
  

 

 

Tilburg University

Discovering Brain Mechanisms Using Network Analysis and Causal Modeling

Weinberger, Naftali; Colombo, Matteo

Published in:
Minds and Machines

DOI:
10.1007/s11023-017-9447-0

Publication date:
2018

Document Version
Peer reviewed version

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Weinberger, N., & Colombo, M. (2018). Discovering Brain Mechanisms Using Network Analysis and Causal
Modeling. Minds and Machines, 28, 265–286. https://doi.org/10.1007/s11023-017-9447-0

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Oct. 2021

https://doi.org/10.1007/s11023-017-9447-0
https://research.tilburguniversity.edu/en/publications/0030705d-16e4-4373-b1fa-c958c3cdcaf4
https://doi.org/10.1007/s11023-017-9447-0


 
 
 
 
 

Discovering Brain Mechanisms Using Network Analysis and 
Causal Modeling 

 
Abstract 

Mechanist philosophers have examined several strategies scientists 
use for discovering causal mechanisms in neuroscience. Findings 
about the anatomical organization of the brain play a central role in 
several such strategies. Little attention has been paid, however, to the 
use of network analysis and causal modeling techniques for 
mechanism discovery. In particular, mechanist philosophers have not 
explored whether and how these strategies incorporate information 
about the anatomical organization of the brain. This paper clarifies 
these issues in the light of the distinction between structural, 
functional and effective connectivity. Specifically, we examine two 
quantitative strategies currently used for causal discovery from 
functional neuroimaging data: dynamic causal modeling and 
probabilistic graphical modeling.  We show that dynamic causal 
modeling uses findings about the brain’s anatomical organization to 
improve the statistical estimation of parameters in an already 
specified causal model of the target brain mechanism. Probabilistic 
graphical modeling, in contrast, makes no appeal to the brain’s 
anatomical organization, but lays bare the conditions under which 
correlational data suffice to license reliable inferences about the 
causal organization of a target brain mechanism. The question of 
whether findings about the anatomical organization of the brain can 
and should constrain the inference of causal networks remains open, 
but we show how the tools supplied by graphical modeling methods 
help in addressing it. 
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1 Introduction 
The Human Connectome Project aims to map the neural pathways 
that underlie human brain function (van Essen et al, 2013). The 
purpose of this ongoing multi-million dollar project is to acquire and 
share data about the anatomical connections among brain 
components, with the goal of producing a detailed connectome, or 
“wiring diagram”, of the human brain (Sporns, Tononi, & Kötter, 
2005). 

Without such wiring diagrams -- it has been claimed -- 
scientists cannot fully understand how causal interactions in the brain 
produce brain functions, cognitive capacities and behavior (Sporns et 
al, 2005: 249; Sporns, 2012; Bargmann & Marder, 2013; Park & 
Friston, 2013). Some have gone so far as to assert that knowledge of 
the full connectome will reveal how a complex, multi-scale, network 
system like the human brain “makes us who we are” (Seung, 2012). 

Knowledge of anatomical connections does help 
neurophysiologists design experiments, especially on simple 
invertebrate organisms like the roundworm C. Elegans (White et al, 
1976; Chalfie et al, 1985; Marder & Bucher, 2007; see also Ankeny, 
2000). Yet, questions remain regarding what exactly a detailed 
mapping of brain connectivity contributes to the understanding of 
brain function (Jabr, 2012). 

Surely, a complete connectome will not suffice to understand 
how the brain works. As Carandini (2012: 509) observes, “we have 
long known the full connectome for the worm C. elegans, detailing the 
more than 7,000 connections between its 302 neurons, and yet we are 
hardly in a position to predict its behavior, let alone the way that this 
behavior is modified by learning.” In fact, a complete connectome 
does not by itself reveal which connections are explanatorily relevant 
to which behaviors. 

Providing a detailed anatomical mapping of the brain is one 
of several ways that one might represent patterns of connectivity in 
the brain. One may also represent the correlations among the 
activities in different components, or the causal relationships by 
which the activity in one component influences that in another. 
Across these different representations of connectivity, there is no 
invariant property that can be captured anatomically (Friston, 2011: 
16). The relationship between anatomical structure, correlations 
among activities in distinct brain components, and causal structure is 
multifarious and complicated indeed (Horwitz, 2003; Sporns, 2007: 
4.3). In what follows, we aim to clarify this relationship, situating our 
discussion in the broader literature on mechanism discovery. 
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There presently exists a robust literature on the use of 
anatomical information for mechanism discovery (Bechtel & 
Richardson, 1993; Craver & Darden, 2001; Darden & Craver 2013) 
and a nascent literature on the explanatory role of network topology 
(Huneman, 2010; Colombo, 2013; Levy & Bechtel, 2013; Rathkopf, 
2015; Craver, 2016; Kostic, 2016). Our present focus is on the use of 
anatomical information for the discovery of causal networks. 

Given that a connectome of the brain is comprised of 
massive sets of nodes, the process of determining which brain 
components are causally connected presents challenges that are not 
present in simpler systems. Of course, even a full causal mapping of 
the brain might fail to provide a full mechanistic explanation for a 
phenomenon, since it may remain unclear which causal relationships 
are constitutively relevant to performing a particular function. 
Nevertheless, it is uncontroversial that mechanisms explain in part 
through the causal contributions of constitutively relevant 
components. Accordingly, the use of networks for modeling the 
causal relationships among brain components merits discussion 
independently of whether networks provide a distinctive non-causal 
form of explanation. 

One suggestion about the role of anatomical information in 
mechanism discovery is that models of neural wiring constrain the set 
of plausible hypotheses regarding the causal organization of target 
mechanisms. Yet, linking neuroanatomy with the causal organization 
of neural mechanisms is surprisingly challenging, as is evident from 
the fact that the best contemporary causal modeling methods in 
neuroscience hardly rely on available information about anatomical 
connections (Ramsey et al, 2010: 1545; Friston, 2011: 16). 

There are two distinctive features of our approach that we 
take to be crucial for making progress in understanding which 
strategies may be the most effective for the discovery of brain 
mechanisms. First, we formulate the question of the relationship 
between anatomical, functional, and causal connectivity in terms of 
networks. This corresponds to already existing distinctions in the 
literature on connectivity in network neuroscience (Sporns, 2007) and 
allows us to formulate more precise questions about the products of 
different methods for generating and evaluating hypotheses about a 
mechanism. Second, and relatedly, we distinguish between different 
ways that anatomical knowledge might contribute to discovery of a 
mechanism’s causal organization. Such knowledge evidently plays a 
role in the selection of variables that might pick out constitutively 
relevant parts of a mechanism, and in designing experiments for 
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learning how a mechanism works (Craver & Darden 2013). Here we 
are concerned with whether it plays any distinctive role in current, 
quantitative approaches for causal discovery from brain imaging data. 

Our contribution is organized in three sections. In Section 2, 
we regiment our discussion by introducing the basics of network 
neuroscience. In particular, we distinguish three modes of 
connectivity in the brain: structural, functional, and effective 
connectivity. We use these concepts to ask the question: How does 
information about structural connectivity contribute to inferences 
about effective connectivity? 

In Section 3, we examine one strategy for mechanism 
discovery, which is often employed in neuroscience and that 
highlights that findings about the spatio-anatomical organization of 
brain circuits can constrain the space of possible mechanisms for a 
given phenomenon (Craver & Darden 2001, 2013). To substantiate 
this idea, mechanist philosophers have focused on the discovery of 
the mechanism of long term potentiation (LTP) (Darden, 2006: Ch 2; 
Craver, 2007: Ch. 7.3). On the basis of the same case study (i.e., Bliss 
& Lømo, 1970, 1973), we provide a more nuanced account of how 
knowledge of the spatial organization of the hippocampus facilitated 
the discovery of the causal organization of a mechanism that might 
underlie LTP. 

As Darden notes, the process of mechanism discovery is an 
“extended, piecemeal process with hypotheses undergoing iterative 
refinement,” which may involve several different strategies that do 
not necessarily generalize to all cases of mechanism discovery 
(Darden, 2006: 272). In fact, the idea that knowledge of spatio-
anatomical organization guides and constrains inferences about 
mechanisms for a given phenomenon does not generalize to current 
causal modeling practice in neuroimaging, where there is “remarkably 
little evidence that quantitative structural information about 
connections helps with inferences about effective connectivity” 
(Friston, 2011: 16). 

In Section 4, we turn our attention to two contemporary 
quantitative approaches to causal discovery from functional 
neuroimaging data: dynamic causal modeling and probabilistic 
graphical modeling. In the hope of bridging the qualitative accounts 
of mechanistic discovery and quantitative theories of causal discovery 
from machine learning and network neuroscience, we explain the 
differing role played by anatomical knowledge in these two 
approaches. While advocates of dynamic causal models have 
emphasized their ability to incorporate anatomical information, in 
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practice this information has been used to improve the statistical 
estimation of parameters in an already specified causal model. 
Probabilistic graphical modeling, in contrast, makes no appeal to 
anatomy, but lays bare the conditions under which knowledge of 
functional connectivity suffices to license reliable causal inferences. 
In a conclusion, we summarize our novel contributions to the 
literature on mechanistic explanation and discovery. 
 

2 Networks of the brain and their modes of connectivity 
The brain is a complex system composed of intricately 
interconnected, causally interacting elements. The human brain is 
composed of blood vessels, glial cells, and neurons with diverse 
morphology and physiological properties. It includes about 100 
billion neurons, each one of which has 10,000 to 100,000 synaptic 
connections to other neurons for a total neural wiring length of about 
100,000 Km. Neurons are organized into circuits and populations. 
Neural circuits and populations constitute regions and pathways. 
Development and experience shape the structural and causal 
organization of these elements, which are responsible for cognitive 
capacities and behavior. 

Network science studies the architectural and topological 
organization of brain networks, aiming to explain how this 
organization is responsible for cognition and behavior (Sporns, 
2010). Graph theory is the primary analytical toolbox used in network 
science. Graphs are sets of nodes and edges, which allow one to 
represent complex network systems. Nodes represent elements or 
components of the system. Edges represent connections between 
pairs of nodes. Edges can be directed or undirected, and they can be 
binary (i.e., they can be present or absent) or weighted (i.e., they can 
take on fractional values). Nodes can be connected directly by single 
edges or indirectly by intermediate nodes and edges. 

If we consider a graphical representation of a brain network, 
network nodes can represent neural elements such as cells, 
populations of neurons, or cortical and subcortical regions. Network 
edges can represent structural connections between nodes such as 
synapses or axonal pathways. Connections between brain 
components can then be studied at different spatial and temporal 
scales, with different instruments, and on the basis of different data. 

The choice of nodes and edges is non-trivial. It depends on 
several factors, including the temporal and spatial scale at which 
scientists want to study a target network system, on the type of data 
they can collect, and on their background knowledge about the 
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system. For neuroimaging data, for example, network nodes typically 
correspond to individual voxels or to aggregates of voxels, which are 
assumed to pick out portions of different anatomical brain regions of 
interest; edges typically correspond to the presence of probabilistic 
associations among the activities of distinct aggregates of voxels, 
which are inferred from time-series data from brain scans of several 
experimental participants. 

Network measures include the degree, strength, and centrality of a 
node. The degree of a given node is the number of connections that 
link the node to the rest of the network. Nodes with high strength 
make strong connections—where strength is equal to the sum of 
connection weights. The minimum number of edges that must be 
traveled to go from one node to the other defines the path length 
between two nodes. The centrality of a node measures how many 
shortest paths between other parts of the network pass through that 
node. Nodes with high degree and high centrality are called ‘hubs.’ A 
module is a community of nodes that show a greater number of 
mutual connection within the community, and fewer connections 
with nodes of other communities (Colombo, 2013). Because these 
measures refer to the topology of the network, two nodes of a 
network can be physically distant but topologically close. 

Networks with small-world topologies have high levels of 
clustering around hubs and short path lengths (Watts & Strogatz, 
1998). These networks are “scale-free”, which means that they have 
the same topological relationships when considered at finer- and 
coarser-levels of grain (Barabási & Albert, 1999). Consider, for 
example, a graph in which the nodes are cities and the edges indicate 
which cities may be directly reached via which others. A map of the 
United States will reveal that certain cities are air-travel hubs and that 
most cities have comparatively few connections. If one were to zoom 
in to a certain geographical region and also consider the train 
connections between cities, one discovers a similar pattern of 
clustering at this level. Small-world networks do not have a 
characteristic scale, and are useful for modeling systems with 
multiple-levels of organization like a country or the brain (Sporns 
2011: 170-1). 

An important distinction in the study of brain connectivity is 
that between structural, functional, and effective connectivity 
(Sporns, 2007). Structural connectivity refers to the pattern of physical or 
anatomical connections linking neural elements. A representation of 
the structural connectivity of the brain corresponds to a connectome, 
or neural wiring diagram (Sporns, Tononi, & Kötter, 2005). There are 
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various available methods for mapping structural connectivity, 
including postmortem dissections and non-invasive imaging 
techniques such as structural fMRI and diffusion fMRI (Sporns, 
2012). Functional connectivity refers to patterns of symmetrical statistical 
association between activities in different neural elements. Measured 
in terms of correlation or covariance, mutual information, or spectral 
coherence between activities in neural elements—regardless of 
whether they are structurally connected—functional connectivity 
captures neurophysiological dynamics (Friston, 1994). A third mode 
of connectivity is effective connectivity, which refers to patterns of causal 
relations among neural elements. Effective connectivity is measured 
using methods such as dynamic causal models, graphical models, 
structural equations models, and describes asymmetric relationships 
between neurophysiological events (Friston, 1994; Friston, 2011). 

Information about these three modes of brain connectivity 
grounds a theory of cognitive architecture. Such a theory specifies 
how the system is physically and functionally organized and how the 
orchestrated activity of its elements is causally responsible for 
cognitive phenomena and behavior. Information about structural, 
functional, and effective connectivity would then help scientists 
identify the topological, statistical, information-theoretic, and causal 
principles that lie behind the architecture of a cognitive system such 
as the human brain. In particular, and coherent with the stated goals 
of the Human Connectome Project, comprehensive maps of 
connections within an organism’s nervous system should advance 
understanding of how causal relations between certain neural 
elements produce specific kinds of cognitive phenomena (Seung, 
2012; Sporns, 2012; Pessoa, 2014; Smith et al, 2015). 

However, the interrelationships between structural, 
functional, and effective connectivity are not well understood, and 
have received little attention in the philosophy of neuroscience. In 
particular, it is unclear when the multiple ways by which structural, 
functional, and effective connectivity are measured lead to coherent 
conclusions about causality (Horwitz, 2003). It is also unclear when 
and how inference about effective connectivity relies on knowledge 
of structural connectivity, and on patterns of functional connectivity 
of different brain components (Sporns, 2007: 4.3; Ramsey et al, 2010; 
Friston, 2011). Despite these unclarities, the language of connectivity 
enables us to formulate more precise questions about how different 
types of relationships are linked. In particular, we may ask how the 
map of the structural connections at a spatio-temporal scale relates to 
the map of effective connections at that same scale. By formulating 
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the question in this way, we move away from vaguer questions about 
whether the causal relations in the brain depend on its physical 
properties towards more productive questions about how different 
forms of connectivity are related. 

Recently, there has been increased attention to network 
theory in the literature on mechanistic explanation (Huneman, 2010; 
Levy & Bechtel, 2013; Rathkopf, 2015; Craver, 2016; Kostic, 2016). 
This literature has focused on the questions of whether network 
models for complex systems enable one to provide a form of 
“topological explanation” of a system’s behavior in terms of its 
organization, and how such explanations differ from mechanistic 
explanations. Our project is orthogonal to the issues raised in this 
literature in two ways. First, we are primarily concerned with discovery, 
rather than explanation. Whether or not causal explanations of the 
brain provide the primary, or the only form of explanation in 
neuroscience, we need an account of how causal relationships can be 
discovered. Second, we take much of the existing literature in 
philosophy to be primarily concerned with comparisons of models 
that consider a system at two levels of abstraction. For instance, Levy 
and Bechtel (2013) and Rathkopf (2015) extol the virtues of network 
models that abstract away from the localized causal details 
emphasized by mechanistic explanations. In contrast, by focusing on 
the three types of connectivity at a single time scale, we aim to 
compare these distinct network models at a single level of 
abstraction. To have a complete picture of explanations that appeal 
to topology and those that appeal to localized causes, we need to 
know how the localized causal relations can be effectively discovered 
in the first place. 
 

3 Mechanism Discovery and the Structure-Causality Relation 
Mechanistic philosophers have characterized investigative strategies 
scientists use to discover mechanisms well before the rise of network 
analyses in neuroscience. Bechtel and Richardson (1993), for 
example, focus on strategies of localization and decomposition, 
whereby scientists begin from a description of an explanandum 
phenomenon, which, during the course of experimental research, gets 
decomposed into sub-functions that are localized on distinct parts of 
a mechanism. Darden (2002) and Darden and Craver (2013) discuss 
how some prominent strategies for mechanism discovery in biology 
and neuroscience involve constraint-based reasoning to narrow down 
the space of possible mechanisms for a given phenomenon. Findings 
about the spatial organization of a putative mechanism provide one 
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relevant constraint. The spatial organization of a mechanism includes 
the physical connections between its parts. Getting the physical 
connections right can aid mechanism discovery, because what a 
mechanism does is constrained by how the entities in the mechanism 
are physically interconnected. 

Mechanisms are said to consist of patterns of dynamic causal 
relations, including “patterns of allowance, generation, prevention, 
production, and stimulation” (Craver, 2007: 136). These patterns of 
causal relations are said to be “sustained” or “scaffolded” by the 
spatial organization of a mechanism in the sense that different 
structural arrangements of the component parts allow for different 
patterns of causal relations. As anatomical connectivity is one feature 
of the spatial organization of brain mechanisms, different patterns of 
causal activities depend on different patterns of anatomical 
connectivity. New information about the neural “wiring diagram… 
alters the space of plausible mechanisms by changing the scaffolding 
on which the mechanism can be constructed” (Darden, 2006: 53). 

Craver and Darden (2001) examine the history of the 
discovery of long-term potentiation (LTP) to illustrate how this 
constraint-based reasoning strategy often relies on findings about 
brain anatomy. LTP is a kind of synaptic plasticity that was initially 
observed and described by the Norwegian neuroscientist Terje Lømo 
in the 1960s. More specifically, LTP is a persistent increase in the 
strength of synapses between two neurons following high-frequency 
stimulation of a synapse. This strengthening leads to an increase in 
signal transmission between the two neurons. Since changes in 
synaptic strength are thought to update and store information, LTP is 
widely believed to constitute the synaptic basis of the mechanisms of 
learning and memory (Bliss, Collingridge, & Morris, 2007). 

In discussing Lømo’s work, Darden (2006: 53) points out that 
early research on the hippocampus assumed that “the anatomical 
connectivity of hippocampal regions exhibits a characteristic 
‘trisynaptic’ loop’” and that this assumption constrained the search 
for the mechanism of LTP. Darden does not elaborate on how 
anatomical knowledge constrained or guided Lømo and 
collaborators’ inferences about the causal organization of the 
hippocampus and underlying LTP. 

Craver (2003, 2007: Ch. 7) provides us with more details. He 
describes research conducted by Lømo with his collaborator Tim 
Bliss in the late 1960s and early 1970s. Lømo and Bliss’s (1973) 
research was motivated by Lømo’s earlier observation that the 
dentate area of the hippocampus remains potentiated for a significant 
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time after short periods of electrical stimulation of its afferent 
perforant pathway (Bliss & Lømo, 1970; Lømo, 1971). As Lømo and 
Bliss wanted to understand the causes of this phenomenon, they 
examined the causal relationship between activity in the perforant 
path, the main input to the hippocampus, and in the dentate gyrus, 
whose granule cells receive the major excitatory input of the 
hippocampal formation from the cortex and other areas upstream. 

Accordingly, Lømo and Bliss started a number of 
electrophysiological studies, where they stimulated the presynaptic 
fibers on the perforant pathway in the brain of anaesthetized rabbits, 
and recorded responses from populations of neurons of the dentate 
gyrus. High-frequency electrical stimulation resulted in an input-
specific, long-lasting change in synaptic responsiveness to subsequent 
input of cells of the dentate gyrus. Bliss and Lømo called this effect 
“long-term potentiation,” and hypothesised LTP as a candidate 
cellular mechanism for memory (Bliss & Lømo, 1970, 1973; Lømo, 
2003; Andersen et al, 2006). 

Craver (2007: Ch 7) makes three points about this case study: 
1) Bliss and Lømo’s experiments illustrate the interfield integration of 
anatomical and electrophysiological results; 2) Bliss, Lømo, and their 
collaborators used several different techniques to identify the 
anatomical organization of the hippocampus; and 3) Bliss and Lømo 
could use the wiring diagram of the hippocampus  “as a foundation 
for electrophysiological investigation” (239). The third point is 
particularly relevant for our purposes. Craver qualifies it in these 
terms: 
 

Using the anatomical map of the hippocampus, one could intervene to 
change the electrophysiological properties of specific cells or populations 
of cells (for example, by delivering current) and could record the effects 
of those interventions on other cells or populations of cells. In this way, 
electrophysiologists could study the propagation of neural excitation 
through the circuitry of the hippocampus (Ibid.) 

 
Here Craver highlights that anatomical information played an 
important role in the experimental design of Bliss and Lømo’s 
studies. By the 1960s, Ramon Y Cajal’s (1911) and Lorente de Nó’s 
(1934) descriptions of the anatomy of the hippocampus, of its 
cytological structure and of its structural connections with other brain 
regions were well-known. The hippocampus was viewed as a simple 
neural structure, which was accessible for neurophysiological 
manipulation and could serve as a prototype model for studying 
general cortical synaptic mechanisms (cf., Lømo, 1971). 
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The anatomy of the hippocampus facilitated 
electrophysiological studies, where synapses on the perforant 
pathway were stimulated, and recordings of synaptic signals were 
taken from the cells in the dentate gyrus. Based on their anatomical 
knowledge, Bliss & Lømo decided to place stimulating electrodes 
beneath the angular bundle to activate 35 distinct paths to the dentate 
area (1973: 333-5). To characterise the effects of electrical 
stimulation, Bliss and Lømo (1973: 335) considered three parameters: 
(1) The amplitude of the population excitatory postsynaptic potential; 
(2) the peak-to-peak amplitude of the population spike; and (3) the 
latency of the population spike. The effects of electrophysiological 
stimulation on these parameters showed great variability between 
subjects, and within the same subject over trials. In particular, some 
subjects did not show changes in any of the three parameters. Nine 
of the 35 paths that were stimulated showed long-lasting changes in 
all three parameters. Reduced latency appeared in more than half of 
the trials; and one in four trials exhibited changes in at least one of 
the three parameters 30 minutes after the stimulation. 

While anatomical knowledge clearly played a role in Bliss and 
Lømo’s (1973) experimental design, it is less clear that Bliss and 
Lømo relied on such knowledge in causally interpreting their results. 
Bliss and Lømo’s (1973: 350-1) own account emphasises that cable 
theory played a central role in constraining their inferences about the 
most likely cause of the increase in the amplitude of the synaptic 
response they observed. 

Developed after the work of Wilfrid Rall and of Hodgkin and 
Huxley in the 1950s and 60s, cable theory includes mathematical 
models describing the propagation and interaction of electrical 
currents in neuronal circuits. Models from cable theory provide a 
quantitative understanding of how membrane potential changes flow 
through dendrites, by representing basic properties that causally 
affect the propagation of synaptic currents, like membrane resistance, 
membrane capacitance, and intracellular resistance. 

Using cable theory, Bliss and Lømo (1973) modeled how 
changes in the amplitude of an evoked population potential could 
causally depend on changes in the cable properties of hippocampal 
neurons. They concluded that a change in synaptic efficacy was the 
most likely cause of the increase in amplitude of the synaptic 
response, and that LTP might be a component in a mechanism for 
memory (cf. Andersen et al, 2006). 

Craver is right to say that knowledge of the wiring diagram of 
the hippocampus served “as a foundation for electrophysiological 
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investigation.” Available knowledge of the anatomical 
organization  of the hippocampus was of great help to Bliss and 
Lømo for designing their experimental studies. They knew which 
pathways of the hippocampal formation were the most accessible for 
stimulation with electrodes; and they knew where evoked synaptic 
responses could be more easily recorded. However, inferences about 
the causes of LTP and the suggestion that LTP might be involved in 
memory depended more clearly on Bliss and Lømo’s knowledge of 
modeling results from cable theory and of statistical relations 
between recorded neural activities than on their knowledge of the 
anatomical organization of the hippocampus. 

The observation that knowledge of anatomical connectivity 
did not obviously constrain Bliss and Lømo’s (1973) inferences about 
the causal organization of the mechanism of LTP coheres with early 
definitions of the concept of effective connectivity, which emerged in the 
1970s in the context of single-unit electrophysiology as an attempt to 
use statistical correlations between spike trains to detect causal 
interactions between neural activities (Gerstein & Perkel 1969; Moore 
et al. 1970). 

In single-unit electrophysiology, functional connectivity was 
initially defined as the “temporal coherence” among the spike trains 
of different neurons, and was measured by cross-correlating neurons’ 
spike trains. Effective connectivity was defined as the simplest circuit 
model “that would replicate the experimentally observed features of 
measurements made on simultaneously recorded spike trains. Thus, 
when we make the jump from observed coincident spike events to a 
statement of effective connectivity between two neurons, this should be 
taken as an abbreviated description of an equivalent class of neural 
circuits” (Aertsen, Gerstein, Habib, & Palm, 1989: 900). Structural 
connectivity plays no role in this definition, which emphasises that 
hypotheses about effective connectivity should explain dynamical 
behavior providing links to computational models of brain function. 

Interestingly, after more than 40 years since Bliss and Lømo’s 
initial studies, and with the rise of network analyses, it remains 
controversial how the pattern of effective connectivity of the LTP 
relates to hippocampal-dependent memory. To make progress on this 
outstanding question, Bliss and collaborators have recently proposed 
“a shift from mechanistic investigations of synaptic plasticity in single 
neurons towards an analysis of how networks of neurons encode and 
represent memory” (Neves, Cooke, & Bliss, 2008: 65). Such an 
analysis – they suggest – would be focused on cross-correlations of 
activity in distinct neural circuits on the hippocampus. The aim is to 
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identify increases (or decreases) in the peak of the cross-correlogram, 
which can then be used to infer changes in the strengths of the 
synaptic coupling between target circuits after experimental 
manipulation. This proposal indicates that future inquiry into the 
causal basis for LTP may well move away from detailed examinations 
of structural connectivity, rather than towards it. 
 

4 Structure, statistics, and effective connectivity 
Now that we have situated our discussion in the broader context of 
mechanism discovery, we turn to the question of whether findings 
about structural connectivity constrain the space of possible 
hypotheses about effective connectivity in current quantitative 
approaches for causal discovery in neuroscience. 

Some of these approaches, by which one seeks to discover 
the causal organization of the brain, look different from the 
experimental methods that have been described in the earlier 
literature (Bechtel & Richardson, 1993; Darden, 2002; Craver & 
Darden 2013). Even for models with as few as five nodes 
representing regions of interest, there are tens of thousands of 
possible causal models representing the relationships among the 
nodes (Glymour & Hanson, 2015), and it is typically infeasible to 
uniquely identify the correct causal model. Consequently, finding a 
plausible model is not just a matter of strategically performing 
experiments, but further involves developing principles for narrowing 
down the set of causal models that are deemed to be best supported 
by the evidence. We refer to this process of narrowing down the set 
of considered models as causal inference. Insofar as causal inference 
relies on epistemic principles for selecting among alternative causal 
models, it involves rational principles for discovery. Of course, even 
the LTP studies just described involved inferences regarding patterns 
of effective connectivity. Nevertheless, the increased complexity of 
network representations calls for a more systematic treatment of the 
epistemic principles for causal inference. 

One route for evaluating how structural knowledge constrains 
causal inference in neuroscience begins with the observation that 
knowledge of statistical relationships can justify causal claims only in 
conjunction with additional assumptions. Now, if these assumptions 
concerned structural connections among brain elements, then one 
could not use statistical relationships to establish causal claims 
without relying on knowledge about the anatomical structure of the 
brain. But do these assumptions actually refer to structural 
connections? Here we consider this question in the context of 
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contemporary methods for causally modeling the brain, starting with 
Dynamic Causal Models (DCMs). 

The use of DCMs is one of the most prominent approaches 
to causal inference from neuroimaging data (Friston, Harrison, & 
Penny, 2003). DCMs allow one to measure the patterns of causal 
interaction among brain regions and to predict how these 
relationships will change over time in response to experimental 
interventions. These models include not only a representation of the 
causal relationships among brain regions, but also of the biophysical 
processes by which the changes in brain activity produce one’s data. 
Accordingly, DCMs for fMRI involve a hemodynamic model for 
how changes in the level of blood oxygen in the brain produce the 
BOLD (blood oxygenation level dependent) signal. Using Bayesian 
model selection procedures, it is possible to use fMRI data to make 
inferences about the magnitudes of the interactions among regions. 

Dynamic causal modeling involves two main steps (Valdes-
Sosa et al, 2011). The first consists in specifying a set of equations 
corresponding to the causal interactions in the brain and the manner 
in which they produce the data, and the second consists in statistically 
estimating the causal parameters in those equations. In the first step, 
state-space models of effective connectivity of a target neural system 
is specified. This requires the definition of a set of neural variables, 
which are associated with brain components at different spatial 
scales, most commonly to whole brain areas. It also involves the 
definition of two sets of mathematical models of bio-physiological 
processes in the brain, which specify how the neural variables change 
over time, and how the hidden states of the neural variables generate 
observable data. One set of mathematical models uses differential 
equations to represent the dynamics of hidden neurophysiological 
states, like synaptic activity, corresponding to the nodes of a 
probabilistic graphical model, where conditional dependencies are 
parameterised in terms of directed effective connectivity couplings. 
These linear parameters pick out the direction and strength of 
possible causal couplings between different hidden states of a 
graphical model, and the goal of DCM is to estimate these “effective 
connectivity parameters.” 

As the states of the neural variables are hidden (i.e., not 
observed or measured directly), a set of equations is also defined to 
represent how the BOLD response reflected in the fMRI time-series 
data is generated from the unobserved, underlying neural dynamics. 
In formulas, DCMs are characterized by two sets of equations: state 
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equations (eq. 1), and observation equations (or hemodynamic 
models) (eq. 2): 

1  
𝜕𝑥
𝜕𝑡 = 𝑓 𝑥,𝑢,𝜃 + 𝑤 

2  𝑦 = 𝑔 𝑥,𝑢,𝜃 + 𝑣 
 

Together, the sets of equations corresponding (1) and (2) provide a 
DCM. In these equations, xs denote neural variables, us denote 
exogenous inputs typically corresponding to experimental 
interventions, and 𝜃s denotes the coupling parameters picking out 
the strengths of the causal connections between variables. Equations 
of form (1) indicate how the coupling relationships among variables 
change in response to interventions. Equations of form (2) indicate 
the hemodynamic mechanisms for how the BOLD signal is produced 
by the underlying activities given by (1). Of course, realistic DCMs 
will contain a large number of variables and equations. The 
parameters in these equations may be organized using matrices. 

Given (1) and (2), the second step involves model inversion 
and estimation. Competing models of neural causal dynamics can be 
compared on the basis of observed time-series data using model 
selection methods that balance model fit and complexity. The aim is 
to estimate which set of parameter values for (1) is most likely to 
have produced the observed fMRI data. In DCM, it is common to 
use Bayesian model selection methods, where one assigns a prior 
probability distribution over the possible parameter values in a model 
and then conditionalizes on the data to update one’s parameter 
estimates. The dynamical model with the highest posterior probability 
from the set of models under consideration can thus be used to 
estimate coupling parameters that specify the causal relations 
between different states in the associated graph. 

There are several ways that DCMs might be thought to 
incorporate anatomical information. First, one might suppose that 
what makes these models causal (as opposed to merely statistical) 
models is that they represent the anatomical relations among brain 
regions. While there are philosophers who explicate causal 
relationships in terms of physical connections (Salmon, 1984; Dowe, 
2000; see also Handfield et al, 2008), these metaphysical accounts are 
controversial, and in any case unnecessary for distinguishing causal 
from merely statistical models. Causal models can be satisfactorily 
distinguished from merely statistical ones on the grounds that only 
the former allow scientists to reliably predict the results of 
interventions. 
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The temptation to treat DCMs as essentially referring to 
anatomical structure is strengthened by an equivocation in the term 
‘structure.’ The relationships among variables in approaches like 
DCM are sometimes referred to as ‘structural’ in the sense that the 
distinct equations may be independently disrupted via an 
intervention. Clearly, the claim that a model is structural in this sense 
does not entail anything about its relationship to anatomical 
structure. 

A second way in which DCMs may incorporate anatomical 
information is through the ‘observer’ or hemodynamic models of 
how the fMRI time-series data is produced by the underlying 
neuronal activity. Although these hemodynamic models are essential 
for learning causal models from the data, they appear to play no role 
in distinguishing among different causal models at one level of grain. 
One cannot, for example, use the hemodynamic model for 
distinguishing among different hypotheses regarding which brain 
regions are causally related by coupling parameters. After all, the 
hemodynamic model does not represent any relationship between 
neural states. What it does is assume that neural activity induces a 
vasodilatory signal that increases blood flow, which, in turn, leads to 
changes in blood volume and deoxyhemoglobin content. As a 
function of these latter two hemodynamic states, the hemodynamic 
model outputs a predicted BOLD response. In other words, the 
hemodynamic model specifies how the underlying states produce the 
data, rather than how individual states causally relate to one another. 

The third and most plausible proposal for how DCMs 
incorporate anatomical facts is that knowledge of structure can be 
helpful to narrow down the set of candidate causal hypotheses 
associated with a DCM. But what evidence is there that structural 
information actually informs neuroscientists’ inferences regarding 
effective connectivity? And in what ways does knowledge of structure 
constrain the set of candidate causal hypotheses? 

After noting how there is only limited evidence that 
knowledge of structure plays a role in causal inference from fMRI 
data, Friston (2011: 16) directs us to Stephan et al (2009), which 
claims to provide “the first formal demonstration that knowing 
anatomical connectivity improves inference about effective 
connectivity” (1635). Stephan et al (2009) rely on a graphical model 
for intra-hemispheric visual processing from Stephan et al (2007). 
The model represents a system including four nodes corresponding 
to distinct brain regions: the lingual gyri (LGs) and the fusiform gyri 
(FGs) for the left and right hemispheres. The model contains 
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reciprocal connections between the LGs and FGs in each hemisphere 
and between the left and right LGs and the left and right FGs (see 
Figure 1 from Stephan et al 2007). 
 

Information about anatomical at a 
spatial and temporal scale useful to 
constrain DCM is derived from 
tractography and is given in terms of 
the probability that there is an 
anatomical link between two given 
regions. Stephan and colleagues 
(2009) reason that the more 
probable it is that there is an 
anatomical connection between two 
variables, the lower the variance is in 
the prior probability distribution 
over the values of the coupling 
parameters between variables in the 
state equations they consider. The 
distributions over these parameters 

have mean zero, and having lower variance makes it more likely that 
they will have non-zero values in their posterior distribution. In other 
words, having a lower variance makes it more probable that one will 
find a causal connection (whether positive or negative) if there is one. 
Knowledge of anatomical structure was used to assign prior 
probabilities to the effective connectivity parameters in the set of 
DCMs under consideration. 

This strikes us as one sensible way of using anatomical 
information to constrain causal inference. After all, if there is no 
anatomical path connecting two regions, then those two regions 
cannot causally interact. But what was the exact role of these 
anatomically-informed priors in causal inference? 

Stephan et al (2009) used a Bayesian model selection method 
to estimate coupling parameters between four ROIs. Anatomical 
information was used to set the prior distributions of these 
parameters. One could either make the variance of the priors 
inversely proportional to the probability of a connection, as Stephan 
and colleagues did, or (counterintuitively) make it proportional to the 
probability of a connection. Within each of these options, one can 
vary the degree to which the probability of an anatomical connection 
influences the variance in the prior distribution. One could also use a 

Figure 1  
(Fig 1 from Stephan et al. 

2007) 
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flat prior distribution that does not incorporate information about 
structural connectivity. 

Stephan and colleagues generated 30 sets of parameter values 
assuming an inverse relationship between connection probability and 
variance, 29 sets assuming these are proportional and 3 sets of 
parameters for the flat distribution. They then asked: What is the 
optimal model? That is, what is the model that maximizes the 
marginal likelihood of the coupling parameters? 

To answer this question, they used a measure of model 
evidence that balanced accuracy (parameters log-likelihood) with 
model complexity (number of parameters). Specifically, Stephan and 
colleagues used a model selection method based on the free energy of 
different models. Thus, they evaluated the probability that each 
parameterized model produced the data. Of the ten top models, 7 of 
them - including the top 6 - relied on anatomically informed priors in 
which the prior distribution was inversely proportional to the 
probability of a structural connection. 

Our key concern with the reliability of this approach for 
causal discovery is that it is unclear why we should take the models 
that score highest to reflect the true causal models. The authors 
emphasize that Bayesian model selection methods do not merely 
compare models in terms of which best fits the data, but balances fit 
against complexity to avoid over-fitting. But relying on more 
sophisticated statistical methods does not by itself ensure that one 
will get the correct causal model. Variables that do not cause one 
another may nevertheless be good predictors of one another, for 
example if they are the effects of a common cause. Without explicit 
causal assumptions, Bayesian model selection methods cannot 
distinguish between variables that cause one another and those that 
merely predict one another. 

In fact, the sets of models that Stephan et al (2009) 
considered did incorporate causal assumptions. First, the state-space 
of models of interhemispheric integration they considered had been 
previously evaluated in experimental contexts, enabling one to 
eliminate confounding (cf. Stephan et al. 2007). Furthermore, the set 
of state equations considered by Stephan et al (2009) assumed that 
there are no direct causal relationships between variables that are not 
connected by an arrow, such as FG left and LG right. 

Of course, to say that these authors relied on causal 
assumptions in no way indicates that the models they produce are 
problematic. Yet, their discussion obscures the role that these 
assumptions play in causal inference. The authors’ causal 
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assumptions played the role of limiting the set of models to which 
they applied their Bayesian model selection techniques. These model 
selection techniques incorporate information about structural 
connectivity in terms of priors over coupling parameters, but the role 
played by this information is to allow for more efficient statistical 
estimation of the effective connectivity parameters.  Stephan et al’s 
(2009) study, therefore, illustrates that anatomical findings facilitate 
causal discovery in DCM by aiding statistical inference of effective 
connectivity parameters in a predetermined set of causal models. 

We need to further clarify the sharp line we are drawing here 
between inferring the correct causal model and statistically estimating 
the parameters of that model. After all, in providing improved ways 
to estimate the parameters in a DCM, Stephan et al (2009) are not just 
doing statistical inference, since the quantity estimated is a causal 
parameter. Yet we have claimed that their methods in no way test 
their models’ distinctively causal assumptions. To clarify this point, 
we will utilize the probabilistic causal models of Pearl (2009) and 
Spirtes, Glymour and Scheines (2000). In addition to providing 
clarification of the distinction between causal and statistical inference, 
these models have been used specifically for causally modeling the 
brain (Hanson et al, 2013), and they do so without relying on findings 
about structural connectivity. Accordingly, a comparison between 
probabilistic causal models and DCMs will illuminate whether 
information about structural connectivity is indispensable for reliable 
causal discovery. 

Pearl (2009) and Spirtes, Glymour and Scheines (2000) 
represent causal hypotheses using directed acyclic graphs (DAGs), in 
which the nodes are random variables, and the edges represent direct 
causal relationships among the variables. “Directed” indicates that all 
edges in the model are asymmetric, and “acyclic” indicates that there 
are no causal cycles. The acyclicity assumption may be dropped, 
yielding a directed cyclic graph (DCG). The properties of cyclic graphs 
are well understood (Richardson, 1994; Park & Raskutti, 2016), 
though significantly more complicated than those of DAGs. We will 
therefore presently focus on the latter. 

It is useful to refer the relationships among variables in a 
model by analogy to genealogical relations. A variable’s direct causes 
are its parents and its effects (whether direct or indirect) are its 
descendants. DAGs are associated with probability distributions, and 
the condition of adequacy for a DAG to be compatible with a 
probability distribution is given by the Causal Markov Condition:  
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Causal Markov Condition (CMC): Each variable is a causal model is 
probabilistically independent of all of its non-descendants, 
conditional on its parents.  

 
Intuitively, the CMC captures the idea that a variable and its 
descendants are only connected to other variables in a model through 
its parents, so once one knows the values of its parents learning the 
values of other non-descendants will not help one better predict its 
value. 

Given the CMC and a DAG, one can determine which (sets 
of) variables will be probabilistically independent conditional on 
which (other sets) of variables. For short, we can refer to these as the 
conditional independencies entailed by a DAG. Note that whether a 
probability distribution is compatible with a DAG depends only on 
the conditional independencies, and not on any other features of the 
distribution such at the magnitudes of the correlations. Moreover, the 
conditional independencies entailed by a DAG according to the CMC 
results from the edges that are missing from a graph. A graph with no 
missing edges - i.e. a complete graph in which every node is directly 
linked to every other - does not entail any conditional 
independencies. For this reason, the CMC is often supplemented 
with additional principles to narrow down the set of acceptable 
models. 

For example, the Causal Faithfulness Condition states that 
one should not only eliminate models that entail conditional 
independencies that are not found in the distribution, but that one 
should also only choose models that entail all of the conditional 
independencies that obtain. In other words, every independency must 
be entailed by the model (according to the CMC). The faithfulness 
assumption, in requiring that all independencies in the distribution be 
entailed by the model, is fairly strong, to the point that there may be 
no model that is faithful to a distribution. Fortunately, there are other, 
logically weaker, supplements to the causal faithfulness condition that 
are available (Zhang, 2013; Forster et al, forthcoming) though the 
differences among them will not concern us here. 

DAGs are members of the same Markov Equivalence Class 
(MEC) if they entail all and only the same conditional independencies 
according to CMC. DAGs in the same MEC are observationally 
equivalent in the sense that one cannot use the conditional 
independencies alone to distinguish among different models in the 
same class. 
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Glymour and Hanson (2015) describe one way of using the 
notion of an MEC to combine DAGs with Bayesian model selection 
methods. They consider Hanson and colleagues’ (2013) imaging 
study on action understanding in individuals with autism, and ask: 
How can a collection of BOLD time series, one for each (aggregate 
of) voxel(s), provide evidence about the causal network among brain 
regions involved in a given experimental task? 

In the Hanson study, there were five regions of interest 
selected on the basis of hypotheses about the areas involved in their 
experimental task. Thus, 29,281 distinct DAGs were considered, each 
one of which represented a different possible causal model with five 
variables. Each graph was associated to a statistical model with free 
parameters, and a maximum likelihood estimate of the parameters 
could be obtained. 

To identify the best fitting causal model, Hanson and 
colleagues used a search procedure called ‘greedy equivalence search’ 
that begins with a graph with no edges. Directed edges are added 
sequentially, based on the Bayesian information criterion (BIC) score, 
which is a criterion for model selection. Specifically, the greedy 
equivalence search procedure adds the directed edge that most 
improves the BIC score. When no further addition of directed edges 
can improve the BIC score, the procedure eliminates edges until the 
BIC score cannot be improved. This search procedure found the 
causal model that best explained Hanson and colleagues’ data, but did 
not compare all 29,281 distinct DAGs. 

The key is that when comparing models using the search 
methods used by Hanson et al (2013) and discussed in Glymour and 
Hanson (2015), one only needs to consider a single model from each 
MEC. Without making a priori assumptions about the functional 
relationship between a variable and its causes, there is no way to use 
probabilistic information to further distinguish among models within 
an MEC (see Spirtes & Zhang, 2016: 13ff). While this method is 
compatible with that of Stephan et al (2009), it clearly distinguishes 
between causal and statistical inference. Causal inference involves 
finding the correct causal model, which may be determined up to 
MEC based on knowledge of conditional probabilities, and possibly 
further specified using additional information. Using DAGs, it is then 
possible to determine whether a causal quantity is in principle 
identifiable from a probability distribution and to derive the 
probabilistic expression for this quantity (Pearl, 2009). 

Friston (2011: 25, see also Valdes-Sosa et al, 2011) notes two 
ways that DCM’s are allegedly superior to DAGs. First, DCMs, 
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unlike DAGs, allow for causal cycles. Yet, as already noted, the DAG 
framework may be generalized to allow for cycles. Second, DAGs do 
not incorporate time-ordering information. This is often the case, 
though there is no reason that DAGs cannot be supplemented with 
time-ordering information. Such information is perhaps the most 
common way of distinguishing among DAGs in the same Markov 
Equivalence Class. What DAGs do is allow one to read off the 
consequences of a qualitative causal hypothesis. But while it is 
common to read off time ordering from causal ordering, most 
philosophers hold that it is not part of the definition of causation that 
causes precede their effects. 

To be clear, we do not intend to minimize the 
methodological issues related to causal inference on systems with 
complex temporal relations. Causal inference using time-series data 
poses its own challenges, which we do not have space to address 
here. As with spatial relations, it will be important to get clear on the 
particular role played by time in causal inference. 

Within the DAG framework, functional and effective 
connectivity are more closely related than one would expect from 
reading the literature on DCMs. While one cannot infer effective 
connectivity from functional connectivity, it is nevertheless true that 
given a causal hypothesis, one can take the relevant functional 
relationships to provide measures of causal strength. 

Friston sometimes illustrates the distinction between 
functional and effective connectivity by considering functional 
relationships that are used for the purely predictive task of 
categorizing subjects into different classes (Friston, 2011: 15). This 
usage does not seek to establish causal relationships among the 
variables, but to distinguish between the different types of individuals 
from which different data were sampled. If one were to interpret these 
methods as providing causal information, it would be in terms of the 
causal relationship between a latent variable and the measured 
variables. It is clear enough that one should not use the functional 
relationships measured in these methods to draw causal inferences 
about the variables in one’s model. But one should not use this point 
to draw a more general lesson about the relationship between 
functional and effective connectivity. Here we have been concerned 
with how functional connections among measured variables relate to 
effective connections among those same variables. Given the causal 
assumptions embedded in a DAG, one can sometimes use the 
strengths of functional relationships to learn about those of causal 
ones. 
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In summary, in DCM information about structural 
connectivity has been used to improve one’s ability to efficiently 
estimate the parameters in a model. Yet, DCM does not transparently 
incorporate epistemic bridge principles that connect MRI data to the 
underlying causal structure. If the sets of differential equations 
describing neuronal and physiological dynamics in DCM do not 
correspond to equations that may be interpreted causally, then 
Bayesian model selection will not deliver causal knowledge. 
Probabilistic graphical methods do a better job at distinguishing 
between causal and statistical inference. However, even in the ideal 
case, where one has knowledge of all conditional independence 
relations between the measured variables of a target brain system, one 
can do no better than discovering the correct Markov Equivalence 
Class. It is an open and underexplored question whether (and how) 
connectomic information is required to pick out a particular causal 
model within a Markov equivalence class as the true causal model. 
 
 

5. Conclusion: Modes of Connectivity, Discovery and 
Explanation 

In this paper, we asked how findings about anatomical connections 
in the brain contribute to causal inference in neuroscience. We 
situated our discussion in the literature on mechanistic discovery to 
evaluate the role of anatomical information in causal discovery more 
generally. In electrophysiological studies like Bliss and Lømo’s (1970, 
1973), anatomical findings played an important role in the design of 
experiments and in picking out possible constitutively relevant 
components of the mechanism of a given phenomenon. However, 
anatomical information did not play an evident role in the 
interpretation of the experimental results about LTP. We 
subsequently considered the alleged role of anatomical information in 
interpreting the results of functional imaging techniques. On the 
basis of an examination of causal modeling approaches, we showed 
that information about anatomical connections does not currently 
play a substantial role in causal inference in neuroscience. 

Our discussion makes several important contributions to the 
literature. First, we have clarified the relationships between structural, 
functional, and effective connectivity. A reader of the literature on 
dynamic causal modeling would be left with the false impression that 
one of the main advantages of these models is in allowing 
neuroscientists to incorporate anatomical information into their 
causal inferences. We have sought to correct this impression and to 
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also illuminate ways in which statistical information plays more of a 
role in guiding causal inference than is often attributed to it. More 
generally, we have pinpointed what it would mean for anatomical 
information to contribute to causal, as opposed to statistical 
inference, in these modeling methods.  

Second, we fill a gap in the mechanistic literature, which 
began discussing causal discovery before the advent of network 
neuroscience and powerful causal modeling techniques, and has 
recently considered the implications of network theory for 
explanation. Here we have argued that causal discovery poses 
particular challenges in the context of network neuroscience. The 
relationships among anatomical, statistical, and causal facts looks 
markedly different from the perspective of discovery than they do 
when discussing explanation. Causal and anatomical information - 
but typically not statistical information - help explain a phenomenon. 
In contrast, when it comes to discovering causal networks, statistical 
information plays an essential role, while anatomical information 
does not. 

Our discussion points towards several directions for future 
research. We have not addressed the new and exciting questions that 
have arisen regarding the explanatory import of networks, and in 
particular have not taken a stance on whether there are forms of 
topological explanation that abstract away from the relevant causal-
mechanical details. Surely this debate will benefit from a clearer 
picture of which causal relationships exist in the brain, and how 
neuroscientists attempt to discover them. Additionally, we have 
limited ourselves to considering systems represented at a particular 
time-scale, though to adequately understand brain function and 
behavior we will need to evaluate its neurodynamics at multiple 
scales. For instance, we would want to know how the stability of 
brain function at a longer time scale depends on its anatomical and 
causal organization at shorter time scales. While there remains much 
more work to be done, the present discussion showcases why 
network measures will be at the forefront of future developments in 
causal inference and mechanism discovery in the brain sciences. 
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