

100 0.00132 756.37

250 0.00342 292.05

500 0.00678 147.54

750 0.01087 91.988

1000 0.01408 71.002

Table 4.2: Patrol sample evaluation

Meta-compiled Casanova
Module Code lines

Data structures and function definitions 40

Query Evaluation 16

While loop 4

For loop 5

If-then-else 4

When 4

Wait 6

Yield 10

Additional rules for Casanova program evaluation 40

Additional rules for basic expression evaluation 201

Total: 300

Casanova 2.0 compiler
Module Code lines

While loop 10

For-loop and query evaluation 44

If-Then-Else 15

When 11

Wait 24

Yield 29

Additional structures for rule evaluation 63

Structures for state machine generations 754

Code generation 530

Total: 1480

Table 4.3: meta-compiler vs standard compiler
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Statement Metacasanova C#
if-then-else 4 103

while 7 73

For 11 81

C-- Python
1.26ms 2:36 � 10� 2ms

Table 4.4: Code length implementation of C-- and run-time performance

Data " table " -> List[ Tuple [string , Value ]] : SymbolTable

or (ii) use a dictionary data structure coming from .NET, such as
ImmutableDictionary 1 , which was the implementation choice for Casanova. In both cases, the
behaviour of the language implemented in Metacasanova will be that of a dynamic language,
because whenever the value of a variable or class field must be read, the evaluation rule must
look up the symbol table at run time to retrieve the value.

The same applies to type checking: in Section 4.1.3 we showed the type rules that check the
types of a C-- program. In statically-typed languages, type checking is usually performed at
compile time and not at runtime. However, in this case Metacasanova will again generate the
code to run the type rules, but the actual execution is performed when the program is run, thus
the behaviour of C-- is more similar to that of a dynamic language rather than a static language
(and its performance as well).

This issue is caused by the fact that, in the current state of Metacasanova, the meta-type
system is unaware of the type system of the language that is being implemented in the meta-
compiler. This means that, as it is, the meta-language is unable to define a statically-typed
language. This is not a problem limited to Metacasanova but to all meta-compilers having a
meta-type system that does not allow embedding of the object language type system.

The same applies for the lookup: the access to symbol tables needs not to be dynamic because
the symbol table does not grow when the program runs, thus the access to a specific variable
could be directly inlined in the code. For example, if we want to access variable x, which is the
third entry of the symbol table, we will always perform the same lookup. Thus, this lookup could
be simply inlined as an access to the third element of the symbol table. An analogous situation
happens for Casanova entities: their structure does not change at runtime, so if we access, for
instance, a field of an entity and that is the third one, then we always perform a lookup on the
third element of the symbol table, and this can be inlined directly as well.

4.4 Summary

In this chapter we showed two examples of how to use Metacasanova to implement program-
ming languages. We started by showing how to implement a small imperative language called
C--. We showed an implementation of its semantics and then of its type system. Later we
re-implemented the Casanova language, a DSL for game development. We showed how to imple-
ment the semantics of interruptible code, which in Casanova had been implemented with state
machines, by using continuation-passing style. Metacasanova implementation of Casanova re-
sults to be 5 times shorter than that of the hard-coded compiler for Casanova written in F#. In
the case of C-- the gap in terms of lines of code is even larger, being the code for its semantics 11
times shorter than a hard-coded implementation. However, the code performance drops dramat-
ically: testing the meta-compiled version of Casanova against Python results in its code being
3 times slower (although on the same order of magnitude), while the C-- code is even 50 times

1 For a motivation about the choice of the dictionary implementation we point the reader to Section 5.7
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slower. The cause of this is that, even thought these languages could be statically-typed, the
rule evaluation performs the lookup of variables and types at runtime. This cannot be changed
with the Metacasanova language abstractions presented so far because the meta-type system
of Metacasanova is unaware of the types of the embedded language (i.e. the language that is
being implemented in Metacasanova). In the next chapter we will show a language extension for
Metacasanova that relies on Functors to embed the type system of languages implemented in
Metacasanova in its type system, and to inline the access to variables at compile time.



Chapter 5

Metacasanova Optimization

First you learn the value of
abstraction, then you learn the
cost of abstraction, then you’re
ready to engineer.

Kent Beck

In Chapter 3 and 4 we have presented the Metacasanova metacompiler and its meta-language
and shown how to implement with it a small imperative language, C--, and a DSL for game
development, Casanova. The performance analysis showed that, although the development effort
for the language compilers was greatly reduced by using Metacasanova, this has come at the
cost of performance. The performance decay is due to the fact that the meta-type system of
Metacasanova is unaware of the type system of C-- or Casanova. This requires all the type
checking and access to data structures to be performed at runtime, thus making a statically-
typed language exhibit the behaviour and performance of dynamically typed languages. In this
chapter we propose a language extension [38] for Metacasanova that is designed to overcome the
problem of performance decay and dynamic checks. In this context we use the term embedded
language to refer to a language that is being implemented in Metacasanova and embedded program
for a program implemented in an embedded language.

5.1 Language extension idea

The experimental results from Chapter 4 showed that the performance of Metacasanova is
strongly affected by the dynamic type checks and symbol table access at runtime. This is neces-
sary because Metacasanova generates the code necessary to evaluate the semantics of accessing
the value of a variable in the symbol table that mimics the behaviour of rules in natural seman-
tics, but such evaluation is performed at runtime. However the runtime evaluation is necessary
only because of the limitations of the language presented so far, as Metacasanova is not able to
build a symbol table while compiling the meta-program. This should not be the case since

1. The symbol table of a statically-typed language does not grow at runtime because it is
built during the compilation.

2. The position of an entry for a variable in the symbol table does not change during the
program execution, thus every time we perform an access to the same variable, we access
the very same element in the symbol table.

Analogously, type checking in a statically-typed language is performed at compilation time rather
than at runtime, which happens in dynamic languages such as Python. Metacasanova is forced

101
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Field Value
Position 10

Velocity 10

Table 5.1: Meta-representation of the physical body

to do runtime type checking because, at compilation time, the metacompiler only checks for the
meta-types, i.e. the types of the language abstractions defined in the meta-language, but not for
the program structures of the embedded program itself. This would require to be able to embed
the type system of the embedded language into the meta-type system of Metacasanova. In this
way the type checker of Metacasanova would be able to check at the same time the types of both
the meta-program and of the embedded program.

To better clarify what stated so far we show in the following section an example of what
happens when accessing the field of a Casanova entity with the implementation given in Chapter
4. We then proceed to show the idea of a possible solution to overcome the performance decay.

5.1.1 Field access in Casanova

As we showed in Section 4.2.2, an entity in Casanova embedded in Metacasanova is represented
via a map where the key is the field name and the value is the value currently stored in the field.
This representation is very similar to that of records or classes. Let us consider the following
entity representing a physical body consisting of a Position and a Velocity in a 2D space:

type PhysicalBody = {
Position : Vector2
Velocity : Vector2

}

and the following rules for PhysicalBody

rule Position = Position + Velocity * dt

rule Position =
if Position .X > 500f then

yield new Vector2 (500f, Position .Y)
elif Position .X < 0f then

yield new Vector2 (0f, Position .Y)
elif Position .Y < 0f then

yield new Vector2 ( Position .X ,0f)
elif Position .Y > 500f then

yield new Vector2 ( Position .X ,500f)

The first rule simply updates the position using the Euler approximation of the differential
equation for the velocity

v(t) =
ds(t)
dt

while the second rule ensures that the physical body does not exit a specific area, which could
represent the playable area in a 2D game.

Assuming that the physical body is in position (10; 10), it is represented in Metacasanova via
a map as shown in Table 5.1.
The Metacasanova semantics rule that evaluates the first Casanova rule will evaluate the ex-
pression in its body by accessing respectively the field Position and Velocity to compute the
expression value. It then stores the expression value in Position as shown in Table 5.2.

As for the second rule, assuming that Position.Y > 500f, the rule will access Position
three times: (i) to evaluate the expression in the conditional, (ii) to read Position.Y when
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Field Value
) Position 10,10

Velocity 10,0

Field Value
Position 10,10

) Velocity 10,0

Field Value
) Position 11,10

Velocity 10,0

Table 5.2: Memory access in the �rst rule of the Physical Body. We assume dt = 0.1 and Velocity =
(10,0)

Field Value
) Position 501 ,10

Velocity 10,10

Field Value
) Position 501, 10

Velocity 10,10

Field Value
) Position 500,10

Velocity 10,10

Table 5.3: Memory access in the second rule of the Physical Body. We assume Position.X = 501

instantiating a new vector, and (iii) to write the new vector in Position. This situation is
shown in Table

It should now appear clear that every time we need to read or write Position we access
the first element of the table, while for Velocity we always access the second. In the following
snippet we provide an alternative version of the code for the Casanova rules above that shows
what really happens in Casanova embedded in Metacasanova :

rule Position = PhysicalBodyTable [0] + PhysicalBodyTable [1] * dt

rule Position =
if PhysicalBodyTable [0].X > 500f then

yield new Vector2 (500f, PhysicalBodyTable [0].Y)
elif PhysicalBodyTable [0].X < 0f then

yield new Vector2 (0f, PhysicalBodyTable [0].Y)
elif PhysicalBodyTable [0].Y < 0f then

yield new Vector2 ( PhysicalBodyTable [0].X ,0f)
elif PhysicalBodyTable [0].Y > 500f then

yield new Vector2 ( PhysicalBodyTable [0].X ,500f)

Let us now assume that the program provides an invalid value for the update of Position:

rule Position = "(10 ,10)"

What would happen in embedded Casanova is that the type checker evaluates the type of the
expression in the rule body, obtaining string. This type is then compared with that of Position,
which is Vector2, and at this point an error would be reported. Again, this would require at
runtime to access the first element of a symbol table containing type information about the entity
fields. Note that all these lookups are not array accesses but rather dictionary accesses.
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5.1.2 Inlining the entity �elds

From the example above we can notice that, when the program runs, the symbol table used to
represent a Casanova entity does not change, nor its entries change position. This means that
every time we read or write the same field we perform the same access in the table. In the
implementation provided in Section 4.2.2 this access requires the execution of a Metacasanova
rule that is able to traverse the dictionary used for the entity symbol table and return the stored
value. The traverse is performed every time, regardless of the fact that the field we are trying to
access is indeed the same. Moreover, as it was also stated in Section 4.3, we are looking at the
very optimistic scenario where we make use of external .NET dictionaries to actually model the
entity. If one had to rely solely on language abstractions defined in Metacasanova the symbol
table should be modelled as a list of pairs containing field names, represented as strings, and
meta-data structures representing values in the embedded language, introducing even a greater
overhead. The physical body modelled in such way would then look like

[(" Position " ,(10 ,10)) ,(" Velocity " ,(10 ,0)]

Accessing Position would then be performed by a Metacasanova rule that looks for the
correct field name and stops when the field in this tuple has been reached:

name = fieldName
----------------------------------
getField name (( fieldName , value ) :: t) -> value

name <> fieldName
getField name t -> v
----------------------------------
getField name (( fieldName , value ) :: t) -> v

However the traversal of the tuple would always be the same when looking for a specific field,
namely for Position the first Metacasanova rule will always be executed, while for Velocity the
first time the second rule will be executed, which in turn recursively evaluates the remaining part
of the list. The recursive call will then trigger the first rule at the second step. That being said,
since the table does not grow and the access patterns are always the same, we could represent
an entity as a nested tuple of pairs, in the fashion of Church encoding [60, 89], and inline in
the code fst PhysicalBodyTable for Position and fst(snd PhysicalBodyTable) for Velocity
whenever we require to access the respective fields, without repeating the same traversal every
time. In this way the entity would look like:

PhysicalBodyTable = (" Position " ,(10 ,10)) ,((" Velocity " ,(10 ,0)) ,())

and thus fst PhysicalBodyTable (access to Position) would return
("Position",(10,10)) and fst(snd PhysicalBodyTable) (access to
Velocity) would return ("Velocity",(10,0)).

In the following sections we present the language extension required to allow this form of
inlining and we show their usage implementing the example above.

5.2 Modules and Functors

In order to implement the idea about inlining symbol table access and embed the type system of
a language inside Metacasanova type system we extend the language with functors and modules.
Functors are a concept borrowed from category theory that here are used in a more narrow sense.
Formally a category is defined as follows [13, 76, 88]:

De�nition 5.1. A category C is made of

� A collection of objects.
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� A collection of arrows or morphisms between objects. Each morphism starts from a source
object and ends into a target object.
� For every triplet of objects, there exists a composition operation �, such that, given the

morphisms f : a! b and g : b! c then g � f : a! c.
� The composition operation is associative, i.e. f � (g � h) = (f � g) � h.
� For each object x There exists a morphism 1x : x! x, called identity, such that for every

morphism f : a! x and g : x! b we have that f � 1x = f and g � 1x = g.

Functors are mapping between two categories defined as follows:

De�nition 5.2. Given two categories C1 and C2 , a functor F from C1 to C2 is a mapping such
that:

� Each object x of C1 is mapped to an object F(x) of C2 .

� Each morphism f : a! b of C1 is mapped to a morphism F(f) : F(a)! F(b) such that

{ F(1x ) = 1F ( x ) .

{ For all morphism f : a! b and g : b! c of C1 we have that F(g � f) = F(g) � F(f).

Informally, functors are transformations between categories that preserve the identity and the
associativity properties. In the scope of programming languages the term functor is used with a
more narrow sense: they usually define transformations between types. These transformations
are functors (actually endofunctors since they transform elements of the category of types in
elements of the same category) at all effects but not all functors from category theory coincide
with functors in a programming language. Popular programming languages that provide functors
in this sense are Haskell with Type Classes [55, 59, 67, 101, 109] and Caml with Modules [64,
85, 111]. Functors in Metacasanova are no different: they define transformations between types.
Modules are simply collections of function and functor declarations grouped together under the
same name that can be used as types themselves.

5.2.1 Language Extension

Modules in Metacasanova can be defined through the keyword Module followed by a module
name and series of construction parameters that are used to create an instance of the module.
Constructions parameters have a form similar to parameters in normal functions with the differ-
ence that, besides specifying the type, we can also specify an identifier for that parameter. The
special symbol * (kind) can be used if any type is suitable for that specific argument. Elements
of a module can be accessed with the . access operator.

Module "M" => ma1 : t1 => ma2 : t2 => ... => ma_k : tk : M {
Func "f1" -> ...
Func "f2" -> ...
Func "f_k" -> ...

...
}

Functors are defined similarly to function but using the double arrow instead of the single arrow:

Functor "foo" a1 => a2 => ... => an : T

Moreover, since the result of calling a functor is a type, functors can be used wherever a type
annotation is required, for example in the declaration of a function

Func "bar" b1 -> b2 -> ... -> (foo a1 a2 ... an) -> ... : U
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Figure 5.1: Compiler architecture with functor interpreter

Functors are evaluated through rules whose behaviour is identical to those used to evaluate
functions. The difference lies in the fact that results of functors are evaluated at compile time
rather than runtime. Functors results are evaluated by an interpreter that mimics the semantics
of rules in natural semantics, in the fashion of the semantics used in the code generation explained
in Section 3.6. Since the evaluation is performed at compile time, all the values passed to a
functor call must be known when compiling the meta-program. This means that the arguments
of a functor call can be either types or constants. When an evaluation rule for a functor is
called, this is run through the interpreter and a module instance is returned as result. Figure 5.1
shows the steps performed by the new compiler architecture to include functors interpretation.
Functors can be called both in the premises of rules for functors and for rules that evaluate
regular functions. In the latter case, the premise will simply instantiate the module that can
then be used within the rule itself. This process is shown in Figure 5.2: the functor call is
processed by selecting the possible candidate rules to execute it, in the same fashion of what
is done for regular functions. At this point the interpreter runs the rules and the result of the
first one that succeeds is taken. The result of such rule is a module instantiation. The module
instantiation is bound to the variable contained in the result of the premise. From that point
on, the module instance can be referred by the caller rule.

In the following sections we show how to implement the mechanism of inlining for the record
getter and setter described in Section 5.1 that makes use of the compile-time interpretation of
functors.

5.3 Record implementation with modules

In Section 5.1.2 we showed how Casanova entities can be expressed, at meta-language level, as a
tuple of field names and values. We also showed that getters and setters always perform the same
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Figure 5.2: Functor processing
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steps when looking up for the same field because the entity structure does not change at runtime.
In this section we proceed to give an functor-based implementation of Casanova entities. We
refer to this implementation as “Record”, since a Casanova entity is simply a record from the
point of view of the data representation. Moreover, since this solution works in general for any
data structure that is isomorphic to a record. From now on we also use, as example, the physical
body entity described in Section 5.1.1.

A module for records simply contains a functor that returns the type of the record. This
functor, in general, can return any type since the type of the record can be “customized” and
depends on the specific definition given by the programmer (thus it cannot be known beforehand).
For this reason we use kind as return type for this functor. The functor itself is parameterless
since nothing is required to generate the type of a record.

Module " Record " : Record {
Functor " RecordType " : * }

The data representation of the record will be a tuple as shown in Section 5.1.2. For this
purpose, we need two functors that are able to represent the type of a record in a recursive
way with one being the type of an empty record (a record with no fields) and another a record
field followed by the rest of the record representation. The functor for the empty record simply
returns the type of the record module, while the functor to represent a record field takes as input
a string, representing the name of the field, kind because a record field can have any type, and
a Record which represents all the other fields coming after the current one.

Functor " EmptyRecord " : Record
Functor " RecordField " => string => * => Record : Record

After declaring the functors necessary to build a record, we proceed to define their implemen-
tation in the form of rules. The functor for an empty record simply generates a module containing
a function cons, that is the constructor for the record, that simply returns unit (because an empty
record does not contain any field). Consistently, the functor RecordType implemented by the
module will simply return unit as type. Note that a module instantiation must implement at
least all the declarations of the module (like for an interface), but can add other declarations
and implementations that are not shared by all the module instantiations. For example cons for
an empty record is different than the one for a non-empty one.

-------------------
EmptyRecord => Record {

Func " cons " : unit

------------------
RecordType => unit

------------------
cons -> ()

}

A record field must be constructed through a functor that takes the field name, the type of
the field, and the type of the rest of the record. This functor will construct the type of a record
as a Tuple, where the first element is the type of the current field and the second the type of the
rest of the record. The constructor of the record field will be a function that takes as input an
argument of the type of the current field, a tuple representing the remaining part of the record
and returns a tuple combining the current field and the rest of the record.

------------------
RecordField name type r = Record {
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Func " cons " -> type -> r. RecordType : RecordType

---------------------------------------
RecordType => Tuple [type ,r. RecordType ]

-------------------
cons x xs -> (x,xs)}

Consider now the physical body representation given above. We show how to use the functors
we have just defined to build an instance of a physical body. First of all we defined a functor
PhysicalBodyType that returns a Record.

Functor " PhysicalBodyType " : Record

The final representation of the type that should be returned by PhysicalBodyType is Tu-
ple[Vector2,Tuple[Vector2,unit]] because the field Position and Velocity have type Vec-
tor2. Note that Vector2 can be trivially implemented in Metacasanova as a tuple containing
two floating point values. Here we use this type assuming that has already been defined above.
The same applies to unit, which can be defined as a meta-data with no arguments.

The rule to evaluate PhysicalBodyType will call in its premises EmptyRecord and RecordField
to generate the type of the tuple appropriately:

EmptyRecord => empty
RecordField " Velocity " Vector2 empty => velocity
RecordField " Position " Vector2 velocity => body
----------------------------
PhysicalBodyType => body

Let us now analyse in detail what the premises generate: the first premise will generate an
instance of EmptyRecord and bind it to the variable empty. The instance of this module is param-
eterless and thus will always be the same every time the functor is invoked. The second premise
will instantiate RecordField by using the string "Velocity" as field name, Vector2 as field type,
and empty as argument for the remaining part of the record (there is no other field after Velocity
in the physical body). The instantiation of RecordField produces a rule for the functor Record-
Type. According to the definition above this functor generates Tuple[type,r.RecordType]. By
replacing the argument values provided in the premise, we have

type := Vector2
r := empty := EmptyRecord

Thus r.RecordType uses the functor RecordType in the instance of EmptyRecord which returns
the type unit (the call can be seen as empty.RecordType). Thus r.RecordType can be replaced
with unit, thus leading to Tuple[Vector2, unit]. Thus the rule for the functor RecordType
generated in the module returned by the second premise will be:

-----------------------
RecordType => Tuple [Vector2 ,unit]

By replacing the argument variables with the values provided in the second premises we can
also get the declaration and rule for cons. By replacing again type and r.RecordType as done
before, we have that the declaration for cons in the current instance of the module becomes:

Func "cons" -> Vector2 -> unit: Tuple [Vector2 ,unit]

while the corresponding rule will be generated as

--------------------
cons x xs -> (x,xs)
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The complete module instance will then look like:

velocity := Record {
Func " cons " -> Vector2 -> unit: Tuple [Vector2 ,unit]

-----------------------
RecordType => Tuple [Vector2 ,unit]

--------------------
cons x xs -> (x,xs)

}

The third premise calls RecordField with

name := " Position "
type := Vector2
r := velocity

Now in the definition of the RecordField module again the functor RecordType returns
Tuple[type,r.RecordType]. Now r.RecordType can be rewritten as velocity.RecordType that
returns (see the instantiation of velocity above) Tuple[Vector2,unit]. Thus RecordType for
the field Position will be instantiated as

-----------------------
RecordType => Tuple [Vector2 , Tuple [Vector2 ,unit ]]

Analogously the declaration of cons will be instantiated as

Func "cons" -> Vector2 -> Tuple [Vector2 ,unit ]: Tuple [Vector2 , Tuple [Vector2 ,
unit ]]

while its rule is the same of the second premise. The full module instance will then be

body := Record {
Func " cons " -> Vector2 -> Tuple [Vector2 ,unit ]: Tuple [Vector2 , Tuple [

Vector2 ,unit ]]

-----------------------
RecordType => Tuple [Vector2 , Tuple [Vector2 ,unit]

--------------------
cons x xs -> (x,xs)

}

which is returned by the functor PhysicalBodyType. In order to build an instance of the physical
body, we define a function that returns a value of type PhysicalBodyType. which in turn is simply
Tuple[Vector2,Tuple[Vector2,unit]):

Func " PhysicalBody " : PhysicalBodyType . RecordType

-----------------------
PhysicalBody -> PhysicalBodyType . cons ((10.0 ,10.0) ,((10.0 ,0.0) ,()))

The rule creates a physical body in position (10; 10) moving at velocity (10; 0).

One of the main arguments in favour of using functors was that they should allow to embed
the type system of the embedded language in the meta-type system of Metacasanova. This
means that, at compile time, the meta-compiler should be able to detect a physical body that
is constructed in the wrong way. Let us then assume that we define another function to build a
physical body where the programmer uses a scalar for the velocity instead of a vector:
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Func " WrongPhysicalBody " : PhysicalBodyType . RecordType

-------------------------------------
WrongPhysicalBody -> PhysicalBodyType .cons ((10.0 ,10.0) ,(10.0 ,()))

What happens is that PhysicalBodyType.RecordType is equal to
Tuple[Vector2,Tuple[Vector2,unit]]. At this point the type checker of Metacasanova will
successfully match the first element of the tuple returned by the rule, which is correctly provided
as a value of type Vector2, but will fail to check the second, which is double where it expects
a Vector2. This check happens statically, rather than dynamically at runtime as was the case
with the implementation based on dictionaries in Section 4.2.2.

5.4 Getting Values from Record Fields

Getting a value from a record field requires defining a module Getter containing a functor
GetField that returns the type of the field that we need to get. This type will be used as
the return type of the function get that is able to get that specific field. This function is also
contained in this module and takes as argument the record from which we are getting the value
and returns, as said above, the value of the field. The module Getter is built using the name of
the field that is able to read and the record to read from.

Module " Getter " => (name : string ) => (r : Record ) : Getter { ... }

The functor GetType returns kind because in general the type of the field of a record is
arbitrary. The function get uses in its declaration the functor RecordType to determine the type
of the record to use and GetType to determine the type of the field to read. The complete module
will look like

Module " Getter " => (name : string ) => (r : Record ) : Getter {
Functor " GetType " : *
Func "get" -> (r. RecordType ) : GetType

}

The getter has two implementations of the rule that instantiates the Getter module: one is used
when the current field in the module tuple is the one we are trying to read, and the other that
is able to build the correct getter if the field is in the remaining part of the record. The first
happens when the name of the current field is the same as the field name provided as argument
of the functor GetField. In this case we have the following rule for the functor:

Functor " GetField " => string => Record : Getter

name = fieldName
thisRecord := RecordField name type r
--------------------------------------
GetField fieldName ( RecordField name type r) => Getter fieldName thisRecord

{

---------------
GetType => type

---------------
get (x,xs) -> x

}

Listing 5.1: Getting a �eld (case 1)
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The functor GetType simply returns the type of the current record field, because it is the correct
field to read, and get returns the first element of the record tuple, which represents the value
stored in the field itself.

When the field we are trying to read is not the one we are currently examining in the record
tuple, we must build a getter functor that is able to recursively get the field from the remaining
part of the record. At this purpose, we have to extend the Getter with an additional functor
GetAnotherField that returns a module instance capable of reading the value from the correct
field in the remaining part of the record and its type. The implementation of the rule for this
case is the following:

name <> fieldName
thisRecord := RecordField name type r
-------------------------------------
GetField fieldName ( RecordField name type r) => Getter fieldName type

thisRecord {
Functor " GetAnotherField " : Getter

GetField fieldName r => otherGetter
------------------------------
GetAnotherField => otherGetter

GetAnotherField => g
---------------------
GetType => g. GetType

GetAnotherField => getter
getter .get xs -> v
------------------
get (x,xs) -> v

}
}

Listing 5.2: Getting a �eld (case 2)

The rule for the functor GetAnotherField simply calls recursively the rule for GetField with
the remaining part of the record. If the next field is the correct one then this time we will use
the rule in Listing 5.1, otherwise the rule in Listing 5.2 will be re-applied until the correct field
is reached. The functor GetType simply calls GetAnotherField to obtain the module instance
necessary to get the field from the rest of the record, and then calls the functor GetType from
that instance. Finally, the function get will again use GetAnotherField and then call the get
function from the getter returned by GetAnotherField with the remaining part of the record
tuple. This function call will return the desired value that will be used also as result of the
current get.

Let us now consider again the physical body implemented with functors in Section 5.3 and
let us assume that we want to get the value of the field Position. We define a function getPos
that takes as input a physical body and returns Vector2. This function will use GetField in
its premises to generate the getter for Position and will then call the get function from the
generated module instance.

Func " getPos " : Vector2

GetField " Position " PhysicalBodyType => getter
PhysicalBody -> body
getter .get body -> p
-----------------
getPos -> p

Listing 5.3: Getter for the Position �eld
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Note that in the code above we are using the functor PhysicalBodyType and the function Phys-
icalBody defined in Section 5.3. Now let us analyse step-by-step what happens when we call
getPos. The first premise will call the functor GetField with

fieldName := " Position "
r := PhysicalBodyType := RecordField " Position " Vector2 ( RecordField "

Velocity " Vector2 EmptyRecord )

At this point the rule for GetField will deconstruct RecordField in its conclusion by means of
pattern matching and set

name := " Position "
type := Vector2
r := RecordField " Velocity " Vector2 EmptyRecord

Since name = fieldName we fall in the case in Listing 5.1. Thus we instantiate the module Getter
by setting the construction arguments to

name := " Position "
r := RecordField " Position " Vector2 ( RecordField " Velocity " Vector2

EmptyRecord )

In this module instance the functor GetType returns type := Vector2 and get returns the first
element of the record tuple. At this point, the third premise will call get from this module
instance by passing the record tuple ((10.0,10.0),((10.0,0.0),())), which in turn returns
correctly (10.0,10.0).

Now let us assume that we want to retrieve the value of ”Velocity” instead. We define an
analogous function getVel as follows

Func " getVel " : Vector2

GetField " Velocity " PhysicalBodyType => getter
PhysicalBody -> body
getter .get body -> v
-----------------
getVel -> v

This time the functor GetField is called with

fieldName := " Velocity "
r := PhysicalBodyType := RecordField " Position " Vector2 ( RecordField "

Velocity " Vector2 EmptyRecord )

thus the rule in case 2 is triggered. This rule will generate an instance of Getter

fieldName := " Velocity "
type := Vector2
r := RecordField " Velocity " Vector2 EmptyRecord

This rule will generate a module containing the auxiliary functor GetAnotherField that is ca-
pable to retrieve the correct field in the remaining part of the record. The rule that processes
GetAnotherField will call, in its premise, GetField with

fieldName := " Velocity "
r := RecordField " Velocity " Vector2 EmptyRecord

Since now the name of the field of the getter coincides with the name of the field in Record-
Field, this premise will now trigger the rule in Listing 5.2 that in turn generates an instance of
GetField containing the following:
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Func "get" -> Tuple [Vector2 ,unit] : Vector2

-------------------
GetType => Vector2

----------------
get (x,xs) -> x

Listing 5.4: Getter for Velocity generated by GetAnotherField

This module instance will be the one returned by the rule of GetAnotherField. The rule of the
functor GetType for Velocity will use GetAnotherField to retrieve the correct field type using
the module instance generated in Listing 5.4 and return it (which is Vector2). The rule for the
function get will use GetAnotherField to call the the get function from Listing 5.4 passing the
second element of the record tuple as argument and returns the result of this function call.

Note that the module instantiation will be again performed at compile time, thus the only
operations performed at runtime are the calls to the get functions contained in the module
instantiations.

5.5 Setting Values of Record Fields

The setter module is analogous to the getter, except that this time the module must generate
a function that, in addition to the record, takes as input the value to write in the field. This
function returns a modified copy of the record tuple where the value associated to the field has
been changed. For this purpose we need a module containing a functor SetType that returns the
type of the field to set. This functor will be used to build the declaration of a function set that
is able to set the specified field.

Module " Setter " => (name : string ) => (r : Record ) : Setter {
Functor " SetType " : *
Func "set" -> r. RecordType -> SetType : r. RecordType

}

The declaration of the function set uses r.RecordType to define the type of the record argument,
SetType to define the type of the field to set, necessary for the argument containing the value to
set, and returns r.RecordType, which is the modified version of the record.

Analogously to the getter, we need a functor that instantiates Setter and has two different
implementations of the instantiation rule: one where the field of the current element of the record
tuple coincides with the one we want to set, and the other where the field is different and that
is able to build a setter for the remaining part of the record tuple.

Functor " SetField " => string => Record : Setter

The first case is implemented as follows:

name = fieldName
thisRecord := RecordField name type r
------------------------------
SetField fieldName ( RecordField name type r) => Setter fieldName thisRecord

{

----------------
SetType => type

----------------------
set (x,xs) v -> (v,xs)
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}

Listing 5.5: Setting a �eld (case 1)

The function SetType simply returns the type of the field in the current RecordField, while the
rule for set replaces the first value in the record tuple with the new value. The second rule is
implemented as follows

name <> fieldName
thisRecord := RecordField name type r
-------------------------------------
SetField fieldName ( RecordField name type r) => Setter fieldName thisRecord

{
Functor " SetAnotherField " : Setter

SetField fieldName r => setter
-------------------------------
SetAnotherField => setter

SetAnotherField => s
-------------------------
SetType => s. SetType

SetAnotherField => setter
setter .set xs v -> xs ’
----------------------
set (x,xs) v -> (x,xs ’)

}

Listing 5.6: Setting a �eld (case 2)

The functor SetAnotherField is an auxiliary functor that recursively calls SetField with the
remaining part of the record. Eventually SetField will trigger the rule in Listing 5.5 when the
correct field is encountered. This auxiliary functor is then used in SetType to retrieve the correct
type of the record field and in the function set to call the correct set function for the field.
The set function in the setter generated by SetAnotherField returns a modified version of the
record that is replaced in the tuple.

Let us now consider again the physical body and assume that we want to define a setter for
Position. Again we define a function setPos for the field:

Func " setPos " -> Vector2 : PhysicalBodyType

SetField " Position " PhysicalBodyType => setter
PhysicalBody -> body
setter .set body -> body ’
-----------------------
setPos v -> body ’

Again we are using the functor PhysicalBodyType and the function PhysicalBody defined in
Section 5.3. The first premise of this rule will call SetField with

fieldName := " Position "
name := " Position "
type := Vector2
r := RecordField " Velocity " Vector2 EmptyRecord

which, in turn, instantiates Setter with

name := " Position "
r := RecordField " Position " Vector2 ( RecordField " Velocity " Vector2

EmptyRecord )
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In this module instance r.RecordType will be Tuple[Vector2,Tuple[Vector2,unit]] and Set-
Type returns Vector2. The whole instance will look like

Func "set" -> Tuple [Vector2 , Tuple [Vector2 ,unit ]] -> Vector2 : Tuple [Vector2
,Tupe[Vector2 ,unit ]]

------------------
SetType => Vector2

----------------------
set (x,xs) v -> (v,xs)

Now let us assume that we want to build a setter for Velocity. We have to define a function
setVel as follows

Func " setVel " -> Vector2 : PhysicalBodyType

SetField " Velocity " PhysicalBodyType => setter
PhysicalBody -> body
setter .set v -> body ’
-------------------------
setVel v -> body ’

The first premise of this rule will now invoke SetField with

fieldName := " Velocity "
name := " Position "
type := Vector2
r := RecordField " Velocity " Vector2 EmptyRecord

which will trigger the rule in Listing 5.6 instead. This will create an instance of Setter containing
the auxiliary functor SetAnotherField. The rule for this functor will call in turn SetField with

fieldName := " Velocity "
name := " Velocity "
type := Vector2
r := EmptyRecord

that will generate a different instance of Setter, this time using the rule in Listing 5.5. The
auxiliary setter will contain a functor SetType returning Vector2 and a function set that inserts
the value for Velocity in the record tuple. The set in the auxiliary setter will be used in the
setter of Velocity to obtain the modified copy of the record containing the new value. Again
all the modules are generated at compile time, thus the only operations performed at runtime
are the calls to the set functions of the field setter and eventual auxiliary modules.

5.6 Handling errors in getters and setters

In Section 5.4 and 5.5 we explained how to use functors to implement getters and setters for
the fields of a record. The explanation however did not take into account possible mistakes that
could be committed during the definition of setters and getters for a specific record.

A possible mistake that could arise in the process of defining getters and setters would be to
provide an incompatible type for the get function of a field. For instance, let us assume that we
define getPos as

Func " wrongGetPos " : double

GetField " Position " PhysicalBodyType => getter
PhysicalBody -> body
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getter .get body -> v
-----------------
wrongGetPos -> v

As explained above the getter module will contain a function get that returns a Vector2, because
that is the type of the field Position. In the process of building the module, this type is auto-
matically retrieved from the definition of PhysicalBodyType. At this point the meta-compiler
would report an error message because this wrong definition of getPos returns double but get
returns a Vector2. Note that, as previously explained in Section 5.3, this is possible because
functors are able to embed the type system of the embedded language into the Metacasanova
type system.

Another possible mistake is accessing a field that is not defined for the record. For instance,
let us assume that someone tries to build a getter for a field that does not exist in physical body,
namely a field Acceleration. As usual we would define a function for the getter such as

Func " getAcc " : Vector2

GetField " Acceleration " PhysicalBodyType => getter
PhysicalBody -> body
getter .get body -> v
---------------
getAcc -> v

The first premise of this rule will call the functor GetField with

fieldName := " Acceleration "
name := " Position "
type := Vector2
r := RecordField " Velocity " Vector2 EmptyRecord

As seen above, this rule will generate an auxiliary module by recursively call GetField with

fieldName := " Acceleration "
name := " Velocity "
type := Vector2
r : = EmptyRecord

but at this point, since again fieldName 6= name we will recursively call GetField. At this point
we will fail to run a suitable rule for the functor, since the only two versions we have so far are
able to process RecordField and not EmptyRecord, thus the pattern matching in the conclusion
would fail. The meta-compiler will in any case fail to generate code, since the functor evaluation
will fail and thus the whole code generation, but this approach is not “clean”, since the meta-
compiler will report a generic error regarding the rule execution failure. An alternative to this, is
to include a case for the rule that processes EmptyRecord. A getter for an EmptyRecord returns
() and GetType returns the type unit. This rule can be implemented as follows:

fieldName <> name
thisRecord := RecordField name type EmptyRecord
-------------------------------
GetField fieldName ( RecordField name type EmptyRecord ) => Getter fieldName

thisRecord {

----------------
GetType => unit

----------------
get (x,xs) -> ()

}
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In this way the first premise of the rule of getAcc would generate a getter that takes a
physical body and returns unit. When the rule calls this getter and returns unit, this will be
incompatible with the return type of getAcc that should be a Vector2. The same can be done
for setAcc, that is we extend the rule for SetField with an additional case:

fieldName <> name
thisRecord := RecordField name type EmptyRecord
--------------------------
SetField fieldName ( RecordField name type EmptyRecord ) => Setter fieldName

thisRecord {

----------------
SetType => unit

----------------------
set (x,xs) v -> (x,xs)

}

In this way, when invoking set in the premise setAcc the compiler will signal a type error because
at some point it will try to use the set for the EmptyRecord with Vector2. Another alternative,
which goes beyond the scope of this chapter, would be to allow rules in meta-casanova to output
custom compilation errors. In this way we could write the very same rule case done above but
this time we would return a compilation error message reporting that the field does not exist.

5.7 Evaluation

In the previous sections we presented an extension to the meta-language of Metacasanova that
allows to embed the type system of an embedded language, whose definition is implemented in
Metacasanova, in the meta-type system of Metacasanova. We claimed that this would improve
the runtime performance of a program written in the embedded language because we could
get rid of all the dynamic checks and accesses to meta-data structures used to implement data
structures in the embedded language, such as records. In this section we present the experimental
evaluation that should produce the evidence to back up this claim. We proceed to describe the
experimental set-up and then we comment the results.

5.7.1 Experimental Set-up

In this experiment we use the implementation of records with functors described in this chapter
and we compare its runtime performance with its dynamic counter part, i.e. the implementation
that uses dictionaries, that was used to implement the Casanova memory model in Section 4.2.2.
The sample measures the run-time of both the functor implementation and the implementation
with dynamic tables. We run the test by varying both the number of record instances and the
number of fields per record. The test is run with a sample of 10000, 100000, and 1000000 record
instances and with a number of fields from 1 to 10. We neglect to consider different field types,
as the performance of look-up operations is not affected by the type of the fields themselves.

5.7.2 Results

In Table 5.4, we can see that the optimization using Functors leads to a performance increase on
average of about 11 times, with peaks of 30 times. The gain increases with the number of fields,
thus the implementation with functors is particularly effective for records with high number of
fields. This is due to the fact that the runtime complexity of a dynamic table depends on the
number of entries stored in it (which would be the fields in our case) and thus, when the fields
are few, this number is very close to the complexity of the functorial implementation, which is
constant. When the number of fields increases, the performance of the functorial implementation
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remains the same while the dynamic table one worsens visibly. The constant complexity of the
functorial implementation is due to the fact that the meta-compiler builds the functions of a
getter or setter module instance, used to look up a specific field or set its value, at compile time
by generating the appropriate module instances with the functors. The get and set functions
described above can either immediately get or set the value of the field and return the result
of this operation, or call the getter or setter of an auxiliary module instance that is able to
read or write the appropriate field. The only overhead is the overhead of chaining calls to
Metacasanova functions, thus the overhead of creating and executing the code that implements
the rule behaviour described in Section 3.6.

Figure 5.3 shows a chart of the overall performance of the two techniques (the data points
are taken from Table 5.4). The horizontal axis contains the number of fields per record, while
the vertical axis contains the number of records that are being updated. We can see that the
performance of the dynamic table degrades considerably when increasing the number of fields,
and that the higher the number of records is, the steeper the curve is. On the other hand, the
performance of the implementation with functors is almost constant, regardless of the number
of fields or records that are being updated. Moreover, note that the performance of the dynamic
table is improved by the fact that we are using a dictionary implemented in .NET. If the symbol
table were represented as a meta-data structure in the language, the performance would be even
worse, since it would have to be encoded as a list of pairs with the field name and its value, and
its manipulation would be affected by the evaluation rules that should implement this behaviour.
Furthermore, the dynamic lookup should be done also to ensure that the types of the record fields
are used consistently (which is not accounted for here, for example to prevent that a record is
constructed with incompatible values for its fields), while this check is done at compile time with
functors, thus drastically improving the performance.

Dynamic Table implementation Choice

After both these considerations and those presented in Chapter 4.3 a legitimate doubt could be
uttered about the choice of the implementation of the dynamic tables. We mentioned multiple
times that we chose to use a tree-based implementation of the dictionary, but a valid objection
could be that one could use a HashTable whose complexity is O(1). This assumption cannot be
applied to this case for the following reasons:

� The hash table access operations have a complexity of O(1) when the number of entries
stored in it is very big. Indeed the definition of big-oh states that f(n) = O(g(n)) if

9c 2 R : lim
n !1

f(n)

g(n)
= c

thus it makes sense to talk in term of complexity only if the size of the table is very large.
It is very unlikely that a record will contain a large number of fields. In this scenario, the
performance of a hash table decays because the running time is affected by the computation
of the hash function for every access and the resize of the table performed to decrease the
load factor in order to minimize the number of collisions [33]. In the case of records, where
the amount of fields and thus of entries in the table is limited, the performance of the tree
implementation and the hash table are on the same order of magnitude.

� Metacasanova is a referentially transparent language, as all data structures are immutable.
Referential transparency is a desirable property to have because it helps in the verification
of the correctness of programs [65, 103] and prevents side-effects. Hash tables have high
performance only when mutability is allowed, but implementing an immutable hash table
requires to recreate the whole table inserting all the entries again by re-hashing them. This
does not happen in trees, where we do not need to recreate the whole tree but only the
sub-tree that is affected by the manipulation of the data structure.
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FIELDS Functors (ms) Dynamic Table (ms) Gain
1 1.00E-05 5.00E-06 0.50

2 9.00E-06 1.30E-05 1.44

3 9.00E-06 2.70E-05 3.00

4 9.00E-06 4.50E-05 5.00

5 9.00E-06 7.00E-05 7.78

6 9.00E-06 9.90E-05 11.00

7 9.00E-06 1.33E-04 14.78

8 9.00E-06 1.75E-04 19.44

9 9.00E-06 2.20E-04 24.44

10 9.00E-06 2.70E-04 30.00

Average gain 11.74

FIELDS Functors (ms) Dynamic Table (ms) Gain
1 9.60E-05 6.30E-05 0.66

2 9.40E-05 1.59E-04 1.69

3 9.50E-05 3.04E-04 3.20

4 9.60E-05 5.03E-04 5.24

5 9.60E-05 7.52E-04 7.83

6 9.60E-05 1.05E-03 10.95

7 9.70E-05 1.41E-03 14.57

8 9.80E-05 1.82E-03 18.59

9 9.90E-05 2.29E-03 23.17

10 1.00E-04 2.81E-03 28.05

Average gain 11.39

FIELDS Functors (ms) Dynamic Table (ms) Gain
1 9.47E-04 7.29E-04 0.77

2 9.51E-04 1.78E-03 1.87

3 9.50E-04 3.33E-03 3.51

4 9.60E-04 5.43E-03 5.66

5 9.65E-04 8.03E-03 8.32

6 9.71E-04 1.11E-02 11.44

7 9.75E-04 1.47E-02 15.12

8 9.82E-04 1.89E-02 19.28

9 9.92E-04 2.37E-02 23.86

10 1.00E-03 2.87E-02 28.62

Average gain 11.84

Table 5.4: Running time with the functor optimization and the dynamic table with 10000, 100000, and
1000000 records.
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Figure 5.3: Execution time of the di�erent memory models
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5.8 Summary

In this chapter we addressed the problem described in Section 4.3 about the performance of the
generated code and the forced dynamic behaviour of languages implemented in Metacasanova.
We started by informally state that this issue was due to the fact that it was not possible to embed
the type system of a language in the meta-type system of Metacasanova, and this caused all the
dynamic lookups and accesses at runtime. This issue can be avoided by using a meta-language
abstraction that allows both to define the type system of the embedded language in terms of
the meta-type system of Metacasanova and to generate the code for the accesses to the data
structures of the embedded language at compile time. For this purpose, we proposed a language
extension that provides such abstraction in terms of modules and functors. We then proceeded to
provide an example of their usage in the context of record getters and setters for their fields. We
then measured the performance gain by comparing the implementation with functors with the
one using dynamic tables that was employed for the Casanova language implementation shown
in Section 4.2.2. The results show that the performance of operations on records in the case of
functors is up to 30 times faster than the dynamic table implementation. We have also shown
that the performance of such operations in the case of functors is constant with respect to the
number of fields to update, while the performance of the dynamic table drastically worsens when
the number of fields in a record increases. In the next chapter we will show a further example of
use of functors to re-implement Casanova semantics and extend the language with abstractions
to express the networking behaviour for multiplayer games.



Chapter 6

Language Design with Functors

A monad is just a monoid in the
category of endofunctors, what’s
the problem?

James Iry

In Chapter 4 we showed an implementation in Metacasanova of Casanova, a domain-specific
language for game development and we discussed the reason of the poor performance of that
implementation. In Chapter 5 we extended Metacasanova with functors and modules to allow to
embed the type system of an embedded language 1 in the meta-compiler to overcome the problem
of dynamic lookups at runtime. We then showed an implementation of records with modules and
functors that significantly improved the performance of memory accesses, as shown in Section
5.7. In this chapter we show how this language extension can be used to improve the performance
of the implementation in Metacasanova of the domain-specific language for game development
Casanova. In what follows we start by describing how entities are updated in Casanova to
make their dynamics evolve with respect to time. We then proceed to discuss how functors can
be used to describe the semantics of entity updates in Casanova, and we further refine it to
support the semantics of interruption of Casanova rules. We conclude with an evaluation about
the performance gain achieved by using this implementation over the previous one presented in
Chapter 4.

6.1 Casanova entity update

In Section 4.2.2 we described the memory representation of a Casanova entity in Metacasanova
and how the rules of an entity are updated. What was skipped for brevity was a description
of how the system behind Casanova updates the entities of a Casanova program. As briefly
described in Section 4.2, the structure of a program in Casanova is a tree, whose root is a special
entity called World. The world entity can contain fields that are instances of other entities as
well, thus creating an additional level in the program tree. This is, of course, allowed also for
regular entities, thus the height of the tree is arbitrary. Each entity might contain a set of rules
that describe its dynamic behaviour with respect to time, thus they are updated by considering
the time difference between the current and the previous update (frames). Updating a rule is
enforced by traversing the entity tree, thus when the field of an entity is an entity itself, the
system will first update the entity instance contained in the field and then update the current
entity. Casanova also natively supports lists and tuples as valid data types, and this requires to
handle their update as well: a tuple or a list might themselves contain instances of entities that

1 See the introduction of Chapter 5 for a de�nition of this term
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must be updated accordingly. In the case of a list of entities, we must run the update on each
element, while in the case of a tuple we must examine each element and check whether it requires
an update or not. This process is called update traversal and might become very complex, as
lists and tuples can be combined together in infinite many ways, thus the process recursively
calls the proper update depending on the type of the field.

For instance, let us consider a simulation consisting of an arbitrary number of physical bod-
ies, in the fashion of what was used in Section 5.1.1. The world entity will contain a list of
physical bodies that are updated during the simulation. The Casanova code that described such
a simulation is the following:

worldEntity World {
PhysicalBodies : [ PhysicalBody ]

}

entity PhysicalBody {
Position : Tuple <float ,float >
Velocity : Tuple <float ,float >
Acceleration : Tuple <float ,float >

rule Position = Position + Velocity * dt
rule Velocity = Velocity + Acceleration * dt

}

In this simulation, the update starts from World. This entity contains only one field, which is
a list of physical bodies. Since PhysicalBody is an entity, the update must be run individually
for each element of the list. The world contains no rules, thus after updating its only field we
complete its update. At this point the update of each of the physical body examines each fields.
All fields are represented as a point in a 2D space with a tuple containing two floating-point
values. The update will examine each value of the tuple and find that they do not require
any update (again because the only language abstractions that exhibit dynamic behaviours are
entities). The update will then move on to run the rules that will update the content of Position
and Velocity. The update process is sketched in Figure 6.1 and can thus be seen as a process
that consists of the following steps:

1. An entity update that traverses all the fields and rules of the entity and calls the appropriate
updater.

2. A �eld update that updates (or not) the field depending on its type. The fields that will
be updated have type List, Tuple, or Entity.

6.2 Update in Metacasanova

The update mechanism described in Section 6.1 can of course be integrated in the implementation
of Casanova described in Chapter 4. In order to do so, we should dynamically look into the
dictionary representing the entity fields at each update, extract the field and perform an update
according to the following cases:

� If the field is a list, then we must examine each element and choose for each one whether
it needs to be updated or not. This is done by recursively applying these cases (being a
dynamic check we have to perform this check for each element).
� If the field is a tuple, then we behave as above.
� If the field is an entity, then we must run an update on it.
� In all the other cases the field is not updated.

The cases above are translated into four rules in Metacasanova. The first three will use pattern-
matching to decide whether the examined field is a list, a tuple, or an entity. The fourth one is
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Figure 6.1: Entity update for the simulation of physical bodies
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a default rule that simply returns the field as it is. Moreover, each entity should store a list of
rules that are updated as well, where all the get and set operations require dynamic lookups in
the symbol table of the entity.

Repeating the traversal of the entity tree at each update at runtime is unnecessary since

� The structure of a Casanova entity cannot change at runtime. Its fields and field types will
always remain the same.
� The fields affected by an entity rule and the rules of an entity do not change during the

program execution.

This means that, by exploiting modules and functors, we are able to specify the structure of
the update at compile time and generate directly the function that performs the update at
runtime, in the same fashion as what has been done for the record setter and getter. In the
following sections we will describe extensively the implementation of the update using modules
and functors in Metacasanova that generates at compile time the functions necessary to perform
the update of a Casanova program. Note that we will refer to the implementation of records
given in Section 5.3.

6.3 Updater Modules

As explained above, Casanova needs to recursively update fields that are lists, tuples, or entity
instances. For this purpose, we define a module that represents an updatable element in the
Casanova language. The module constructor takes as only argument the type of the element to
update. This module contains a function update that is able to update a value of this particular
type and uses an additional parameter dt that contains the time difference between the current
and the previous update. The function returns the updated value of the element. It also contains
an utility functor to return the type of the element.

Module " ElementUpdater " => ( elementType : *) : ElementUpdater {
Functor " GetType " : *
Func " update " -> elementType -> float : elementType

}

The updater for a field is a module constructed by providing the record of the fields, its name
as a string, and contains: (i) an utility functor that returns the record used in the field updater,
and (ii) an update function that takes as input an instance of the record, dt, and returns the
updated value of the field. We also define an external utility functor GetFieldType that can
retrieve the type of a record field given the record it belongs to and its name. The rule for the
functor calls the field getter and its GetType functor to retrieve the type of the field. This functor
is used by the module constructor to correctly generate the return type of the update function.

Functor " GetFieldType " => Record => string : *

GetField r name => getter
getter . GetType => type
---------------------------
GetFieldType r name => type

Module " FieldUpdater " => (r : Record ) => (name : string ) : FieldUpdater {
Functor " GetRecord " : Record
Func " update " -> r. RecordType -> float : ( GetFieldType r name)

}

Finally, the updater for a record is a module constructed by providing the record itself and
contains: (i) an utility functor that returns the type of the record, and (ii) a function update
that takes the instance of the record, dt, and returns an updated instance of the record.
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Module " RecordUpdater " => (r : Record ) : RecordUpdater {
Functor " RecordType " : *
Func " update " -> r. RecordType -> float : r. RecordType

}

6.4 Updatable elements

As explained above, the elements for which the update is needed can be lists, tuples, or entity
instances. For this reason we have to create separately three different instances of the module
ElementUpdater each one dedicated to updating one of those updatable elements. The first
updatable element that we consider is an entity instance. The module to update such updatable
element uses a RecordUpdater to define how the entity instance should be updated. Updating
a field containing an entity instance requires the application of the specific record updater for
that entity, which in turn returns the updated instance of the entity itself. Thus the declaration
for the functor that constructs the proper instance of the module for the entity updater is the
following:

Functor " UpdateEntity " => RecordUpdater : ElementUpdater

The rule for this functor extracts in its premise the type of the record by calling the utility
functor RecordType in the record updater passed as parameter to UpdateEntity. The update
function uses the record updater to recursively update the entity instance in its premise and then
returns the result of this update.

recordUpdater . RecordType => recordType
--------------------------
UpdateEntity recordUpdater => ElementUpdater recordType {

----------------------
GetType => recordType

recordUpdater . update entity dt -> entity ’
------------------------------
update entity dt -> entity ’

}

The second updatable element is the list. An updater for a list must take the updater for
its elements. Since a list contains elements of the same type, only one updater is required to
instantiate its updater module. The functor UpdateList used to generate this module takes one
argument which is an ElementUpdater. This is done because the elements of a list could be
themselves other lists, entities, or tuples, so we must be able to use their updaters as arguments
for this function. The declaration for this functor is thus:

Functor " UpdateList " => ElementUpdater : ElementUpdater

The rule for UpdateList extracts in its premise the type of the elements of the list by calling
the functor GetType in the element updater provided as input. It then instantiates an Elemen-
tUpdater with the type List using as argument for the generic type the type of the element
extracted in its premise. The update function for the list is recursive: its base case is the empty
list, for which it simply returns an empty list. For a non-empty list the rule for this function
uses the element updater in its premise to update the head of the list and then recursively calls
the update of the list on the tail to update the remaining part.

updater . GetType => elementType
---------------------------------
UpdateList updater => ElementUpdater List [ elementType ] {



128 CHAPTER 6. LANGUAGE DESIGN WITH FUNCTORS

-----------------
GetType => List[ elementType ]

--------------------
update nil dt -> nil

updater . update x dt -> x’
update xs dt -> xs ’
-------------------
update (x :: xs) dt -> (x’ :: xs ’)

}

The updater for tuples is built by defining a functor that takes as input two element updaters,
one for the current element of the tuple, and one for the second one. Note that it is possible to
recursively provide a tuple updater as a second updater to support the update of tuples contain-
ing more than two elements. For example, the updater for Tuple[PhysicalBody,
Tuple[PhysicalBody,PhysicalBody]] would require the passing of an entity updater and recur-
sively a tuple updater. The declaration of this fuctor is thus:

Functor " UpdateTuple " => ElementUpdater => ElementUpdater : ElementUpdater

The rule for UpdateTuple uses in its premises GetType from the first updater and the second
updater to obtain the types of the first and second element of the tuple. It then instantiates
ElementUpdater with the tuple type called with the type of the first and second element as
arguments for the generics. The update function runs the update of the first updater on the first
element of the tuple and the second updater on the second element.

updater . GetType => firstType
nextUpdater . GetType => nextType
---------------------------------------------
UpdateTuple updater nextUpdater => ElementUpdater Tuple [ firstType , nextType ]

{

-------------------
GetType => Tuple [ firstType , nextType ]

updater . update x dt -> x’
nextUpdater . update x’ dt -> xs ’
----------------------
update (x,xs) dt -> (x’,xs ’)

}

Finally, we need a ZeroUpdate that is required for fields whose values do not change with
respect to time, namely all those that do not fall in the three categories above. The functor
ZeroUpdate takes as input any type and builds an ElementUpdater with that type. The rule for
update simply returns the value of the field as it is.

Functor " ZeroUpdate " => * : ElementUpdater

-----------------------
ZeroUpdate type => ElementUpdater type {

----------------
GetType => type

----------------
update v dt -> v

}
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6.5 Updatable Fields and Records

The field updater is instantiated by a functor that takes as input an element updater, a record
containing the field, and the name of the field to update. Its declaration is the following:

Functor " UpdateField " => ElementUpdater => Record => string : FieldUpdater

The rule for the update function creates in its premises a field getter through the record and the
field name passed as input. It then call the function get of the getter with the record instance
taken as input to get the value of the field. It then uses the update function from the element
updater taken as input from the functor to update the field.

----------------------------------------
UpdateField elementUpdater r name => FieldUpdater r name {

---------------
GetRecord => r

GetField r name => getter
getter .get rec -> field
elementUpdater . update field dt -> field ’
-----------------------------
update rec dt -> field ’

}

The record updater is built by a functor Update that takes as input a field updater, a record
updater to update the next part of the record, and returns an instance of the RecordUpdater
module. The rule that evaluates the functor extracts the record from the field updater in its
premise and passes it to the module constructor for the record updater. The rule for update
generates a setter for the field by using the record and the field name. It then calls the field
updater passing the record instance and dt as input. This premise will return the updated
value for the field. The following premise uses the set function from the previously generated
setter to update the record with the new value of the field. After this step it calls the update
function of the record updater passed as function argument, which is recursively able to update
the remaining part of the record. The result of this update is then returned as final result. Both
the functor declaration and the rule for it are provided below

Functor " Update " => FieldUpdater => RecordUpdater : RecordUpdater

fieldUpdater . GetRecord => r
---------------------------
Update fieldUpdater nextUpdater => RecordUpdater r {

r. RecordType => recordType
------------------------
RecordType => recordType

SetField r name => setter
fieldUpdater . update rec dt -> v
setter .set rec v -> rec ’
nextUpdater . update rec ’ dt -> updatedRecord
----------------------------
update rec dt -> updatedRecord

}

Note that it is possible to provide different field updaters for the same field, as it is possible that,
besides the standard Casanova traversal, one wants to define a custom way of updating the field
through a Casanova rule.

In order to stop this otherwise infinite recursive process, we must also generate a record
updater that simply returns the record as it is. We build such updater through the functor
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NoUpdate. This functor takes as input a record and instantiates its updater with it. The updater
contains a rule for the update function that simply returns the record as it is. The implementation
for this updater is provided below:

Functor " NoUpdate " => Record : RecordUpdater

---------------------
NoUpdate r => RecordUpdater r {

r. RecordType => recordType
----------------------
RecordType => recordType

----------------
update r dt -> r

}

Finally, rules can be implemented as a field updater that is instantiated by a functor taking as
input the record and the field name. The update function will contain the specific code that the
rule will perform. In the following section we will provide the implementation of the physical
body simulation and show how to use functors to generate the field updater for rules.

6.6 Physical Body Simulation with Functors

In this section we present the implementation with functors of the simulation in Casanova pre-
sented in Section 6.1. The simulation consists of a set of bodies that moves according to their
physical properties. As previously done in Section 5.3, we create a functor that builds the record
module instance for the physical body:

Functor " PhysicalBodyType " : Record

RecordField " Acceleration " Tuple [float , float ] EmptyRecord => acceleration
RecordField " Velocity " Tuple [float , float ] acceleration => velocity
RecordField " Position " Tuple [float , float ] velocity => body
---------------------------
PhysicalBodyType => body

At this point, we define the updaters for the physical body fields. Its fields consist of a tuple
with two floating point values. Since floating-point values do not require to be updated in
Casanova, we create an updater for the floating-point numbers by using the ZeroUpdate functor
that instantiates ElementUpdater with an update function that simply returns the input value.

Functor " FloatUpdater " : ElementUpdater

ZeroUpdate float => zero
--------------------------
FloatUpdater => zero

ZeroUpdate calls ElementUpdater with elementType := float. The instance of this module will
then contain the following functor rule and function declaration2 .

Func " update " -> float -> float : float

-----------------
GetType => float

2 Note that the evaluation rules in a functor are always the same for each instance of a module, so from now
on we omit them for brevity
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At this point we can define the element updater for the Tuple that contains the floating point
values. This time we use the functor UpdateTuple to instantiate the ElementUpdater module by
passing twice FloatUpdater to it. When we do so, we have that (see the definition of the rule
for this functor):

updater := FloatUpdater
nextUpdater := FloatUpdater
firstType := updater . GetType := float
nextType := nextUpdater . GetType = float

Thus ElementUpdater will be called with elementType := Tuple[float,float]. This module
instance will then contain the following functor rule and function declaration:

Func " update " -> Tuple [float , float ] -> float : Tuple [float , float ]

-----------------------------
GetType => Tuple [float , float ]

We now build the field updaters for the two Casanova rules of the physical body. In order to do
so, we define two functors that build their field updaters:

Functor " PositionRule " : FieldUpdater
Functor " VelocityRule " : FieldUpdater

PositionRule will instantiate FieldUpdater in the following evaluation rule:

--------------------------------
PositionRule => FieldUpdater PhysicalBodyType " Position " {

---------------------
GetRecord => PhysicalBodyType

getPos body -> (xp ,yp)
getVel body -> (xv ,yv)
<<xp + xv * dt >> -> xp ’
<<yp + yv * dt >> -> yv ’
---------------------------
update body dt -> (xp ’,yp ’)

}

Note that getPos and getVel are functions able to retrieve respectively the position and velocity
from a physical body, analogously to what was done in Section 5.4. The update function uses
these two functions in its premises to retrieve the value of the position and velocity and then
updates the position according to the differential equation described in Section 5.1.1. The update
for the velocity field is done analogously:

--------------------------------
VelocityRule => FieldUpdater PhysicalBodyType " Velocity " {

--------------------
GetRecord => PhysicalBodyType

getVel body -> (xv ,yv)
getAcc body -> (xa ,ya)
<< xv + xa * dt >> -> xv ’
<< yv + ya * dt >> -> yv ’
---------------------------
update body dt -> (xv ’,yv ’)

}
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We now have all the necessary tools to create the whole updater for a physical body. This updater
is built by calling UpdateTuple to generate the updater for the tuple element representing the
vector. This updater is used in all three field updaters for the physical body. We also use
PositionRule and VelocityRule to create the correct updater for the two rules of the physical
body.

UpdateTuple FloatUpdater FloatUpdater => vectorUpdater
UpdateField vectorUpdater PhysicalBodyType " Position " => posUpdate
UpdateField vectorUpdater PhysicalBodyType " Velocity " => velUpdate
UpdateField vectorUpdater PhysicalBodyType " Acceleration " => accUpdate
NoUpdate PhysicalBodyType => zero
Update VelocityRule zero => velRule
Update PositionRule velRule => posRule
Update accUpdate posRule => accFieldUpdate
Update velUpdate accFieldUpdate => velFieldUpdate
Update posUpdate velFieldUpdate => bodyUpdater
--------------------------
BodyUpdater => bodyUpdater

The first premise of this functor rule creates the updater for the vector. From premise 2 to premise
4 we create the updater for the three fields of the physical body. Premise 5 calls NoUpdate to
build the module that terminates the update of the record. From Premise 6 on we build the
record updaters necessary to update all the fields and rules of the physical body and then we
assemble them together. Let us now consider the following physical body instance

(1.0 ,1.0) ,((0 ,0 ,0.0) ,((3.0 ,3.0) ,()))

and let us see what happens when we call the update function of the BodyUpdater. The function
will invoke the tuple updater which returns the tuple as it is, set the field to this value (which
does not change), and recursively call update from the next updater. The following two updaters
are the same, so the effect is identical. The updater for the position rule will instead run the
update code of the module instance generated by the rule functor and update the field of the
record accordingly. This will generate a record instance containing the field with the updated
value. This new record instance is then recursively passed to the next update call where the
update of the module instance generated by the rule functor for velocity is invoked. The updated
record is then returned in an analogous way. At this point the update of the module instance
generated by NoUpdate is called, which simply returns the record as it is.

We now repeat the same process to define the world entity. We thus define a functor to build
the record for the world, which contains a single field that is a list of physical bodies.

Functor " WorldType " : Record

RecordField " PhysicalBodies " List[ PhysicalBodyType ] EmptyRecord => world
---------------------------------
WorldType => world

The updater for the world simply uses the BodyUpdater functor generated above to build a
record instance that contains the update function for a physical body. It then builds a list
updater passing as argument BodyUpdater (note that this is correct as this functor accepts a
record updater as parameter).

Functor " WorldUpdater " : RecordUpdater

UpdateEntity BodyUpdater => bodyUpdater
UpdateList bodyUpdater => listUpdater
UpdateField listUpdater WorldType " PhysicalBodies " => fieldUpdater
NoUpdate WorldType => zero
Update fieldUpdater zero => worldUpdater
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--------------------------------------
WorldUpdater => worldUpdater

The rule for the functor creates in its first premise an entity updater by passing the updater
for the physical body. This updater allows to update each element in the list of physical bodies
stored in the world entity. The second premise creates an updater for the whole list by passing
the entity updater created at the previous step. This updater instantiates a module that is able
to traverse the whole list and update each element by means of the entity updater. The third
premise creates a field updater for PhysicalBodies by using the list updater, and the fourth
creates as usual a NoUpdate to stop the update process. Finally, the last premise assembles the
two field updaters into a record updater for the world entity. At this point, in order to update
the world entity, it is enough to call this functor and access the update function for the world
record.

We think it is worthy of note that all the updaters presented so far are built at compile time
and that the only component that will be generated in the target code is the update function.
This means that we get rid of all the dynamic lookups, described in Section 6.2 in the entity field
to inspect the type of the field itself and decide whether or not we require to perform the recursive
update process on it. The update traversal with functors is instead generated at compile time,
thus the structure of the update is pre-computed during the compilation step, and its execution
delegated at runtime. This is possible because the structure of the update does not change with
the execution of the program.

6.7 Interruptible rules with functors

With what shown so far, we can implement the update traversal of the fields of a Casanova entity
and we can implement Casanova rules as updaters that act on the fields of an entity. However,
we have not described yet how to implement the mechanism of rule interruption described in
Section 4.2.4. For this purpose, we have to refactor the implementation of the updaters seen
so far: we assume that now the record field of a Casanova entity contains not only the value
but a list of statements that represent the continuation of its rule, which represents the code
left to execute after the rule is paused. The continuation will have type stmt, where stmt is
a meta-data structure representing a statement in Casanova like shown in Section 4.2.4. The
reader should take into account that we can compose a sequence of statements through the ;
operator introduced in the same section. The field updater must be refactored as well: its update
function now does not only return the updated field value but also the continuation of the rule:

Module " FieldUpdater " => (r : Record ) => (name : string ) : FieldUpdater {
Functor " GetRecord " : Record
Func " update " -> r. RecordType -> float : Tuple [( GetFieldType r name),stmt

]
}

In this way we are correctly able to generate the declaration of the update function depending
on the type of the field and, at the same time, to store the updated continuation of the rule.
We now define a new functor called Coroutine that generates an instance of a field updater.
The instantiation of the module should also contain a function tick that is able to correctly
process the continuation of the rule and, when its body has been fully evaluated, to restart from
the beginning. It should also contain a definition of the evaluation rules of all the Casanova
statements introduced in Section 4.2.4. For brevity here we show only how to re-implement wait
and yield, all the others can be adjusted analogously to those. The following is the declaration
of the Coroutine functor:

Functor " Coroutine " => Record => string => stmt : FieldUpdater
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----------------------------
Coroutine r name stmts => FieldUpdater r name {

...
// see the implementation below

}

This functor takes the record and the name of the fields the rule is updating, as well as a list
of statements that represents the body of the coroutine and produces a field updater enriched
with the utility functions mentioned above (remember that a module instance must contain the
implementation of at least all the declarations provided in the module declaration). From now
on we provide the snippets of the implementations in the module in isolation, but the reader
should keep in mind that they are defined within the scope of the module instance.

The first function that we implement is update. This function is almost identical to the
version described in Section 6.6, but this time the getter of the field will return both the value
and the continuation of the rule built so far. We then call a tick function (see below) that is able
to process the continuation of the rule. This function in general produces a pair containing the
updated field value (when we encounter a yield statement) and the new continuation produced
by the current execution of the rule. Note that the implementation of update is correctly able
to return a pair because it has been redefined above in the new version of FieldUpdater.

GetField r name => getter
getter .get body -> (v,k)
tick entity k dt -> (v’,k ’)
-------------------------
update entity dt -> (v’,k ’)

The tick function takes a record instance as input, a list of statements, and dt and returns the
pair of value and continuation produced by the evaluation of the rule body. The function calls
eval s that is similar to the homonym function presented in Section 4.2.4, with the difference
that it now returns a pair of value field and list of statements compatible with the required result.

Func "tick" -> r. RecordType -> List[stmt] -> float :
Tuple [r. RecordType , List[ stmt ]]

Func " eval_s " -> r. RecordType -> stmt -> float : Tuple [r. RecordType ,stmt]

eval_s entity stmts dt -> res
--------------------------
tick entity nop dt -> res

eval_s entity statements dt -> (v ,( atomic ;k))
tick entity k dt -> res
-----------------------------------
tick entity statements dt -> res

eval_s entity statements dt -> res
-----------------------
tick entity statements dt -> res

The function tick comes in three versions: the first one is executed when the rule has completed
its execution and the body of the original rule should be rebuilt. In this case the function simply
calls eval s with the statements provided as argument of the functor Coroutine. The second one
is when we evaluate an atomic statement: for this purpose we introduce a placeholder statement
atomic that is returned in the continuation after an atomic statement has been evaluated. This
case forces tick to be immediately re-evaluated without interrupting the rule execution. The
third case happens when the rule evaluation has previously produced a continuation. In this case
we pass the continuation instead of the original body of the rule to eval s.
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The function eval s is very similar to its old counterpart, but this time it returns the pair
of value and continuation resulting from the evaluation of the first statement in the current rule
continuation. In the case of an empty continuation (the only statement is nop) then we return
an empty continuation. The field of the value is unchanged so we use its getter to retrieve the
value an return it in the result.

GetField r name => getter
getter .get entity -> (v,cont)
-------------------------------
eval_s entity nop dt -> (v,nop)

We now proceed to describe how wait and yield behave. wait as usual simply checks whether
the timer has elapsed. If that is the case, then it returns the continuation preceded by an atomic
statement to force the immediate re-evaluation in tick. Otherwise it updates the timer by
subtracting dt seconds and builds another wait statement that is placed in the continuation. In
both cases the statement returns the current value of the field the rule is updating because it is
untouched in the semantics of wait.

t <= 0.0
GetField r name => getter
getter .get entity -> (v,cont)
---------------------------------------------
eval_s entity (wait t;k) dt => (v ,( atomic ;k))

t > 0.0
GetField r name => getter
getter .get entity -> (v,cont)
<<t - dt >> -> t’
---------------------------------------------
eval_s entity (wait t;k) dt => (v ,( wait t ’;k))

Note that the correct getter is generated at compile time, so the overhead of accessing the field
value is minimal as shown in Section 5.7. The statement when behaves in the very same way,
except that this time

Finally yield simply evaluates the expression whose value is used to set the field and then
returns it in the result of the evaluation. Note that we use the function eval already described in
the first implementation of Casanova in Metacasanova. The behaviour of this function is exactly
the same, except that now, if we need to retrieve the value of a specific field for the computation
of the expression result, we can use the GetField functor to build the appropriate getter and thus
improve the performance. Also note that the statement evaluation does not set the field itself,
but as seen before it delegates this operation to the record updater. This is because the result
of calling the setter on a record returns the updated record instance and not a value compatible
with the field. Note also that the evaluation of yield does not produce atomic like for wait
because according to Casanova semantics the yield stops the rule execution for one frame.

eval entity expr -> v
--------------------------------
eval_s ( yield expr;k) dt -> (v,k)

It is worthy of note that, having placed the semantics of Casanova in a module instantiation, the
language is able to build ad-hoc semantics for each specific field that we need to update through
the rule. In other words, calling the coroutine functor with a specific field produces a different
version of the language semantics at compile time, where the statements that need to access
the value of the field contain directly the getter of that field generated at run-time. This allows
us to incorporate the benefits of the record lookup optimization described in Chapter 5 in the
language semantics.
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The final modification that we need to implement is on the record updater. The record
updater now receives the pair of field value and rule continuation that must be stored in the field
after its update. The updater uses the new generated pair to update both the field value and its
rule continuation. This continuation will be used at the next update to evaluate the remaining
part of the rule

fieldUpdater . GetRecord => r
---------------------------
Update fieldUpdater nextUpdater => RecordUpdater r {

r. RecordType => recordType
------------------------
RecordType => recordType

SetField r name => setter
fieldUpdater . update rec dt -> (v,k)
setter .set rec (v,k) -> rec ’
nextUpdater . update rec ’ dt -> updatedRecord
----------------------------
update rec dt -> updatedRecord

}

6.7.1 Multiple rules updating the Same Field and Local variables

To conclude this section we want to point out that, in the implementation of interruptible rules
described above, we implicitly make the assumption that only one rule is updating each field
of the record. Indeed the rule continuation is saved in the field itself, thus if multiple rules
are affecting the same field we would need to store their continuations separately, which is not
possible in the current implementation. A naive approach would be to allow to store a list of
statements, one for each rule acting on that field, where each element is the continuation of a
specific rule. This approach affects the performance because we would need to iterate the whole
list every time we need to update a rule. Since the number of rules updating a field does not
change at run time, we can instead use a record to store their continuations whose structure
is provided at compile time. In this way it will be possible to retrieve the continuation of a
rule just by using a getter that is generated at compile time. Here we just briefly sketch the
implementation. A schematic representation of the implementation can also be seen in Figure
6.2.

A field of the entity record must be adapted now to contain not only the field value, but a
record instance used to store the continuations of the Casanova rules affecting that field. Since
a record requires a name for each field, we can expand the coroutine functor to take a string
representing an identifier for each rule and the continuation record itself:

Functor " Coroutine " => string => Record => Record => string => stmt :
FieldUpdater

---------------------------
Coroutine ruleId continuation r name => FieldUpdater r name {

...
}

Now the first string in the declaration of the functor represents the rule identifier, while the other
arguments have the same semantics (record and field of the record the rule can modify). When
a Casanova statement requires to store the continuation it can use ruleId to build the setter for
the record field of the continuation record. It then calls the function set from the setter module
instance to save the continuation of each rule. In this way every rule acting on the record is able
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Figure 6.2: Schematic representation of the implementation of the interruptible rules
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Figure 6.3: Schematic representation of the implementation of interruptible rules with local bindings

to store separately its continuation in the continuation record. As an example, we provide below
the evaluation rule for the wait statement that updates the continuation in this implementation:

t > 0.0
GetField r name => getter
getter .get entity -> (v,cont)
SetField cont ruleId => continuationSetter
continuationSetter .set (wait(t - dt);k) -> cont ’
---------------------------------------------
eval_s entity (wait t;k) dt => (v,cont ’)

Another aspect that has not been considered yet is how to define variables local to the rule
(local bindings). Since the set of local bindings is known at compile time, we can modify the
continuation record to store not only the continuation itself, but also the state of the local
bindings as record of bindings. In this way an element of the continuation record, that we can
now call rule state, stores not only the statements of the rule left to evaluate but also the state
of the local bindings. When we need to read the value of a binding or update it, we can again
use a getter or setter by accessing the rule state and getting or setting the appropriate field for
the binding from the binding record. A schematic representation of this implementation can be
seen in Figure 6.3.

As final remark, we point out that the use of records to store the rule continuations and
local bindings show how the record optimization introduced in Chapter 5 can also be adapted to
implement a generic symbol table to store various information regarding the language elements
that are needed during the execution of the generated code, thus making this approach extremely
flexible for different situations.
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6.8 Evaluation

In the previous sections we showed how to use functors to implement the entity update traversal
of the domain-specific language for game development Casanova. Based on the preliminary
analysis performed in Chapter 5, we claimed that using functors would improve the performance
of the implementation of Casanova in Metacasanova given in Chapter 4 by, at the same time,
inlining the access to the entity fields and pre-building the traversal for the Casanova program at
compile time, instead of dynamically accessing the fields from a dictionary and inspecting their
type to perform the update traversal at every update. In this section we show the experimental
results that show the performance of this implementation in comparison to the first dynamic
implementation presented in Chapter 4.

6.8.1 Experimental Setup

For this evaluation we have implemented the physical body simulation that was presented in the
previous sections. The simulation has been run for 10000 frames, which roughly correspond to 3
minutes assuming an average update rate of 60 frames/second, with a number of physical bodies
ranging from 100 to 1000. Each physical body is randomly generated, that is, its initial position,
velocity, and acceleration is randomly generated. We measured the time at the beginning and at
the end of the execution of the whole simulation and we averaged the total time by the number
of frames the simulation has been running for. We then compared the result with what obtained
for the implementation shown in Chapter 4.

6.8.2 Results

In Table 6.1 we can see that the update time is in the order of milliseconds or one tenth of
milliseconds where the dynamic implementation was in the order of one hundredth of seconds
with 1000 entities. This corresponds roughly to a frame rate of 939 frames/second for the functor
implementation versus 28 frames/second. The performance gain ranges from a maximum of
55.397 to a minimum of 33.117 times with an avarage gain of 42.508 times. This comes at
no surprise, since in Section 5.7 we tested the gain of accessing record fields with the functor
implementation compared to the dynamic tables, and we had an average gain of roughly 11
times. The gap with the dynamic implementation here is even greater because, to the cost of
accessing dynamic tables at runtime to retrieve the values of the entity fields, we have to add the
performance loss of performing the update traversal and the rule execution dynamically. Figure
6.4 shows a chart where the horizontal axis represents the number of entities in the simulation,
while the horizontal axis represents the average frame update time with that number of entities
in seconds.

To conclude, we want to point out that this evaluation is a worst-case scenario, since the
implementation shown in this Chapter makes use exclusively of Metacasanova meta-data struc-
tures to represent the values of the entity fields while the simulation shown in Chapter 4 uses
Vector2 from the Monogame library. This means that this simulation has an additional overhead
due to accessing the components of a tuple via pattern matching, and due to the use of value
types versus reference types. The performance shown here could be improved by using Vector2
from an external library instead of Tuple[float, float] to store the position, velocity, and
acceleration of a physical body.

6.9 Summary

In this chapter we proposed a new implementation of the semantics of Casanova based on the
language extension with functors and modules presented in Chapter 5. We showed that functors
and modules are expressive enough to implement the logic of the entity update in Casanova
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Language implementation Entity number Update time

Functors

100 0.000063
250 0.000173
500 0.000428
750 0.000777
1000 0.001065

Dynamic

100 0.00349
250 0.00911
500 0.01716
750 0.02597
1000 0.03527

Entity number Performance Gain
100 55.397
250 52.659
500 40.093
750 33.423
1000 33.117

Average gain 42.938

Table 6.1: Update time for one frame of the functor implementation of Casanova and the dynamic
implementation shown in Chapter 4. The time is measured in seconds
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Figure 6.4: Execution time of Casanova implemented with functors vs the dynamic implementation

and at the same time to allow rule interruption. At the same time, functors grant static typing
and the inlining of ad-hoc update functions depending on the structure of the entity we need to
update. This improvement increases the performance of this new implementation of Casanova
on average by roughly 42 times. This improvement makes the implementation of Casanova
suitable for game development, as the generated code is now able to process at more than 900
frames/second versus the 28 of the previous implementation.
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Chapter 7

Networking in Casanova

The Internet is not just one thing,
it’s a collection of things - of
numerous communications
networks that all speak the same
digital language.

Jim Clark

In Chapter 6 we presented an implementation of the semantics of Casanova by using the lan-
guage extension of Metacasanova with functors and modules. This new implementation improved
the performance of the language re-implemented in Metacasanova of 42 times with respect to the
previous implementation described in Chapter 4. In this chapter we further extend Casanova
with language primitives to describe the network mechanism for an online multiplayer game. We
start this chapter by introducing the problem of developing an online multiplayer game and the
existing approaches. We then propose a language extension for Casanova to integrate primitives
to support network data synchronization that should aid the developer of online multiplayer
games, which has also been presented in [47]1 . We then show that the new implementation of
Casanova in Metacasanova presented in Chapter 6 can be extended to include the new networking
semantics. In the result we analyse the performance of Casanova with the networking extension
when compiled by its hard-coded compiler in F# with respect to the same sample implemented
in C#. Moreover we compare the effort in terms of lines of codes necessary to implement the
network semantics in the hard-coded version of the compiler and in Metacasanova.

7.1 Multi-player Support in Games

Adding multi-player support to games is a highly desirable feature. By letting players interact
with each other, new forms of gameplay, cooperation, and competition emerge without requiring
any additional design of game mechanics [49]. This allows a game to remain fresh and playable,
even after the single player content has been exhausted. For example, consider any modern AAA
(AAA refers to games with the highest development budgets[112]) game such as Halo 4. Within
months after its initial release, most players have exhausted the single player, narrative-driven
campaign. Nevertheless the game remains heavily in use thanks to multiplayer modes, which
in effect extended the life of the game significantly. This phenomenon is even more evident in
games such as World of Warcraft or EVE, where multiplayer is the only modality of play and
there is no single-player experience.

1 The work described in this Chapter was realised in cooperation with Mohamed Abbadi and a preliminary
version appears also in the appendix of his thesis. The content of Sections 7.1 to 7.6 thus appears also in the
appendix of [5] and in the paper [47]

143
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Challenges Multi-player support in games is a very expensive piece of software to build. Mul-
tiplayer games are under strong pressure to have very good performance [32]. Performance is
both expressed in terms of CPU time and in bandwidth used. Also, games need to be very
robust with respect to transmission delays, packets lost, or even clients disconnected. To make
matters worse, players often behave erratically. It is widespread practice among players to leave
a competitive game as soon as their defeat is apparent (a phenomenon so common to even have
its own name: “rage quitting” [57]), or to try to abuse the game and its technical flaws to gain
advantages or to disrupt the experience of others.

Networking code reuse is quite low across titles and projects. This stems from the fact that
the requirements of every game vary significantly: from turn-based games that only need to
synchronize the game world every few seconds, and where latency is not a big issue, to first-
person-shooter games where prediction mechanisms are needed to ensure the smooth movement
of synchronized entities, to real-time strategy games where thousands of units on the screen all
need to be synchronized across game instances [97]. In short, previous effort is substantially
inaccessible for new titles.

Encapsulation suffers from this ad-hoc nature of the implementation of the networking layer
in multiplayer games. Indeed managing the information about game updates over a network
requires each game entity to interface the game logic code with network connection and socket
objects, data transmission method calls such as “send” and “receive”, and support data structures
to manage traffic and track the status of common protocols. This happens because each game
entity must provide the following functionality in order to work in a multiplayer game:

� Update the logic in the fashion of a singleplayer counterpart.

� Choose what data is necessary to send over the network and create the message containing
this information.

� Choose what data can be lost and what data must always be received by the other clients.

� Periodically check if incoming messages contain information that needs to be read and to
perform specific updates.

Combining these requirements together within the same entity breaks encapsulation because
the entity’s logic gets mixed with spurious details of the networking implementation. Mainte-
nance then becomes very hard, as every change in the game logic must also be reflected in the
networking implementation.

Existing approaches Networking in games is usually built with either very low-level or very
high-level mechanisms. Very low-level mechanisms are based on manually sending streams of
bytes and serializing only the essential bits of the game world, usually incrementally, on unreliable
channels (UDP). This coding process is highly expensive because of the difficulties of manually
implementing such a low-level protocol. Debugging subtle protocol mismatches, transmission
errors, etc. will take lots of development resources. Low-level mechanisms must also be very
robust, making the task even harder.

An alternate approach is to use high-level protocols such as RDP, reflection-based serializa-
tion, frameworks (such as Pastry, netty.io), etc. can also be used. These methods greatly simplify
networking code, but are rarely used in complex games and scenarios. The requirements of perfor-
mance mean that many high-level protocols or mechanisms provide insufficient efficiency, either
because they are too slow computationally (especially when they rely on reflection or events) or
because they transmit too much data across the network.
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7.2 Motivation for a Language-based Solution

To avoid the problems of both existing approaches, we propose a middle ground. We observe that
networking fundamental abstractions upon which the actual code and protocols are built do not
vary substantially between games, even though the code that needs to be written to implement
them does. The similarity comes from the fact that the ways to serialize, synchronize, and
predict the behaviour of entities are relatively standard and described according to a limited
series of general ideas. The difference, on the other hand, stems from the fact that low-level
protocols need to be adapted to the specific structure of the game world and the data structures
that make it up. Until now, common primitives have not been syntactically and semantically
captured inside existing domain-specific languages for game development [22]. Using the right
level of abstraction, these general patterns of networking can be captured, while leaving full
customization power in the hand of the developer (to apply such primitives to any kind of
game).

7.3 Related work

In the following we discuss some existing networking tools used in game development and we
highlight some issues that arise from their use.

The Real time framework (RTF) RTF [48] is a middleware built for C++ to relieve the
programmer from dealing with data compression. It is more flexible than solutions based on
game engines or hand-made implementations, since it automates the process of data transmission.
Moreover, it supports distributed server management. Unfortunately, this solution has several
flaws:

� All entities must inherit from the class Local and the semantics of the position is pre-
determined, often clashing with rendering or physics.

� Platform independence requires that the programmer uses RTF primitive types.

� Data transmission automation requires that all game entities inherit the class Serializ-
able.

� Being a middleware, RTF is not aware of what games are going to use it for (every game
comes with different data structures). Thus, the developer is tasked to include in his code
also logic to update the RTF layer, in order to keep the game updated over the network.

Network scripting language (NSL) NSL [92] provides a language extension based on a
send-receive mechanism. Moreover it provides a built-in client side prediction (a feature missing
in existing highly concurrent and distributed languages such as Stackless Python [102] and Erlang
[12]), which is periodically corrected by the server.

Unreal Engine/Unity Engine Unreal Engine [2] and Unity Engine [1] are commercial game
engines supporting networking. Both Unity and Unreal Engine use a client-server approach.
In Unreal Engine, the server contains the “true” game state, and the clients contain a “dirty”
copy, which is validated periodically. It is possible to define entities (actors in Unreal Engine
jargon) that are replicated on the clients. Whenever a replicated actor changes on the server,
this change is also reflected on the clients. Additional customization can be achieved through
Remote procedure calls (RPCs) of three kinds.

� The function is called on the server and executed on the client. This is used for game
elements that do not affect gameplay, such as creating a particle effect when a weapon is
fired.
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� The function is called on the client and executed on the server. This is useful for events
that affect the other clients and should be validated by the server.

� The function is executed in multi-cast, meaning that the server calls the function and that
it is executed on both the server and all the clients.

The Unity Engine uses a similar approach based on networking components, synchronized at
every frame, and RPC’s to define custom synchronization events.

Unfortunately, customization comes at the cost of the level of detail that developers must
face. Using RPC’s require a deep knowledge of the engine and writing lots of code.

In this section we introduce a small example that addresses the requirements of designing a
multiplayer game. We then present an architecture that aims to fulfil these requirements.

7.4 The master/slave network architecture

We chose to implement the networking layer in Casanova by using a peer-to-peer architecture
for the following reasons:

� Server-client architectures are more reliable but suitable only for specific genres of games
(mostly Shooter games), while other genres, such as Real-time strategy games and Online
Role Playing Games, use P2P architectures.

� By using a P2P architecture, we do not have to write a separate logic for an authoritative
game server, which has to validate the actions of clients.

Casanova will provide a generic tracking server, which is run separately from the main pro-
gram. The tracking server is a thin service that connects players participating in a single game,
and helps with forwarding the network traffic through NATs (Network Address Translation).

Each client maintains a local copy of the world entity and has direct control over a single
portion of it. Instances belonging to such as portion are seen as master by this client, who is
always allowed to directly change the state of the master instances without having to validate
this state change by synchronizing with other clients through the network.

Each client also maintains a portion of the world that is not directly under his control.
Instances belonging to such as portion are seen as slave by this client, who is only allowed to
predict the local state of the instances and, whenever he receives an update from their masters,
must correct this prediction according to the data contained in the received messages. The slave
part of the world is thus maintained passively by the client: the only active part is predicting the
evolution of the entity dynamics and correcting it whenever it receives an update by its master.

For this purpose, we extend the syntax of Casanova rules by allowing them to be marked
with the modifiers master and slave. These rules are executed respectively on master and slave
entities. Note that it is still possible not to mark a rule with these modifiers, which means that
the rule is always executed independently of the fact that the entity is either master or slave on
that particular client. We also allow to mark a rule as connecting and connected. These rules
are triggered only once respectively when a new client connects and when the clients detect a
new connection.

Casanova also provides primitives to send (reliably or unreliably) and receive data. A
schematic representation of this architecture can be seen in Figure 7.2.

Note that the aim of this architecture is to provide language-level primitives to describe the
networking logic. This means that the compiler will be able to generate code compatible with the
low-level network libraries that provide transmission functions over the network channel without
having to change Casanova code in the program. In our implementation, we chose the .NET
library Lidgren, which is widely used also in commercial game engines such as Unity3D and
MonoGame, but nothing prevents the compiler to be expanded in order to target other similar
libraries for other languages, such as jgroups [16].
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Figure 7.1: Representation of the game world in a networking scenario

(a) Unknown correct game
state when P3 joins the game.

(b) Networking game state
seen from the point of view of
P1. P2 is partially synchro-
nized, P4 is fully synchronized,
and P3 is a new client that is
late and is still sending its data

7.5 Case study

Let us consider a simple shooter game where each player controls a space ship. Players can move
forward, backward, and rotate the ship to change direction. Moreover, they can use the ship lasers
to shoot other players. If a laser hits an enemy ship, we increase the player’s score. Designing
such a game requires to address the following issues, depicted by the schematic representation
in Figure 7.1:

1. Each player must maintain a local version of the game state (world). In order to avoid to
flood the network with messages, all the copies are not fully synchronized at each frame,
thus they are slightly different and each client knows the latest version of only part of the
copy.

2. A player connecting to an existing game must be able to receive the latest update of the
game state and send the new ship he will control to existing players in the game.

3. A player already connected to the game must detect a new connection and send his master
portion of the game state.

4. Each player must be able to control only one ship at a time. This means that the part of
the game logic that processes the input and modifies the spatial data of the ship (position
and rotation) should only be executed on the ship controlled by the player and not on the
local copies of other players’ ships. This means that each player sees as master only one
ship instance.

5. Each player must send the updated state of the ship he controls to the other players after
executing the local update. To achieve better performance over the network, the data is
not sent at every update, but with a lower frequency.

6. Each player must receive the updated state of slave ships controlled by other players. In
this phase, we must take into account that, as explained above, not every update is sent,
so the player should “predict” what will happen during the game frames in which he does
not receive an update.

7.6 Implementation

Each of the scenarios described above requires specific language extensions. These extensions
identify connection, ownership (master/slave), and various send and receive primitives. In this
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Figure 7.2: master/slave architecture

section, we introduce each primitive by using a multiplayer game example. We now give an
implementation of the shooter game presented above, using the extended version of Casanova
with network primitives. The world contains a list of ships controlled by each player.

world Shooter = {
Ships : [Ship]
...

}

Each Ship contains a position, a rotation, a collection of shot projectiles, and the score.

entity Ship = {
Position : Vector2
Rotation : float32
Projectiles : [ Projectile ]
Score : int
...

}

Each Projectile contains its position and velocity.

entity Projectile = {
Position : Vector2
Velocity : Vector2
...

}

Connection

When a player connects, we must consider two different situations: (i) a player is already in the
game and must send the current game state to the connecting players, and (ii) the player who
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is connecting needs to send the ship he will instantiate and control (its initial state). Both the
players in the game and the connecting one must receive the game states that are sent. For this
purpose we introduce two additional modifiers, connecting and connected, that can be added
to rule declarations to mark their role in the multiplayer logic.

Connecting A rule marked with connecting is executed once when a player joins the game
for the first time. In our example, the player should send his initial state (the created ship) to
the other players. We use the primitive send reliable because we must be sure that eventually
all players will be notified of the ship creation.

world Shooter = {
...
rule connecting Ships =
yield send_reliable Ships

}

Connected A rule marked with connected is run whenever a new player joins the game by
all existing players. When this occurs, each player sends its ship. The system will take care to
send only the ship controlled locally by the player itself for each player. The rule will use the
send reliable primitive for the same reason explained in the previous point.

world Shooter = {
...
rule connected Ships =
yield send_reliable Ships

}

Note that even if the code is the same, the semantics of the two rules are different. The first
one is executed by the player joining the game, who locally instantiates its Ship and must send
its list of Ships (containing only the local instance) to the other players. The second one is
executed by all existing players who must share with the joining player the list of existing ships.

Master updates

As explained above, each client manages a series of local game objects (called master objects)
that are under its direct control. The other clients read passively any update done on those
instances and update their remote copy (slave objects) accordingly. We mark rules affecting
the behaviour of master objects as master. In our example, the following situations are run as
master: (i) synchronizing the ships among players, (ii) updating the ship and projectiles spatial
data, and (iii) creating and destroying projectiles.

1. Each player is tasked to maintain the list of Ships in the world. This requires to receive
the updated list from other players and to store the new value in a master rule. Indeed the
world is a special case of an entity that is shared among players, and not directly owned by
somebody. Each ship contained in that list and received from other players will be treated
appropriately as slaves, while the only one owned by the current player will be under his
direct control. In this rule we use let!, which is an operator that waits until the argument
expression returns a result and then binds it to the variable. The symbol @ stands for list
concatenation. The rule uses receive many, which receives and collects the list of sent
ships by the other players.

world Shooter = {
...
rule master Ships =
let! ships = receive_many ()
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yield Ships @ ships
}

2. The master version of the ship update reads the input of the player and moves (or rotates)
the ship if the appropriate key is pressed. Note that this part must be executed only on a
master object, because we want to allow each player to control only the ship he owns and
instantiates at the beginning of the game. Below we show just the rule to move forward;
the other movement and rotation rules are analogous. We use an unreliable send (in the
code we are using send and not send reliable as done previously) because it is acceptable
to lose an update of the position during a certain frame: shortly after, there will be a new
update. Casanova allows the programmer to choose whether to use reliable or unreliable
transmissions in the code.

entity Ship = {
...
rule master Position =

wait world . Input . IsKeyDown (Keys.W)
let vp = new Vector2 (Math.Cos( Rotation ),
Math.Sin( Rotation )) * 300.0 f
let p = Position + vp * dt
yield send p

}

We do the same for projectiles, except the projectile position is continuously updated and
synchronized over the network without having to wait that a key is pressed.

3. Creating a new projectile happens when the player shoots. A ship keeps track of the
projectiles it has shot so far, and adds a new one to the list of the existing projectiles. The
updated list is sent to all players with the new instance of the projectile (which is added
as a new head of the list with the operator ::). Here it is better to specify the semantics
of the yield in conjunction with the use of networking primitives. A yield requires that
the written value is type-compatible with the domain of the rule. Thus, when used with a
send primitive, we must pass a list as argument. The system will ensure, for performance
reasons, that the generated code only sends items which are newly added to the list. These
semantics are defined like this for two main reasons: (i) when sending the new projectiles
we must also update the list in local (and given the immutability of Casanova we must
replace the existing one), and (ii) because in this way the programmer can focus on the
logic of the game as if it were a single-player game without worrying of network-specific
details. Note that the last wait forces the player to release the key before shooting again
(semi-automatic fire). Removing that check would spawn multiple projectiles consecutively,
which is not a wanted behaviour.

entity Ship = {
...
rule master Projectiles =
wait world . Input . IsKeyDown (Keys. Space )
let vp = new Vector2 (Math.Cos( Rotation ),
Math.Sin( Rotation )) * 500.0 f
let projs = new Projectile (Position , vp) :: Projectiles
yield send_reliable projs
wait not world . Input . IsKeyDown (Keys. Space )
}

Filtering the colliding projectiles and updating the score is run as a master rule. The rule
computes the set difference between the ship projectiles and the colliding projectiles and
updates the list of projectiles, sending them through the network as well. Even in this
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case, the network layer sends only the information about the projectiles to remove. Note
that the score is managed by each player locally, as it does not require to be synchronized
(we do not print the other players’ scores. Doing so would indeed require to also send the
score).

entity Ship = {
...
rule master Projectiles , Score =

let collidingProjs =
[for p in Projectiles do

let ships =
[for s in Ships do

where
s <> this and
Vector2 . Distance (p.Position ,s. Position ) < 100.0 f

select s]
where ships . Count > 0
select p]

let newProjectiles = Projectiles - collidingProjs
yield send_reliable newProjectiles ,
Score + collidingProjs . Count

}

Managing remote instances

The game objects that were not instantiated by a client, but received from another client, are
slave objects and must be synchronized differently than master objects. For this purpose, a rule
can be marked as slave. In our example, we use slave rules in the following situations: (i)
synchronizing other players’ ships and projectiles spatial data, and (ii) projectiles instantiated
by other players.

1. Every remote projectile and ship is synchronized locally by a rule, which tries to receive a
message containing updated spatial data. Below we provide the code to update the position
of the ship; the synchronization of other spatial data is analogous.

entity Ship = {
...
rule slave Position = yield receive ()

}

2. When a projectile is instantiated remotely, we have to receive it and add it to the list of
projectiles. We use receive many because the new projectiles are added to a list. This
case also supports the situation where a ship could shoot multiple projectiles at the same
time.

entity Ship = {
...
rule slave Projectiles =
let! projs = receive_many ()
yield projs @ Projectiles

}

In this scenario we have to discuss the atomicity of these transmissions: in the context of
network games, reliability is often sacrificed for better network performance, so most of the data
transmissions are unreliable (like in the case of the ship position). This means that we have no
guarantee that the message will be received. Several issues can arise from this situation: for
example, if a client fails to receive the position of the ship, then it might miss a collision with
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a projectile. Out-of-sync errors might happen during a multiplayer game, and their effect is a
well-known issue in several shooter games where players affected by high latency or packet loss
see in their view of the game a hit on the player when this is not seen by the other players who
did not receive the information regarding this event. Ensuring that all the data transmissions are
reliable might on the other hand affect network performance to the point that the game would
become unplayable because of the network overload.

Casanova allows the programmer to decide whether the transmission should be reliable or
not and experiment with the effect of a reliable transmission versus an unreliable one that does
not overload the network. For example, the updated list of projectiles, after a collision, is always
sent in a reliable way. This is acceptable because collisions are not so frequent. This is not true
for the ship position, since movements are very frequent and mostly happen at every frame, thus
it is something that is not necessary to be sent reliably at every frame.

7.7 Networking Primitives with Functors

In the Chapter 6 we described in detail how to implement the logic of the Casanova update
traversal with functors in Metacasanova. We also further extended its first implementation with
interruptible rules. In this section we show a sketch of how to use functors to implement the
networking primitives introduced in Casanova in Section 7.6. In what follows we assume that the
data transfer primitives are defined in an external library that we assume it is given, since the
same applies to the implementation presented in Section 7.6, and the send and receive primitives
simply generate calls to this library.

7.7.1 Network Record

In order to implement the logic of master/slave entities we need to store additional information
in a Casanova entity to know if its instance has been created locally (thus being master). At
this purpose we use a functor NetworkRecord to create an instance of a record module to store
this information. This functor takes as input a record representing a Casanova entity and builds
a new record instance by adding a boolean field used to store the ownership status.

Functor " NetworkRecord " => Record : Record

RecordField " __isLocal " bool r => r’
--------------------------------------
NetworkRecord r => networkRecord

7.7.2 Connection

In order to implement the semantics of a connecting rule we have to modify the field (we rely on
the implementation with the record seen in Figure 6.2) to store not only the rule continuation
but also its connection state. Note that, with this change, we have to change the return type
of tick as well, because now the field is a triplet and not a pair. We also define a functor
ConnectingCoroutine that instantiate a field updater sharing the same implementation that we
generate from a normal coroutine, except for the logic of the function update.

Functor " ConnectingCoroutine " => string => Record => Record => string =>
stmt : FieldUpdater

This time update has three evaluation rules. The first one creates a getter to retrieve the current
field. It then calls the getter generated at the previous step to read the value of the connection
status stored in the field. The following clause performs a check on the connection status. If the
value is true then the clause fails and thus the rest of the premises is not executed because the
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whole evaluation rule fails and we skip to the next evaluation rule. If the value is false then we
run the code of the rule. At this point if the continuation after the rule update is empty then
the connecting rule has terminated its execution and we set to true the connection status.

----------------------------------
ConnectingCoroutine ruleName continuation r field stmts => FieldUpdater r

field {
...

GetField r field => getter
GetField continuation ruleName => contGetter
getter .get entity -> (v ,( connected ,cont))
connected = false
tick entity k dt -> (v’,(c’,k ’))
contGetter .get k’ -> nop
--------------------------
update entity dt -> (v’,(true ,k ’))

...
}

The second evaluation rule differs from the first only in the fact that it is executed when the
Casanova rule returns a non-empty continuation. In this case we do not set the connection status
to true because the connecting rule has not terminated its execution yet.

----------------------------------
ConnectingCoroutine ruleName continuation r field stmts => FieldUpdater r

field {
...

GetField r field => getter
GetField continuation ruleName => contGetter
getter .get entity -> (v ,( connected ,cont))
connected = false
tick entity k dt -> (v’,(c’,k ’))
--------------------------
update entity dt -> (v’,(c’,k ’))

...
}

The third and final case of the evaluation rule is when the connection status has already been
set to true; this means that the Casanova rule has already been evaluated completely during a
previous update and does not need to be executed again.

----------------------------------
ConnectingCoroutine ruleName continuation r field stmts => FieldUpdater r

field {
...

GetField r field => getter
getter .get entity -> (v ,( connected , continuation ))
connected = true
getter .get entity -> (v,k)
------------------------
update entity dt -> (v,k)

...
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}

In the case of a connected rule, we need to be able to detect a new connection. This can be done
in different ways: one possible solution is that when a client sends its data during the connecting
phase, it sends also information about the connection. This step is handled at low level by the
connection primitives. A Casanova rule marked as connected starts with a wait statement that
checks if a new client has connected to the system. For the remaining part the rule behaves like
a normal coroutine. Of course when the rule body has been completely evaluated, then it stops
again until a new client connects, since the whole body will be reconstructed and thus also the
wait statement

7.7.3 Local and Remote Entities

The behaviour of master and slave rules can be modelled through dedicated functors that generate
different instances for the field updater, in the same fashion as the connecting rule. We thus
define two new functors MasterCoroutine and SlaveCoroutine. MasterCoroutine generates a
field updater that has two different evaluation rules for update. The first one builds a getter for
the field isLocal. It then uses it to read its value from the current entity and uses a clause to
check whether the entity is local. At this point, if the entity is not local, the whole evaluation
rule fails and the next one is run. Otherwise the Casanova rule body is run and the field updated
accordingly to its specific code.

Functor " MasterCoroutine " => string => Record => Record => string => stmt :
FieldUpdater

----------------------------------------
MasterCoroutine ruleName continuation r field stmts => FieldUpdater r

field {
...

GetField r " __isLocal " => localGetter
localGetter .get entity -> (isLocal ,(c,k))
isLocal = true
tick entity k dt -> (v’,(c’,k ’))
------------------------------
update entity dt -> (v’,(c’,k ’))

...

The second evaluation rule is used when the entity is not local. In this case the semantics of a
master rule is simply not to be executed. In order to emulate this behaviour we simply return
the content of the field as it is (including all the information on the Casanova rule state).

----------------------------------------
MasterCoroutine ruleName continuation r field stmts => FieldUpdater r

field {
...

GetField r " __isLocal " => localGetter
GetField r field => getter
localGetter .get entity -> (isLocal ,(c,k))
isLocal = false
getter .get entity -> (v ,(c,k))
------------------------------
update entity dt -> (v ,(c,k))

...
}
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The SlaveCoroutine functor behaves in an analogous way: it generates two evaluation rules for
update that are complementary to those of the MasterCoroutine. In this case the Casanova rule
is updated only if the field isLocal is false. If this is not the case the second evaluation rule is
triggered and it returns simply the field as it is.

----------------------------------------
SlaveCoroutine ruleName continuation r field stmts => FieldUpdater r field

{
...

GetField r " __isLocal " => localGetter
localGetter .get entity -> (isLocal ,(c,k))
isLocal = false
tick entity k dt -> (v’,(c’,k ’))
------------------------------
update entity dt -> (v’,(c’,k ’))

GetField r " __isLocal " => localGetter
GetField r field => getter
localGetter .get entity -> (isLocal ,(c,k))
isLocal = true
getter .get entity -> (v ,(c,k))
------------------------------
update entity dt -> (v ,(c,k))

...
}

As a final note we want to point out that, since now the semantics of Casanova are encapsulated
into the FieldUpdater instance generated by the Coroutine functor, by introducing different
kinds of functors able to build the field updaters for coroutines we would need to duplicate the
code of the semantics in the field updater modules instantiated by each functor. This is, of course,
not a good a practice and the issue can be circumvented by creating an additional module, which
we can call CasanovaSemantics, that contains the semantics of all the statements of Casanova.
This module is instantiated in each field updater for coroutines by an utility functor defined
internally to each field updater. When we need to refer to the semantics of a specific Casanova
statement we simply call this functor to generate an instance of the module containing it and
then we use it to access the particular evaluation rule that we require for the statement.

7.8 Evaluation

In this section we evaluate the performance of Casanova with the new networking extension A
comparison between the implementation of a game in Casanova and an implementation of the
same game in C# will be shown and discussed in terms of run-time performance and code com-
plexity. We then measure the effort of implementing the semantics of the networking primitives
in terms of code lines in the hard-coded version of the Casanova compiler and the implementation
in Metacasanova.

7.8.1 Experimental setup

In order to get a systematic evaluation of the proposed approach to encapsulation, a generic
game is considered, in which a group of entities are spawned every K seconds and stay inactive
for a random amount of time, between 5 and 10 seconds. Then they are activated and start
moving for a randomly determined amount of time, between 4 and 8 seconds. Finally, they are
destroyed, by triggering a condition in the entities. For the evaluation, additional conditions are
added (with different timers), in order to make the simulation dynamics more articulated and
“heavy” in terms of amount of code to run.
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Platform Language Performance

Monogame
Casanova 0.0098 ms

C# 0.0147 ms

Unity3D
Casanova 0.0085 ms

C# 0.1642 ms

Table 7.1: Running time comparison

Language Lines

Casanova 126

C# 1257

Table 7.2: Code lines comparison for a multiplayer game

In this experiment, we compare the code generated by the Casanova hard-coded compiler
and an idiomatic implementation in the C# language (a commonly-used language for building
games). We also ran the games with two different front ends, namely Unity3D and MonoGame,
both using .NET. For each test we measure the time (in milliseconds) that the game takes to
fully complete a game iteration (i.e., updating all the entities in the game).

7.8.2 Performance Evaluation

Table 7.1 shows the performance results. As we can see, in both cases, the performance of our
optimized Casanova code is higher than the idiomatic C# implementation. Using Unity3D, the
optimized code is one order of magnitude faster than the non-optimized code. Using MonoGame,
the optimization is faster but on the same order of magnitude. The difference is due to the
implementation of the underlying frameworks.

7.8.3 Code Size

Table 7.2 shows the code length for each implementation. Casanova game code needs about
onte tenth of the lines of code compared to the idiomatic C# implementation for a multiplayer
game. The intermediate code that the Casanova hard-coded compiler creates (which is C# code)
is considerably longer due to the presence of support data structures. With increasing code
complexity, we may expect the original Casanova code to remain compact, while the generated
code will increase rapidly in size, with additional data structures and associated logic code.

Language component Implementation version Lines

Update traversal
F# compiler 1313
Metacasanova 111

Statement semantics
F# compiler 1480
Metacasanova 300

Total code
F# compiler 2793
Metacasanova 411

Table 7.3: Code length comparison between the F# hard-coded compiler of Casanova and its imple-
mentation in Metacasanova
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7.8.4 Compiler Implementation Code Size

Table 7.3 shows a comparison between the code length of the implementation of a language
component of Casanova in both the F# hard-coded compiler and the implementation in Me-
tacasanova. The semantics of the update traversal, including the networking, in Metacasanova
results to be about 13 times shorter than the corresponding implementation in the hard-coded
compiler. In the table we have listed for completeness also the code length required to implement
the semantics of the statement available in Casanova from Chapter 4. In total the code length
of the implementation in Casanova results to be almost 7 times shorter than its counterpart in
the hard-coded compiler.

7.9 Summary

In this chapter we have presented an extension for the domain-specific language for game de-
velopment Casanova that introduces abstractions to define the synchronization mechanisms for
a multiplayer online game. We have then shown the implementation of the same Semantics in
Metacasanova by using the entity traversal update with functors presented in Chapter 6. We
have evaluated the performance of Casanova with the new networking language extension by
comparing the code length and speed of a game implemented in Casanova and C#. We also
measured the effort of adding this new feature to Casanova by using the hard-coded compiler
and Metacasanova. In the next chapter we conclude this dissertation by answering the research
questions proposed in Chapter 1 and we draw our conclusions.
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Chapter 8

Discussion and Conclusion

This chapter provides an answer to the problem statement and research questions presented in
Section 1.5. The goal of the first research question is measuring the benefits of using a Meta-
compiler in terms of development speed when used to implement a domain-specific language for
game development with respect to the implementation measured in code length. The goal of the
second research question is aimed to determine the trade-off between a manual implementation of
the language and an implementation with Metacasanova. The goal of the third research question
is to identify reasons for this trade-off and propose an optimization to reduce it. The last part of
this chapter answers the problem statement, provides an overview of future work and adds final
remarks for this thesis.

8.1 Answer to research questions

The three research questions stated in Section 1.5 are now answered in Sections 8.1.1, 8.1.2, and
8.1.3 respectively.

8.1.1 Ease of development

The first research question reads:

Research question 1: To what extent can a meta-compiler reduce the amount of code re-
quired to create a compiler for a domain-speci�c language for game development?

The answer to this research question is derived from the results shown in Chapter 4. In this
chapter we re-implemented the language semantics of two languages: a toy imperative language
called C-- and the domain-specific language for game development Casanova. In Section 4.3
we showed how the use of Metacasanova reduces the effort in term of code writing for the
compiler of Casanova as the code required for the definition of the language semantics is roughly
5 times shorter in Metacasanova than the hard-coded version of the compiler written in F#.
We obtained even better results with the implementation of the semantics of C-- that is roughly
10 times shorter than its hard-coded counterpart. This improvement is due to the fact that,
in Metacasanova, it is possible to express the semantics of the language by mimicking almost
directly the definition of Casanova written in natural semantics. Thus, in addition to the benefit
in term of code length necessary to define the language semantics of Casanova, this reflects almost
directly its formal definition, while in the hard-coded version the logic of the semantics is hidden
in the implementation details of the host language used to build the hard-coded version of the
compiler. This result has been further backed up also by the results obtained when implementing
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the networking semantics of Casanova in Chapter 7, where we obtained a code size reduction of
about 13 times.

8.1.2 Performance trade-o�

The second research question reads:

Research question 2: How much is the performance loss introduced by the meta-compiler
with respect to an implementation written in a language typically used in game development and
is this loss acceptable in this context?

The answer to this research question can also be found in Chapter 4. In Section 4.3 and 4.3.4
we compared the running time of a sample written in Casanova implemented in Metacasanova
with respect to the same sample implemented in Python, which is a programming language
used to script the game logic in several games. The running time of Casanova results to be 3
times slower than the same implementation in Python in a simulation with 1000 entities. This
performance loss does not make this version of Casanova suitable for game development as such
number of entities can normally be present during the execution of a game. Usually a target value
for the frame rate of a game is in the order of 60 frames/second, while the simulation in Casanova
runs at roughly 28 frames/second. To this we add the fact that we are running the game logic
separately from the rendering phase, which introduces additional overhead. The same simulation
in Python runs at about 70 frames/second. At this point we can observe that Metacasanova is
suitable for the fast prototyping of a domain-specific language for game development (because
of the code length reduction) but not for its use.

8.1.3 Optimization

The third research question reads:

Research question 3: What is the cause of the performance degradation when employing a
meta-compiler and how can this be improved?

In Chapter 5 Sections 5.1, 5.1.1, and 5.1.2 we identified the main cause of performance loss
in the dynamic lookups that the language must perform at run time to retrieve the values of the
entity fields and variables from the meta-data structures used to represent the memory model of
a Casanova program. Thus, even if Casanova is a statically-typed language, in its meta-compiled
version it exhibits dynamic behaviours. The reason of this is that Metacasanova, with the features
presented up to Chapter 4, cannot embed the type system of a language implemented in it in
its own type system, thus the typing rules of Casanova must be implemented in terms of rules
in natural semantics that are evaluated at runtime. The same applies to the representation of
Casanova entities: even if their structure is known at compile-time and does not dynamically
change at runtime, the access to the data-structure used to encode them must be a lookup
performed at runtime, while, if this could be known by Metacasanova during the compilation
phase, the code for these accesses could be inlined, thus improving the runtime performance.

In order to overcome this problem we proposed in Section 5.2 a language extension for Me-
tacasanova introducing functors and modules in the meta-language. One use of this language
extension is the ability of embedding the type system of a language implemented in Metacasanova
(embedded language) in the very same type system of Metacasanova itself. In this way the type
checker of Metacasanova is, at the same time, able to statically type check both the abstractions
of the meta-language and those of the embedded language itself. This has a dual benefit: (i) the
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typing of a program written in an language embedded in Metacasanova can always be performed
statically by the type checker of Metacasanova, and (ii), in presence of data structures that do
not change their structure at runtime, it is possible to inline the access to their components at
compilation time.

In Section 5.3 we provided a proof of such capabilities by giving an implementation of records
using functors and modules to, at the same time, define the type of a record in term of the meta-
type system of Metacasanova and to build getters and setters for its fields by inlining the calls to
functions that are directly able to access or modify the requested field. In Section 5.7 we compared
the access to this record implementation with its dynamic counterpart used to model Casanova
entities in Chapter 4 obtaining performance 11 times faster with the functor implementation.

In Chapter 6 we show how to use functors and modules to implement the semantics of
updating the entities of a Casanova program by starting from the observation that its structure
is known at compile time and thus the update will always follow the same pattern. It is thus
possible to build the functions necessary to update a specific Casanova program at compile time
with Metacasanova, getting rid of all the dynamic checks needed to perform the same activity
in the implementation provided in Chapter 4. The Casanova performance implemented in this
way is 42 times faster on average than its previous implementation without functors.

We can thus conclude that this optimization leads to a performance improvement that makes a
domain-specific language for games implemented in Metacasanova have acceptable performance,
as now the frame rate of a Casanova program with 1000 entities is roughly 900 frames/second,
against the previous version that ran at 28 frames/second.

8.2 Answer to the problem statement

The problem statement reads:

Problem statement: To what extent does a meta-compiler bene�t the development of a domain-
speci�c language for game development?

Our goal in this thesis was to reduce the effort of developing a compiler for a domain-specific
language for game development and, at the same time, evaluate the feasibility of such approach
performance-wise. For this purpose, we designed Metacasanova, a meta-compiler whose meta-
language is based on natural semantics. Metacasanova benefits in terms of development speed
manifested almost immediately, as the first re-implementation of the Casanova language was
substantially shorter than its hard-coded counterpart in F#. This result is further backed up
by an analogous code reduction size when implementing the networking extension. Moreover,
the structure of the formalization of the language semantics was almost entirely preserved in the
Metacasanova implementation, while in the hard-coded version of the compiler this is lost. How-
ever, these benefits came at a cost, since the runtime performance of a Casanova program turned
out to be slower than Python, thus making the use of a DSL implemented in Metacasanova im-
practical for game development. We overcame this drawback by extending the meta-language of
Metacasanova with functors and modules that allow to perform code generation optimizations,
thus improving also the performance of the Casanova implementation that now runs 42 times
faster than the previous version. We can conclude that such performance boost makes Metaca-
sanova suitable not only for rapid prototyping a DSL for game development, but also to produce
a language version that can be used in practical applications.
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8.3 Future Work

Metacasanova comes with a series of features that boost the development speed of a domain-
specific language for game development with respect to its typing and semantics. Little effort
was put into providing a way of defining the syntax of such language in Metacasanova. In
all the examples presented in this work we wrote the programs of the programming language
implemented in Metacasanova in terms of the meta-language itself. This of course is not ideal
because, in the current state, the programmer must be expert of both this programming language
and the meta-language of Metacasanova. Metacasanova should thus be extended also to support
a way to define a syntax definition in a parser that generates a representation of the program in
terms of the meta-language of Metacasanova.

Another interesting research aspect regarding the optimization of Metacasanova would in-
volve the memoization of function calls: a lot of the overhead of the evaluation of rules of
natural semantics goes into the pattern matching of the input parameters and of the result of
the premises. Since Metacasanova is referentially transparent (unless an evaluation rule contains
calls to external code), it would be possible to store the result of the evaluation of a rule in a
lookup table and retrieve it if the same call is performed at a later stage instead of recomputing
it every time, thus getting rid of much of the costs of pattern matching.

Finally, in this work we focused our attention on using functors and modules in Metaca-
sanova to improve the performance of a domain-specific language for game development, and
in particular to improve the performance of accessing the fields of an entity in Casanova and
optimize its update, but we argue that the same approach could be used in general to optimize
the compilation of any programming language. Of course this, for now, it is just a conjecture
that requires further investigation by building a set of different and more diverse domain-specific
languages.



Appendix A

List Operations with Templates

In this appendix we will show in detail some operations on lists built on top of what presented
in Section 2.6.1 that can be built by using meta-programming in C++ templates. The goal of
this appendix is to convince the reader about the level of complexity of using C++ templates to
express meta-programming and why it is preferable to use a dedicated meta-compiler.

A.1 Element Getter

Accessing the n-th element of a list defined with templates mimics the behaviour of the its
definition in a functional programming languages given below:

let rec nth (n : int) (l : List <’a >) : ’a =
match l,n with
| x :: xs ,0 -> x
| x :: xs ,_ -> nth (n - 1) xs

The recursion base case is when the index we want to access is 0, which means that we want
to access the head of the list. In this case we simply return the head by decomposing the list
through pattern matching. In the other case we simply make a recursive call by passing the
index decreased by 1 and the tail of the list. In template meta-programming, this is translated
into a template that performs the same task:

template <typename List > struct Nth <LST , 0>
{

typedef typename List :: Head result ;
};

As shown in Section 2.6.1, the arguments of the function are passed as arguments of the template
itself. This version of the template is specialized for the integer 0, which corresponds to the base
case of the recursion. The general case of the recursion has a dedicated template as follows:

template <typename List , int N> struct Nth
{

typedef typename List :: Tail Tail;
typedef typename Nth <Tail , N - 1 >:: result result ;

};

The template contains a type definition for the parameter corresponding to the list tail and
another type definition corresponding to the recursive call to another Nth template, this time
containing only the tail of the list and the counter decreased by 1. To test this we can use the
following sample:
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template <int N> struct Int
{

static const int result = N;
};

typedef List <Int <1>, List <Int <2>, List <Int <3>>>> testList ;

int main ()
{

cout << Nth <testList , 2 >:: result :: result << endl;
}

Note that we need to access result twice, because the first result is the type of the head of the
list generated by template, which is Int. So calling

Nth <testList , 2 >:: result

returns Int, that is a type. If we want to access the value stored in Int then we must access the
constant integer result contained in it. Note that if we try to access an invalid index in the list,
the compiler will complain because it will try to generate a template with the tail of a list that
does not exist. In this way something that in a normal program becomes a runtime error is here
treated as a compilation error.

A.2 Element Existence

The code that tests the existence of an element within a list is recursive as well and mimics the
behaviour of its functional counterpart:

let exists ( element : ’a) (l : List <’a >) : ’a =
match l with
| [] -> false
| x :: xs when element = x -> true
| x :: xs -> exists element xs

The function returns false as a base case when the list is empty, because it means that the
whole list has been examined and the element has not been found. The second case is when the
head of the list matches the element, which returns true. The last case is used when the head
of the list does not match the element, thus we call recursively exists on the tail. In order to
implement this function with C++ templates, we need to define two utility templates able to
compare two elements:

template <class X, class Y> struct Eq { static const bool result = false ;
};

template <class X> struct Eq <X, X> { static const bool result = true; };

The first template has a result set to false when its arguments are different, while the second
template is a specialization of the first one where both the first template argument and the
second are the same and its result is true. With this utility templates we can correctly compare
the values of a list defined with templates and define the recursive template for the existence
function:

template <class Element , class List > struct Exists
{

static const bool result =
Eq <Element , typename List :: Head >:: result || Exists <Element , typename

List :: Tail >:: result ;
};
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template <class Element > struct Exists <Element , NIL >
{

static const bool result = false ;
};

The first template is the general case of the recursion. It uses Eq to test the value of the searched
element against the head of the list. It then combines this result with the logical or on Exists
run with the remaining tail of the list. The second template is the base case and contains a
constant set to false. This corresponds to the base case of the recursive function above.
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Appendix B

Metacasanova Grammar in BNF

In this section we provide the grammar of Metacasanova in Backus-Naur Form [63]. For brevity
we provide only the grammar productions and not the tokens (written in capital letters). Note
that this version includes the language extension described in Chapter 5.

moduleId = ’*’ | ID

moduleArg = [’(’] ID ’:’ moduleId [’) ’]

moduleDeclaration = ’Module ’ STRING ’=>’ { moduleArg } ’:’ ID { NEWLINE }
’{’ { declaration } ’}’

program =
{ NEWLINE } { NAMESPACE dottedPath newLineSeq } { includeStmts } {

declaration } { subtype } { rule }

includeStmts = ’include ’ STRING

dottedPath = ID { ’.’ ID }

declarations = { declaration }

genericSeq = ’[’ ID { ’,’ ID } ’]’

typeArg = ID | argSeq | ’<<’ STRING ’>>’

funcArg = ’*’ | typeArg

declArgs =
| STRING { ’->’ typeArg }
| { ’->’ typeArg } STRING { ’->’ typeArg }
| { ’->’ typeArg } STRING

funcArgs =
| STRING { ’=>’ funcArg }
| { ’=>’ funcArg } STRING { ’=>’ funcArg }
| { ’=>’ funcArg } STRING

priority = ’Priority ’ INT
associativty = ’Associativity ’ (’left ’ | ’right ’)

declaration =
| "Func" { genericSeq } declArgs ’:’ typeArg [ priority ] [ associativity

]
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| "Data" { genericSeq } declArgs ’:’ typeArg [ priority ] [ associativity
]

| " Functor " funcArgs ’:’ typeArg [ priority ] [ associativity ]

literal =
| INT
| FLOAT
| STRING
| UNIT
//...

arg =
| ’(’ argSeq ’)’
| literal
| dottedPath
| CUSTOMOPERATOR

argSeq = arg { arg }

subtype = ID ’is ’ ID

comOp =
| ’=’ | ’>’ | ’<’ | ’>=’ | ’<>’

premise =
| argSeq ’->’ argSeq
| argSeq compOp argSeq
| argSeq ’=>’ argSeq

rule =
| { premise } ’--’ { ’-’ } argSeq ’->’ argSeq
| { premise } ’--’ { ’-’ } argSeq ’=>’ argSeq { NEWLINE } ’{’ program ’}’
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