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Abstract Our contribution is twofold. Firstly, for a system of uncertain linear equa-
tions where the uncertainties are column-wise and reside in general convex sets, we
derive convex representations for united and tolerable solution sets. Secondly, to obtain
centered solutions for uncertain linear equations, we develop a new method based
on adjustable robust optimization (ARO) techniques to compute the maximum size
inscribed convex body (MCB) of the set of the solutions. In general, the obtainedMCB
is an inner approximation of the solution set, and its center is a potential solution to
the system. We use recent results from ARO to characterize for which convex bodies
the obtained MCB is optimal. We compare our method both theoretically and numer-
ically with an existing method that minimizes the worst-case violation. Applications
to the input–output model, Colley’s Matrix Rankings and Article Influence Scores
demonstrate the advantages of the new method.

Keywords Interval linear systems · Uncertain linear equations · (Adjustable)Robust
optimization · Maximum volume inscribed ellipsoid · Robust least-squares

1 Introduction

Systems of linear equations are of immense importance inmathematics and its applica-
tions in physics, economics, engineering, andmanymore fields. However, the presence
of unavoidable errors (inaccuracies) in the specification of parameters in both the right-
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586 J. Zhen, D. den Hertog

and left-hand sides introduces uncertainty in the sought solution. The uncertaintiesmay
be raised due to measurement/rounding errors in the data of the physical problems,
estimation errors in the estimated parameters by using expert opinions and/or historical
data, or numerical errors associated with finite representation of numbers by computer
(see Ben-Tal et al. 2009).

A basic version of the problem that we consider is well known in the context of
interval linear systems. For a given system of linear equations,

Ax = b, (1)

where the coefficient matrix A ∈ R
m×n and right-hand side b ∈ R

m are uncertain and
allowed to vary uniformly and independently of each other in the given intervals:

A = {A : ai j ≤ ai j ≤ ai j ∀i ∈ [m], ∀ j ∈ [n]}
B = {b : bi ≤ bi ≤ bi , ∀i ∈ [m]} (2)

where ai j , ai j , bi , bi ∈ R, for all i, j , are the lower- and upper-bounds of the compo-
nents in the matrix A and vector b, respectively. Let U = A×B. There are three well
known solution sets to the linear system (1), see, e.g., Kreinovich et al. (1998), Shary
(2011), Popova (2012) and Hladík and Popova (2015):

– united solution set

X = {
x ∈ R

n | ∃(A, b) ∈ U : Ax = b
}
,

– controllable solution set

X con = {
x ∈ R

n | ∀b ∈ B, ∃A ∈ A : Ax = b
}
,

– tolerable solution set

X tol = {
x ∈ R

n | ∀A ∈ A, ∃b ∈ B : Ax = b
}
.

For a united solution set X , each of the possible (A, b) ∈ U has equal claim to
be the true realization of the physical problem. Different parameters may produce
different solutions for the system of linear equations. Since the pioneer work by Oettli
and Prager (1964), much literature has been devoted to describe the ranges of the
components of the solution x ∈ X for interval linear systems, i.e.,

[ xi , xi ] =
[
min
x∈X

xi , max
x∈X

xi

]
∀i ∈ [n], (3)

where xi denotes the i-th element of vector x. Themain source of difficulties connected
with obtaining ranges of xi is the complicated structure of the solution setX . Although
the intersection of the solution set and each orthant is a convex polyhedron, the union of
those polyhedra, i.e.,X , is generally non-convex. Oettli (1965) proposes to use a linear
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Centered solutions for uncertain linear equations 587

programming procedure in each orthant (i.e., 2n orthants in total) to determine xi and
xi , for all i ∈ [n]. Rohn and Kreinovich (1995) show that, in general, determining the
exact ranges for the components of x ∈ X is anNP-hard problem. For a comprehensive
treatment and for references to the literature on interval linear systems one may refer
to the books Neumaier (1990), Kreinovich et al. (1998), Fiedler et al. (2006) and
Moore et al. (2009). Due to the NP-hardness of solving (3) exactly, many ingenious
methods have been developed to obtain sufficiently close outer estimates of the solution
set, e.g., Hansen (1992), Jansson (1997), Ning and Kearfott (1997), Rump (2010),
Hladík (2014), Popova (2004, 2014), Rohn (1981), Alefeld et al. (1998), Calafiore
and Ghaoui (2004), Popova and Krämer (2007) and Hladík (2012) consider interval
linear systems with dependent data. We refrain here from listing papers dedicated
to computing enclosures since they are simply too many. Interval linear systems has
been applied to many engineering problems described by systems of linear equations
involving uncertainties. These problems include analysis ofmechanical structures (see
Smith et al. 2012; Muhanna and Erdolen 2006), electrical circuit designs (see Dreyer
2005; Kolev 1993) and chemical engineering (see Gau and Stadtherr 2002). For more
applications we refer to the book Moore et al. (2009).

In this paper, we consider the system of uncertain linear equations:

A(ζ )x = b(ζ ), (4)

where the coefficient matrix A : Rnζ → R
m×n and right-hand side b : Rnζ → R

m

are affine in ζ , and the uncertain parameters ζ ∈ R
nζ reside in the uncertainty set U .

Firstly, we focus on systems of linear equations with column-wise uncertainties. Let
A(ζ ) = [a·1(ζ 1) a·2(ζ 2) · · · a·n(ζ n)], b(ζ ) = b(ζ 0), and ζ = [ζ ′

0 ζ ′
1 · · · ζ ′

n]′. We
represent the system (4) as follows:

n∑

j=1

a· j (ζ j )x j = b(ζ 0), (5)

where the vector function a· j is affine in ζ j ∈ U j , the vector function b is affine in
ζ 0 ∈ U0, and the set U j is convex, for all j ∈ [n] ∪ {0}. The corresponding united
solution set X is:

X =
⎧
⎨

⎩
x ∈ R

n

∣∣∣∣∣∣
∃ζ ∈ U :

n∑

j=1

a· j (ζ j )x j = b(ζ 0)

⎫
⎬

⎭
(6)

where U = ×n
j=0U j , and ζ = [ζ ′

0 ζ ′
1 · · · ζ ′

n]′ ∈ R
nζ . Most of the existing literature

consider (4) with independent interval uncertainties. Oettli (1965) shows that for a
special class of (6), where uncertainties are component-wise and reside in independent
intervals, i.e., (2), the intersection of the united solution setX and any orthant ofRn is a
convex polyhedron. Popova (2014) devises a method to obtain close outer estimates of
(4) with independent interval uncertainties. Popova (2015) characterize the solvability
of (4) with independent interval uncertainties. Here, we consider uncertain linear
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588 J. Zhen, D. den Hertog

systems with column-wise (dependent) uncertainties that reside in general convex
sets, and derive convex representations of X in an arbitrary orthant. Moreover, when
U j are polyhedral, j ∈ [n]∪ {0}, the setX is also polyhedral; when U j are ellipsoidal,
j ∈ [n] ∪ {0}, the set X is conic quadratic representable.
Moreover, via a convex representation technique and the techniques from

(adjustable) robust optimization, we are able to derive convex representations of a
special class of X con . We further show that X tol can be interpreted as a solution set
for a static robust optimization problem, which admits tractable reformulations for
many important classes of A and B.

We propose to compute the maximum size inscribed convex body (MCB) of the
set of possible solutions for systems of uncertain linear equations. It is intuitively
appealing to find a centered solution that is “far” from the boundaries of the solution set
X (i.e., infeasibility). The obtainedMCB is an inner approximation of the solution set,
and its center is a potential solution to the system. We extend the method developed in
Zhen and den Hertog (2017) to compute the MCB of the solution set X . This method
is independently developed in Zhang et al. (2017) and applied to optimal control
problems. Furthermore, we use the recent results of Zhen et al. (2016) for adjustable
robust optimization (ARO) to characterize for which convex bodies the obtainedMCB
is optimal.

We compare our new method both theoretically and numerically with an existing
method. The conventional method of determining a robust solution for systems of
uncertain linear equations first appears in the context of robust least-squares (RLS)
problems Ghaoui and Lebret (1997). The RLS method finds the minimizer xRLS of
the worst-case 2-norm violation of the system:

min
x

max
ζ∈U

||A(ζ )x − b(ζ )||2. (7)

The tractability of Problem (7) strongly relies on the choice of the uncertainty set U .
Ben-Tal et al. (2009) show that Problem (7) under independent interval uncertainties
can be reformulated into an SOCP problem. In Ghaoui and Lebret (1997), Beck and
Eldar (2006) and Jeyakumar and Li (2014), authors derive an SOCP or a semidefinite
programming (SDP) reformulation of Problem (7) under ellipsoidal uncertainties.
Burer (2012) and Juditsky and Polyak (2012) solve (7) to find the robust rating vectors
for Colley’s Matrix Ranking and Google’s PageRank, respectively.

The contributions of this paper may be summarized as follows:

1. For column-wise (dependent) uncertainties that reside in convex sets, we show that
the united solution set X in any orthant is convex, and derive a convex representa-
tion of X . We then derive a convex representation of X con via robust optimization
techniques, and further discuss the cases in which X tol can be reformulated into
equivalent convex sets.

2. Based on ARO techniques, we develop a new method to compute the MCB of the
set of possible solutions for uncertain linear systems. Its center can be considered
as a candidate. Furthermore, we use the recent results of Zhen et al. (2016) for
ARO to characterize for which convex bodies the obtained MCB is optimal.
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Centered solutions for uncertain linear equations 589

3. We compare our new method both theoretically and numerically with the RLS
method. We show that the solutions xRLS are scale sensitive and may even be
outside X . Applications to the input–output model, Colley’s Matrix Rankings,
and Article Influence Scores demonstrate the advantages and disadvantages of the
two methods.

The remainder of the paper is organized as follows. Section2 discusses the proper-
ties of the solution sets, and derive equivalent convex representations of X and X con .
The method for computing the MCB is discussed in Sect. 3. In Sect. 4, we compare
our method with the RLS method theoretically, and Sect. 5 presents numerical results.

Notation We use [n], n ∈ N to denote the set of running indices, {1, . . . , n}. We use
bold faced characters such as x ∈ R

n to represent vectors. We use xi to denote the i-th
element of the vector x. We denote a· j as the j-th column of the matrix A. We use
normal and calligraphy capital letters such as A ∈ R

m×n and X to represent matrices
and sets, respectively. We denote ζ ∈ R

nζ as the uncertain parameters.

2 Convexity and representation of the solution set

2.1 Convexity of united solution set

Let us consider system (5) of uncertain linear equations.Weassume that the uncertainty
set U that ζ = [ζ ′

0 ζ ′
1 · · · ζ ′

n]′ ∈ R
nζ resides in, is bounded and defined as follows:

U = n×
j=0

U j , where U j = {
ζ j | ∀k ∈ [n] : f jk(ζ j ) ≤ 0

}
, j ∈ [n] ∪ {0}, (8)

and the function f jk is convex in ζ j , j ∈ [n] ∪ {0}, k ∈ [n]. The components of
ζ j ∈ U j may be dependent. For i 	= j , the components of ζ i ∈ Ui and ζ j ∈ U j are
independent. The uncertainties in the system (5) are indeed column-wise. Note that
the dimensions of the uncertain parameters ζ i and ζ j are not necessarily the same
for i 	= j . For a given pair I,J ⊆ [n], where I ∪ J = [n], and I ∩ J = ∅, the
corresponding orthant is defined as

Rn
I,J = {

x ∈ R
n | xi ≥ 0, x j ≤ 0, ∀i ∈ I, j ∈ J } .

Lemma 1 The intersection of Rn
I,J and the solution set X with the uncertainty set

U defined in (5):

X ∩ Rn
I,J =

⎧
⎨

⎩
x ∈ Rn

I,J

∣∣∣∣∣∣
∃ζ ∈ U :

n∑

j=1

a· j (ζ j )x j = b(ζ 0)

⎫
⎬

⎭

is convex.

Proof Since this proof is almost identical to the proof for Blanc and Hertog (2008,
Proposition 1), we omit it here. ��
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590 J. Zhen, D. den Hertog

Fig. 1 The shaded region is the solution set X in Example1

Although Blanc and Hertog (2008, Proposition 1) only considers x in the nonnegative
orthant with polyhedral uncertainties on the left hand side, their proof also holds for
general convex uncertainties on both left and right hand side with x reside in any given
orthant. Soyster (1973) shows that the nonnegative sum of a finite number of convex
sets is convex, which is basically the result of Lemma1. Examples1 and 2 show that
in order to preserve convexity of the solution set X the two conditions are indeed
necessary: (a) the feasible solutions x ∈ X are within a particular orthant of Rn , and
(b) the uncertainties in A(ζ ) and b(ζ ) are column-wise.

Example 1 The union of the solutions x ∈ X in two orthants can be nonconvex.
Let us consider the following solution set of an uncertain linear system

X =
{
x ∈ R

2 :
[
ζ1 0
ζ1 ζ2

]
x =

[
1
0

]
, ζ1 ∈ [−1, 1], ζ2 ∈ [1, 2]

}
.

The solution set X can be represented as:

X =
{
x ∈ R

2 : x1 ∈ (−∞,−1] ∪ [1,+∞), x2 ∈
[
−1,−1

2

]}
.

One can easily see that the intersection of the solution set X and each orthant of R2 is
indeed convex. However, the set X is nonconvex, see Fig. 1. This result is known in
Oettli (1965).

Example 2 The solution set X can be nonconvex when the uncertainties are not
column-wise. Let us consider the following solution set of an uncertain linear system:

X =
{
x :

[
ζ1 0
ζ1 −ζ1 − ζ2

]
x =

[
1
0

]
, ζ1 ∈ [1, 2] , ζ2 ∈ [−1, 1]

}
.

Note that the uncertainties of the system are not column-wise. The set can be repre-
sented as:

X =
{
x : |x1 − x2| ≤ x1x2,

1

2
≤ x1 ≤ 1

}
.
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Centered solutions for uncertain linear equations 591

Fig. 2 The shaded region is the solution set X in Example2

This set is nonempty only in the nonnegative orthant R2+, and clearly, the set X is
nonconvex. See Fig. 2. A similar observation is also made in, e.g., Tichatschke et al.
(1989) and Popova and Krämer (2007).

2.2 Convex representation of united solution set

Given the uncertainty sets defined in (8), the intersection of the solution set X and an
arbitrary orthant Rn

I,J can be compactly represented as follows:

X ∩ Rn
I,J =

⎧
⎨

⎩
x ∈ Rn

I,J

∣∣∣∣∣∣
∀ j, k ∈ [n], ∃ζ :

∑n
j=1 a· j (ζ j )x j = b(ζ 0)

f jk(ζ j ) ≤ 0
f0k(ζ 0) ≤ 0

⎫
⎬

⎭
, (9)

where the components of the vector functions a· j , b are affine in ζ j , and f jk is convex
in ζ j , for all j, k. Due to the presence of products of variables (e.g., ζ j x j for some
j ∈ [n]), the representation of set (9) is nonconvex.

Theorem 1 The set (9) admits the following convex representation

X ∩ Rn
I,J =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∈ Rn
I,J

∣∣∣∣∣∣∣∣∣

∀k ∈ [n]
∃ζ 0 ∈ U0, y j

:

∑n
j=1 a· j

(
y j
x j

)
x j = b(ζ 0)

xi fik
(

yi
xi

)
≤ 0, ∀i ∈ I

x j f jk
(

y j
x j

)
≥ 0, ∀ j ∈ J

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (10)

where 0a· j
(

y j
0

)
= limx j→0 x j a· j

(
y j
x j

)
and 0 f jk

(
y j
0

)
= limx j→0 x j f jk

(
y j
x j

)
are

the recession functions of a· j and f jk , respectively.

Proof The set (10) is obtained by substituting y j = x jζ j and multiply the inequality
constraints containing ζ j with x j in (9). Since the vector functions a· j (·), j ∈ [n],
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592 J. Zhen, D. den Hertog

and b(·) are affine, the equalities
∑n

j=1 a· j
(

y j
x j

)
x j = b(ζ 0) are affine in x, ζ 0

and y j , j ∈ [n]. Dacorogna and Maréchal (2008) show that, for a convex function
f : Rn → R, its perspective g( y, x) := x f ( y

x ) is convex on Rn ×R+ \ {0}. Here is a
short proof of the convexity of x f ( y

x ) onRn ×R+ \{0} uses convex analysis (adopted
from Gorissen et al. 2014):

g( y, x) = x f
( y
x

)
= x f ∗∗ ( y

x

)
= x sup

z

{
y′z
x

− f ∗(z)
}

= sup
z

{
y′z − x f ∗(z)

}

fromwhich it follows that g( y, x) is jointly convex since it is the pointwise supremum

of functions which are linear in x and y. Hence, the functions xi fik
(

yi
xi

)
, i ∈ I,

−x j f jk
(

y j
x j

)
, j ∈ J , are jointly convex in x and yk , k ∈ [n]. ��

Theorem1 shows that for general convex functions f jk , for all j, k, the solution
set X in any orthant of Rn is convex, which coincides with the findings in Lemma1.
Furthermore, for each j ∈ [n] ∪ {0}, k ∈ [n], if f jk is affine in ζ j , the set X is
polyhedral; if f jk is quadratic in ζ j , the set X is conic quadratic representable. Our
result generalizes the results of Rohn (1981), where the author provides a convex
representation of interval linear systems with prescribed column sums.

This transformation technique used in the proof of Theorem1 is first proposed by
Dantzig (1963) to solve Generalized LPs. In the field of disjunctive programming,
Balas (1998) employs this technique to derive a convex representation of the union of
polytopes. Grossmann and Lee (2003) use it to derive a convex representation of the
convex hull of general convex sets. This technique is also applied to the dual of LPs
with polyhedral uncertainty in Römer (2010). Gorissen et al. (2014) use it to derive
tractable robust counterparts of a linear conic optimization problem. We illustrate this
transformation by the following interval linear system example. This example is used
throughout this paper.

Example 3 The convex representation of X ∩ R
n+ with product of variables. Let

us consider the solution set in non-negative orthant R2
[2],∅ = R

2+:

X ∩ R
2+ =

{
x ∈ R

2+ | ∃ζ ∈ U : ζ 1x1 + ζ 2x2 = ζ 0

}
,

where U = ×2
j=0U j , U0 = [0, 120] × [60, 240], U1 = [0, 1] × {2} and U2 =

[2, 3] × [1, 2]. Substituting ζ 1 = y1
x1

and ζ 2 = y2
x2
, and multiplying the inequality

constraints containing ζ j with x j , yields the following representation:

X ∩ R
2+ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∈ R
2+

∣∣∣∣∣∣∣∣∣

∃ζ 0 ∈ U0
∃ y1, y2 :

y1 + y2 = ζ 0,

[
0
60

]
≤ ζ 0 ≤

[
120
240

]

[
0
2x1

]
≤ y1 ≤

[
x1
2x1

]
,

[
2x2
x2

]
≤ y2 ≤

[
3x2
2x2

]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(11)
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Centered solutions for uncertain linear equations 593

One can further simplify this set by eliminating the equality constraints. From Fig. 3,
we observe that the set defined in (11) is a full-dimensional polytope.

For interval linear systems, Kreinovich et al. (1998) show that checking the bound-
edness of the solution set is NP-hard. If we only focus on the solution set in a specific
orthant, the boundedness can simply be checked by maximizing

∑
i∈I xi −∑ j∈J x j

over X inRn
I,J .

2.3 Convex representations of controllable and tolerable solution sets

Let us first consider a controllable solution set in an arbitrary orthant with column-wise
uncertainties:

X con ∩ Rn
I,J =

⎧
⎨

⎩
x ∈ Rn

I,J

∣∣∣∣∣∣

∀ζ 0 ∈ U0, j ∈ [n]
∃ζ j ∈ U j

:
n∑

j=1

a· j (ζ j )x j = b(ζ 0)

⎫
⎬

⎭
,

(12)
where the uncertainty sets U j , j ∈ [n] ∪ {0}, are defined in (8). Via the convex
representation technique in Sect. 2.2, the set (12) can be reformulated as:

X con ∩ Rn
I,J =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∈ Rn
I,J

∣∣∣∣∣∣∣∣∣

∀ζ 0 ∈ U0
∀ j, k ∈ [n], ∃ y j :

∑n
j=1 a· j

(
y j
x j

)
x j = b(ζ 0)

xi fik
(

yi
xi

)
≤ 0, ∀i ∈ I

x j f jk
(

y j
x j

)
≥ 0, ∀ j ∈ J

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(13)

Let us now focus on a special class of (13), where fik , i, k ∈ [n], are affine. The
set (13) can be interpreted as a solution set of a two-stage robust linear optimization
problem. Here, the auxiliary variables y j , j ∈ [n], can be seen as general functions
of ζ 0. Ben-Tal et al. (2004) show that solving ARO problems is generally NP-hard,
because the auxiliary variables (a.k.a., adjustable variables) are decision rules instead
of finite vectors of decision variables. Zhen et al. (2016) show via Fourier–Motzkin
elimination that the solution set of two-stage robust linear optimization problems can
be reformulated into a convex set, e.g., the set (13) is a polyhedron if U0 is polyhedral.

For computational tractability, we often restrict the adjustable variable y (for sim-
plicity, here we drop the subscript of y j ) to linear decision rules, e.g., the decision
rule y is linear in ζ 0:

y = u + V ζ 0, (14)

where the coefficients u ∈ R
ny and V ∈ R

ny×n will be optimization variables. Despite
that linear functions may not be optimal, it appears that such a decision rule performs
well in practice. For instance, Ben-Ameur et al. (2016) and Zhen et al. (2016) show
that linear decision rules are optimal for adjustable robust linear optimization prob-
lems with a simplicial uncertainty set. Suppose U0 = {ζ 0 ∈ R

n+ | 1′ζ 0 ≤ 1} is a
standard simplex, then linear decision rules are optimal, and (13) can be reformulated
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594 J. Zhen, D. den Hertog

into a polyhedron. For a general convex U0, linear decision rules result in an inner
approximation of (13).

In case of tolerable solution set, one can eliminate all the auxiliary variables b, and
obtain:

X tol = {
x ∈ R

n | ∀A ∈ A : Ax ∈ B} . (15)

Note that here we do not restrict the solution set to be within a specific orthant. The
set (15) can be seen as a solution set of a static robust optimization problem. IfA and
B are ellipsoidal, then the set (15) is SDP-representable; if B is polyhedral, then (15)
can be equivalently reformulated into a convex set via Fenchel duality (see Ben-Tal
et al. 2015) for almost all convex A. For polyhedral A and B, the set (15) can be
reformulated into a convex polyhedron. This generalizes the result of Popova (2012),
where the author shows that the tolerable solution set with interval uncertainties is a
convex polyhedron.

3 Maximum size inscribed convex body of solution set

Firstly, in Sect. 3.1, we extend the method of Zhen and den Hertog (2017) to compute
the maximum size inscribed convex body (MCB) of a polytopic projection. Since the
obtained MCB is an under approximation of the optimal MCB, in Sect. 3.2, we briefly
discuss a simple procedure that provides an upper approximation.

3.1 MCB of polytopic projection

It is well-known that for a general convex set, finding theMCB can be computationally
intractable. In this subsection, we focus on polyhedral solution sets. For instance, the
united solution set X ∩ Rn

I,J defined in (10) is polyhedral if the functions f jk and
f0k are affine, j, k ∈ [n]:

X ∩ Rn
I,J =

{

x ∈ Rn
I,J

∣∣∣∣∣
∀ j, k ∈ [n]
∃ζ 0, y j

:
∑n

j=1 a· j
(

y j
x j

)
x j = b(ζ 0),

c jk x j + d ′
jk y j ≤ 0, c0k + d ′

0kζ 0 ≤ 0

}

,

(16)
for some scalar c jk, c0k , and vectors d jk, d0k . Similarly, the controllable and tol-
erable solution sets can also be reformulated (exactly or approximately via linear
decision rules and robust optimization techniques) into polyhedral sets, and themethod
discussed in this section can also be directly applied. For clarity, we represent the (pro-
jected) polyhedral set (16) as follows:

H =
{
x ∈ R

n | ∃ y ∈ R
ny : D

[
x
y

]
≤ c

}
, (17)

where D ∈ R
m×(n+ny), and c ∈ R

m . The auxiliary variable y in (17) represents
the variables y j ’s and ζ 0 in (16). If the set H is not full-dimensional, then there are
(hidden) equality constraints inH. One can simply eliminate the equality constraints
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via Gaussian elimination. Without loss of generality, let us assume that the set H is
full-dimensional.

The set H contains both variables x and y, but it is desired to find the MCB only
with respect to x. Due to the existence of y in the description ofH, finding theMCB in
a polytopic projection is generally a non-convex optimization problem (see Zhen and
denHertog2017).One canuse eliminationmethods, e.g., Fourier–Motzkin elimination
(see Fourier 1824;Motzkin 1936), to eliminate all y inH. This is equivalent to deriving
a description ofH that does not contain y. Tiwary (2008) shows that deriving an explicit
description of a projected polytope is NP-hard. Alternatively, Zhen and den Hertog
(2017) approximate the maximum volume inscribe ellipsoid (MVE) of H via linear
and quadratic decision rules.

We extend the method of Zhen and den Hertog (2017) to compute the MCB (and
its center) of a polytopic projection by solving the following adjustable robust opti-
mization problem:

max
x,E

{
log detE | ∀ξ ∈ �, ∃ y : D

[
x + Eξ

y

]
≤ c

}
, (18)

where E ∈ S
n with implicit constraint E � 0, Sn is the set of n × n symmetric

matrices, x are non-adjustable variables, the vector function y are called decision
rules, and � ⊆ R

n is a compact convex body. By maximizing the concave func-
tion logdet(E) in Problem (18), the matrix E “stretches” (or “suppresses”) and
“rotates” the convex body � around x in H to its maximum volume. If one would
like to “stretch” (or “suppress”) the convex body along the x’s axes (i.e., without
rotation), this can simply be done by restricting the non-diagonal entries of E to
be 0, and maximizing

∑
i∈[n] log Eii . When H is unbounded, the volume of the

MCB is also unbounded. The boundedness of H can be checked via an LP prob-
lem.

Let us restrict the decision rule y to be linear in ξ as in (14), and substitute it in
(18) to get the affinely adjustable robust formulation:

max
x,u,V,E

{
log detE

∣∣∣∣ ∀ξ ∈ � : D
[
x + Eξ

u + V ξ

]
≤ c

}
. (19)

Problem (19) is a semi-infinite optimization problem that approximates the MCB and
its center. For a broad class of convex bodies �, Problem (19) can be reformulated
into an equivalent tractable reformulation (see Ben-Tal et al. 2015):

– Maximum inscribed polytope For a polytope � = {ξ ∈ R
n+ | Pξ ≤ q}, where

P ∈ R
mξ ×n and q ∈ R

mξ , the tractable counterpart of Problem (19) is as follows:

max
x,u,V,E,�

{
log detE

∣∣∣∣ D
[
x
u

]
+ �q ≤ c, �P ≥ D

[
E
V

]
, � ≥ 0

}
, (20)

where � ∈ R
m×mξ . Let us consider two special polyhedral sets, i.e., � is a

box or simplex. Zhen et al. (2016) proves that linear and two-piecewise deci-
sion rules are optimal for two-stage robust linear optimization problems with
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simplex and box uncertainties, respectively. If � = {ξ ∈ R
n+ | 1′ξ ≤ 1} is a

standard simplex, the solution of (20) gives a maximum inscribed simplex of H;
if � = {ξ ∈ R

n | |ξ | ≤ 1} is a box, there exists two-piecewise affine decision
rules that are optimal for (18), and the solutions of (20) are in general subop-
timal. For tolerable solution sets with interval uncertainties, Hladík and Popova
(2015) devise an exponential LP methods for computing maximal inner boxes
exactly, and also propose a polynomial heuristic that yields an approximated
maximal inner box. Furthermore, Ben-Tal et al. (2004) show that static deci-
sion rules are optimal for two-stage robust linear optimization problems with
constraint-wise uncertainties. Hence, one can directly show that the solution
of

max
x, y,E

⎧
⎨

⎩

∑

i∈[n]
log Eii

∣∣∣∣∣∣
∀ξ ∈ � : d

′
i ·
[
x + Eξ

yi

]
≤ ci ∀i ∈ [m]

E jk = 0 ∀ j 	= k : j, k ∈ [n]

⎫
⎬

⎭

gives a maximum inscribed box (without rotation) ofH, where d ′
i · is the i-th row

of D, and yi ∈ R
ny , i ∈ [m].

– Maximum inscribed ellipsoid For � = {ξ ∈ R
n | ||ξ ||2 ≤ 1}, the tractable coun-

terpart of Problem (19) is as follows:

max
x,u,V,E

{
log detE

∣∣∣∣ d
′
i ·
[
x
u

]
+
∣∣∣∣

∣∣∣∣

[
E
V

]′
di ·
∣∣∣∣

∣∣∣∣
2

≤ ci , ∀i ∈ [m]
}

, (21)

where di · ∈ R
n is the i-th row of the matrix D. Problem (21) approximates the

MVE of H. A largest ball in H can be determined by replacing the matrix E by
eI ∈ R

n×n (i.e., a product of a scaler e ∈ R+ and identity matrix) everywhere in
(21). For the rest of this paper, we focus on MVE, i.e., � = {ξ ∈ R

n | ||ξ ||2 ≤ 1},
because it possesses many appealing properties: (a) it is unique, invariant of the
representation of the given convex body; (b) its center is a centralized (relative)
interior point of the convex body; (c) it is a inner approximation of H which
admits a simple description (i.e., one inequality constraint). We denote xaMV E

as the approximated MVE center of H obtained from the MVE method (21).
In the following example, we solve (21) to compute xaMV E of the solution set
H.

Example 4 The maximum volume inscribed ellipsoid (Example 3 continued). From
Fig. 3 we know thatH is full-dimensional. Since we are interested in the MVE center
of H only with respect to x, we compute the xaMV E of H by solving (21), and
obtain xaMV E = (52.1, 30.7). In order to evaluate the obtained solution, we derive
an explicit description of H with no auxiliary variables by using Fourier–Motzkin
elimination, and obtain the optimal MVE center xMV E at (53.6, 30). Note that, in
general, it is NP-hard to derive such a description. From Fig. 3, one can observe that
xaMV E is a close approximation of xMV E .
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3.2 Upper bounding method of Hadjiyiannis et al. (2011)

Hadjiyiannis et al. (2011) propose to compute upper bounds on the optimal value of
adjustable robust optimization problems by only considering a finite set of scenarios,
which they call critical scenarios (CSs). The CSs are obtained by solving the auxiliary
optimization problems:

ξ k = argmax
ξ∈�

d ′
k·
[
E∗
V ∗
]

ξ , k ∈ [m], (22)

where E∗ and V ∗ denote the optimal solution from (19). If more than one CS is
determined from the k-th constraint, an arbitrary CS is chosen and included in the CS
set. The scenario counterpart of Problem (18) with respect to the CS set �̂, where
�̂ = {ξ1, . . . , ξm}, is given by the following optimization problem:

max
z, yk ,E

{
log detE

∣∣∣∣ D
[
x + Eξ k

yk

]
≤ c, ∀k ∈ [m]

}
. (23)

For each ξ k ∈ �̂, k ∈ [m], we only need a feasible yk ∈ R
ny to exist. Since �̂ ⊂ �,

Problem (23) provides an upper bound of (18).

4 Comparison of solution methods

In this section, we compare the theoretical aspects of the robust least-square (RLS)
method with our MVE method discussed in Sect. 3. Let us first consider an interval
linear system where:

A(ζ ) = [ζ 1 ζ 2 · · · ζ n], b(ζ ) = ζ 0, U = n×
j=0

U j ,

ζ j ∈ U j = {ζ j ∈ R
m : ζ

j
≤ ζ j ≤ ζ j }, j ∈ [n] ∪ {0},

(24)

and ζ = [ζ ′
0 ζ ′

1 · · · ζ ′
n]′ ∈ R

nζ . We further denote the nominal realization ζ nom as
the median of the intervals, i.e., ζ nom = 1

2 (ζ + ζ ) ∈ R
nζ .

Lemma 2 Given A(ζ ), b(ζ ) and U in (24), the solution xRLS is optimal for (7) if and
only if it is also optimal for the following SOCP problem with a unique z ∈ R

m:

min
z,x

⎧
⎨

⎩
||z||2

∣∣∣∣∣∣
z ≥ |A(ζ nom)x − b(ζ nom)| + θ0 +

∑

i∈[n]
|θ i xi |

⎫
⎬

⎭
, (25)

where θ j = ζ j − ζ nom
j ∈ R

m, j ∈ [n] ∪ {0}.
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Fig. 3 The shaded region is the solution setX in Example3. The dashed ellipsoid is theMVE. The solutions
from the MVE method and the RLS method are denoted as xaMV E and xRLS , respectively. The solutions
xnom and xMV E are the nominal solution and the optimal MVE center, respectively

Proof This proof is adapted from Ben-Tal et al. (2009) [Chapter 6.2]:

min
x

max
ζ∈U

||A(ζ )x − b(ζ )||2
= min

τ,x
max
ζ∈U

{
τ | τ ≥ ||A(ζ nom)x − b(ζ nom) + A(ζ − ζ nom)x − b(ζ − ζ nom)||2

}

= min
τ,z,x

⎧
⎨

⎩
τ | τ ≥ ||z||2, z ≥ |A(ζ nom)x − b(ζ nom)| + θ0 +

∑

i∈[n]
|θ i xi |

⎫
⎬

⎭
.

��
Note that in Lemma2, the optimal solution xRLS of (25) is not restricted to be within
any specific orthant. The tractability of Problem (7) strongly relies on the choice
of the uncertainty set U . For deriving tractable counterpart of (7) with ellipsoidal
uncertainties in A and/or b, we would like to refer to Ghaoui and Lebret (1997), Beck
and Eldar (2006) and Jeyakumar and Li (2014). In the following example, we solve
Problem (25) for the interval linear system in Example3.

Example 5 The robust least-squares solution for an interval linear system. We
apply the RLS method to the interval linear system in Example3 and find the solu-
tion xRLS is at (67.06, 10.59), which is denoted as � in Fig. 3. The solution xRLS

coincides with the nominal solution xnom (i.e., the solution obtained from the nominal
realization) of the system.

TheRLSmethod is in linewith the philosophy of Robust Optimization (see Ben-Tal
et al. 2009), i.e., minimizing the violation with respect to the worst-case scenario. Our
method finds a centered solution of the solution set. In Sect. 5, we show that in many
real-life problems that involve solving a system of linear equations, the uncertainties
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Fig. 4 The shaded region is the solution setX in Example3. The dashed ellipsoid is theMVE. The solutions
from the MVE method and the RLS method are denoted as xaMV E and xRLS , respectively. The solutions
xnom and xMV E are the nominal solution and the optimal MVE center, respectively

are often column-wise, i.e., the uncertaintieswithin each column of A(ζ ) and b(ζ )may
be dependent, and the centered solution xaMV E can be efficiently obtained. However,
the choice of uncertainty sets for Problem (7) that admits a tractable counterpart is
rather limited, e.g., for polyhedral uncertainties, Problem (7) is generally NP-hard.

One of the most fundamental properties of a system of (uncertain) linear equations
is scale invariance. The nominal solution xnom and centered solution xaMV E are scale
invariant, whereas, the solution xRLS is not. In fact, xRLS can be outside the solution
set (see Example6), and even if one restrict xRLS to be within X , it may still be on
the boundary of the solution set. As the feasibility of the solutions are not guaranteed,
the solution xRLS may be less appealing than xaMV E .

Example 6 Scale sensitivity of the solutions. Let us consider an adapted version of
the interval linear system in Example3 where the uncertainty sets are defined as:

U0 =
{
ζ 0 :

[
0
60

]
≤ ζ 0 ≤

[
3600
240

]}
,

U1 =
{
ζ 1 :

[
0
2

]
≤ ζ 1 ≤

[
30
2

]}
, U2 =

{
ζ 2 :

[
60
1

]
≤ ζ 2 ≤

[
90
2

]}
.

The components of the first row of the interval linear system in Example3 are now
multiplied by a factor 30. Note that this operation does not alter the set X ∩ R

2+. The
solutions for this uncertain linear system are depicted in Fig. 4. The nominal andMVE
solutions remain unchanged. The solution xRLS is outside the solution set.
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Table 1 Numerical comparison of the solutions for the interval linear system in Example3

xnom xMV E xaMV E xRLS [x, x]
x1 67.1 53.6 52.1 67.1 [0, 120]
x2 10.6 30 30.7 10.6 [0, 60]
V OL 22.4 39.2 38.3 22.4 –

WD 13.7 17.9 17.8 13.7 –

MD 37.2 31.2 31.3 37.2 –

Complexity LS SDP SDP SOCP LP

The solutions from the MVE method and the RLS method are denoted as xaMV E and xRLS , respectively.
The solutions xnom and xMV E are the nominal solution and the optimal MVE center, respectively. The
bold numbers show that the corresponding solution performs the best (among the candidate solutions) with
respect to the corresponding measure

5 Numerical experiments

In this section, we conduct four experiments to evaluate the candidate solutions. The
first experiment considers the interval linear system introduced in Example3 and
its adapted version in Example6. The other three are input–output model, Colley’s
Matrix Ranking and Article Influence Scores, respectively. A common feature of these
problems is that their solutions are obtained by solving a system of linear equations.
All the procedures are performed by using Mosek 8 (see MOSEK ApS 2017) within
Matlab R2017a on an Intel Core i5-4590 CPU running at 3.3GHz with 8GB RAM
under Windows 7 operating system.

5.1 A simple experiment

Firstly, we compute the candidate solutions for the interval linear system discussed in
Example3. Given a candidate solution x̃, three measures are considered:

– V OL the volume of the MVE centered at x̃ within X
– WD theworst-case 2-norm deviations of A(ζ )x̃ from b(ζ ) (i.e.,maxζ∈U ||A(ζ )x̃−

b(ζ )||2)
– MD the mean 2-norm deviations of uniformly sampled solutions in X (i.e.,

1
ns

∑
i∈[ns ] ||xi − x̃||2), where xi ∈ X , i ∈ [ns], are obtained from theHit-and-Run

sampling (see Smith 1984).

For the interval linear system in Example3, the nominal solution xnom coincides
with xRLS (see Fig. 3). From Table1, one can observe that xnom and xRLS are most
robust against the worst-case deviations. The solutions xMV E

1 and xaMV E are cen-
tered solutions (see also the exact ranges of x in the last column of Table1). The

1 The optimal MVE center xMV E is obtained by first eliminating all the auxiliary variables via Fourier–
Motzkin elimination, and then compute the MVE (only with respect to x). For a more detailed description,
we refer to the paper of Zhen and den Hertog (2017).
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Table 2 Numerical comparison of the solutions for the interval linear system in Example6

xnom xMV E xaMV E xRLS [x, x]
x1 67.1 53.6 52.1 0 [0, 120]
x2 10.6 30 30.7 24 [0, 60]
V OL 22.4 39.2 38.3 0 –

WD 29.6 43.0 43.2 21.7 –

MD 37.2 31.2 31.3 59.3 –

Complexity LS SDP SDP SOCP LP

The solutions from the MVE method and the RLS method are denoted as xaMV E and xRLS , respectively.
The solutions xnom and xMV E are the nominal solution and the optimal MVE center, respectively. The
bold numbers show that the corresponding solution performs the best (among the candidate solutions) with
respect to the corresponding measure. LS denotes the complexity of solving a linear system

solution xMV E has the largest inscribed ellipsoid and the least MD. The small differ-
ence in the V OLs and MDs of xMV E and xaMV E indicates that the solution xaMV E

is a very close approximation of xMV E .
In Table2, we evaluate the solutions for the interval linear system in Example6.

Here, the nominal solution xnom is no longer the same as xRLS , and xRLS is outside
the solution set (see Fig. 4). Therefore, the corresponding volume of the MVE is 0.
The solutions xnom , xMV E and xaMV E are scale invariant.

5.2 Production vector for input–output model

Leontief’s Nobel prize-winning input–output model describes a simplified view of an
economy. Its goal is to predict the proper level of production for each of several types
of goods or service. We apply this to predict the production of different industries in
the Netherlands. In Table3, we present the data that are reported in Deloitte (2014).
This is a simplified version of the consumption data of the Netherlands published by
the Dutch statistics office. From Leontief (1986), the nominal input–output matrix is
defined as:

A = Diag(w)−1C,

where w ∈ R
5 is the total output vector, C ∈ R

5×5 is the consumption matrix from
Table3, and Diag(·) places its vector components into a diagonal matrix. The nominal
production vector xnom can be obtained by solving the following system of linear
equations:

(I − A)x = b, (26)

where b is the vector of the nominal external demands (see the last column of Table3).
Suppose there are uncertainties in the system (26), and each component of

A(ζ ) = [ζ 1 · · · ζ n] and b(ζ ) = ζ 0 resides in an independent interval, where
ζ = [ζ ′

0 ζ ′
1 · · · ζ ′

n]′ ∈ R
n2+n . We assume that the interval uncertainty sets U j ,

j = [n] ∪ {0}, are as follows:
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Table 3 The simplified consumption matrix of the Netherlands (numbers in em)

C AFF Manuf. Services E & H Other ED (b0)

AFF 4.257 9.828 0.221 0.092 0.476 13.232

Manuf. 8.074 114.955 14.864 4.61 33.212 296.826

Services 1.983 29.3 65.9 5.925 42.493 176.933

E & H 0.019 1.035 0.982 2.281 1.755 92.926

Other 0.628 9.425 14.871 5.431 28.366 214.992

Total output (w′) 28.193 461.369 273.771 111.265 321.294

Five industries are considered, i.e., agriculture, fishing, forestry (AFF) industry, manufacturing industry,
service industry, education and healthcare (E &H) industry and other industries. The external demand (ED)
and the total output are also reported

Table 4 The candidate production vectors for σ = 15%

xnom xaMV E xRLS [x, x]
AFF 52 52 49 [39, 67]
Manuf. 732 741 731 [573, 922]
Services 505 511 504 [386, 650]
E & H 119 119 119 [100, 139]
Other 406 408 406 [330, 490]
Complexity LS SDP SOCP LP

Time (s) 0 0.2 0.1 1.9

The solutions from the MVE method and the RLS method are denoted as xaMV E and xRLS , respectively.
The solution xnom is the nominal solution. The exact ranges of the components of x are reported in the last
column. LS denotes the complexity of solving a linear system

U j = { ζ j : |ζ j − a· j | ≤ σ a· j } and U0 = { ζ 0 : |ζ 0 − b| ≤ σ b},

where σ is user specified, a· j is the j-th column of the nominal matrix A. Input–
output models with interval data were also studied in, e.g., Rohn (1978) and Dymova
et al. (2013). In Table 4, the computation time of the solution methods is positively
correlated with its theoretical complexity. Since the problem size is relative small, all
the solutions can be obtained within 2 s.

We again consider the three measures as in Sect. 5.1. From Table5, we observe
that the solution xaMV E has the largest inscribed ellipsoid and the best (i.e., least)
MD; xRLS is the most robust solution with respect to WD, but geometrically, it is
not centered. The nominal solution xnom is the second best solution for all the three
measures. For other values of σ , or different σi j ’s for each components of A and b,
the above observations remain valid. However, when σ ≥ 25%, the RLS solutions
are outside the solution set. Since xaMV E is an approximation of the optimal MVE
center, we apply the upper bounding method of Sect. 3.2. The upper bounding V OL
is 44.4. The obtained inner approximation is 44.3, which implies that xaMV E is very
close to the optimal solution.
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Table 5 Numerical result of the solution methods for input–output model

xnom xaMV E xRLS

V OL 42 44 39

WD 148 155 148

MD 107 105 107

The solutions from the MVE method and the RLS method are denoted as xaMV E and xRLS , respectively.
The solution xnom is the nominal solution. The bold numbers show that the corresponding solution performs
the best (among the candidate solutions) with respect to the corresponding measure

5.3 Colley’s matrix ranking

Colley’s bias free college football ranking method was first introduced by Colley
(2001). This method became so successful that it is now one of the six computer
rankings incorporated in the Bowl Championship Series method of ranking National
Collegiate Athletic Association college football teams. The notation here is adapted
from Burer (2012).

Colley Matrix Rankings require to solve a system of linear equations Ax = b. For
n teams, the n × n matrix W is defined as

Wi j = number of times team i has beaten team j.

In particular,Wi j = Wji = 0 if i has not played against j , andWii = 0 for all i . Note
that the i j-th entry of W + W ′ represents the number of times team i and team j has
played against each other. Let 1 be the all-ones vector, then the i-th entry of (W+W ′)1
and (W −W ′)1 gives the total number of games played by team i , i.e., the schedule of
the games, and its win–loss spread. The Colley matrix A and the vector b are defined
via the schedule of the games and the win–loss spread vector respectively, i.e.,

A = 2I + Diag((W + W ′)1) − (W + W ′)

b = 1 + 1

2
(W − W ′)1,

where I is the identity matrix and Diag(·) places its vector components into a diago-
nal matrix. Since the schedule of the games is often predetermined, we only consider
uncertainties in the vector b. We empirically investigate the robust version of Colley
Matrix ratings to modest changes in the win–loss outcomes of inconsequential games.
A game is inconsequential if it has occurred between two bottom teams, i.e., teams
win less than 50% of all the games they played. Suppose m inconsequential games
has been played during the whole season. Let ζ ∈ R

m denote the perturbation of
the games. The game j switches its outcome if ζ j = 1, and it remains unchanged if
ζ j = 0. For all j , we have 0 ≤ ζ j ≤ 1. Then, we define a matrix � ∈ R

n×m , where

�i j =
⎧
⎨

⎩

1 if team i loses the game j
−1 if team i wins the game j
0 otherwise.
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The vector �ζ represents the possible switches in the outcome of the games. The
maximum number of inconsequential games that are allowed to switch their outcomes
is less than L ∈ N

0, i.e.,
∑

j ζ j ≤ L . The polyhedral solution set is as follows:

conv(X ) = {x : Ax = b + �ζ , ζ ∈ U} ,

where the matrix A and the vector b are nominal, conv(X ) denotes the convex hull

of the set X , and U =
{
ζ : ζ ∈ {0, 1}m,

∑
j ζ j ≤ L

}
. The uncertainty set U con-

tains all possible integral ζ ’s (i.e., scenarios). For ζ = 0, the nominal rating vector
xnom = A−1b is on the boundary of X . Note that the ratings of Colley’s Matrix
Rankings are not necessarily nonnegative. Since negative ratings are rather rare and
their values are marginal (often very close to zero), we restrict ourselves to the rating
vectors that are nonnegative.

The data we use in this subsection are downloaded from the website Wolfe (2017).
The data contains the outcomes of 4197 college football games played by n = 760
teams in 2016, US. There are m = 112 inconsequential games in total. We allow at
most L = 30 inconsequential games to switch their outcomes. The total number of
possible outcomes is |U | = ∑30

i=1

(112
i

) = 2.4× 1027. The solution xaMV E is defined
as the approximated MVE center of the solution set conv(X ). For the polyhedral set
conv(X ), the RLS method requires solving a 2-norm maximization problem which is
NP-hard. Burer (2012) proposes a two-stage method to solve the following MINLP
problem:

min
x

max
ζ∈U

||Ax − b − �ζ ||2.

We denote the solution of Burer as xRLS . Due to the high dimension of the solutions
(i.e., n = 760), we do not report the obtained solutions, and the exact ranges of the
components of x for this numerical experiment. Since the uncertainty set U is discrete,
the measures that we consider here are slightly different from those introduced in
Sect. 5.1:

– V OL the volume of the MVE centered at x̃ within conv(X )

– WD the worst-case 2-norm deviations of Ax̃ from b + �ζ with respect to 105

randomly sampled integer ζ ∈ U (i.e., maxζ∈U ||Ax − b − �ζ ||2)
– MD the mean 2-norm deviations of 105 uniformly sampled solutions in conv(X )
(i.e., 1

ns

∑
i∈[ns ] ||xi − x̃||2), where xi ∈ X , i ∈ [ns], are obtained from the

Hit-and-Run sampling (see Smith 1984)
– MDD the mean 2-norm deviations of Ax̃ from b + �ζ with respect to 105

randomly sampled discrete ζ ∈ U .
From Table6, it is readily obvious that the solution xaMV E is the best for three out

of four measures. Due to the problem definition, the effect of switching the result of
the inconsequential games is not symmetric. The solution xnom is on the boundary
of X and it is the least robust solution among all three solutions with respect to the
considered measures. We again evaluate the quality of the approximation xaMV E by
computing its upper bounding volume. The obtained upper bounding volume is 0.18.
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Table 6 Numerical result of the ratings for Colley’s Matrix Ranking

xnom xaMV E xRLS

V OL 0 0.06 0.04

WD 7.54 6.72 6.67

MD 7.5 6.4 6.6

MDD 10.5 9.2 9.7

Complexity LS SDP MINLP

Time (s) 0 9 174

The nominal solution, MVE solution and RLS solution are denoted as xnom , xaMV E and xRLS , respec-
tively. The bold numbers show that the corresponding solution performs the best (among the candidate
solutions) with respect to the corresponding measure. LS denotes the complexity of solving a linear system

The optimal volume lies between 0.06 and 0.18. The MINLP problem is solved with
CPLEX 12.7 ILOG (2016). For larger sized problems, one can expect exponential
growth in computation time for the RLS method, whereas the MVE method remains
computationally tractable.

5.4 Article influence scores

Around1996–1998,LarryPage andSergeyBrin, Ph.D. students at StanfordUniversity,
developed the PageRank algorithm for rating and ranking the importance ofWeb pages
(see Brin and Page 1999). An adapted version of PageRank has recently been proposed
to rank the importance of scientific journals as a replacement for the traditional impact
factor (see Bergstrom et al. 2008).

Let us consider the following six prestigious journals in the field of Operations
Research, i.e.,Management Science (MS), Operations Research (OR),Mathematical
Programming (MP), European Journal of Operational Research (EJOR), INFORMS
Journal on Computing (IJC) and Mathematics of Operations Research (MOR). The
journal citation network can be represented as an adjacency matrix H , where Hi j

indicates the number of times that articles published in journal j during the census
period cite articles in journal i published during the same period. The number of
publications for journal i is denoted as the i-th component of v.We consider the number
of citations and publications of the six journals in 2013 and obtain the corresponding
H and v from Thomson-Reuters Corp (2014):

H =

⎡

⎢⎢⎢⎢⎢⎢
⎣

MS OR MP EJOR IJC MOR

MS 607 182 24 542 57 16
OR 140 317 212 536 97 27
MP 9 63 375 135 69 25
EJOR 20 93 41 2170 72 2
IJC 2 30 16 75 51 0
MOR 16 58 81 56 0 53

⎤

⎥⎥⎥⎥⎥⎥
⎦

and v =

⎛

⎜⎜⎜⎜⎜⎜
⎝

165
96
123
469
58
38

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (27)
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There are some modifications that need to be done to H before the influence vector
can be calculated. First, we set the diagonal elements of H to 0, so that journals do not
receive credit for self-citation. Then, we normalize the columns of H . To do this, we
divide each column of H by its sum. We normalize the vector v in the same fashion.
The normalized H and v in (27) are as follows:

S =

⎡

⎢⎢⎢⎢⎢⎢
⎣

MS OR MP EJOR IJC MOR

MS 0 0.427 0.064 0.403 0.193 0.229
OR 0.749 0 0.567 0.399 0.329 0.386
MP 0.048 0.148 0 0.100 0.234 0.357
EJOR 0.107 0.218 0.110 0 0.244 0.029
IJC 0.011 0.070 0.043 0.056 0 0
MOR 0.086 0.136 0.217 0.042 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

and w =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0.174
0.101
0.130
0.495
0.061
0.040

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

(28)
Finally, we construct the matrix A, a convex combination of S and a rank-one

matrix, i.e.,

A = αS + (1 − α)
1

n
w1′, 0 ≤ α < 1, (29)

where α is the damping factor and w1′ is a n × n matrix. The damping factor models
the possibility that a searcher choose a random paper out of all papers. Therefore, the
closer the α gets to 1, the better the journal’s citation structure is represented by the
matrix A. The influence vector x∗ can be obtained by solving as follows:

Ax = x,

n∑

i=1

xi = 1. (30)

From the Perron-Frobenius theorem, we know a unique rating vector x∗ can be found.
The Article Influence score of journal i can be calculated as follows:

AIi = Sx∗

wi
∑n

i=1(Sx
∗)i

, ∀i.

In this subsection, we assume α = 90%. Let us consider the matrix S and vector w

defined in (28) and denote the obtained matrix in (29) as the nominal matrix A. The
nominal influence vector xnom is obtained by solving the system of linear equations
(30). Since the estimated probabilities are not exact, we take uncertainty in the matrix
A into consideration. Let us consider the following column-wise 1-norm uncertainties
in A:

U =
{
ζ : ||ζ j − a· j ||1 ≤ σ, ζ ′

j1 = 1, ζ j ≥ 0, ∀ j
}

,

where ζ = [ζ ′
1 · · · ζ ′

n]′ ∈ R
n2 , σ = 20%, ζ j and a· j are the j th column of matrix

A(ζ ) and A, respectively. The uncertainties occur in the left-hand side of the sys-
tem. Note that each column of the nonnegative matrix A(ζ ) is a probability vector,
i.e., ζ ′

j1 = 1 for all j . Hence, the uncertain parameters are dependent. Since 2-norm
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Table 7 The nominal solution and MVE solution are denoted as xnom and xaMV E , respectively

MS OR MP EJOR IJC MOR

xnom 0.240 0.338 0.122 0.163 0.043 0.094

xaMV E 0.239 0.337 0.121 0.162 0.048 0.093

[x, x] [0.147, 0.336] [0.257, 0.416] [0.035, 0.220] [0.069, 0.259] [0, 0.142] [0.016, 0.194]
AI (x) 1.424 3.602 0.937 0.255 0.666 2.494

AI (xaMV E ) 1.424 3.598 0.941 0.256 0.663 2.481

[AI , AI ] [1.258, 1.590] [3.132, 4.076] [0.737, 1.152] [0.217, 0.298] [0.575, 0.756] [2.039, 2.939]
The exact ranges of the components of x and AI are denoted as [x, x] and [AI , AI ], respectively

Table 8 Numerical result of the influence vectors

xnom xaMV E

V OL 0.0312 0.0313

MDA,b 0.0359 0.0356

MD 0.0733 0.0728

Complexity LS SDP

Time (s) 0 0.08

The xnom denotes the nominal solution; the xaMV E is the approximated MVE center obtained by solving
(21). The bold numbers show that the corresponding solution performs the best (among the candidate
solutions) with respect to the corresponding measure. LS denotes the complexity of solving a linear system

maximization over a polyhedron is an N P-hard problem, the RLS method is compu-
tationally intractable. We consider the tractable (upper-bound) approximation of the
RLS proposed in Juditsky and Polyak (2012):

(J P) min
x:∑i xi=1

||Ax − x||2 + σ

n∑

j=1

|x j |.

The solution of this approximation coincides with xnom . We refer to Polyak and
Timonina (2011) for a fast algorithm that solves (J P) with high-dimensional A.
Hence, in the remaining of this section, we do not distinguish the solution of (J P)

from xnom . The resulting Article Influence Scores from the influence vectors are
reported in Table7. The exact ranges of the components of the solution and the AIS
AI are reported. The difference between the nominal and MVE solution is marginal.
The width of [x, x] and [AI , AI ] indicates that the system (30) is sensitive to this
type of uncertainties.

We again consider the measures V OL and MD. Besides these two measures, the
mean 2-normdeviations of 104 uniformly sampled (A, b) inU are also considered (i.e.,
MDA,b). FromTable8, one canobserve that the solution xaMV E is slightlymore robust
than xnom with respect to all three considered measures. Here, the nominal solution is
robust against uncertainties. The obtained upper bounding volumeof xaMV E is 0.0739.
The optimal MVE volume lies between 0.0313 and 0.0739. We further observe that

123



608 J. Zhen, D. den Hertog

for a smaller uncertainty σ or damping factor α, the difference between xnom and
xaMV E is smaller.

6 Conclusion and future research

In this paper, we first generalize the results for interval linear systems. For a sys-
tem of uncertain linear equations with column-wise uncertainties, we derive convex
representations of the united solution set in a given orthant. The exact ranges of the
components of the solutions can then be determined. Via a convex representation tech-
nique and the techniques from (adjustable) robust optimization, we show how to derive
convex representations of a broad class of controllable and tolerable solution sets. We
apply the MCBmethod for obtaining centered solutions of systems of uncertain linear
equations, and compare our proposed method both theoretically and numerically with
the RLS method. The solutions from the RLS method may even be outside the solu-
tion set. As a byproduct, the MCB method produce a simple inner approximation of
the solution set. From the numerical experiments, we observe that, for column-wise
dependent uncertainties, our proposed solutions are more centered than the RLS or
nominal solutions.

Further research is needed to determine the usefulness the MCB method for many
other real-life applications, e.g., analysis of mechanical structures, electrical circuit
designs and chemical engineering.
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