l_‘._l
TILBURG 0‘5%?@ ¢ UNIVERSITY
lf:fl

Tilburg University

Outlier selection and one-class classification
Janssens, J.H.M.

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Janssens, J. H. M. (2013). Outlier selection and one-class classification. [s.n.].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jun. 2023

https://research.tilburguniversity.edu/en/publications/77b71572-7266-44d0-9510-ebf4eeb43062

Outlier Selection and

One-Class Classification

Jeroen H.M. Janssens

l_‘_'l
TILBURG }%%_} ¢ UNIVERSITY
l\;fl

Outlier Selection and

One-Class Classification

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan Tilburg University,
op gezag van de rector magnificus,
prof. dr. Ph. Eijlander,
in het openbaar te verdedigen ten overstaan van een
door het college voor promoties aangewezen commissie
in de aula van de Universiteit

op dinsdag 11 juni 2013 om 14:15 uur

door
Jeroen Henricus Marinus Janssens

doctorandus in de artificiéle intelligentie,

geboren op 6 juni 1983 te Helmond, Nederland

Promotores:
Prof. dr. E.O. Postma
Prof. dr. H.]J. van den Herik

Beoordelingscommissie:
Prof. dr. E.J. Krahmer
Prof. dr. HX. Lin
Prof. dr. J-J.Ch. Meyer
Prof. dr. A. Plaat
Dr. D.W. Aha

The research reported in this thesis has been carried out as part of the Poseidon project
under the responsibility of the Embedded Systems Institute, the Netherlands. This project
is partially supported by Agentschap NL under the BSIKo3021 program.

SIKS Dissertation Series No. 2013-18
The research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems.

TiCC Dissertation Series No. 27

ISBN: 978-90-820273-1-0

Copyright © 2013 by Jeroen H.M. Janssens
Printed by Wohrmann Print Service, Zutphen
Published by Van Lankveld Uitgeverij, Maastricht

Typeset by the author using XgETgX. The figures in the thesis were created using Ti IZ
and MATLAB?®. Thesis statistics: 216 pages; 39,625 words; 51 figures; 13 tables.

"MM SJHIUT SFTFSWFE /PQBSUPGUIJTQVCMJIDBUJPO NBZ
PS USBOTNJUUFE JO BOZ GPSN PS CZ BOZ NFBOT FMFDU.
SFDPSEJOHPS PUIFSXJTF XJUIPVUQSJPS QFSNIJTTJPO PG

1SFGBDF

This thesis is the product of excellent supervision, infinite support, and great
perseverance (with even a few anomalies and outliers along the way). The research
presented has been conducted as part of a bigger project called Poseidon. Thales
Nederland BV is Poseidon’s main industrial partner. They offered an interesting, real-
world problem to be investigated: to improve maritime safety and security. The problem
involved many research challenges that have been taken up by different university teams,
including visualising complex data, levering heterogeneous knowledge sources, and

ensuring fault-tolerant distributed systems.

In 2007, prof.dr. Eric Postma was asked by the Embedded Systems Institute to form a
Maastricht University team (which later migrated to the Tilburg University) to take on the
research challenge of detecting maritime anomalies. I still consider it a privilege that Eric
offered me the opportunity to continue my academic career as a Ph.D. student within the
Poseidon project. It was not a difficult choice to accept the position, considering that Eric
has been already my supervisor for both my bachelor’s thesis in 2006 at University College
Maastricht and my master’s thesis in 2007 at Maastricht University. Shortly thereafter, the
team would be strengthened by the addition of two other members: dr. Ildiko Flesh as

post-doc and Prof.dr. Jaap van den Herik as my second supervisor.

Although the research presented in the thesis is domain-agnostic, it was guided by
the challenge of maritime anomaly detection. Many possible research directions were
possible to take on this challenge. Eventually, I converged to focus on outlier selection
and one-class classification—with emphasis on density-based algorithms. This formed
the basis of Chapter 3. Later, while studying the t-SNE algorithm (a non-linear
dimensionality reduction technique by Laurens van der Maaten and Geoffrey Hinton),
I came up with Stochastic Outlier Selection algorithm, which is now Chapter 4. After
many experiments in which multiple algorithms were compared on multiple data sets,
I wished to know which algorithm would be applied best to a given dataset; this is the
contents of Chapters 5 and 6.

Without the help of many organisations and people, this thesis would not have been
possible. I would like to express my gratitude to the following organisations: Tilburg
Center for Communication and Cognition (TiCC), Department of Communication and
Information Sciences (DCI), Tilburg School of Humanities (TSH), Tilburg University
(TiU), Embedded Systems Institute (ESI), Thales Nederland BV, Noldus Information

Technology, School for Information and Knowledge Systems (SIKS), Agentschap NL,
Maastricht University (UM), Department of Knowledge Engineering (DKE), Eindhoven
University of Technology (TU/e) Machine Learning Summer School (MLSSo9),
University of Cambridge (CU), Computational and Biological Learning lab (CBL), and
New York University (NYU). The number of people whose support have been crucial for

the completion of the thesis is so large, that they deserve special acknowledgements (see

page 197).

Jeroen Janssens January 2013, New York, NY

W JPreface

SPOUFOUT

Preface

Contents

List of figures

List of tables

List of abbreviations

*OUSPEVDUJPO

1.1

1.2
13
14
15
1.6

Anomaly detection . .

1.1.1
1.1.2
113

The Poseidon project i i e

Anomaly detection in the maritimedomain

Anomaly detection in otherdomains

Outlier selection . . .

Problem statement . .

Research questions .

Research methodology

Structure of the thesis

#BDLHSPVOEBOEFYQFSIJNFOUBMTFU VQ

2.1
2.2

2.3
24
2.5
2.6

The relationship between the domain expert and the outlier-selection algorithm

Representing real-world observationsasdatapoints

2.2.1
222
223
224

Feature-vectorrepresentation

Dissimilarity-matrix representation

The difference between the representations

Obtaining a dissimilarity matrix from featurevectors

Outlier-selectionalgorithm

Domain expert

Hits, misses, correct rejects, and falsealarms

Evaluating the performance of an outlier-selection algorithm

2.6.1
2.6.2
2.6.3
264

Constructing one-class data sets from a multi-class dataset

Simulatinganomalies o e

Area Under the Curve performance measure

Weighted AUC

vii

Xii

XV

XVii

1"

16
18
20
21
21
22
23
24
25
28
29
29
31
33

wWJJ

2.7 Method for comparing outlier-selection algorithms 34

270 Friedmantest 34
272 Neményitest i i i i e e e e e 35
2.7.3 C(ritical differencediagram 35
274 Sectionconclusion 36
2.8 One-class classificationsetting 36
2.8.1 One-classclassifier 37
282 Trainingandtesting e 37
283 Crossvalidation 38
2.9 Chaptersummary v v vt e e e e e e e e e e e e e e e e e 39

&WBMVBUJOHBOEDPNQBSJOHPVUMIJFS TFMFDUJPOBMHPS]J

3.1 OutlierselectioninMLandKDD 42
3.2 MLoutlier-selectionalgorithms, 44
3.2.1 K-Nearest Neighbour Data Description 44
3.2.2 Parzen Window Data Description 44
3.23 Support Vector Data Description L 45
3.3 KDD outlier-selectionalgorithms 45
33.1 LocalOutlierFactor 46
332 Local CorrelationIntegral 48
3.4 Experimentalset-up e e e 51
340 Datasets e e 52
342 Bvaluation. 52
35 Results e e e e e e 53
3.6 Discussion e e e e 54
36.1 ObservationT 55
362 Observation2 55
3,63 Observation3 56
3.7 Chapterconclusions e e e e e 56

4UPDIBTUJDOVUMJFS4FMFDUJPO

4.1 An affinity-based approach to outlier selection 60
41.1 Two successful applicationsof affinity 60
4.1.2 Outlier probabilitiesinstead of scores 61
4.2 The Stochastic Outlier Selectionalgorithm 62

W JCbdtents

421 Inputtothealgorithmo o L 63

422 Transforming dissimilarity intoaffinity 65
423 Stochastic neighbour graphs based on affinities 68
424 Estimating outlier probabilities through sampling 74
4.2.5 Computing outlier probabilities through marginalisation 76
42.6 Computing outlier probabilitiesin closedform 77
427 Classifyingoutliers e 80
4.2.8 Adaptive variances via the perplexity parameter 80
4.3 Qualitative evaluation of SOS and four related algorithms 82
43.1 Outlier-scoreplots e 84
432 SOS . . e e e e 86
433 KNNDD e e e 87
434 LOF . . . e 87
435 LOC. . . o e e e e e e 87
43.6 LSOD e e e 88
44 Experimentsandresults e 88
441 Real-worlddatasets 89
442 Syntheticdatasets 91
45 Discussionoftheresults 92
46 Chapterconclusions e 95

.FUB GFBUVSFTGPSPOF DMBTTEBUBTFUT

5.1 Nofree lunch for one-class classification 101
5.2 Theone-class classifier selection problem 102
53 Meta-learningo e e e e e e e e 103
5.3.1 Meta-learning comparedto base learning 103
53.2 Meta-learning for binary classification 103
53.3 Meta-learning for one-class classification 104
54 Overviewofone-classdatasets 105
5.5 Preprocessingone-classdatasets 108
551 NOPreprocessing v v v v ittt e e e e e e e 109
55.2 Variance preprocessingo it i e e e e 109
553 PCAPreprocessing oo v ittt e e e e 109
554 From85to2550ne-classdatasets, m
56 Meta-features 1M

Contents

JY

5.6.1 Computingmeta-features 112

5.6.2 Elementarymetafeatures o 114
5.6.3 Statistical meta-features oL 115
5.6.4 Decision tree-based meta-features L., 117
5.6.5 Information-theory-based meta-features 121
5.6.6 Euclidean-distance-based meta-features 121
5.6.7 Miscellaneous meta-features 123
57 Resultsanddiscussion 124
58 Chaptersummary o v vt i e e e e e e e e e 132

.FUB MFBSOJOHGPSPOF DMBTTDMBTTJOFST

6.1 Definingmappingandstrategy 136
6.2 Overviewofone-classclassifiers 137
6.3 Applying 19 one-class classifiers to 255 one-classdatasets 137
6.4 A meta-learning strategy for a selectionmapping 139
641 Themeta-dataset, 144
6.42 Preparing the meta-data set for classification 144
6.43 General classificationapproach L. 144
6.44 Featureselection 145
6.45 Sevenvariants. L. e e e e 146
6.5 Three baseline selectionstrategieso, 147
6.5.1 Randomstrategy e e e e 147
6.5.2 Best-on-averagestrategyo 147
6.53 Oraclestrategy i e e e e 147
6.6 Resultsanddiscussion 148
6.6.1 Meta-learning strategy betterthanrandom 148
6.6.2 Comparing the seven meta-learning strategy variants 150
6.7 Chapterconclusions e 154

$PODMVTIPOT

7.1 Answerstotheresearchquestions, 158
7.2 Answertothe problemstatement 160
73 Futureresearch e e 160
References 163

Y Contents

Appendices 175
" 1SFTUP B1PTFJEPO SFTFBSDIUPPMUPDSFBUFNBSJUJNFBO|

A1 Theneed for maritimeanomalies 177

A2 Overviewof Presto o o i i e e e e e 177

A3 Academicand industrial adoptionof Presto 179
"% UIF6STUJOUFSOBUJPOBM XPSLTIPQPONBSJUJNFBO
Summary 185
Samenvatting 189
Curriculum vitae 193
Publications 195
Acknowledgements 197
SIKS dissertation series 201
TiCC dissertation series 209

Contents Y J

-JTUPGOHVSFT

1.1

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
21
2.12
2.13

3.1
3.2
33

4.1
42
43
44
45
46
47
48
49
4.10
411
4.12
413

Two-dimensional featurespace L. 5
Dataflowdiagram e e 17
Euler diagrams illustrating the relationships betweensets 19
lllustration of the feature-vector representation 20
Transforming feature vectors into a dissimilarity matrix 23
Confusionmatrix i i e e 26
Anillustration of the four possibleoutcomes 27
Relabelling a multi-class data set into multiple one-classdatasets 30
The complete Bananadataset 31
Outlier scores of the data points in the Banana data set placement 32
ROCcurve e 33
Critical differencediagram 36
Training and testing aone-class classifier 38
The data set is split into a training data setand atestdataset 39
lllustration of the first stepof LOF 47
lllustration of the first stepof LOCI it 49
Comparison of all algorithms against each other with the Neményitest. 54
Frominputtooutputinfivematrices 63
The example data set used for our SOS description 64
Fromdissimilaritytoaffinity. 66
The radii of the circles correspond to the variance for the data points 67
The binding matrix is obtained by normalising the affinity matrix 69
lllustration of binding probabilities 71
Three stochastic neighbourgraphs 73
Discrete probability distribution for the setofallSNGs 75
Convergence of the outlier probabilities by repeatedly samplingSNGs 76
Outlier probabilities of the exampledataset 79
Classifications made by SOS on the exampledataset 81
Influence of the perplexity on the outlier probabilities 82
Graphs of the perplexity with respecttothevariance 83

YJJJ

4.14 Ten iterations of the binary search that sets adaptively the variances 83

4.15 Outlier-score plots of SOS and four related algorithms 85
416 Resultsofreal-worlddatasets 89
417 Syntheticdatasets e e e 90
418 Results of syntheticdatasets 93
419 Critical differencediagrams L. L 94
5.1 One-class classifier selectionproblem 102
5.2 Thethreepreprocessingmethods 108
53 PCA e e 110
54 Adecision tree induced fromthe lrisdataset 118
5.5 Density plots of theraw meta-features 126
5.6 Density plots of the log-transformed meta-features 128
5.7 Two-dimensional t-SNE plot of 255 one-classdatasets. 130
6.1 AUC matrices for the preprocessing techniques None and Variance 140
6.2 AUC matrices for preprocessing technique PCAandNone 141
6.3 Influence of preprocessingVariance e . 142
6.4 Influence of preprocessingPCA e 143
6.5 Distribution of the AUCs obtained by the four strategies 149
6.6 Comparing the meta-learning strategies with the other strategies 152
A.1 Screenshot illustrating the user interface elements and conceptsof Presto 178
B.1 Logo of the MAD internationalworkshop 181

Y J Mgt of figures

-JTUPGUBCMEFET

1.1 Overview of theresearchmethodology

1.2 Problem statement and three research questions
2.1 Relationship and parallels between expert and algorithm

3.1 The main feature of the KDD and ML outlier-selection algorithms

3.2 Weighted AUC performances o v v v i i ittt e ettt

4.1 The seven synthetic data sets controlled by one parameter

42 AUCperformances on real-world one-classdatasets
51 Overviewofthedatasets i

6.1 Overview of the 19 one-class classifiers
6.2 ARAofeachmeta-learningvariant.

6.3 ARAofeach baselineselectionstrategy

B.1 Programofthe MAD 2011 e

B.2 Posters presented at the postersession,

YW

-JTUPGBCCSFWJBUJPC

AIS .« . . oo Automatic Identification System
ARA Average Relative AUC

AUC oo Area Under the ROC Curve

ESI o Embedded Systems Institute

KDD, Knowledge Discovery in Databases
KDE Kernel Density Estimation
KNNDD K-Nearest Neighbour Data Description
LOCI Local Correlation Integral

LOF Local Outlier Factor

LSOD, . Least Squares Outlier Detection
MAD 0. Maritime Anomaly Detection
MDEF Multi-Granularity Deviation Factor
L Machine Learning

MSS Maritime Safety and Security

NN Nearest Neighbour

OCC One-Class Classification

PCA Principal Component Analysis
Presto Poseidon Research Tool

PWDD Parzen Window Data Description
RFE Recursive Feature Elimination
SNG Stochastic Neighbour Graph

YWJJ

SOS Stochastic Outlier Selection

SVDDo Support Vector Data Description
SVM . . . Support Vector Machines

TU ... o o Tilburg University

UOS Unsupervised Outlier Selection

Y WLidtbfabbreviations

$POUFOUT
What is common in a terrorist attack, a forged painting, and a rotten apple? The answer is: all
three are anomalies; they are real-world observations that deviate from what is considered to be
normal. Detecting anomalies is of utmost importance because an undetected anomaly can be
dangerous or expensive. A human domain expert may suffer from three cognitive limitations:
fatigue, information overload, and emotional bias. The cognitive limitations will hamper the
detection of anomalies. Outlier-selection algorithms are capable of automatically classifying data
points as outliers in large amounts of data. In the thesis, we study whether a domain expert can
effectively be supported by such algorithms. This chapter introduces the problem statement and
the three accompanying research questions. Subsequently, we state our research methodology

and provide an outline of the remainder of the thesis.

OVUMJIOF

Anomaly detection. Outlier selection. Problem statement. Research questions.

Research methodology. Structure of the thesis.

"OPNBMZEFUFDUJPO

The world around us seems to be quite normal. Laws of physics dictate how an apple
falls, rules teach people not to steal, and schedules tell us when the next train is due.
So, usually we know what to expect. However, sometimes, unexpected things happen.
For those occasions we use the term anomaly. In the thesis we define an anomaly as

follows.

Deénition [.0 (Anomaly). "O BOPNBMZJTBOPCTFSWBUJPOPSFWFOU
GSPN XIBUJTDPOTJEFSFEUPCFOPSNBM BDDPSEJOHUPB

In awkward situations, it transpires that the world around us is full of anomalies. Yet, we
have to live with them and we, as researchers and domain experts, are given the task to

investigate them. That is one of the aims of this study.

In Subsection 1.1.1, we describe the Poseidon project in which our research has been
performed. Subsection 1.1.2 discusses anomaly detection in the maritime domain, and

Subsection 1.1.3 provides examples of anomaly detection in other domains.

SIFIPTFJEPO QSPKFDU

In 2007, a multi-disciplinary research project called ‘Poseidon’ was initiated by the
Embedded Systems Institute (ESI) with Thales Nederland B.V. as the carrying industrial
partner. Tilburg University (TiU), one of Poseidon’s academic partners, was involved
in the main research activity, which was to improve the safety and security in the
maritime domain.! In particular, TiU was responsible for developing computer programs
or algorithms that automatically detect maritime anomalies. This thesis describes the
research that was conducted during the Poseidon project at TiU. Below we take a closer

look at anomaly detection in the maritime domain.
"OPNBMZEFUFDUJPOJOUIFNBSJUJNFE

Maintaining safety and security of maritime traffic is of great importance for preventing

or responding to accidents, terrorist attacks, or piracy. Human operators (i.e., domain

Here we note that safety and security are different concepts. Safety refers to protection against
accidental events. In addition, security refers to protection against intentional damages. In our research
both concepts are involved. The nature of our research does not necessitate that we deal with both
concepts separately. Therefore we speak of maintaining safety and security of maritime traffic.

Introduction

experts) monitoring maritime safety and security typically watch a large visual display
on which all vessel movements in a coastal region are plotted. With the help of the visual
display, unexpected deviations from normality, i.e., anomalies, should be detected by
the human operator. Despite the visual aid, anomalies often remain undetected. Below
we mention three cognitive limitations that may underlie the shortcoming of human

anomaly detection.

« Fatigue: human operators are bad at maintaining vigilance for a sustained period

of time (Davies and Parasuraman, 1982).

« Information overload: the amount of information displayed is too much for a

single human operator to process.

« Emotional bias: human operators suffer from an emotional bias, e.g., towards an

outcome that is in their best interest.

We note that computers do not suffer from these three limitations. In fact, maintaining
vigilance and processing large volumes of data are the hallmarks of computers. However,
a computer may be biased from the start (e.g., it is wrongly designed), but so far
it certainly has no emotional bias. Of course, in comparison with human operators,
computers fall short in VO EF S T UBr@ild iritions. The situation awareness of
experienced operators relies largely on knowledge and familiarity with vessels, sea lanes,
rules and regulations, the weather, and so forth. Obviously, for the time being, computers
have no common sense or expert knowledge in the form of intuition that they can

use.

An important lesson from the early days of artificial intelligence is that such common
sense of expert knowledge is rather difficult to program into a computer algorithm, if it
is possible at all (Russel and Norvig, 2010). Simply specifying all maritime knowledge in
terms of rules leads to a system that is—again we admit—too rigid and that cannot deal
with the probabilistic variations in the real world. Therefore, the best way to proceed is
(1) to let the computer algorithm take care of the tasks requiring (1a) vigilance and (1b)
cognitive processing power and (2) to leave the interpretation of the maritime situation

largely to the expert.

"OPNBMZEFUFDUJPOJOPUIFSEPNBJOT

Although the Poseidon project is targeted towards the maritime domain, it is not the

sole application domain in which anomalies occur. To underline the general importance

Anomaly detection

of automatic anomaly detection, we mention three studies that apply anomaly detection

algorithms to different problems:

1. detecting seizures in humans (Gardner, Krieger, Vachtsevanos, and Litt, 2006),

2. detecting credit card fraud (Whitrow, Hand, Juszczak, Weston, and Adams, 2009),

and

3. change detection in satellite images (Robin, Moisan, and Le Hégarat-Mascle,

2010).

OVUMJFS TFMFDUJPO

The challenging task that we are facing in this study is: how can an algorithm support
the expert in the detection of anomalies? We conjecture that the qualities of men
and machines are complementary. Currently, a computer algorithm cannot work with
the real-world observations directly. Therefore, the real-world observations need to be
recorded and represented as data. In general, we may say that the expert’s goal is to label
real-world observations. For this purpose, we assume two possible labels, ‘anomaly” and

‘normality.

At the computer side we see the following. The algorithm’s goal is to classify the
corresponding data points. We assume two possible classifications, namely ‘outlier’ and
‘inlier’ An exact definition of an outlier depends on the implementation of the outlier-

selection algorithm at hand. Below we provide a general definition of an outlier.

Deénition 0.0 (Outlier). "O PVUMJFS JT B EBUB QPJOU UIBU EFWJBU
NBKPSJUZPGUIFEBUBQPJOUT BDDPSEJOHUPBO PVUMJF

An inlier is a data point that is not an outlier. So, we distinguish between the labels of the
expert and the classifications of the algorithm. As a direct consequence of this distinction

we note that they may not always agree with each other.

The labels given by the expert are regarded as ground truth.? In other words, the expert
is always right. The challenge is to let the algorithm classify the data points such that
the agreement is maximised. The expert is the only one who may label the real-world

observations as an anomaly or as a normality. The algorithm has no expert knowledge

2 For sake of simplicity, we assume labels created by one expert only. Establishing ground truth from

multiple, possibly disagreeing, experts is an interesting research problem on its own. In human
computation, or crowdsourcing, for example, the challenge is to combine the labels provided by
hundreds or thousands of people (see Janssens, 2010; Welinder, Branson, Belongie, and Perona, 2010).

Introduction

and no common sense, and so has no notion of what is considered normal. The algorithm
has only at its disposition the data points that represent the real world observations. The

data points are a numerical representation of the real-world observations.

Figure 1.1 shows such a representation. For a certain number of vessels, two features
are recorded or measured. The two features are ‘speed over ground’ and ‘rate of turn’
The corresponding two-dimensional feature space is shown in Figure 1.1. The x-axis
corresponds to the feature speed over ground, and the y-axis corresponds to the feature

rate of turn.

"JHV S F Example of a two-dimensional feature space where
the data points represent real-world observations.

Let us consider that we observe a number of vessels sailing the sea. Of each vessel, we
record and measure (1) the speed over ground and (2) the rate of turn. The resulting data

set is plotted in Figure 1.1.

The expert labels one vessel as anomalous, because it is sailing too fast. The remaining
vessels are labelled as normalities. The anomalous vessel is denoted by an orange asterisk
and the normal vessels are denoted by green circles. Since speed over ground is a feature
that is measured, the anomalous vessel lies outside the cluster of normal vessels. Because
of the clear separation between the anomaly and the normalities, we may expect that
an outlier-selection algorithm performs its task perfectly, i.e, classifying the data point
that corresponds to the anomalous vessel as an outlier, and the remaining data points as

inliers.

If the speed over ground was not measured and our feature representation would only

comprise of the feature rate of turn, then the anomalous vessel would lie inside the cluster

Outlier selection

of normal vessels. As a consequence, the algorithm would classify the corresponding data

point as an inlier, which would result in a disagreement.

On the one hand, data are often cheap, especially when they come from sensors
that automatically record real-world observations. On the other hand, labels are often
expensive, especially when they are created by experts. In practical situations, we cannot

assume that the expert labels every real-world observation that is recorded.

Often, the outlier-selection algorithm must be able to classify using the data points
without any labels. When the algorithm classifies V O M B W&dVpbiki€: it is called
VO TV Q F ShWhall§ within the Unsupervised Outlier Selection (UOS) setting.

Algorithms in the One-Class Classification (OCC) setting are called one-class classifiers.
A one-class classifieris TFNJ TV (bEcsu¥ thE Rlels of the normal data points are
provided by the expert. Because anomalies are rare; we do not assume that any data points
belong to the anomalous class.* They learn a model from only one class, namely the

normal class (Tax, 2001); hence its name. Both settings are explained in Chapter 2.

1SPCMFNTUBUFNFOU

The importance of automating the detection of real-world anomalies is clear from the
above. So we will investigate whether outlier-selection algorithms are able to support
the domain expert, such that the three cognitive limitations of the domain expert are

mitigated. For this purpose, we formulate the following problem statement.

Problem statement: 5P XIBU FYUFOU DBO PVUMJFS TFMFDUJPC
EPNBJOFYQFSUT XJUI SFBM XPSMEBOPNBMZ EFUFDUJ

The first question that comes to mind is: X |F €n we state that a human expert is
being supported? In the thesis, we consider a domain expert to be supported by outlier-

selection algorithms when the following three conditions are satisfied.

Please note that the terms ‘unsupervised’ and ‘semi-supervised’ refer to the J O @f\tHd algorithm, and
not to the PV U @ i¥, However, often the case that unsupervised machine learning algorithms do not
classify the unlabelled data points. (For example, unsupervised clustering algorithms output clusters
and unsupervised dimensionality reduction algorithms output lower-dimensional representations of
the unlabelled data set.)

We note that if the data set contains sufficient data points from C Ptbelnormal class and the anomalous
class, then the domain expert may be better supported by a supervised binary classifier, which is beyond
the scope of the thesis.

Introduction

1. A domain expert knows how to evaluate and compare the performance of the

algorithms.
2. A domain expert has one or more effective algorithms available.

3. A domain expert knows when to apply which algorithm.

In the next section we transform each condition into a research question.

SFTFBSDIRVFTUJPOT

In order to answer the problem statement, we investigate three research questions
(RQs). The thee research questions correspond to the three conditions mentioned in
Section 1.3. Below, we list the three research questions and provide a motivation for each

of them.

Outlier-selection algorithms have been well studied in the research fields of Machine
Learning (ML) and Knowledge Discovery in Databases (KDD) (Chandola, Banerjee,
and Kumar, 2009). Both fields have produced their own algorithms and corresponding
evaluation procedures. Here we note that not all algorithms within each field have been
compared with each other under the same circumstances. Our first condition for a
domain expert to be supported by outlier-selection algorithms stated that a domain
expert should know how the performance of outlier-selection algorithms should be

evaluated and compared. Therefore, the first research question reads as follows.

Research question0:)PX TIPVME XF FWBMVBUF BOE DPNQBSF U
PGPVUMIJFS TFMFDUJPOBMHPSJUINT

The performance of an outlier-selection algorithm is mainly determined by the
characteristics of the real-word data set at hand. Data characteristics such as cluster

overlap may degrade the performance of an outlier-selection algorithm.

As mentioned in Subsection 1.1, each outlier-selection algorithm quantifies, in one way
or another, the relationship between all the data points in the data set. For the research
domains of clustering and dimensionality reduction, quantifying the relationship among
data points plays an important role. Recently, several algorithms within those two
domains employed effectively the concept of ‘affinity’ to fulfil that role (Hinton and
Roweis, 2003; Frey and Dueck, 2007; van der Maaten, 2009b). In our study we aim to
investigate (1) whether the concept of affinity is also effective for classifying data points

as outliers and (2) whether the performance would be less degraded by the two example

Research questions

data characteristics mentioned above. Hence, our second research question reads as

follows.

Research question: $BO BO F FDUJWF PVUMJFS TFMFDUJPO B
UIBUFNQMPZTUIFDPODFQUPGB OJUZ

Because each real-world application is different, each real-world data set has different
characteristics. For example, in one data set, the data points may form neat clusters,
whereas in another data set, there may be hardly any structure. As a result of these
varying data characteristics, no single outlier-selection algorithm outperforms all others
on all data sets. It would be beneficial for a domain expert to know when to apply which
algorithm. Therefore, we aim to understand the relationship between data characteristics
and algorithm performance. Rice (1976) formalised this as the algorithm selection
problem. In order to address the algorithm selection problem, i.e, in order to support
the domain expert, we adopt a meta-learning approach (Smith-Miles, 2008). Our third

research question reads as follows.

Research question 0: 5P XIBU FYUFOU DBO XF TPMWF UIF POF
TFMFDUJPO QSPCMFNVTJOHBNFUB MFBSOJOHBQQSP

The answers to these three research questions enable us to formulate an answer to the

problem statement.

$POUSJCVUJIPOT

Answering the research questions resulted in three main contributions.

o A framework for evaluating both semi-supervised and unsupervised outlier-

selection algorithms.

« A novel outlier-selection algorithm called ‘Stochastic Outlier Selection’ that has a
significantly higher performance and is more robust (to data perturbations and

varying densities) than four related algorithms.

o As far as we know, the first meta-learning study for one-class classification where
we aim to model the performance of 19 one-class classifiers on 255 one-class data

sets using 36 meta-features.

Two additional contributions are (1) Presto, an application to create artificial vessel tra-

jectories and (2) the organisation the first international workshop on Maritime Anomaly

Introduction

Detection (MAD). Presto and the MAD workshop are described in Appendices A and B,

respectively.

SFTFBSDINFUIPEPMPHZ

Within our research we employ an inductive research methodology, which consists of
five stages: (1) review and analyse the scientific literature, (2) design and develop a novel
outlier-selection algorithm, (3) implement the outlier-selection algorithm in MATLAB?®,
(4) perform comparative experiments, and (5) analyse the obtained results. Table 1.1
shows which stages are employed to address each of the three research questions. Below

we discuss the five stages.

5B C M F Overview of the research methodology and its five stages
employed to address the three research questions.

SFWIJFXBOEBOBMZTFTDJFOUJOD MJUFSBUVSF

We review and analyse the scientific literature for three reasons. First, to identify the
current state-of-the-art in outlier selection for RQ1. Second, to design and develop a
novel and effective algorithm for RQ2. Third, to establish a well-founded experimental
set-up for RQ3. Appropriate literature is found in, but not limited to, the research fields
of (1) machine learning, (2) knowledge discovery and databases, (3) information theory,

(4) probability theory, and (5) graph theory.

%FTIJHOBOEEFWFMPQBOPWFMPVUMIJFS TEFMFDU
Investigating RQ2 requires the development of an outlier-selection algorithm that
employs the concept of affinity. The algorithm relies on concepts from (1) probability

theory, (2) graph theory, and (3) information theory, of which the appropriate literature

Research methodology

has been studied. We examine the intricacies of the novel algorithm, such as the influence

of its parameter(s) and its sensitivity to data perturbations.

*NQMFNFOUPVUMIFS TFMFDUJPOBMHPSJUINJO .

We implement the developed algorithm in a programming language since we wish
to evaluate its performance. The widely-used and freely-available Data Description
Toolbox by Tax (2012) provides implementations of a large number of outlier-selection
algorithms in the programming language MATLAB®. In order to make use of this
toolbox, we decided to implement our algorithm in the programming language
MATLAB?® as well. For a good comparison, adequate implementations are also required
for outlier-selection algorithms that have been developed previously by other authors,
of which to our regret no (appropriate) implementation are available. This holds for the
outlier-selection algorithms Local Outlier Factor (LOF) and Local Correlation Integral
(LOCI) (Breunig, Kriegel, Ng, and Sander, 2000; Papadimitriou, Kitagawa, Gibbons, and
Faloutsos, 2003). Our MATLAB® implementations of LOF and LOCI are now part of the

Data Description Toolbox.

1FSGPSNDPNQBSBUIJWFFYQFSJIJNFOUT

Once all necessary implementations are present, we are able to perform comparative
experiments. This is required for all research questions. In a typical machine learning
experiment, the experimental set-up consists of evaluating, i.e, applying, one or more
algorithms to one or more data sets. The same holds for outlier selection and one-class
classification. To study the outlier-selection algorithms in greater detail, we may (1) vary
the parameters of the algorithms, and (2) vary the characteristics of the data sets. The
experimental set-up involves three evaluation methods. First, cross-validation ensures
that the performance generalises to an independent test data set. Second, the Area
Under the ROC Curve is used as performance measure. Third, the post-hoc Neményi
statistical test is employed to test for statistical significance among the performances of

the algorithms. These three techniques will be further explained in Chapter 2.

"OBMZTFPCUBJOFESFTVMUT

After a comparative experiment has been performed, we continue with the analysis of

the obtained results. Typically, in the machine learning literature, the performances are

Introduction

averaged and the algorithm with the highest average performance is presented as the
best. However, the ‘No Free Lunch’ theorem implies that for each algorithm there exists
a data set on which it is outperformed (Wolpert and Macready, 1995). Therefore, we also
investigate under which conditions, i.e., data characteristics, an algorithm performs best.
As mentioned in the previous section, we aim to understand the relationship between

data characteristics and algorithm performance.

4USVDUVSFPGUIFUIFTJIT

The problem statement and the three accompanying research questions introduced in
Sections 1.3 and 1.4 are investigated over the course of seven chapters. Table 1.2 lists
which chapters address the problem statement and research questions. Below we provide

a brief description of the contents of each chapter.

5B C M F The problem statement (PS) and the three accompanying research ques-
tions (RQs) are addressed in different chapters throughout the thesis.

$IBQUFS *OUSPEVDUJPO

In Chapter 1, we define the concepts of an anomaly and an outlier. We illustrate
the importance of anomaly detection by listing examples from the maritime domain
and three other application domains. Three cognitive limitations of anomaly detection
by domain experts are given. We mention recent results that indicate that outlier-
selection algorithms can effectively support the domain expert. Based on these results we
formulate our problem statement and three accompanying research questions. Moreover,
we describe the employed research methodology. The chapter is concluded by an

overview of the thesis.

Structure of the thesis

$IBQUFS #BDLHSPVOEBOEFYQFSIJNFOUBMTFU \

In Chapter 2, we introduce the main concepts and explain the experimental set-up that
is employed throughout the subsequent chapters. This is partly based on a review and
the analysis of the relevant literature concerning anomaly detection, outlier selection,
and machine learning. The chapter consists of four parts. First, we present two outlier-
selection settings that we consider in the thesis: (1) unsupervised outlier selection and (2)
one-class classification. We highlight their similarities and differences, and we make clear
when which setting is appropriate. Second, we describe two types of data representations
that outlier-selection algorithms can process: (1) feature-vector representation and (2)
similarity-matrix representation. Both representations have their uses. Third, we explain
in detail the experimental set-up. It relies on statistical techniques such as the (1) Area
Under the ROC Curve (AUC) performance measure, (2) the post-hoc Neményi statistical
test, and (3) cross validation. Fourth, we explain how to transform ordinary multi-
class data sets into one-class data sets so that they can be used for our comparative

experiments.

$IBQUFS &WBMVBUJOHBOEDPNQBSJOHPVUMJIF.

In Chapter 3, we aim to answer RQ1. We describe how anomalies are detected in
the fields of ML and KDD. Both fields have their own anomaly-detection algorithms
and corresponding evaluation procedures. Two well-known outlier-selection algorithms
from the field of KDD are framed into the one-class classification framework so that these
can be compared with three algorithms from the field of ML in a statistically valid way.
We perform a comparative evaluation of the ML and KDD outlier-selection algorithms

on real-world datasets and discuss the results.

$IBQUFS 4UPDIBTUJDOVUMIFS4FMFDUJPO

In Chapter 4, we aim to answer RQ2. We present a novel, unsupervised algorithm
for classifying outliers, called Stochastic Outlier Selection (SOS). SOS uses affinity to
compute for each data point an outlier probability. The probabilities that are computed
by SOS provide several advantages with respect to the unbounded outlier scores as
computed by related algorithms. Using outlier-score plots, we illustrate and discuss the
qualitative performances of SOS and four related algorithms. Then we evaluate SOS and

the four algorithms on eighteen real-world data sets and seven synthetic data sets. The

Introduction

results obtained on these 25 data sets show that SOS (1) has a significantly higher average
performance and (2) is more robust to data perturbations and varying densities than
the four related algorithms. From these results we may conclude that SOS is an effective
algorithm for classifying data points as outliers. We observe that SOS is, however, not the
best-performing algorithm on every data set. This observation is consistent with the No

Free Lunch theorem, which is discussed in Chapter 5.

$IBQUFS .FUB GFBUVSFTGPSPOF DMBTTEBUBT

The research required to formulate an answer to RQj3 is split over the Chapters 5 and 6. In
Chapter 5, we discuss the No Free Lunch theorem, which states that there is no single best
one-class classifier. For each one-class data set, there may be a different one-class classifier
that performs best. The performance of a one-class classifier is greatly determined by the
characteristics, or meta-features, of the one-class data set. We present three methods for
preprocessing data that may improve the performance of certain one-class classifiers on
certain one-class data sets. The results in this chapter are obtained in three steps. First, we
implement 36 meta-features. Second, we apply the meta-features to 255 data sets. Third,
we select empirically the most informative meta-features. The selected meta-features are
used as input for Chapter 6, where we use meta-learning to relate the meta-features to

the one-class classifier performance.

$IBQUFS .FUB MFBSOJOHGPSPOF DMBTTDMBTT

In Chapter 6, we aim to answer RQ3 by using the output from Chapter 5. First, we
describe 19 one-class classifiers. Subsequently, we perform a comparative experiment
by applying the 19 one-class classifiers on the 255 one-class data sets from Chapter 5. To
answer RQ3, we aim to understand the relationship between the previously computed
meta-features and the one-class classifier performances. To this end, we set up a meta-
learning experiment, where we aim to solve the one-class classifier selection problem, i.e.,
predict the most appropriate one-class classifier for a given, unseen, one-class data set.
The results indicate that by using the meta-learning approach, we can solve the one-class

classifier selection problem with an accuracy of 52%.

Structure of the thesis

54N0gls$

$IBQUFS $PODMVTJIPOT

In Chapter 7 we complete the thesis. We discuss the findings of the thesis on a general
level. By reviewing the answers to the three research questions, we arrive at three
conclusions. From the conclusions, we formulate an answer to the problem statement.

Finally, we give recommendations for future research.

Introduction

$POUFOUT

In this chapter we introduce the main concepts for answering the research questions. In the
first part of the chapter (from Section 2.2 to Section 2.7) we assume that the outlier selection is
unsupervised. The second part of the chapter (Section 2.8) deals with the one-class classification
setting. For certain applications, the assessments of the domain expert are available to the

algorithm. If that is the case, then the one-class classification setting may be employed.

OVUMJIOF

The relationship between the domain expert and the outlier-selection algorithm. Rep-
resenting real-world observations as data points. Outlier-selection algorithm. Domain
expert. Hits, misses, correct rejects, and false alarms. Evaluating the performance of an
outlier-selection algorithm. ~ Method for comparing outlier-selection algorithms. ~ One-class

classification setting. ~ Chapter summary.

S5IFSFMBUJPOTIJQ CFUXFFO UIF
PVUMJFS TFEMFDUJPOBMHPSJUI

The domain expert and the outlier-selection algorithm form a symbiotic relationship;
they rely on each other in two ways (see Table 2.1). First, the domain expert configures
the parameters of the outlier-selection algorithm. Second, the outlier-selection algorithm
T 1P \sipport the domain expert in order to mitigate his' cognitive limitations. We
remark that the word ‘should’ is emphasised because this is essentially the problem

statement to which we aim to formulate an answer.?

5B C M F The symbiotic relationship and parallels between the domain
expert and the outlier-selection algorithm.

From Table 2.1 we can read the following two sentences. First, the domain expert employs
domain knowledge and experience on the real world to detect those observations that are
abnormal as anomalies. Second, the outlier-selection algorithm employs techniques from
mathematics and statistics on the data set to classify those data points that are outlying
as outliers. The words have been put side-by-side in the table in order to emphasise
the parallels that exist. The two most important parallels are (i) between (real-world)

observations and data points and (ii) between anomalies and outliers.

To illustrate the relationship between the domain expert and the outlier-selection
algorithm in more detail, we employ a data flow diagram. The data flow diagram in

Figure 2.1 shows the flow of data, i.e., the relationship, between (1) the domain expert and

1 For brevity, we use ‘he and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.

We may ask ourselves the converse: 5P XIBU FYUFOU DBO UIF EPNBJO FYQFSU DP(
However, this is beyond the scope of the thesis.

Background and experimental set-up

(2) the outlier-selection algorithm, and the three accompanying concepts: (3) the real-
world, (4) the data representation, and (5) the data set. As such, the data flow diagram
may serve as an overview reference while the five concepts are discussed in the remainder

of the chapter.

"J HV S FDataflow diagramillustrating the relationship between the domain
expert (square) and the outlier-selection algorithm (top circle).

We highlight the main flow of data, which starts at the bottom-left corner and proceeds
counter-clockwise: PCTFSWawth® OSFBM #P SHESFTF O UwhiciBafe EB U B
subsequently storedina EB U BIHeFFW UMJF S TF M Fpotksses BiMaHdPaad U I N
may classify certain E B U B QPPRI\ODWNKElBlikrs are in turn evaluated bythe EPNBJ O

F Y Qwh8 tday then decide whether the real-world observation should be considered as

an B O P NaBdMchsequently act upon it. The main flow of data and the other supporting

flows of data are discussed in the subsequent sections.

In data-flow-diagram terminology, a circle represents a function (i.e., (2) ‘outlier-
selection algorithm’ and (4) ‘represent as data’), a square represents an end-user (i.e.,

(1) ‘domain expert’) and a cylinder represents a data store (i.e, (5) ‘data set’). The (3)

The relationship between the domain expert and the outlier-selection algorithm

‘real world’ is represented by a cloud-shape (which is not common in data flow diagram
terminology). The arrows represent the data transfer from one concept to another

concept.

The remainder of the chapter is organised as follows. We should first note that, in
Sections 2.2-2.7, we assume the unsupervised outlier-selection setting. In other words,

we assume that the data set has not been labelled by the domain expert.

In Section 2.2 we explain how real-world observations can be represented as data
points. In Section 2.3 we give a definition of an outlier-selection algorithm. Section 2.4
discusses the characteristics of the domain expert. Section 2.5 describes four types
of (dis)agreements between the domain expert and the outlier-selection algorithm. In
Section 2.6 we explain how we evaluate an outlier-selection algorithm. In Section 2.7 we

describe how multiple outlier-selections may be compared with each other.

In Section 2.8 we change the setting from unsupervised to semi-supervised. In other
words, now we assume that the domain expert has labelled (part of) the data set. We
describe the one-class classification setting and introduce the concept of cross-validation,
which is needed for the evaluation of one-class classifiers. Finally, we provide a summary

of the chapter in Section 2.9.

SFQSFTFOUJOH SFBM XPSMEPC

From Figure 2.1 we see that the outlier-selection algorithm does not operate on real-
world observations directly. The real-world observations need to be represented as
data points first. The six Euler diagrams in Figure 2.2 show the relationships between
different sets (i.e., data concepts). Below, we discuss the first four Euler diagrams, namely
(a) to (d). The discussion of diagrams (e) and (f) is deferred to Sections 2.3 and 2.5,

respectively.

The set of all real-world observations of a certain application domain (e.g., vessels from
the maritime domain) is denoted by 9 (see Figure 2.2(a)). An observation is a generic
term and may refer to, for example, events, physical objects, and digital records in a
database. We assume that each real-world observation is labelled by a domain expert (e.g.,
the coastguard operator) as either normal or anomalous. (It includes all the observations,
also the ones that the domain expert has not seen.) This is illustrated in Figure 2.2(b),

where " indicates the set of anomalies, which is a subset of the real-world observations,

ie, "~ 9.Each real-world observation is either recorded as a data point or unrecorded

Background and experimental set-up

"J HV S F Six Euler diagrams illustrating the relationships between the following sets:
real-world observations, anomalies, normalities, data set, outliers, inliers, hits, false alarms,
misses, and correct rejects.

(see Figure 2.2(c)). Recording occurs when the real-world observation is, for example,
caught on camera. All recorded data points are stored in a data set, which is denoted by
% The unrecorded real-world observations cannot be processed by the outlier-selection
algorithm. If we combine diagrams (b) and (c), we observe that a data set can contain

both normal and anomalous data points (see Figure 2.2(d)).

Representing real-world observations as data points

L
)
o
m
©»

There are several approaches to represent real-world observations as data (Gértner,
Lloyd, and Flach, 2004). We describe two of them that are employed most commonly:
(1) the feature-vector representation (Subsection 2.2.1) and (2) the dissimilarity-matrix
representation (Subsection 2.2.2). In Subsection 2.2.3 we explain the difference between
the two representations. In Subsection 2.2.4 we describe how a dissimilarity matrix can

be obtained from feature vectors.

'FBUVSF WFDUPSSFQSFTFOUBUJPO

The first approach to represent real-world observations as data points is through feature
vectors (cf. Witten and Frank, 2005). The number of data points in a data set %is denoted
by Oln the thesis we assume that all values are numerical, as opposed to categorical,
symbolic, or binary. In a feature-vector representation each data point is represented by
an N-dimensional, real-valued, feature vector X Yiiioo W > 3N As such, a data
point can be regarded as a point in an N-dimensional Euclidean space. The data set %is
represented by a matrix X of size O N i.e., number of data points number of features.

The vector X jdenotes the 3 row of the matrix X.

When the observations are physically embedded in the real world, one or more of its
features must be measured in order to obtain a feature vector. Figure 2.3 illustrates
an example of the feature-vector representation concerning apples and oranges. Of 42
apples and oranges, two features are measured: width and height. The table in the middle
displays the first seven data points. The scatter plot on the right shows all 42 apples and

oranges.

'J HV S Flllustration of the feature-vector representation. - F Geal-world observations of an apple
and an orange. . J E E Appples and oranges represented as two-dimensional feature vectors together
with a class-label. 3 J HTHd data set visualised using a scatter plot.

Background and experimental set-up

The data set is completely labelled, i.e., the domain expert has indicated for each
observation whether it is an apple or an orange. The scatter plot indicates that the features
width and height are insufficient to distinguish between apples and oranges. Such a sub-
optimal data representation may be improved by (1) measuring more features such as
weight, or (2) extracting features from digital images, if they are available (cf. van der

Maaten, 2009a).

Here we remark that in application domains with a database, the observations are already
represented as data, and may be stored in the correct format. When the records? in the
database have been entered manually, data cleaning is necessary in cases where the data
is blurred and any algorithm processing the data produces unreliable classifications (cf.
van Erp, 2010). Each record in the database is considered as a feature vector in the data

set.

WITTINIMBSJUZ NBUSJY SFQSFTFOUBL

The second approach to represent data is the dissimilarity-matrix representation,
which is also known as a featureless representation (Pekalska and Duin, 2005). It is a
relative description. Such a relative description of a real-world observation is obtained
by measuring its dissimilarity to other real-world observations. The dissimilarity is
expressed as a non-negative scalar and is computed by a dissimilarity measure EIf we
have Qreal-world observations, then ® Qlissimilarities need to be computed. (A real-
world observation need not be compared to itself.) The result is a dissimilarity matrix
with size O Qand 0’s (zeros) on the diagonal. The dissimilarity-matrix representation has
the advantage that any dissimilarity measure can be used as well as any outlier-selection

algorithm that operates in vector spaces (Duin, Loog, Pekalska, and Tax, 2010).

5IFEJOFSFODFCFUXFFOUIFSFQSFTFOL

Finally we emphasise the differences between the two representations. Because a feature
vector has a fixed length N complex real-world observations may be better represented
using a dissimilarity matrix. For example, different moving object trajectories may have

different durations and therefore a different number of measurements, i.e., different

In the field of Knowledge Discovery in Databases (KDD), which focusses on the real-world application
of machine learning algorithms, the terms ‘data set, ‘data point, and ‘feature’ are more commonly
known as ‘database), ‘record, and ‘field’ (or ‘attribute’), respectively (Fayyad, Piatetsky-Shapiro, Smyth,
and Uthurusamy, 1996b).

Representing real-world observations as data points

values of N(cf. de Vries, 2012). Other types of complex real-world observations include

text-documents and social-network graphs.

A feasible feature-vector representation of real-world observations might be difficult to
obtain or insufficient for learning purposes, e.g., when domain experts cannot define
features in a straightforward way, when data are high dimensional, or when features

consist of both continuous and categorical variables (Pekalska and Duin, 2002).

The main difference between both representations is that in the feature-vector
representation the observation is defined by itself, whereas in the dissimilarity-matrix
representation, the observation is defined with respect to other observations. We reiterate
that feature vectors are an absolute description of real-world observations, and that a

dissimilarity matrix is a relative description of real-world observations.

OCUBJOJOHBEJTTIJNIJMBSJUZNBUSJY G

Feature vectors X can be transformed into a dissimilarity matrix D (cf. Duin et al,,
2010). Here we illustrate such a transformation by using the Euclidean distance as the
dissimilarity measure on the feature vectors displayed in Figure 2.4. The Euclidean

distance is defined as follows.

>0

N 2
ExA Q S Yt ;

L1
where Yjdenotes the L' feature value of 3 data point, i.e., cell J Lof matrix X. From
Equation 2.1 it follows (1) that the dissimilarity measure is symmetric, i.e., 5k B¢ and
(2) that the dissimilarity between a data point and itself is zero, i.e., B3 0. The six data
points on the left side of Figure 2.4 are connected by green lines with varying brightness.
Both the length and the brightness of these green lines illustrate the dissimilarity between
data point X, and the other five data points.

The right side of Figure 2.4 shows the matrix X containing six data points characterised
by two features. Next to matrix X we find a colour bar that maps a range of values to
a range of colours. For example, 0 is mapped to white and 8 is mapped to dark blue.
The dissimilarity matrix D is obtained by applying Equation 2.1 to each pair of data
points in the matrix X. (The bold, upright letter ‘D’ should not be confused with the
calligraphic letter % that denotes a data set.) The brightness of each green line is equal

to the brightness of the corresponding cell in the second row of D. In fact, because the

Background and experimental set-up

"J HV S FTransforming feature vectors into a dissimilarity matrix.

Euclidean distance Eis symmetric, the resulting dissimilarity matrix D is symmetric,
meaning that the rows are equal to the columns. Therefore, the brightness of the green

lines are also equal to the brightness of the cells of the second column.

OVUMIJFS TFMFDUJPOBMHPSJUI

In this section we discuss the concept of an outlier-selection algorithm. Once the real-
world observations have been represented as data points, the data points can be processed
by an outlier-selection algorithm. In general, an outlier-selection algorithm takes as input
a (un)labelled data set and classifies each data point either as an outlier or an inlier. This is
illustrated in the Euler diagram in Figure 2.2(e). The classifications are transferred to the
domain expert (discussed in Section 2.4). The manner in which data points are classified
differs per outlier-selection algorithm. In formal terms, an outlier-selection algorithm is

defined as follows.

Deénition 0.0 (Outlier-selection algorithm). "O PVUMJFS TFMFDUJPO

BMHPS

G 9 T“outlier;inlierr BOKGIT TBJEUP CFUIFDMBTX>®BUJPO PG E

Each outlier-selection algorithm discussed in the thesis is based on an outlier-scoring
algorithm, which outputs an outlier score instead of a classification. An outlier score
is a scalar that signifies the degree of ‘outlierness’ of a data point. An outlier-scoring

algorithm is formally defined as follows.

Deénition [.0 (Outlier-scoring algorithm). "O PVUMJFS TDPSJOH BMHPSJUII
9 3BOEXuJTTBJEUPCFUIFPVUMiIFPS TDPSFPGEBUB QPJO

Definitions 2.1 and 2.2 are adapted from the definitions of binary classification and

scoring algorithms as formulated by Vanderlooy (2009).

Outlier-selection algorithm

The computed outlier scores are transformed into classifications ~outlier; inliere. A
classification of data point X is obtained by applying a threshold b> 3on the outlier

score of data point X as computed by the outlier-scoring algorithm u

g
“ outlier if Ux*Ab

’u inlier if Ux* B b
where the value of the threshold bis set by the domain expert (see Section 2.4).

Because each outlier-scoring algorithm presented in the thesis, is transformed similarly
into an outlier-selection algorithm (namely, by applying a threshold to the outlier scores),
we do not distinguish between the outlier-selection algorithm and the underlying outlier-
scoring algorithm. In the remainder of the thesis we only use the term outlier-selection
algorithm, or algorithm for short, and we may say that it both computes outlier scores

and classifies data points as outlier or inlier.

%YPNBJOFYQFSU

In this Subsection we discuss the concept of domain expert, and how it relates to
the other concepts. The data flow diagram in Figure 2.1 shows four data transfers
from the domain expert: (1) parameters to the outlier-selection algorithm, (2) labels:
™nomaly; normalityZ (of which the line is dashed) to the data set, (3) features or
dissimilarity measure to represent the real-world observations as data, and (4) anomaly

detections to the real world. We discuss each data transfer below.

Regarding (1), the domain expert configures the parameters of the outlier-selection
algorithm. Each application domain, i.e., the corresponding data sets, requires a specific
configuration of the parameters for the outlier-selection algorithm to perform optimally.

In subsequent chapters we come across the different kinds of parameters.

Regarding (2), when an expert labels a real-world observation as an anomaly, we
may also say: (1) that the observation is detected as an anomaly, and (2) that the
observation belongs to the anomaly class $,. This is illustrated in the Euler diagram in
Figure 2.2(d). For some application domains, these labels are available to the outlier-
selection algorithm. In our comparative experiments, the labels provided by the domain

expert are considered to be the ground truth. In other words, the domain expert is always

Background and experimental set-up

right. The classifications made by the outlier-selection algorithm are compared to the

labels provided by the domain expert (see Section 2.5).

Regarding (3), in Section 2.2 we explained two approaches to represent real-world
observations as data points. In a real-world application, the domain expert has the
domain knowledge to decide which approach is most appropriate. We assume that the

features or the dissimilarity measure are defined by the domain expert.

Regarding (4), the outlier-selection algorithm outputs classifications in orderto TVQ QP S U
the domain expert, who has to decide whether the classification is valid and whether
further action is required. In the maritime domain, an example action is for the

coastguard operator to send a rescue helicopter.

) JUT NJTTFT DPSSFDUSFKFDU"

From the above we know that a domain expert labels and an outlier-selection algorithm
classifies. They may not always agree with each other, as will be explained in this section.
Comparing the classifications ~outlier; inliers with the labels ™nomaly; normalityZ is

necessary for the evaluation of the outlier-selection algorithm (see Section 2.6).

Figure 2.5 shows a confusion matrix (Mitchell, 1997; Witten and Frank, 2005). The
confusion matrix shows the four possible outcomes when we compare the label of the
real-world observation given by the expert to the classification of the corresponding data
point given by the algorithm. The possible outcomes (and the four corresponding sets)
are: (1) hit ()J), (2) false alarm (™), (3) miss (.J), and (4) correct reject ($3).

As we can see in Figure 2.5, if the expert labels an observation as an anomaly and the
algorithm classifies the corresponding data point as an outlier, then the outcome is a
‘hit’ In this case, the expert and the algorithm agree with each other. The hit square in
Figure 2.5 is green colour to illustrate agreement between the expert and the algorithm.
The expert and the algorithm also agree with each other when the expert labels a real-
world observation as a normality and the algorithm classifies the data point as an inlier.
This results in a correct reject, which means that the outlier-selection algorithm has
correctly rejected the hypothesis that the observation is anomalous. The corresponding
square is coloured olive. The remaining two outcomes (i.e., false alarm and miss) are the
result of disagreement between the expert and the algorithm. The squares corresponding
to false alarm and miss are located in the top right and bottom left. The two squares

are coloured purple and red to indicate disagreement. We remark that the colours used

Hits, misses, correct rejects, and false alarms

54N0als$

'JHV S F Confusion matrix showing the
four possible outcomes when the label of the
expert concerning a real-world observation
is compared with the classification of the al-
gorithm concerning the corresponding data
point. The four possible outcomes are: hit,
false alarm, miss, and correct rejection.

in Figure 2.5 are employed consistently throughout the thesis to indicate the outcomes.

Formally, the four sets corresponding the outcomes are defined as follows.

)J ™ > 9%TX > $ and X > 7 ()
TR S 06TX > $yand X > $7 ()
J ™> %TXx > $ and X > §7 ()
$3 ™ > %Tx > $yand X > §7 ()

The four sets are also illustrated in the Euler diagram in Figure 2.2(f) on page 19. This

concludes our discussion of Figure 2.2.

Let us illustrate the four possible outcomes using an example data set as shown in
Figure 2.6. Here we note that the four scatters plots show the same example data set;

only the colours and the shapes of the data points are different.

The top-left scatter plot shows the example data set as it is available to the outlier-selection
algorithm. The data set contains two clusters of data points. The small cluster on the left

is much more dense than the big cluster on the right. There are two data points that lie

Background and experimental set-up

somewhat outside the clusters. It is up to the outlier-selection algorithm to process the

data set and to classify each data point.

The top-right scatter plot shows the labels given by the domain expert. The two data
points that lie somewhat outside of the clusters, appear to be anomalies according to the
domain expert. The remaining data points are labelled as normalities. The panel inside
the scatter plot zooms in on the area around the left anomaly. This is to show that on
a smaller scale, the anomaly lies indeed somewhat outside the small, dense cluster. In

passing, we note that the labels are not available to the outlier-selection algorithm.

"JHV S F Aniillustration of the four possible outcomes. 5P Q MNdal@vbtd observa-

tions represented as data points. 5P Q S JHd tahain expert labels two observations
as anomalous. # P U U P NhidatGetdselection algorithm classifies many data points
as outliers. # P U U P N (®rdparing the classifications with the labels results in four
possible outcomes.

Hits, misses, correct rejects, and false alarms

L
o
o
m
¥

The bottom-left scatter plot shows the classifications made by the outlier-selection
algorithm. The algorithm selects as outliers (1) the two anomalies and (2) many data

points that are inside the large cluster.

Finally, the bottom-right scatter plot shows the four possible outcomes when we compare
the classifications made by the outlier-selection algorithm, and the labels given by the
domain expert. In this example, there are no misses because the outlier-selection has
classified all anomalies as outliers. However, there are many false alarms, because many

normalities in the large cluster have been incorrectly classified as outliers.

The large number of false alarms may indicate that the domain expert has chosen a
suboptimal threshold. If the domain expert would have set the threshold to a higher
value, then the left-most anomalous data point may have been classified as an inlier,
which would result in a miss (cf. Equation 2.2). In Section 2.6 and Subsection 2.6.3

specifically, we further explain choosing appropriate thresholds.

&WBMVBUJOHUIFQFSGPSNBODI
BMHPSJUIN

In this section we discuss the evaluation of the performance of an outlier-selection

algorithm. Evaluation comes down to measuring the classification performance of an

algorithm on a particular data set. For this, we employ the labels associated with each data

point, even though these were not available to the algorithm. When the performances

of multiple outlier-selection algorithms are measured, they can be compared (how this

precisely takes place is explained in Section 2.7).

Our description of the evaluation of outlier-selection algorithms is structured as follows.
In Subsection 2.6.1, we discuss how binary- and multi-classification data sets can be
transformed into one-class data sets such that they are usable for evaluating outlier-
selection algorithms. In Subsection 2.6.2, we describe a procedure that simulates
anomalies using one-class data sets. In Subsection 2.6.3, we explain how the performance
measure known as Area Under the ROC Curve (AUC) is computed. In Subsection 2.6.4,
we describe the weighted version of AUC, which is appropriate for aggregating over

multiple data sets.

Background and experimental set-up

$POTUSVDUJOHPOF DMBTTEBUBTFUTC

To evaluate the performance of an outlier-selection algorithm, we need data sets where
the data points are labelled as normal and anomalous. Such a data set is called a one-class
data set % In order to obtain a good sense of the characteristics of an outlier-selection

algorithm we need a large number of varied one-class data sets.

One-class data sets are not as abundant as multi-class data sets (%;). A multi-class
data set contains two or more classes $that are not necessarily labelled as normal or

anomalous;

N

% $3
J1

where Nis the number of classes. For example, the Iris flower data set (Fisher, 1936)
consists of 50 data points from each of the three classes: (1) Setosa, (2) Versicolor, and
(3) Virginica. Figure 2.7(top) shows a scatter plot of the Iris flower data set. Normally,

multi-class data sets are used for binary classification (Asuncion and Frank, 2010).

We can construct a one-class data set from a multi-class data set by relabelling one class

as the normal class ($y) and the remaining N 1 classes as anomalous (%). Let

N
% $ 8 %y suchthat $ $and & 5

K1

KJ
For a multi-class data set containing Nclasses, we can repeat this Ntimes, where each
class is relabelled as the normal class once (Tax, 2001). We remark that a one-class
data set contains the same data points as the multi-class data set, but with different
labels. The bottom row of Figure 2.7 shows three one-class datasets: %, %, and % that
are constructed from the Iris flower data set. These one-class data sets are suitable for

evaluating an outlier-selection algorithm.

4INVMBUJOHBOPNBMJFT

In data sets that are obtained from multi-class data sets, as described in Subsection 2.6.1,
usually both the normal and the anomalous class are well-represented, i.e., clustered.
As such, an unsupervised outlier-selection algorithm would not classify any anomalous

data points as outliers. Figure 2.8 shows a scatter plot of a ‘Banana’ data set where both

Evaluating the performance of an outlier-selection algorithm

"JHV SF lllustration of relabelling a multi-class data set into multiple one-class data sets.
5P @he Iris flower data set is a multi-class data set that consists of three classes: Setosa (0),
Versicolor (0), and Virginica (0). # P U WBPrAlabelling the data points, three one-class data sets are
obtained. Each of the three classes is made once the normal class (©).

classes are well-represented. (This data set will be used for the remainder of this chapter

to explain the evaluation procedure.)

In order to use such a data set for the evaluation of outlier-selection algorithms, we
employ a three-step procedure that simulates the anomalies to be rare. First, all data
points of the anomalous class are removed from the data set. Second, the outlier-selection
algorithm computes the outlier scores for all normal data points. Third, we add one of
the anomalous data points and compute its outlier score, and remove it thereafter. The
third step is repeated until all anomalous data points have been processed by the outlier-

selection algorithm. The result is an outlier score for each normality and anomaly.

Figure 2.9 shows for the outlier scores of all data points in the Banana data set. The vertical
dotted line separates the anomalies ($,) from the normalities ($). (The other elements

in the figure are explained in Subsection 2.6.3.) We note that overall the anomalies have a

Background and experimental set-up

L
o
o
m
¥

"JHV S F The complete Banana data set. In
order to evaluate the outlier-selection algorithm
we simulate anomalies to be rare.

higher outlier score than the normalities. The outlier scores are used in Subsection 2.6.3

to measure the AUC performance of the outlier-selection algorithm.

"SFB6OEFSUIF$VSWFQFSGPSNBODF NF

In this section we explain how we measure the performance of an outlier-selection al-

gorithm. In the thesis we employ the AUC performance measure (Bradley, 1997).

The computed outlier scores from Subsection 2.6.2 are converted to classifications
“outlier; inliere using a threshold b(see Equation 2.2 on page 24), so that these can
be compared to the labels ™nomaly; normalityZ provided by the expert, resulting in a
certain number of hits, false alarms, misses, and correct rejections. The four outcomes

introduced in Section 2.5 have four associated rates.

hitrate S)JS~K S
false alarmrate S" S~&S
missrate S.JIS~§S
correct reject rate S$3S~& S

S00e

Evaluating the performance of an outlier-selection algorithm

"JHV S F Outlier scores of the data points in
the Banana data set. The dashed line indicates the
threshold chosen by the domain expert.

Unless the outlier-selection algorithm classifies every data point correctly, there exists a
trade-off between the hit rate and the false alarm rate. The rates are determined by the
threshold b of which the optimal setting depends on the application and the associated
cost of misclassification. By changing the threshold bfrom the lowest possible value to
the highest possible value, we obtain a rangeof GBMTF B MBISINWEBBBF T

A plotof therangeof GB M T F B Md3ifishtis BuhbEof | J U SiBchlledlan ROC curve.
Figure 2.10 shows the ROC curve for the Banana data set that corresponds to the outlier
scores shown in Figure 2.9. An ROC curve shows us how the threshold influences the
GBMTF B Nud $hi IS B USHt)threshold b 0:57 minimises the number of false
alarms while maximising the number of hits. This threshold corresponds to the dashed

horizontal line in Figure 2.9.

By integrating the ROC curve we obtain the Area Under the ROC Curve (AUC). The
AUC s always between 0 to 1, where a higher value is better. Therefore, the AUC expresses
the performance of an outlier-selection algorithm in a single value that is independent
of the threshold (Vanderlooy, 2009).

A completely random outlier-selection algorithm, which outputs random classifications,

has on average, an AUC of 0:5. Employing the AUC as performance measure avoids the

use of one particular threshold band ensures a fair comparison of algorithms (Bradley,

1997). Of course, in a real-world setting the algorithm will be applied with a threshold b
that is optimal for the task at hand.

Background and experimental set-up

"JHV SF AnROCcurve plots the false alarm rate agains the hit rate
for all possible thresholds.

Deénition 0.0 (AUC performance). F "6$PG BO PVUMJFS TFMFDUJPO BM
EBUBWTFUEF OFEBT

AUC%4y % Q Q ™ixactAUdxneZ;

1
SH S SK S S5 s
XIFSFP JTUIFJOEJDBUPS GVO DU JIPIOGU BRJBSKERINENB A JBH WFESM V
PVUMIFS TDPSF U OBWDIP OIFSNKBWB U Z

Please note that the AUC performance measure treats both the misclassification of an
anomaly and a normality as equal (Fawcett, 2004). This may not be optimal is a real-
world situation, but since we cannot assume anything about the data sets used in our

experiments, the AUC is a suitable performance measure.

8FJHIUFE "6$%

When applying an outlier-selection algorithm to multiple one-class data sets that are
constructed from the same multi-class data set, we report performances with the help of
the weighted AUC.

To compute the weighted AUC, i.e., multi-class AUC (cf. Fawcett, 2004), the AUCs of the
one-class data sets are averaged, where each one-class data set is weighted according to

the prevalence of the normal class, $v g

Evaluating the performance of an outlier-selection algorithm

N
AUCM %4 %Z Q AUC%b %f S 5

The use of a weighted average prevents one-class data sets containing few normalities

from dominating the results (Hempstalk and Frank, 2008).

.FUIPEGPSDPNQBSJOHPVU

When multiple outlier-selection algorithms have been evaluated on multiple data sets, we
can compare their performances. A full list of (weighted) AUC performance measures
allows for a detailed examination. We admit that raw numbers are inappropriate to
arrive at general conclusions (cf. Dems$ar, 2006). In practice, we see that some machine
learning papers report and draw conclusions from the average AUC performance*
of outlier-selection algorithms across data sets from different applications domains.
However, as Webb (2000) states, ‘it is debatable whether error rates in different domains
are commensurable, and hence whether averaging error rates across domains is very
meaningful’ Therefore, as we explain in this section, we test for significant difference

between the outlier-selection algorithms.

To compare multiple algorithms on multiple datasets, we follow Demsar (2006), who
suggests to apply the following three steps. The first step is to apply the statistical
Friedman test (Subsection 2.7.1). When the first step has a positive outcome we continue
with the second step, which is to apply the post-hoc Neményi test (Subsection 2.7.2). The
third step is to visualise the outcome of the second step (i.e., the significant differences
between the algorithms) using a critical difference diagram (Subsection 2.7.3). We

conclude the section in Subsection 2.7.4.

'SIFENBOUFTU

The Friedman test (Friedman, 1937) is used to investigate whether there is a significant
difference between the performances of the outlier-selection algorithms. The Friedman
test first ranks the algorithms for each data set, where the best performing algorithm is

assigned the rank of 1, the second best the rank of 2, and so forth.

4 Please note that the weighted AUC presented in Subsection 2.6.4 aggregates AUC performances for

one-class data sets from a single multi-class data set.

Background and experimental set-up

MJF

Then it checks whether the measured average ranks 3iare significantly different from the
mean rank. For example, if there are four outlier-selection algorithms, the mean rank is
2:5.Iman and Davenport (1979) proposed the ' statistic, which is less conservative than

the Friedman statistic:)
/ 1+ @

/"N 1 @’
where / is the number of data sets, Nisthe number of algorithms, and @ is the Friedman
statistic:

12/ N'N 102"
g 121 _5g NNI7
N N le » K 4 °

The ' statistic is distributed according to the '-distribution with N 1 and
"N 1¢7/ 1e degrees of freedom. When there is a significant difference, we proceed

with the post-hoc Neményi test.
IFNITOZJUFTU

The post-hoc Neményi test (Neményi, 1963) checks for each pair of outlier-selection
algorithms whether there is a significant difference in performance. The performance of
two outlier-selection algorithms is significantly different when the difference between
their average ranks is greater than or equal to the critical difference:
Y
N°N 1Ie
CD _
T
0 pa—
where R is the Studentised range statistic divided by = 2. The next step is to report the

post-hoc analysis using a critical difference diagram.

$SJUJDBMEJOFSFODFEJBHSBN

Critical difference diagrams are a visual representation of the post-hoc analysis of
comparing multiple outlier-selection algorithms (Demsar, 2006). Figure 2.11 shows a
critical difference diagram for four algorithms (C4.5, C4.5+m, C4.5+cf, C4.5m+cf). This
example is taken from (Demsar, 2006)°. The arrows indicate the average ranks of the

algorithms. Groups of algorithms that are not significantly different at a significance level

5 The actual algorithms are not important, but the interested reader may want to know that the C4.5 is a

top-down decision tree induction algorithm, and the other three algorithms are variations on C4.5.

Method for comparing outlier-selection algorithms

of o.10 (i.e., Q= .10) are connected by a horizontal bar. The critical difference diagram
reveals that two pairs of algorithms have a significantly different performance: (1) C4.5

and C4.5+m and (2) C4.5 and C4.5m-+cf.

"JHV SF Acritical difference diagram visualises the result of a comparison of algorithms with the
Neményi test. Groups of algorithms that are not significantly different (at G=.10) are connected by a
horizontal bar (after (Demsar, 2006)).

A critical difference diagram offers three advantages over presenting the results in textual
or numerical form. First, it presents the order of the outlier-selection algorithms in terms
of average ranks. Second, it shows the magnitude of the differences between the average

ranks. Third, it indicates whether the differences are significant.

4FDUJPODPODMVTJPO

In the section we described the three steps for comparing multiple algorithms on multiple
data sets. The comparisons to be performed in the subsequent chapters involve all three
steps. However, because in the thesis the Friedman test (step 1) always results in a positive
outcome, we do not explicitly report it. Instead, we report the results of the Neményi test

(step 2) using a critical difference diagram (step 3).

OOF DMBTTDMBTTJODBUJPO TF

We start recalling that the data flow diagram in Figure 2.1 on page 17 contains a dashed
line from the domain expert to the data set. The dashed line indicates that the labels
™nomaly; normalityZ are not necessarily transferred. If the labels are transferred, then
the data set is labelled, otherwise it is unlabelled.

So far, our description of evaluating and comparing outlier-selection algorithms has
assumed that algorithms process unlabelled data sets, only. This means that the outlier-

selection algorithm does not know whether the domain expert considers a data point to

Background and experimental set-up

be a normality or an anomaly. We refer to this assumption as the unsupervised outlier-

selection setting.

In certain real-world situations the domain expert has labelled some real-world
observations. Then, we can employ a T F-Nupervised setting known as the one-class

classification setting (Tax, 2001), which is the subject of this section.

The remainder of this section is structured as follows. In Subsection 2.8.1 we describe the
similarities and differences between an unsupervised outlier-selection algorithm and a
semi-supervised outlier-selection algorithm, i.e., a one-class classifier. In Subsection 2.8.2
we explain how a one-class classifier is trained and tested. In Subsection 2.8.3 we describe

the cross validation, which is used to generalise the performance measure.

OOF DMBTTDMBTTJOFS

Algorithms that make use of the labels provided by the domain expert are known as one-
class classifiers. A one-class classifier is named as such since it makes use of one class only,

namely the normal class. So, in this setting it is assumed that anomalies are rare.®

A one-class classifier takes as input a labelled data set %and outputs classifications
"outlier; inliere . Therefore, Definition 2.1 and consequently Definition 2.2 on page 23

also apply to one-class classifiers.

5SBJOJOHBOEUFTUJOH

The main difference between a one-class classifier and an outlier-selection algorithm is
that a one-class classifier needs to be U S B béldrebt can classify data points. We let
the training data set contain only normalities, in order to mimic the low number of
anomalies that occur in most real-world applications. Figure 2.12 illustrates a trained
one-class classifier on the Banana data set. The red dashed line represents the selection
boundary of the one-class classifier. If a new, unseen data point, i.e., a test data point, lies
outside the selection boundary, it is classified as an outlier. Otherwise, the data point is
classified as an inlier. Analogously to an outlier-selection algorithm, the classifications

are compared to the labels of the domain expert, which results in the four outcomes

6 Ifthe data set contains sufficient data points from both the normal class and the anomalous class, then

the domain expert may be better supported by a supervised binary classifier, which is beyond the scope
of the thesis.

One-class classification setting

"JHV SF Training and testing a one-class classifier. - F G\ldne-class classifier is trained on the
normal class only. The dashed line represents the decision boundary. 3 J H AUrained one-class
classifier is tested on both classes, which results in four possible outcomes.

introduced in Section 2.5. The scatter plot on the right-hand-side in Figure 2.12 shows

the (dis)agreements after testing a trained one-class classifier (cf. Section 2.5).

Training a one-class classifier is also known as the one-class classifier building a model of
the normal class. Once trained, the model remains fixed. As a result, a one-class classifier

requires an evaluation procedure that differs from an outlier-selection algorithm.

A one-class classifier evaluates each testing data point by itself. In other words, the
classification of a testing data point does not depend on other testing points, but only on
the model. So, for a one-class classifier, the procedure to simulate anomalies (described
in Subsection 2.6.2) is not needed. Because an outlier-selection algorithm does not build
amodel, but re-processes the entire data set, it is usually slower than a one-class classifier.
As we will explain in the next subsection, for a proper evaluation of a one-class classifier,

it is important that it is tested on unseen data points.

$SPTTWBMJEBUJPO

To estimate the AUC performance of a one-class classifier, we employ a technique called
cross validation. In Lfold cross validation, e.g., L 10, the data set %is split randomly
We ensure that the cross-validation is stratified, which means each fold contains both

normalities and anomalies with the same proportions as the original data set. The one-

Background and experimental set-up

classifier is trained on % %aand tested on %, (We recall that a one-class classifier is
trained on the normalities only.) This results in LAUC performances, which are averaged
to one AUC performance. In our experiments, we employ ten-fold cross validation. To
minimise the bias introduced by the random selection of folds, we repeat the ten-fold
cross-validation ten times. Figure 2.13 shows a scatter plot of a training set and a test set,

respectively. The training set consists of nine folds and the test consists of one fold.

"JHV SF To evaluate an outlier-selection algorithm, the data set is split into a training data set
and a test data set.

$SIBQUFSTVNNBSZ

In this chapter we introduced the main concepts of the thesis and explained the
experimental set-up that is employed for answering RQ1, RQz2, and RQ3. We illustrated
the relationship between (1) the domain expert, (2) the outlier-selection algorithm, (3)

the real-world, (4) the data representation, and (5) the data set.

Outlier selection can be performed within two settings: (1) the unsupervised outlier-
selection setting and (2) the one-class classification setting, which is semi-supervised.
We started our explanation of the concepts by assuming the unsupervised setting. We
described two types of data representations that outlier-selection algorithms can process:
(1) feature-vector representation and (2) similarity-matrix representation. We outlined
the two responsibilities of the domain expert, which are: (1) to configure the parameters

of the outlier-selection algorithm and (2) to assess its classifications.

We described how to transform ordinary multi-class data sets into one-class data sets

so that they can be used for our comparative experiments. We explained how the

Chapter summary

54N0als$

performance of an outlier-selection algorithm is measured using the AUC performance
measure. We discussed the three steps to compare the performances of multiple outlier-
selection algorithms on multiple data sets, namely: (1) applying the Friedman statistical
test, (2) applying the post-hoc Neményi statistical test, and (3) visualising the significant
differences using a critical difference diagram. In the first seven sections we assumed the
unsupervised outlier-selection setting, and in Section 2.8 we changed our assumption to
the one-class classification setting. We described the technique of cross validation, which
is used to evaluate one-class classifiers. With all the concepts and the experimental set-up

explained, we are now ready to address RQ1.

Background and experimental set-up

$POUFOUT

In this chapter, we provideananswertoRQ1:)PX TIPVME XFFWBMVBUFBOEDPNQBS
PG PVUMJFS TF Mw®Wwl-Eh&@vBuvstpBrSsdd bLier-selection algorithms from
the field of KDD are transformed into one-class classifiers so that these can be compared with

three outlier-selection algorithms from the field of ML in a statistically valid way.

#BTFE PO

« JH.M. Janssens and E.O. Postma. One-class classification with LOF and LOCI: An empirical
comparison. In M.G.J. van Erp, J.H. Stehouwer, and M.M. van Zaanen, editors, 1LSPDFFEJOHT
PGUIF UI"OOVBM#FMHJBO %V UDI $RgesG& HDDG-TRO .BDIJOF

Netherlands, June 2009.
- JH.M. Janssens, |. Flesch, and E.O. Postma. Outlier detection with one-class classifiers from ML

and KDD. In M.A. Wani, M. Kantardzic, V. Palade, L. Kurgan, and Y. Qi, editors, 1LSPDFFEJOHT PG U
UI*OUFSOBUJPOBM $POGFSFODF P Qaggdl43-GE MRBI,.FIOJOH BOE
Dec. 2009.

OVUMJIOF
Outlier selectionin MLand KDD. ML outlier-selection algorithms. ~ KDD outlier-selection

algorithms. Experimental set-up. Results. Discussion. Chapter conclusions.

The problem of outlier selection is well studied in the fields of Machine Learning (ML)
and Knowledge Discovery in Databases (KDD). Both fields have produced their own
outlier-selection algorithms and corresponding evaluation procedures. In ML, Nearest
Neighbour (NN), Parzen Windows, and Support Vector Machines (SVM) are well-
known algorithms that have variants which can be used for one-class classification (these
are known as K-Nearest Neighbour Data Description (KNNDD), Parzen Window Data
Description (PWDD), and Support Vector Data Description (SVDD)). Within the field
of KDD, the heuristic local-density estimation algorithms LOF and LOCI are generally
considered to be superior outlier-selection algorithms. To the best of our knowledge, so
far, the performances of these ML and KDD algorithms have not been compared. As a
direct consequence we are able to formulate the null hypothesis: all algorithms have an

equal performance.

The first research question (RQ1) reads:)PX TIPVME XF FWBMVBUF BOE I
QFSGPSNBODF PG PVUMJHS ahdwht RIDsUqhBsonBwd HpI$ dheI N T
following two steps. First, we formalise LOF and LOCI into algorithms with a one-class
classification setting. Second, we evaluate the ML and KDD outlier-selection algorithms

on 24 real-world data sets, and compare their results. For the evaluation and comparison

we employ the techniques explained in Chapter 2.

Chapter 3 is organised as follows. Section 3.1 describes how outliers are selected in
the fields of ML and KDD. In Sections 3.2 and 3.3 we describe the ML and KDD
outlier-selection algorithms, respectively, and explain how they compute a measure of
outlierness. We provide the set-up of our experiments in Section 3.4 and their results
in Section 3.5. Section 3.6 discusses the results in terms of three observations: (1) Local
density estimates outperform global density estimates, (2) LOF outperforms LOCI, and
(3) Domain-based and density-based algorithms are competitive. Finally, Section 3.7
concludes by stating that the fields of ML and KDD have outlier-selection algorithms

that are competitive in performance and deserve treatment on equal footing.

OVUMIFSTFMFDUJPOJO .-BOE,¢

There is a growing interest in the automatic selection of abnormal or suspicious
patterns in large data volumes to detect terrorist activity, illegal financial transactions,
or potentially dangerous situations in industrial processes. The interest is reflected in

the development and evaluation of outlier-selection algorithms (Tax and Duin, 1999;

Evaluating and comparing outlier-selection algorithms

Breunig et al., 2000; Tax, 2001; Papadimitriou et al.,, 2003). In recent years, outlier-
selection algorithms have been proposed in two related fields: ML and KDD. Although
both fields have considerable overlap in their objectives and subject of study, there
appears to be some separation in the study of outlier-selection algorithms. In the ML
field, outlier selection is generally based on data description algorithms inspired by NN,
Parzen Windows, and SVM (Tax and Duin, 1999; Tax, 2001). These algorithms originate
from statistics and pattern recognition, and have a solid theoretical foundation (Parzen,
1962; Scholkopf and Smola, 2002). In the KDD field, the LOF algorithm (Breunig et al.,
2000) and the LOCI algorithm (Papadimitriou et al., 2003) are the two main algorithms
for outlier selection. Like most algorithms from KDD, LOF and LOCI are targeted to
process large volumes of data (Fayyad, Piatetsky-Shapiro, and Smyth, 1996a).

Interestingly, within both fields the evaluation of their outlier-selection algorithms occurs
quite isolated from the other field. In the KDD field, LOF and LOCI are rarely compared
to ML algorithms such as NN, PWDD, and SVDD (cf. Breunig et al., 2000; Papadimitriou
etal., 2003) and in the ML field, LOF and LOCI are seldom mentioned. As a case in point,
in the review of outlier-selection algorithms by Hodge and Austin (2004), LOF and LOCI

are not mentioned at all.

Hido, Tsuboi, Kashima, Sugiyama, and Kanamori (2008) recently compared LOF, SVDD,
and several other outlier-selection algorithms. However, their study is flawed because
their approach has three serious drawbacks. First, the performances are obtained using a
test set which contains the same normal data points as in the training set. Secondly, Hido
et al. state that cross-validation is not available to LOF and SVDD. Thirdly, no statistical
tests for significance of the obtained performances are carried out. In our opinion, a
separate test set, cross-validation, and a statistical test are crucial for a sound empirical

evaluation and comparison.

To the best of our knowledge, this is the first time that outlier-selection algorithms from
the fields of ML and KDD are evaluated and compared in a statistically valid way, using

a separate test set, cross-validation, and statistical tests.

For our purpose, we adopt the one-class classification setting (Tax, 2001). The setting
allows outlier-selection algorithms from different settings to be (1) evaluated using
the well-known performance measure AUC (Bradley, 1997), and (2) compared using
statistically sound comparison test such as the Friedman test (Friedman, 1937) and the

post-hoc Neményi test (Neményi, 1963).

Outlier selection in ML and KDD

The outlier-selection algorithms of which the performances are compared are: KNNDD,
PWDD, and SVDD from the field of ML and LOF and LOCI from the field of KDD.
de Ridder, Tax, and Duin (1998) and Tax (2001) already presented the ML algorithms as
one-class classifiers. Therefore, we need only reformulate LOF and LOCI in terms of the

one-class classification setting.

.-PVUMJFS TFMFDUJPOBMHPSJ

In this section we briefly discuss the outlier-selection algorithms from the field of
Machine Learning (ML). The three algorithms K-Nearest Neighbour Data Description
(KNNDD), Parzen Window Data Description (PWDD), and Support Vector Data De-

scription (SVDD) are explained in Subsections 3.2.1, 3.2.2, and 3.2.3, respectively.

, IFBSFTU/FIJHICPVS %BUB %FTDSJQUJF

The first ML algorithm is the K-Nearest Neighbour Data Description (KNNDD) by
de Ridder, Tax, and Duin (1998). The outlier score computed by KNNDD is the ratio
between two distances. The first distance is the distance between the test data point X and
its I nearest neighbour in the training set NN"x j ls. The second distance is the distance

between the I nearest training data pointand its [nearest neighbour. Formally:

B66 3 NN"X j 2 _
ENN"Xj le : NNGINXj le: 7o

UKNNDDAXj L %rain®

The KNNDD algorithm is similar to LOF and LOCI in the sense that it locally samples the
density. The main difference with LOF and LOCI is that KNNDD is less complex.

1BS[FOB8JOEPX %BUB %FTDSJQUJPO

The second ML algorithm is the Parzen Window Data Description (PWDD), which
is based on Parzen Windows as proposed by Parzen (1962). PWDD estimates the

probability density function of the normal class X 3

X3 Xk
<.
I 1

. 1!
Upwpp XJ I} %rain® —Q ¢

Evaluating and comparing outlier-selection algorithms

where / is Srain S |is a smoothing parameter, and , typically is a Gaussian kernel:

—_

Y.

D=

¥ o —F
b

[\

The parameter | is optimised using a leave-one out maximum likelihood estimation
(de Ridder et al., 1998). Since the outlier score Uy, is @ probability and not a distance,
the threshold function (cf. Equation 2.2) for PWDD becomes:

¢ .
“inlier if Upyypp X3 I} %rain® C B

GgoooXd &) , .
:I;outher if Upypp X3 1) %rain® @B

such that a data point with a too low probability is classified as an outlier. PWDD, unlike
LOF, LOCI, and KNNDD, estimates the density globally rather than locally.

4AVQQPSU7FDUPS %BUB %FTDSJQUJPO

The third ML algorithm is the Support Vector Data Description (SVDD) from Tax
and Duin (1999). We confine ourselves to a brief description of this kernel-based data-
description algorithm. The interested reader is referred to Tax and Duin (1999) and Tax

(2001) for a full description of the SVDD algorithm.

SVDD is a domain-based outlier-selection algorithm inspired by Support Vector
Machines (SVM) (Vapnik, 1995). It is domain based because, unlike LOF, LOCI, and
PWDD, SVDD does not estimate the data density directly. Instead, it finds an optimal
boundary around the normal class by fitting a non-linearly transformed hypersphere
with minimal volume using the kernel trick, such that it encloses most of the normal data
points. The optimal boundary is found using quadratic programming, where only distant
normal data points are allowed to be outside the boundary (Vapnik, 1995; Scholkopf and
Smola, 2002). The outlier score Ugyp, is defined as the distance between data point X ;
and the normal boundary. In our experiments we employ a Gaussian kernel of which the

parameter Tis found as described in Tax and Duin (1999).

%% PVUMJFS TFMFDUJPO BMHP

In this section we describe two popular outlier-selection algorithms from the field
of Knowledge Discovery in Databases (KDD), namely Local Outlier Factor (LOF) by

KDD outlier-selection algorithms

Breunig, Kriegel, Ng, and Sander (2000) and Local Correlation Integral (LOCI) by
Papadimitriou, Kitagawa, Gibbons, and Faloutsos (2003). Both algorithms are based
on M P @eBsMes, meaning that they consider a data point to be an outlier when its
surrounding space contains S F M BfelddM&pMiits (i.e., when the data density in that

part of the data space is relatively low).

We frame the KDD outlier-selection algorithms LOF and LOCI into the one-class
classification setting (Janssens and Postma, 2009) by letting them compute an outlier
score uby: (1) constructing a neighbourhood around X j (2) estimating the density of
the neighbourhood, and (3) comparing this density to the neighbourhood densities
of the neighbouring data points. The main difference between LOF and LOCI is that
the latter considers densities at multiple scales (i.e., multiple levels of granularity).
Subsections 3.3.1 and 3.3.2 explain how the three steps are implemented in LOF and

LOCI, respectively.

-PDBMOVUMJFS'BDUPS

The first KDD algorithm is the heuristic algorithm LOF (Breunig et al., 2000). The
user needs to specify one parameter, L. which represents the number of neighbours
constituting the neighbourhood used for assessing the local density. Below, we explain

how LOF implements the three steps.

4UFQ $POTUSVDUJOHUIFOFJHICPVSIPPE

In order to construct the neighbourhood of a data point X3 LOF defines the
neighbourhood border distance Eqqer Of X jas the distance Efrom X jto its Ith nearest
neighbour NN"X j le:

EorderAXj [B'6".31\11\1’\Xj leZ:

Consequently, a neighbourhood /X j le is constructed, containing all data points X g
of which the distance to X jis not greater than the neighbourhood border distance

Border:
/ij o ~XK> O/Qrainf~XJSE{X’jXIZB EorderAXj lee :

It should be noted that X jis not included in the neighbourhood. Figure 3.1 illustrates the
concept of the neighbourhood border distance for L 3.

Evaluating and comparing outlier-selection algorithms

"J H V S Flllustration of the first step of LOF for L= 3 on a two-dimensional synthetic data set.
- F GHd border distance Eoqer is equal to the distance between data point Yand its 3 nearest
neighbour. 3 J HTHd neighbourhood containing three data points.

4UFQ &TUJIJNBUJOHUIFOFJHICPVSIPPEEFOTJUW#Z

To estimate the density of the constructed neighbourhood, the reachability distance is
introduced. This distance ensures that a minimal distance between the two data points X ;
and X s maintained, by ‘keeping’ data point X joutside the neighbourhood of data point
X k The use of the reachability distance causes a smoothing effect of which the strength

depends on the parameter L The reachability distance B, is formally given by:
Eeach%(’j XK IZ max$ Eorder%"ll(IZ E266 KX ZY

It should be noted that the reachability distance E,, is an asymmetric measure. The
neighbourhood density j of data point X jdepends on the number of data points in the
neighbourhood, T/ "x j le Tand on their reachability distances. It is defined as:

R T x5 leT

" Xjle s

P R jXk 2
Xl %612

Data points X in the neighbourhood that are further away from data point x j have a

smaller contribution to the neighbourhood density j X j le.

4UFQ $PNQBSJOHUIFOFJHICPVSIPPEEFOTJUJF"

In the third step, the neighbourhood density j of data point X jis compared with those
of its surrounding neighbourhoods. The comparison results in an outlier factor gand

requires the neighbourhood densities j %6 LZ of the data points X gthat are inside the

KDD outlier-selection algorithms

neighbourhood of X 3 The outlier factor qis defined formally as:

A data point which lies deep inside a cluster receives an outlier factor of around 1 because
it has a neighbourhood density equal to its neighbours. Conversely, a data point which
lies outside a cluster has a relatively low neighbourhood density and therefore receives a

higher outlier factor.

-0'BTPOF DMBTTDMBTTJOFS

To fit LOF into the one-class classification setting it needs to compute an outlier score u
We can interpret the local outlier factor qfrom Equation 3.9 as an outlier score because
a data point with a higher local outlier factor qis considered to be a stronger outlier.
Therefore, we reformulate LOF as a one-class classifier with an outlier score measure
U o that is equivalent to the local outlier factor g The outlier score U "X L %rain®

for a data point X jwith respect to a set of training data points %yin is defined as:

Uop X3 b %rain® Xy le:

-PDBM$PSSFMBUJPO *OUFHSBM

The Local Correlation Integral (LOCI) was proposed by Papadimitriou, Kitagawa,
Gibbons, and Faloutsos (2003) as an improvement over LOF. More specifically, the
authors state that the choice of the neighbourhood size, L.in LOF is non-trivial and may
lead to erroneous outlier selections. LOCI is claimed to be an improvement over LOF
because it considers the local density at multiple scales or levels of granularity. Below
we explain how LOCI implements the three steps (neighbourhood construction, density
estimation, and density comparison) and we describe how we reformulate LOCI as a

one-class classifier.

Evaluating and comparing outlier-selection algorithms

4UFQ $POTUSVDUJOHUIFOFJHICPVSIPPE

LOCI differs from LOF because LOCI considers local densities at multiple scales. LOCI
achieves this by iteratively performing the three steps, each time using a neighbourhood
of increasing radius S> 3 . Papadimitriou et al. describe how to determine the relevant
radii Such that not every possible radius (or scale) has to be considered. We denote the

set of relevant radii as 3.

A second difference with LOF is that LOCI defines two neighbourhoods for a data point
X 3 (1) the extended neighbourhood, / <, and (2) the local neighbourhood, / |oc. The
extended neighbourhood of a data point X jcontains all data points X gthat are within
radius Srom X 3

lex'X3 S ™1 %ain THIOKX LB S8 X

and the (smaller) local neighbourhood contains all data points that are within radius [S

from data point X 3
Ioc’ X3 S[* ™ %oain TE6KXZB [F8 x5

where [defines the ratio between the two neighbourhoods ([> "0;1). Please note
that X jis included in the two neighbourhoods, contrarily to LOF. Figure 3.2 illustrates
an extended neighbourhood containing six data points and the associated six local

neighbourhoods, for one certain radius (S 25:0, [0:5).

"JHV S F lllustration of the first step of LOCI applied to the same two-
dimensional synthetic data set as shown in Figure 3.1 for S 25.0, : = 0.5.
- F G4 extended neighbourhood contains six data points. 3 J HTHé six
local neighbourhoods with : & 12.5 for the data points within the extended
neighbourhood.

KDD outlier-selection algorithms

Papadimitriou et al. recommend to define [@1 in order (1) to improve the density
estimation of the extended neighbourhood and (2) to avoid singularities in the data point
distribution. In case [1, a singularity may occur, for example, when all data points in

the neighbourhood of X j except for X jitself, lie on the neighbourhood border.

4UFQ &TUJNBUJOHUIFOFJHICPVSIPPEEFOTJUZ

In LOCI, the density of the local neighbourhood of a data point X js denoted by "X j [8,
and is equal to the number of data points in the local neighbourhood, i.e., T 1o X j S[*T
The extended neighbourhood of a data point X jhas a density J" X j S [, which is defined
as the average density of the local neighbourhoods of all data points in the extended
neighbourhood of data point X 3 In formal terms:

P j%k[Z

XR/ ext%63 &
T ext x§ ST

Txj3S[e

4UFQ $PNQBSJOHUIFOFJHICPVSIPPEEFOTJUJF®

The local neighbourhood density of data point X jis compared to the extended neigh-
bourhood density by means of the Multi-Granularity Deviation Factor (MDEF):

MDEF "xj S[* 1 JAX—J[S
x5Sl

MDEF quantifies the ‘lagging behind’ of the local neighbourhood density. A data point
which lies deep inside a cluster has a local neighbourhood density equal to its neighbours
and therefore receives an MDEF value around 0. The MDEEF value approaches 1 as a data

point lies more outside a cluster.

To determine whether a data point is an outlier, LOCI introduces the normalised MDEEF,
which is defined as: R

kx5 Sl

Txi Sl

where k"X j S[e is the standard deviation of all j%6 [Rin / e Xj S. The normalised

kvper X j S|e

MDEF becomes smaller when the local neighbourhoods have the same density. This
causes a cluster of uniformly distributed data points to have a tighter decision boundary

than, for example, a Gaussian distributed cluster.

Evaluating and comparing outlier-selection algorithms

LOCI considers a data point X jto be an outlier when, for any radius S> 3,
MDEF % S[* A Lc kuper X3 S[*;

where Lx 3 in Papadimitriou et al. (2003).

-0$*BTPOF DMBTTDMBTTJOFS

To use LOCI within the one-class classification setting, we reformulate LOCI as a one-
class classifier by defining an outlier score. We define the outlier score U as the
maximum ratio of MDEF to kpgr of all radii S> 3:

MDEF X j S[°. .

ULQCIAXj [} %rain® max ~_ . (-
$3 kuper Xj S[*

&EYQFSINFOUBMTFU VQ

After the successful transformation of LOF and LOCI from the unsupervised outlier-
selection setting into the one-class classification setting, we will now provide our
experimental set-up. We aim to establish how the five outlier-selection algorithms from
different settings can compared to each other. Reaching our aim means formulating an

answer to RQ1.

This section describes the set-up of our experiments where we evaluate and compare
the performances of KNNDD, PWDD, SVDD, LOF, and LOCI. For clarity, we have
summarized the main features of the five outlier-selection algorithms in Table 3.1. For
our experiments we employ the techniques described in Chapter 2. The techniques
include: (1) transforming a multi-class data set into several one-class data sets, (2) cross
validation, (3) the AUC performance measure, and (4) the Friedman and Neményi

statistical tests.

In Subsection 3.4.1 we describe the data sets. The details of the cross-validation differ
slightly from the ones presented in Chapter 2. Therefore, we describe the evaluation, i.e.,

the cross-validation procedure of the current experiment in Subsection 3.4.2.

Experimental set-up

5B C M FThe main features of the ML and KDD outlier-selection
algorithms used in our experiments.

%BUBTFUT

In order to evaluate the algorithms on a wide variety of data sets (i.e., varying in size,
dimensionality, class volume overlap), we use 24 real-world multi-class data sets from

the UCI Machine Learning Repository® (Asuncion and Frank, 2010) as redefined as one-

class classification data sets by David Tax (? 11T, ffB+iX2rBXim/2H7iXM:Hf(/ pB
"SSIZUIMNBEMBODFIJPDNEMEBBWODF SYXRMHO (oM LWN@BCFUFT
&DPMWUBTT #VIMEB®EBUYRMTIOND P SROP T,QIFBFWBEOBS
4QFBAVSW JWB, DN K BB W F G Brid N8J O Because these data sets contain

multiple classes that are not necessarily defined as either normal or anomalous, they

are relabelled into multiple one-class data sets using the procedure that is described in

Subsection 2.6.1.

&WBMVBUJPO

We apply the following procedure for the evaluation of an algorithm on a one-class data
set. An independent test set containing 20% randomly selected data point of the entire
data set is reserved. With the remaining 80% a 5-fold cross-validation procedure (see
Subsection 2.8.3) is applied to optimise the parameters (i.e., L 1;2;:::;50 for LOF and
KNNDD; [0:1;0:2;:::;1:0 for LOCIL; | for PWDD; and Tor SVDD). Each algorithm
is trained with the optimal parameter value obtained by the cross-validation. Its AUC
performance (see Subsection 2.6.3) is evaluated using the independent test set that was
reserved at the beginning of this procedure. The entire procedure is repeated 5 times.

We report on the performances of the algorithms applied on an entire multi-class data

Except the Delft Pump data set which is taken from Ypma (2001).
2 The author has been informed that 8 B W F GsPiBtitt, generated by an algorithm and regrets that the
analysis cannot be redone in time to account for this.

Evaluating and comparing outlier-selection algorithms

set, i.e., the weighted AUC (see Subsection 2.6.4). Then we perform the Friedman and

post-hoc Neményi test (see Subsection 2.7).

SFTVMUT

Table 3.2 presents the weighted AUC performances of each algorithm on the 24 real-
world data sets. The best performance for each data set is in bold. The average ranks of
the algorithms are shown at the bottom of the table. On these 24 real-world data sets,
SVDD and LOF perform best, both with an average rank of 2:083. With an average rank

5B C M FThe weighted AUC performance in percentages obtained by the

Machine Learning and Knowledge Discovery outlier-selection algorithms
on 24 real-world data sets. The best performance per data set is in bold. The
corresponding average rank for each algorithm is reported in the bottom
row.

Results

L
o)
o
m
&%

0f 2:625, KNNDD performs surprisingly well. LOCI and PWDD perform the worst, with
average ranks of 3:917 and 4:292, respectively. Interestingly, SVDD seems to perform well
on those data sets where LOF performs worse and vice versa. Apparently, both algorithms

are complementary with respect to the nature of the data set at hand.

To see whether there is a significant difference between these average ranks, we calculate
the Friedman statistic, @ 48:53, which results in an '- statisticof '+ 23:52. With five
algorithms and 24 data sets, '+ is distributed according to the ' distribution with5 1 4
and”5 1 "24 1+ 92 degrees of freedom. The critical value of ' "4;92¢ for [:05

is 2:471, so we must reject the null-hypothesis, which states that all algorithms have an

equal performance (see the beginning of the chapter).

Subsequently, we continue with the Neményi test, for which the critical distance CD, for
[:05,is 1:245. We identify two groups of algorithms. The performances of LOCI and
PWDD are significantly worse than that of KNNDD, LOF, and SVDD.

Figure 3.3 graphically displays the result of the Neményi test in a critical difference
diagram. Groups of algorithms that are not significantly different (at Q :05) are
connected. The diagram reveals that, in terms of performances, the algorithms examined
fall into two groups. The group of best-performing algorithms consists of SVDD, LOF,
and KNNDD. The other cluster contains PWDD and LOCI.

"J HV S FComparison of all algorithms against each other with the
Neményi test. Groups of algorithms that are not significantly different
(at =.05) are connected.

%JTDVTTJIPO

We have evaluated five outlier-selection algorithms; three from the field of ML and two
from the field of KDD on a variety of real-world data sets. The performances of the

algorithms have been statistically compared using the Friedman and Neményi tests. From

Evaluating and comparing outlier-selection algorithms

the obtained experimental results we report three main observations. We describe each

observation separately and provide possible reasons for each of them below.

OCTFSWBUJPO -PDBMEFOTJUZFTUJNE
FTUJNB

The first observation is that PWDD performs significantly worse than LOF. It may be

explained by the fact that PWDD performs a global density estimate. Such an estimation

becomes an obstacle when there exist large differences in the density, because data points

in sparse clusters will be erroneously classified as outliers.

LOF and LOCI overcome this problem by performing an additional step. Instead of
using the density estimate as an outlier score, they locally compare the density with the
neighbourhood. This produces an estimate which is both relative and local, and enables
LOF and LOCI to cope with different densities across different subspaces. For LOF, the
local density estimate results in a better performance. For LOCI, however, this is not the

case. Possible reasons are discussed in the second observation below.

OCTFSWBUJPO -0'PVUQFSGPSNT-0%*

The second observation is that LOCI is outperformed by LOF. This is unexpected because
LOCI (1) considers local densities just like LOF and (2) performs a multi-scale analysis
of the data set, which is often stated as an important improvement over LOF. We provide

two possible reasons for the relative weak performance of LOCI.

The first possible reason is that LOF considers three consecutive neighbourhoods to
compute the outlier score. LOCI, instead, considers two neighbourhoods, only. The
three-fold density analysis of LOF is more profound than the two-fold analysis of LOCI
and therefore LOF yields a better estimation of the data density.

The second possible reason for the observed results is that LOCI constructs a
neighbourhood with a given radius, and not with a given number of data points. For
small radii, the extended neighbourhood may contain one data point only, implying that
there may be no deviation in the density and that outliers might be missed at a small
scale. In contrast, LOF does not suffer from the limited number of data points because it

constructs a neighbourhood with a given number of data points.

Discussion

PO %PNBJO CBTFEBOEEF(
W F

ulJ
UulJ
The third observation we make is that domain-based (SVDD) and density-based (LOF)
algorithms are competitive in performance. To obtain adequate estimates, density-based
algorithms require data sets to contain many data points, especially when they have a
high dimensionality. This implies that in case of sparsely sampled data sets, density-based
algorithms may fail to detect outliers (cf. Aggarwal and Yu, 2001). SVDD describes only
the domain in the data point space (i.e., it defines a closed boundary around the normal
class), and does not estimate the complete data density. It is therefore less sensitive to an

inaccurate sampling and better able to deal with small sample sizes (Tax, 2001).

$IBQUFSDPODMVTJPOT

In this chapter, we focussedon RQ1:)P X TIPVME XFFWBMVBUF BOE DPNQB
PG PVUMJFS TFM PibadyQhB KL RIatithhtd LOF and LOCI had not
been compared with each other—and not with any other outlier-selection algorithm—in
a statistically valid way. In the chapter, we have been able to evaluate and compare
LOF and LOCI with three outlier-selection ML algorithms KNNDD, PWDD, and
SVDD in a statistically valid way, by framing LOF and LOCI into the one-class
classifier setting. By doing so, each outlier-selection algorithm is treated under the same

circumstances.

From the experimental results we may conclude that the techniques presented in
Chapter 2 allow for a statistical evaluation and comparison of outlier-selection
techniques. When the outlier-selection algorithms come from different settings, i.e.,
the unsupervised outlier-selection setting (e.g., the field of KDD) and the one-class
classification setting (e.g., the field of ML), they should be framed in a common setting.
We achieved this by transforming LOF and LOCI into the one-class classification

setting.

In addition to our main conclusion concerning RQ1, it is worth mentioning that we
have determined that, for the data sets presented in Subsection3.4.1, the algorithms with
the best average performance are KNNDD, LOF, and SVDD. Our findings indicate that
both fields have produced outlier-selection algorithms that are competitive and deserve
treatment on equal footing. Such a finding may not have been possible without framing

LOF and LOCI into the one-class classification setting.

Evaluating and comparing outlier-selection algorithms

Framing KDD algorithms into the one-class classification setting thus facilitates the
comparison of algorithms across fields and may lead to novel algorithms that combine
ideas of both fields. For instance, our results suggest that it may be worthwhile to develop
outlier-selection algorithms that combine elements of domain-based and local density-

based algorithms.

We identify two directions for future research. The first direction is to combine the best
of both fields. For example, to develop an outlier-selection algorithm that (1) employs
local densities (cf. LOF from the field of KDD) and (2) has a theoretical, and possibly
probabilistic, foundation (cf. SVDD from the field of ML). As a direct result of these
ideas, we introduce in Chapter 4 Stochastic Outlier Selection (SOS).

The second direction is to investigate the complementarity of LOF and SVDD with
respect to the nature of the data set. The relative strengths of both algorithms appear
to depend on the characteristics of the data set. Therefore, in Chapter 5 we investigate
which data set characteristics determine the relative performance of an outlier-selection

algorithm and a one-class classifier.

Chapter conclusions

$POUFOUT

In this chapter we attempt to answer RQ2: $BO BO FOFDUJWF PVUMJFS TFMFDUJF
UIBUFNQMPZT UIF DB iDehdvié dFgrBaddevalliate a novel, unsupervised

algorithm for classifying data points as outliers, called Stochastic Outlier Selection (SOS). SOS

uses affinity to compute for each data point an outlier probability. A data point is considered

to be an outlier when the other data points have insufficient affinity with it. We evaluate SOS

on real-world and synthetic data sets. The results obtained on these data sets show that SOS (1)

has a significantly higher performance and (2) is more robust to data perturbations and varying

densities than four related algorithms. From these results we may conclude that SOS is an effective

algorithm for classifying data points as outliers.

#BTFE PO
« JH.M. Janssens, E.O. Postma, and H.J. van den Herik. Unsupervised outlier selection with
pairwise affinities. In 4// 4ZNQPTJVN *O U F Nijiwkden, Fid NethBrard3,Qidv.T

2010b.
« J.H.M. Janssens, F. Huszar, E.O. Postma, and H.J. van den Herik. Stochastic Outlier Selection.

Technical Report TICC TR 2012-001, Tilburg University, Tilburg, The Netherlands, 2012.

OVUMJIOF
An affinity-based approach to outlier selection. The Stochastic Outlier Selection algorithm.
Qualitative evaluation of SOS and four related algorithms. Experiments and results.

Discussion of the results. Chapter conclusions.

In this chapter we propose a novel, unsupervised algorithm for classifying data points
as outliers. The algorithm is called Stochastic Outlier Selection (SOS). It applies the
concept of aflinity to the problem of outlier selection. We explain and motivate the use of
affinity in Section 4.1. How the SOS algorithm selects outliers is described in Section 4.2.
Section 4.3 presents four related unsupervised outlier-selection algorithms: K-Nearest
Neighbour Data Description (KNNDD), Local Outlier Factor (LOF), Local Correlation
Integral (LOCI), and Least Squares Outlier Detection (LSOD). Using outlier-score plots,
we illustrate and discuss the qualitative performances of SOS and the four algorithms. In
Section 4.4, we evaluate all five algorithms on eighteen real-world data sets, and by the
Neményi statistical test (cf. Subsection 2.7.2) we show that SOS performs significantly
better. Moreover, seven synthetic data sets are used to gain insight into the behaviour of
the algorithms. From our experiments we may conclude that SOS is more robust against
data perturbations and varying densities than the other four algorithms. The results are

discussed in Section 4.5. Finally, we give our conclusions in Section 4.6.

"OBOOJUZ CBTFEBQQSPBDIUP I

We recall from Chapter 1 that the objective is to classify automatically those data points
as outliers that are labelled as anomalous by the expert. Each algorithm approaches this
objective in a different way. The SOS algorithm, which is the topic of the current chapter,

selects outliers using an affinity-based approach.

The general idea of SOS is as follows. SOS employs the concept of affinity to quantify
the relationship from one data point to another data point. Affinity is proportional to the
similarity between two data points. So, a data point has little affinity with a dissimilar data
point. A data point is selected as an outlier when all the other data points have insufficient
affinity with it. The concept of affinity and the SOS algorithm are explained more precisely
in the next section. First, in Subsection 4.1.1, we mention two problems to which affinity
has been successfully applied. As a result of employing affinity, SOS computes outlier
probabilities instead of outlier scores. The advantages of computing probabilities with

respect to scores are discussed in Subsection 4.1.2.

5XPTVDDFTTGVMBQQMJDBUJPOTPGBO

So far, affinity has been applied successfully to at least two other problems: (1) clustering

and (2) dimensionality reduction. They will be discussed briefly below. To the best of our

Stochastic Outlier Selection

knowledge, SOS is the first algorithm that applies the concept of affinity to the problem

of outlier selection.

First, affinity has been successfully applied to the problem of clustering. The goal of
clustering is to select a (given) number of data points that serve as the representatives
of the clusters (i.e., cluster exemplars) in a data set. The clustering algorithm ‘Affinity
Propagation’ by Frey and Dueck (2007) updates iteratively the affinity that a data point
has to a potential cluster exemplar by passing messages. In other words, the clustering

algorithm employs affinity to quantify the relationships among data points.

Second, affinity has been successfully applied to the problem of dimension reduction.
The goal of dimension reduction is to map a high-dimensional data set onto a low-
dimensional space (Roweis and Saul, 2000; Tenenbaum, de Silva, and Langford, 2000).
The challenge is to preserve the structure of the data set as much as possible. Several
algorithms address this challenge successfully by concentrating on preserving the local
relationships using affinity (Hinton and Roweis, 2003; van der Maaten and Hinton,
2008; van der Maaten, 2009b). Again, as with clustering, affinity is used to quantify the

relationships among data points.

Because of these two successful applications of affinity, we expect that affinity is also
beneficial to outlier selection and in particular to the SOS algorithm. Here we note that
affinity is calculated differently in the two applications. Our definition of affinity (which
is presented in Subsection 4.2.2) is based on the definition found in the works concerning

dimension reduction because that allows us to compute outlier probabilities.

OVUMJIFSQSPCBCIJMJUJFTIJOTUFBEPGT

Current outlier-selection algorithms typically compute unbounded outlier scores (see
Gao and Tan, 2006). The scores computed by such algorithms differ widely in their scale,
range, and meaning. Moreover, the scores may also differ from data set to data set for the

same algorithm (Kriegel, Kroger, Schubert, and Zimek, 2009).

SOS computes outlier Q S P C B,G.d. Mhkpibbability that a data point is an outlier.
Because an outlier probability is a number between 0 and 1, both the minimum and
the maximum value of outlier probabilities are consistent from data set to data set.
We state three reasons why outlier probabilities are favourable to outlier scores. The
first reason is that outlier probabilities are easier to interpret by an expert than outlier

scores (Kriegel et al., 2009). The second reason is that outlier probabilities allow to select

An affinity-based approach to outlier selection

an appropriate threshold for outlier selection (i.e., classification) using a Bayesian risk
model (Gao and Tan, 2006). A Bayesian risk model takes into account the relative cost
of misclassifications. Employing a Bayesian risk model is not possible with unbounded
outlier scores. The third reason is that outlier probabilities provide a more robust
approach for developing an ensemble outlier selection framework out of individual
outlier-selection algorithms than unbounded outlier scores (Kriegel, Kroger, Schubert,

and Zimek, 2011).

Whereas Gao and Tan (2006) and Kriegel et al. (2011) suggest converting the unbounded
outlier scores from existing algorithms into calibrated probabilities, SOS computes the

outlier probabilities directly from the data.

SIFAUPDIBTUJD OVUMJFS 4F

In this section we describe how SOS selects outliers. Stated more formally, cf.
Definition 2.2 on page 23, we describe how the outlier-selection algorithm ¢ maps

data points to the classifications ‘outlier’ and ‘inlier’

The data that is used by SOS, i.e., the input data, the intermediate data, and the
output data, can be represented as five matrices. Figure 4.1 shows the five matrices and
summarises SOS as a series of matrix transformations. The numbers above the arrow
denote the subsections that discuss the matrix transformations. Next to each matrix we
find a colour bar that maps a range of values to a range of colours. In the case of matrix X,
for example, 0 is mapped to white and 8 is mapped to dark blue. As such, Figure 4.1 may

serve as an overview reference throughout our description of SOS.

Subsections 4.2.1—4.2.6 are concerned with the outlier scoring part Uq that maps data
points to outlier probabilities. We briefly mention the purpose of each subsection. In
Subsection 4.2.1, we discuss the input data and the dissimilarity between data points
(i.e., input matrix X and dissimilarity matrix D). In Subsection 4.2.2, we explain how
dissimilarities are transformed into affinities (i.e., affinity matrix A). In Subsection 4.2.3
we continue our description by using graph theory, and generate stochastic neighbour
graphs that are based on binding probabilities (i.e., binding matrix B). We present three
ways of computing the outlier probabilities (i.e., output matrix ®). In Subsection 4.2.4 we
show that by sampling stochastic neighbour graphs, we can estimate outlier probabilities.

Through marginalisation we can compute exactly the outlier probabilities as is described

Stochastic Outlier Selection

MFD

"JHV S FFrom input to output in five matrices: (1) the input matrix 9containing the feature values

of the data points, (2) the dissimilarity matrix %(3) the affinity matrix ", (4) the binding probability
matrix # and (5) the output matrix - containing the outlier probabilities. The transformations from
one matrix to the next matrix are explained in the subsections stated above the arrows.

in Subsection 4.2.5. With the help of probability theory, we observe in Subsection 4.2.6

that the outlier probabilities can also be computed in closed form.

In Subsection 4.2.7, the outlier scoring part Ugg is transformed into the outlier-
selection algorithm @, so that SOS can classify data points as outliers. Finally, in
Subsection 4.2.8, we explain in detail the concept of perplexity that allows SOS to create

soft neighbourhoods.

*OQVUUPUIFBMHPSJUIN

SOS is an unsupervised outlier-selection algorithm. Therefore, SOS requires as input an
unlabelled data set % only. We recall from Chapter 1 that an unlabelled data set means
that the labels ‘anomaly’ and ‘normality’ are unavailable. Therefore, SOS does not know
whether a domain expert considers the real-world observations (that correspond to the
data points) to be anomalous or normal. Nevertheless, SOS is able to classify the data

points in the data set either as ‘outlier’ or ‘inlier.

The number of data points in the unlabelled data set %is denoted by OIn our description
of SOS, each data point is represented by an N-dimensional, real-valued, feature vector
X Y;iio Y > 3N As such, a data point can be regarded as a point in an N
dimensional Euclidean space. The data set %is represented by a matrix X of size O N
i.e,, number of data points number of features. The vector X jdenotes the P row of the
matrix X. In our description of SOS we do not distinguish between the data set %and

the corresponding matrix X, and often refer to the data set by X for readability.

The Stochastic Outlier Selection algorithm

Figure 4.2 shows the example data set that we use throughout our description of SOS.
The data set contains six data points (0), and each data point has two features. The
corresponding two-dimensional points are plotted on the left side of Figure 4.2. On
the right side of the figure, the same data set is represented by matrix X. We recall
that the colour of the cells in the matrix X correspond to the feature values of the data

points.

The features of the data points are used to measure the EJT T J NUelvBeS pdik of
data points. (Dissimilarity forms the basis for affinity, see the next subsection.) The
dissimilarity between data point X jand data point Xis a non-negative scalar that is
computed by a dissimilarity measure EIn our description and in our experiments we
employ the Euclidean distance as the dissimilarity measure between pairs of data points.
Let

>0

N 2
BkA Q S¥u Yt ;

L1
where Yjdenotes the L' feature value of 3 data point, i.e., cell J Lof matrix X. From
Equation 4.1 it follows (1) that our employed dissimilarity measure is symmetric, i.e.,
Ek Bcand (2) that the dissimilarity between a data point and itself is zero, i.e.,
B, 0. The data points on the left side of Figure 4.2 are connected by green lines
with varying brightnesses. Both the length and the brightnesses of these green lines
illustrate the dissimilarity between data point X, and the other five data points. The
right side of Figure 4.2 shows the dissimilarity matrix D that is obtained by applying
Equation 4.1 to each pair of data points in the matrix X. (The bold, upright letter ‘D’
should not be confused with the calligraphic letter ‘% that denotes a data set.) The

"JHV S FThe example data set used for our SOS description. Each data point has two features and
is a point in two-dimensional Euclidean space. The dissimilarity K¢ (and ;) is the Euclidean distance
between data points Y and ¥ (see Equation 4.1).

Stochastic Outlier Selection

brightnesses of the green lines are equal to the brightnesses of the cells in the second row
of D. In fact, because the Euclidean distance Eis symmetric, the resulting dissimilarity
matrix D is symmetric, meaning that the rows are equal to the columns. Therefore, the
brightnesses of the green lines are also equal to the brightnesses of the cells of the second

column.

In the next subsection, dissimilarities are used to compute B O J Wbdtivéen data
points. In other words, the dissimilarity matrix D is transformed into the affinity

matrix A.

SSBOTGPSNJOHEJTTIJNIJMBSJUZJOUPB

As mentioned in Section 4.1, we employ affinity in order to quantify the relationship from
one data point to another data point. Our definition of affinity is based on the definitions
used for the problem of dimension reduction (Hinton and Roweis, 2003; Goldberger,

Roweis, Hinton, and Salakhutdinov, 2005; van der Maaten and Hinton, 2008).

Deeénition [.L (Affinity). -FUEFOPUF UIF EJTTINJIMESET 2 R EBBW BBLFE) (
X3 FOUIFB OJUZ UIEW BEBXB W MBS OHRPIWBO CZ

&

“expS Br2ke if X K
BJKjI:

0 it J K

o]

XIFSF KOPXOBTUIFWBSJBODF JTBTDBMBSBTTPDJBUFE X

We note that (1) the affinity that data point X shas with data point X \decays Gaussian-like
with respect to the dissimilarity Ejand (2) a data point has no affinity with itself, i.e.,
B 5 0 (the justification is discussed below).

In words, Equation 4.2 states that the affinity that data point X jhas with data point X ks
proportional to the probability density at X xinder a Gaussian distribution that has mean
X jand variance K A graphical comparison of three variance values for Equation 4.2 is
provided in Figure 4.3. A lower variance causes the affinity to decay faster. The higher
a variance is, the less affinity is influenced by the dissimilarity. As an extreme example,
an infinitely high variance yields an affinity of 1, no matter how high the dissimilarity

0

is (because e 1). Stated differently, the Gaussian distribution becomes a uniform

distribution.

The Stochastic Outlier Selection algorithm

"JHV SF From dissimilarity to affinity. - F GQdhphs of the affinity B wvith respect to the
dissimilarity Ejas defined by Equation 4.2, for three values of the variance Jﬁ 3 J HThd affinity matrix
"is obtained by applying Equation 4.2 to each cell in the dissimilarity matrix %

SOS has one parameter only, which is called the perplexity parameter and is denoted by

I. The perplexity parameter | can be compared with the parameter Las in l-nearest
neighbours, with two important differences. First, because affinity decays smoothly,
‘being a neighbour’ is not a binary property, but a smooth property. In fact, in the next
subsection we formalise ‘being a neighbour’ into a probabilistic property using Stochastic
Neighbour Graphs. Second, unlike the parameter L. perplexity is not restricted to be an
integer, but can be any real number between 1 and O 1. Stated differently, a data point
can have a minimum of 1 and a maximum of O 1 effective neighbours. Perplexity may
therefore be interpreted as a smooth measure for the effective number of neighbours.
Because a data point has no affinity with itself, i.e., B3 0, it is never its own neighbour,
which implies (as we will see later) that only P U dat&points have influence on its outlier

probability.

The value of each variance K;is determined using an adaptive approach such that each
data point has the same number of effective neighbours, i.e., I. The adaptive approach
yields a different variance for each data point, causing the affinity to be asymmetric
(Hinton and Roweis, 2003). To be precise, the affinities Bygnd Bcare equal only when
(1) the dissimilarities Egnd BEgare equal, which is always the case with the Euclidean
distance but need not be the case with other dissimilarity measures, and (2) the variances
Ky and K are equal, which is rarely the case unless the two data points are equally
dissimilar to their own neighbours. As a counterexample to asymmetric affinity we
mention the dimensionality reduction algorithm by van der Maaten and Hinton (2008),
which symmetrises purposefully the affinities between data points (i.e., Bjx %2 Bx%2 By

such that dissimilar data points are not isolated but joined with one of the clusters

Stochastic Outlier Selection

in the low-dimensional mapping. The purpose of SOS, however, is to classify these
dissimilar data points as outliers, and, therefore, does not symmetrise the affinities.
We elaborate upon the details of assigning the variances with the adaptive approach in

Subsection 4.2.8.

Figure 4.4 shows the variances for the data points in the example data set. The radii of
the six circles correspond to the variances for the six data points (and please note that
the circles do not represent a boundary). In all figures and calculations concerning the
example data set, the perplexity | is set to 4:5, with Figure 4.4 being the only exception
to this. In Figure 4.4, the perplexity | is set to 3:5 because otherwise, the radii of the six
circles would be to be too large to create an illustrative figure (see Figure 4.13 for the
variances that correspond to all possible settings of the perplexity parameter). Figure 4.4
shows, for example, that for data point X to have 3:5 effective neighbours, the variance

K must be set higher than the other variances.

Using the dissimilarity matrix D and Equation 4.2, we compute the affinity that each data
point has to every other data point, resulting in the affinity matrix A (illustrated in the

right side of Figure 4.3). The affinity matrix A is in two aspects similar to the dissimilarity

"J HV S FThe radii of the circles correspond to the variance for the
data points. The variance Jﬁ adapts to the density of the data and is
determined for each data point Yseparately, such that each data point
has the same number of effective neighbours, i.e., perplexity. In this
figure the perplexity is set to 3.5. The variance influences the amount
of affinity that a data point has to the other data points (see Figure 4.3).

The Stochastic Outlier Selection algorithm

matrix D, (1) thesizeis O Qind (2) the diagonal is 0, because data points have no affinity
with themselves. However, unlike D, A is not symmetric, because the affinity between two
data points is not symmetric. The ' row of the affinity matrix, denoted by a j is called
the B OJUZ EJT&f Gath@iiit ¥ .0

where By js 0. We note that the affinity distribution is not a probability distribution
because it does not sum to 1. In the next subsection we continue with the affinity matrix

A to generate a Stochastic Neighbour Graph.

4UPDIBTUJDOFJHICPVSHSBQITCBTFEF

In the remainder of our description of SOS, we employ graph theory, because (1) it
provides a solid mathematical framework to perform calculations with affinities, and (2)
it allows us to derive outlier probabilities. To model explicitly the data points and their
relationships (i.e., affinities) using vertices and directed edges, we generate a Stochastic
Neighbour Graph (SNG). The set of vertices 7is associated with the data set X. So, each
vertex V)orresponds to data point X y Generating the directed edges between the vertices
dependson CJO EJOH Q SThd&ebbe I firkt ihfrdduce (A) the concept of binding
probabilities and subsequently define (B) the generative process for an SNG. Finally, we
introduce (C) the binary property of being an outlier given one SNG.

" #JOEJOHQSPCBCJIJMJUJFT

The binding probability G js the probability that vertex \binds to vertex Wi.e., the
probability of generating a directed edge from \)fo WWe denote a directed edge from VY
to Wby ‘J KThe binding probability Gis proportional (denoted by (E) to the affinity
that data point X jhas with data point X g

Gk %d K &ZE Bk

which is equal to the affinity Bygpormalised, such that P ©, G sums to 1.

Bk
PP, BL

Gk

Stochastic Outlier Selection

"JHV S F The binding matrix #is obtained
by normalising each row in the affinity matrix ".

We note that G js always 0, because B js always 0 (see Equation 4.2). By applying
Equation 4.5 to every cell in the affinity matrix A, we obtain the binding matrix B

(see Figure 4.5). The binding probabilities for one vertex \yform togethera CJOEJOH
EJ T U S MhiligdaRlBcrete probability distribution

b, 1000 Go:

Similar to the affinity distribution a jfrom Equation 4.3, the binding distribution b jis the
¥ row of the binding matrix B.

We can illustrate the binding probabilities by representing the data set as a graph, where
each data point X jis associated with a vertex VyBecause each vertex has T P Mrbbability
of binding to any other vertex, the graph is fully connected. Figure 4.6 shows this graph
four times (these are not yet Stochastic Neighbour Graphs, those are shown later, in
Figure 4.7). The brightness of each directed edge J Ks determined by the binding
probability G as can be seen on the right side of Figure 4.6, where the binding matrix
B is depicted four times. The same graph is shown four times, i.e., graph (a) to graph
(d), where each graph illustrates a different aspect. In graph (a), five directed edges are
coloured orange. The brightness of an orange edge is associated with the probability that
vertex \\Wbinds to another vertex. The corresponding binding distribution b; sums to
1. The associated row in the binding matrix B, i.e., the first row, is also coloured orange.
From the graph we can see, for example, that the probability that \\binds to \Ms relatively
low (:04). If we reconsider Figure 4.1 on page 63, then we can see that the low binding
probability G is due to the low affinity B.¢, which is due to the high dissimilarity E.,
which is due mostly to the large difference in the values of the first feature of data points X,
and Xe. In graph (b), the five edges from vertex \are coloured orange. We can see that the

binding distribution by is distributed more evenly than b;, because from the perspective

The Stochastic Outlier Selection algorithm

of data point X¢, the other five data points are roughly equally distant. In both graph
(c) and graph (d), five edges are coloured cyan, to illustrate the probability that PUIF S
vertices bind to vertex \Vand vertex \ respectively. These binding probabilities do not
necessarily sum to 1. From graph (d), (and similarly from the sixth column in the binding
matrix B), we can see that all vertices have a low probability to bind to vertex W Please
note that these four graphs only serve to illustrate the concept of binding probabilities,

and will not be used to compute outlier probabilities.

(FOFSBUJOHBTUPDIBTUJDOFJHICPVSHSBQI

After the introduction of the binding probabilities, we define formally the Stochastic
Neighbour Graph (SNG) and discuss the generative process for an SNG. We do so by two
assumptions and four subsequent consequences. After that we describe the generative

process of the set of directed edges &.

Deénition [.0 (Stochastic neighbour graph). " 4UPDIBTUJD /FJHICPYTSESBQI
HSBQI'(7 &* XJUI B TFU PGBWESUUDWF PG E&SFBU NEXBEHB T
EBUBTFUDPOUBJOJOH O EBUKQRIBDWIFSPEEFEBEFEBPB QP JC

-FUECFUIFEJTTIJNIJMBSJUZNFBTVSF FH UIRRYDAIEFBO
CFUIFQFSQMFYJUZQBSBINFBEPNEDREMUIIF EJTTINIMBSJUZ
TI[F@QUIBUJTPCUBJOFECZBQQMZJOHEJTTIJNIJMBSJUZNEFB

VTIJOH QFSQMFYJBZT URPBIBUSIWBUOG BYTRPECUBFOFE CZ BQ
&RVBB®IRIDUIUIFOWBSIJBODFTUP FBDI DIEMMPANBEEXNTTJIN.
UIFCJOEJOH NBUWSBTY PGURJP PE CZ B ®@QIMZREMH &R VIBUREG O | F
NBUASJY

FTFUPG EJSRDUFHERFREMHIFBIUFE CZ UIF GPMMPXJOH DYPDIBT
CFUIFCJOEJOH EJTUSICMU JFMBPREING §UF T JBE J6H RBDIS JY
WFSPRFYWOE JOEFQFOEFOUM4% XPASFFRUR B DFOEW F EURFB®W JO U |
GSPNUIF CJOEJOH BHHO KSEHEOYRUPB® EJSFDUFEUFEWFGSPY W
FEJSFDUFEKEHBBERFREUPFEUPEWUPWFSUFY W

Below we discuss seven properties of an SNG that are implied by Definition 4.2 and the
two generative procedures. We illustrate our description by Figure 4.7. Figure 4.7 shows
three possible SNGs for the example data set with the binding matrix B that is illustrated
in Figure 4.5. (The right side of the figure is introduced below.)

Stochastic Outlier Selection

"J H V S Flllustration of binding probabilities. - F Gddh vertex W the graph is associated with a

binding probability distribution G 3 J HTHd binding matrix #A darker cell in the matrix corresponds
to a higher binding probability.

The Stochastic Outlier Selection algorithm

L
)
o
m
L

First, an SNG always has Qlirected edges because there are Overtices that each connect
to one vertex. Second, although the vertices of an SNG are fixed given a data set X,
each generated SNG may be different because the directed edges are generated using a
stochastic binding procedure. Third, each binding distribution b jis based on the affinity
distribution a j so an SNG reflects the relationship between data points. Fourth, an SNG
has no self-loops, i.e., no vertex binds to itself because G js 0, and as a consequence
the index Khat is sampled from the binding distribution will never be equal to JFifth,
the vertices bind independently, which means that vertices do not influence each other’s
binding process. Sixth, each vertex \jhas an out-degree of 1, denoted by deg (" Wy 1,
because each vertex binds to one other vertex. Seventh, because the binding process
is stochastic, more than one vertex may bind to the same vertex. For example, both
vertices \Wand Wmay bind to vertex W Vertex Wnow has an in-degree of 2, denoted by
deg " W 2. 'This implies that there is (at least) one vertex in the graph that no vertex
binds to and thus has an in-degree of 0. In Figure 4.7 we can see, for instance, that in both
graphs (gand (gvertex Whas an in-degree of 0. In graph (pvertex \Whas an in-degree
of 3. It is possible (albeit improbable) to generate this graph, because each vertex (except
vertex \Witself) has some probability of binding to vertex W In the next subsection we

elaborate on the probability of constructing a particular SNG.

$ #FIJIOHBOPVUMIFSHIWFOPOF4/(

If there is a directed edge from o Wie., J K &, then we say that X iis a neighbour
of X 3 In other words, data point X jchooses data point X kas a neighbour. If there is no
directed edge from WC B Wyi.e, K J &, then X s not a neighbour of X 3

We define that a data point is an outlier in graph (, when the data point has no neighbours
in graph (. In graphical terms, a data point X jbelongs to the outlier class % if its
corresponding vertex \Whas no inbound edges in graph (, ie., its in-degree deg is

Zero:
oS(™X Tdeg(A W 0z :
In words, there is no vertex \i¢hat binds to vertex Wy

S(MAXT W7 K P&Z;

Stochastic Outlier Selection

"J HV S F Three stochastic neighbour graphs (SNGs) generated with perplexity |set to 4.5.
- F GHd three SNGs (g (gand (are sampled from the discrete probability distribution T (e.
In Figure 4.8 it is indicated where the three SNGs are in the set of all graphs (. 3 J H Thé
probability Q (3 is the probability that graph (jis generated (see Equation 4.10). The outlier
class % rontains the data points that are outliers given graph ({see Equation 4.7).

or, similarly, all vertices WWo not bind to vertex Wy

oS(™PXT W7 K N&Z: ()

The right side of Figure 4.7, lists, for the three SNGs, the data points that belong to the
outlier class % S(.

At this moment, being an outlierisa C J Of3&péeity; given one particular SNG (, a data
point is either a member of the outlier class or not. The next subsection explains that by
generating many SNGs, we can estimate the outlier QSPCBCJMJUZ

The Stochastic Outlier Selection algorithm

L
)
o
m
B

&TUIJNBUJOHPVUMIFSQSPCBCJIMJIJUJIJFT

In the previous subsection the outlier class $ is established deterministically given one
particular SNG (. But because (itself is generated stochastically (using the binding
probabilities), the outlier class $ becomes a stochastic subset of the data set. Therefore,

data points are currently randomly selected as outlier, which is an obstacle.

We alleviate this obstacle by taking not one, but all possible SNGs into account. For a data
set containing Qdata points, there are” O 1e Obinding combinations possible, because
each of the Overtices binds independently to one of O 1 vertices. We denote the set of
all” O 1¢ %possible graphs by (. For our example data set, the set (contains 5° 15;625
SNGs.

Because the binding probabilities are not distributed uniformly, certain edges are more
probable to be generated than other edges. For instance, in our example data set, the edge
2 1is more probable than the edge 2 6. As a consequence, certain SNGs are more
probable to be generated than others. Since the vertices 7are constant, the probability of

generating a certain SNG (depends only on the binding probabilities.

Q(* M Gk
J R
The sampling probabilities of the three SNGs are listed on the right side of
Figure 4.7.

The set of all graphs (is thus associated with a discrete probability distribution T (e.
To sample an SNG from the probability distribution, denoted by (T (, means to
generate an SNG. Figure 4.8 shows the probability mass and the cumulative probability
mass for (, for three values of the perplexity I. A lower perplexity (e.g., | 4:0, blue
line) yields less uniform binding distributions, and consequently leads to more variation
in the probabilities by which SNGs are sampled. Figure 4.8 is annotated by three arrows
pointing to the red line. These three arrows indicate the ‘positions’ of the three SNGs of
Figure 4.7in T (*. We can see that (gis the most probable SNG to be generated, because
each data point chooses as its neighbour the data point to which it has the most affinity.

We can also see that (pis one of the least probable SNGs.

We are now ready to use a sampling procedure to estimate the probability that a data

point belongs to the outlier class. Given a number of sampled SNGs (, we compute the

Stochastic Outlier Selection

"J HV S FDiscrete probability distribution for the set of all SNGs. - F GHd probability mass for the
discrete probability distribution for the set of all Stochastic Neighbour Graphs (SNGs) (for the example
data set, for three values of the perplexity |. For this plot, the graphs in the set are ordered ascendingly
by their probability of being generated. The annotations (g (gand (xorrespond to the probability of
the three SNGs shown in Figure 4.7. 3 J HTHd cumulative probability mass for (. The high sensitivity
to the perplexity is due to the small number of data points in the example data set.

SFMBUJW kh tBddRajeior Belbngs to the outlier class. As the number of samples

4approaches infinity, the relative frequency converges to the outlier probability.

4 . R
X% lm-Q pHS(V ; (T T
4% 45

where e is an indicator random variable that has a value of 1 if data point X jbelongs

to the outlier class $ given graph (, and 0 otherwise.

The sampling procedure implies that if a particular data point belongs to the outlier class
for all possible graphs, then its outlier probability is 1 (since the sum of the probabilities
of all possible graphs is 1, i.e., P (> Q(* 1). Similarly, if a data point is a member of
the outlier class for 30% of the sampled graphs, then its outlier probability is 0:3. We
note that the sampling procedure leads to an outlier probability that is a probability from
a Frequentist point of view (Bayarri and Berger, 2004), and that it is not obtained by
normalising an unbounded outlier score as in, for example, Gao and Tan (2006) and

Kriegel et al. (2011).

The outlier probabilities during the first 1,000,000 iterations of one run of the sampling
procedure are plotted in Figure 4.9. The figure reveals that when the perplexity is set to
4:5, the estimated outlier probabilities of data points X; to Xs of the example data set, after
1,000;000 samples, are: 0:336, 0:234, 0:237, 0:323, 0:224, and 0:788, respectively. Because

sampling SNGs is a stochastic process, each run produces in the beginning (say, the first

The Stochastic Outlier Selection algorithm

"J HV S FConvergence of the outlier probabilities by repeatedly sampling SNGs. The plot shows the
first 1,000,000 sampling iterations of one run.

10 iterations) different outlier probabilities. Eventually (say, after 10;000 iterations), all

runs produce outlier probabilities that converge to the same values.

$PNQVUJOHPVUMIFSQSPCBCJIJMJUJFT L

The relative frequency computed by Equation 4.11 only converges to the outlier
probability when the number of samples approaches infinity. It turns out that we can
compute the outlier probability exactly, by enumerating once over all possible SNGs.
If we state the enumeration procedure in more technical terms, then we say that we
compute the marginal probability of any particular data point being an outlier, by
marginalising out the stochastic graph (. Because one SNG is more probable than the
other (due to the binding probabilities), it is important to take this into account as

well.

X> o Q M HS(Z Qe
(>(

Q ™M HS(Z M Gs
>(R S¢

The exact outlier probabilities for the data points in the example data set, as computed
by marginalisation, are: 0:335;0:235;0:237; 0:323; 0:224, and 0:788, respectively.

So,instead of F T U J NtBeldutl@@1Hprobabilities by sampling, say, 1,000,000 SNGs, we can
D P N Q V U Filte YiBli2d phdBabilities by marginalising over 15,625 SNGs. However,

Stochastic Outlier Selection

such a gain holds only for small data sets, such as our example data set. To illustrate
how quickly the size of (, i.e., SSgrows with respect to Qconsider O 5, O 10, and
O 100. These data set sizes correspond to S 1024, §S 3:5 10°,and §S 3.7

10", respectively. So, even small data sets lead to a combinatorial explosion, making

Equation 4.12 intractable to compute. In the next subsection we present a way to avoid

this problem.

$PNQVUIJOHPVUMIFSQSPCBCJIJMJIUJFTJ

Because each vertex binds to exactly one other vertex, the outlier probability can be
computed in closed form, without actually enumerating all the SNGs in (. Here we note
thatif a vertex would have been allowed to bind to N V M Weitigdy] the outlier probability
could not be computed in closed form.

We observe that the probability that data point X jbelongs to the outlier class, is equal
to the probability that its in-degree is zero, i.e., the probability that none of the other
vertices bind to vertex VWWithout using graph-theoretical terms, the outlier probability
of data point X jcan be reformulated as the joint probability that data point X jis never
chosen as a neighbour by the other data points. As a consequence, we can compute the
outlier probabilities directly, without generating any SNG.

Cleorem [.0 (Outlier probability). -FXY CF B EBUB TFU DPOUBJOXH O EB!
EFOPUF UIFPVUNTRSDRMBTUT Z-G IB U EBXBUQ EBRABUQ PO CZ

&RVBW®IPOIBWF JJJBUIFF OPSNBMJTFEB OJUZ XIFIPXKFDQSPC
BTJUTOFJHICPVS FO UIF QSPk,CHEPPVOIHTZWR BU FEBYBNMNIFFISOLI

X% M%B G

KJ

1 S P Wérecall from Equation 4.7 that a data point X jbelongs to the set of outliers %,

given one SNG graph (, when the corresponding vertex \jhas an in-degree of zero:

X3> % S(deg(AW 0:

The Stochastic Outlier Selection algorithm

We aim to compute the marginal probability that a data point is an outlier, given all SNGs.
By associating the right-hand side of Equation 4.15 with an indicator random value "~ e,
which has a value of 1 if \jhas an in-degree of zero and has a value of 0 otherwise, we
may rewrite the probability as the expected value of the indicator random variable (cf.

Cormen et al., 2009, p. 118),

x> % & ™egtW 0Z]

where the subscripted (indicates the sample space. By rewriting Equation 4.9, which
states that the in-degree of Ws zero if none of the vertices bind to Was a product, we

obtain,
A
X> P & ™K I &ZR
) %
Substituting the indicator random variable by its complement yields,

QX > %o° &@él ™K 3> &Ze
J

|

Because the vertices bind independently, the expected value operator is multiplicative
(Ross, 2007, p. 52), which allows us to move the expected value operator inside the

product,
X% Ml & ™K Pg&Ze:
KJ

We employ the same argument that we used for Equation 4.16, and we rewrite the

expected value of the indicator random variable as the binding probability,

X% MS GK P&
KJ

Stochastic Outlier Selection

which is equal to the probability that data point X chooses data point X jas its neighbour
(see Equation 4.4). Hence, the probability that data point X jpelongs to the outlier class is

X% M%B G
KJ
which, in words, states that the outlier probability of data point X jis the probability that

data point X jis never chosen as a neighbour by the other data points. O

Figure 4.10 illustrates, for completeness, the final matrix transformation. The output
matrix @, which holds the outlier probabilities, is obtained by applying Equation 4.14
to the binding matrix B. The right side of Figure 4.10 contains a plot of our example data
set with the data points filled with the colour corresponding to their outlier probability
(see the colour bar next to matrix B). By Equation 4.22 we formally conclude our
description of how SOS computes outlier probabilities, in terms of Definition 2.2: the
scores produced by the outlier scoring algorithm Uy, are equivalent to the outlier

probabilities.
Uos X3 QX3> %oe :

In the next subsection we transform the outlier scoring algorithm y,¢ into an
outlier-selection algorithm, G, i.e., we transform the outlier probabilities into the

classifications ‘outlier’ and ‘inlier’.

"JHV S F Outlier probabilities of the example data set. - F Ghd outlier probabilities in the output
matrix - are obtained by applying Equation 4.14 to the binding matrix # 3 J HA plot of our example
data set with the data points filled by the colour corresponding to their outlier probability as computed
by SOS.

The Stochastic Outlier Selection algorithm

$SMBTTJGZJOHPVUMJIFST

In the previous six subsections, we have presented SOS as an outlier T D P Slgotithm
Wos» because it maps data points onto outlier scores (see Definition 2.2). It is time for SOS
to fulfil its name and transform it into an outlier T F M FalgatifhihOG, . We recall from
Chapter 2, and in particular Equation 2.2 on page 24, that any outlier scoring algorithm
can be transformed into an outlier-selection algorithm. Stated differently, by thresholding
the computed outlier scores, classifications of the form ‘outlier’ and ‘inlier’ are obtained.
Although SOS computes outlier probabilities instead of outlier scores, classifications are

obtained in the same way.

g

6 © outlier if yog'x*ADb
Xe .

® ju inlier if Yy x*Bb

If the expert sets the threshold bto 0:5, then applying Equation 4.23 to the outlier
probabilities of the example data set results in the classifications as shown in Figure 4.11.
and that data point X is classified as outlier. We can indeed verify that only the outlier
probability of X, i.e., LgOSAX6° 0:788, exceeds the threshold of 0:5. The selection
boundary is obtained using the first five data points. So, the selection boundary indicates
the region where a sixth data point would be classified as inlier. Because in the example

data set, data point X lies outside the selection boundary, it is classified as outlier.

Choosing a proper threshold for a certain real-world application can be challenging. If we
are equipped with a loss associated with misclassifications, the Bayesian risk framework
may be used to set the threshold so that the average expected loss of our decisions is

minimised (Zellner, 1986).

"EBQUIJWFWBSJBODFTWIBUIFQFSQMEF"®

A possible challenge with the outlier probability in Equation 4.14 is that two data points
that are similar to each other, but dissimilar from the remaining data points may have
a low outlier probability, because the two data points have sufficient affinity with each
other. We avoid this challenge by setting adaptively the variances K that are used for

computing affinities in Equation 4.2.

Stochastic Outlier Selection

"JHV SF Classifications made by SOS on the example data set.
Data point Y is selected as outlier. The red, dashed line illustrates the
selection boundary that corresponds to a threshold Aof 0.5.

We recall from Subsection 4.2.2 that SOS has one parameter |, called the perplexity.
So far, we have treated the perplexity parameter | as a smooth measure for the
effective number of neighbours of a data point, set by the expert. In fact, perplexity
is a measurement that stems from the field of information theory. Perplexity may
be computed for a probability distribution, for example, to compare it with another
probability distribution (Jelinek, Mercer, Bahl, and Baker, 1977). In SOS, perplexity
is employed to set adaptively the variances in such a way that each data point has |
effective neighbours (Hinton and Roweis, 2003). To be precise, we require that the
binding distribution b pf each data point X jhas a perplexity that is equal to the perplexity
parameter set by the expert,
by 2)°Ps:

where)"b 3 is the Shannon entropy of b j(Shannon, 1948; MacKay, 2003),

O
)’bs Q Glog, %G4k:
K1

KJ

We remark that G js not taken into account, because a data point is never its own
neighbour. As a consequence of this requirement, the variances adapt to the local density
of data points, in such a way that a higher density leads to a lower variance, causing the
affinity B to decay faster. The effect of such an adaptive variance is that X jdistributes,

in general, around 90% of its affinity to its | nearest neighbours. So, indeed, the value

The Stochastic Outlier Selection algorithm

of perplexity | may be interpreted as a smooth measure for the effective number of

neighbours of a data point (van der Maaten and Hinton, 2008).

Figure 4.12 shows the influence that the perplexity parameter | has on the outlier
probabilities. Having a fixed perplexity I, rather than a fixed variance K (cf. bandwidth
in kernel density estimation (Parzen, 1962)), allows the SOS algorithm (1) to classify
accurately data points in data sets with varying densities, and (2) to avoid the challenge

with small clusters of outliers.

"JHV SF Influence of the perplexity |on the outlier probabilit-
ies of the six data points in the example data set.

Figure 4.13 shows how the variance influences the perplexity of the binding distribution.
The values of the variances that correspond to the desired perplexity (which is set by the
expert) are found using a binary search. The binary search starts with a sufficiently large
interval (e.g., from 0:1 to 30) in which the desired variances lie. (This initial interval is
derived from the distances between the data points.) In each iteration, the binary search
bisects the interval and then selects a subinterval until the desired variances for each data
point are found. Figure 4.14 shows the first 10 iterations of a binary search for the example
data set. The figure shows that the perplexity of each binding distribution converges to
the desired perplexity (|1 4:5).

2VBMIJUBUJWF FWBMVBUJPO PG

In this section we introduce and discuss four related outlier-selection algorithms
and evaluate them, together with SOS, in a qualitative manner. The aim is to make

this qualitative evaluation complementary to the quantitative evaluation (of the same

Stochastic Outlier Selection

"JHV SF Sixgraphs of the perplexity I Q with respect to the variance \?Jfor the six data points

in the example data set. For each data point, a different variance is required such that the binding
probability distribution Chas the desired perplexity |of 4.5 (denoted by the horizontal, red line). - F G U
Semi-log plot with a logarithmic scale on the x-axis. 3 J Hlikkar plot with the same graphs, zoomed

in on the range of values where each variance corresponds to the desired perplexity.

L
o
o
m
L

"JHV SF The first 10 iterations of the binary search that sets adaptively the
variances. The desired perplexity |is set to 4.5. 5P The current variance for each
of the six data points in the example data set. # P U UTReNurrent perplexities given
the current values of the variances.

Qualitative evaluation of SOS and four related algorithms

algorithms) presented in Section 4.4. The four related algorithms are: K-Nearest
Neighbour Data Description (KNNDD) by Tax (2001), Local Outlier Factor (LOF) by
Breunig et al. (2000), Local Correlation Integral (LOCI) by Papadimitriou et al. (2003),
and Least Squares Outlier Detection (LSOD) by Hido et al. (2008) and Kanamori, Hido,
and Sugiyama (2009). Please note that the algorithms KNNDD, LOF, and LOCI have
also been employed in Chapter 3. There, the algorithms were semi-supervised. In the
current chapter we employ their unsupervised versions. (SVDD is not included in this

comparison because there is no unsupervised version available.)

To achieve our aim, we first explain outlier-score plots in Subsection 4.3.1. Subsequently,
for each algorithm (SOS included) we (1) provide a brief description and (2) discuss
several of its strong and weak points using the outlier-score plots shown in Figure 4.15

(Subsections 4.3.2-4.3.6).

OVUMJFS TDPSFQMPUT

We qualitatively evaluate SOS and the four related algorithms using outlier-score plots
on three small example data sets. The fifteen corresponding outlier-score plots are shown
in Figure 4.15. An outlier-score plot is a two-dimensional plot that shows how well the
algorithm captures the structure of a particular data set. (They are related to the plots
employed in Aha, Kibler, and Albert (1991), which illustrate the decision boundaries of
varjous instance-based learning algorithms.) So, an outlier-score plot may increase our

understanding of outlier-selection algorithms.

In practice, an outlier-score plot is obtained as follows. First, we assume that we have
a two-dimensional data set X. Second, we generate a set of data points Z whose
feature vectors correspond to the pixels of the resulting outlier-score plot. For instance,
generating a plot of size 100 by 100 pixels requires S 10;000 data points. Third, we
remove one data point (Xpey) of Z and add it to X. Fourth, we apply the outlier-selection
algorithm to the data set X and record the outlier score (or probability in the case of SOS)
for data point Xyey. Fifth, we remove Xy, from X. Steps 3, 4, and 5 are repeated until Z is
empty. Sixth, the pixels of the plot are coloured by mapping the recorded outlier scores
onto a colour map (cf. the colour map next to the output matrix in Figure 4.1 on page 63).

The mapping of colours to outlier probabilities / scores varies by plot, since the possible

Stochastic Outlier Selection

L
)
o
m
L

"JHV SF Outlier-score plots for SOS and four related outlier-selection algorithms as applied to
three small example data sets. The colour at a certain location corresponds to the outlier probability
/ score that would be assigned to a new data point, should it appear at that location.

Qualitative evaluation of SOS and four related algorithms

minimum and maximum scores may differ by algorithm and by data set (except for SOS).

Finally, in order to see the data set X, its data points are plotted as white dots.*

The first data set in Figure 4.15, # B O BcGnrins a banana-shaped cluster with 100 data
points. The asymmetric shape allows us to investigate how algorithms cope with irregular
distributions. The second data set, % F O T dodtdifksTtwo Gaussian-distributed clusters
with 50 data points each. The second cluster is denser than the first, which allows us
to investigate how the algorithms cope with varying densities. The third data set, 3J0OH
contains a rotated ellipse-shaped cluster with 150 data points. The ring allows us to
investigate how algorithms cope with low density regions that are enclosed by data points.
We note that each of the five algorithms is applied to exactly the same three data sets and
that its parameter settings are kept constant. The number of data points has no influence
on the outlier-score plots. We are now ready for a description and qualitative evaluation
of SOS and the four related algorithms.

404

The results of SOS are shown in the top row of Figure 4.15. We see that SOS has a smooth
boundary around the data points. For the Banana data set, the shape is captured well. For
the Densities data set, we see that the boundary around the denser cluster is tighter than
around the big, sparse cluster (see (#). This indicates that SOS takes the relative density of
the data well into account. For the Ring data set, the outlier probability assigned to a data
point in the middle of the ring would be roughly equal to those appearing outside the
ring (see (#). The transition from a low to high outlier probability seems often smoother
than with the other algorithms, which can be explained by the use of affinities that causes

the property of ‘being a neighbour’ to be a smooth property.

We restrict ourselves to two dimensions because it is not practical to visualise higher-dimensional
outlier-score plots. For instance, a three-dimensional data set would require us to show the colour
(outlier score) of all the 10;000;000 data points that lie in the cube of 100 by 100 by 100 voxels. The goal
of outlier-score plots to gain an intuitive understanding of the outlier-selection algorithms. However,
because the outlier scores computed by each of the five algorithms are determined by the Euclidean
distance between the data points, we may expect that the performance of each algorithm to be affected
similarly by higher-dimensional data sets. In Section 4.4.1 we report on the performances obtained on
real-world data sets, which have a variety of dimensionalities.

Stochastic Outlier Selection

1% %

The K-Nearest Neighbour Data Description (KNNDD) by Tax (2001) is an algorithm
with one free parameter LKNNDD defines the outlier score for a data point X as the ratio
of the distance between X and its L=nearest neighbour X¥and the distance between x%and
J U-fiedrest neighbour. KNNDD differs from SOS in that it employs discrete rather than
soft neighbourhood boundaries (this holds for LOF and LOCI too).

For the Banana data set, KNNDD generalises the shape of the data too much. The outlier
scores for the Densities data set increase similarly for both clusters, which means that
KNNDD is not so much influenced by the density of the data. Data points appearing in
the middle of the Ring data set get a moderately higher outlier score. KNNDD has the

drawback that outlier scores are unbounded (see (")).

-0

The Local Outlier Factor (Breunig et al., 2000) computes an outlier score by estimating
the relative density in the neighbourhood of the data point. A data point, whose
nearest neighbours have a smaller neighbourhood with an equal number of data points,
is assigned a higher outlier score. The neighbourhood size is determined by a free

parameter L

LOF’s outlier scores are also unbounded (see (#). It captures the shape of the data in the
Banana data set better than KNNDD. At the boundary between the two clusters in the
Density data set, the outlier scores exhibit a discontinuity (see ($), which is due to the
use of discrete neighbourhood boundaries, and the fact that LOF takes densities explicitly
into account, as opposed to KNNDD. The outlier scores in the middle of the Ring data

set are more increased than with KNNDD.

-0%*

The Local Correlation Integral (Papadimitriou et al., 2003) also estimates the relative
density in the neighbourhood of the data point, but then for a whole range of
neighbourhood sizes. The outlier score is based on the maximum ratio between the
local and global densities that is found in the range. Although some values in the actual
algorithm can be adjusted, Papadimitriou et al. claim that LOCI has no free parameters,
and will therefore be treated as such. The same holds for LSOD.

Qualitative evaluation of SOS and four related algorithms

The outlier scores computed by LOCI do have a maximum, but this maximum may
be different per data set. For the Banana data set, LOCI forms a strange shape around
the data points. The strange shapes (see (%) in the Densities data set, mostly include
higher outlier scores, and are probably a result of the fact that the neighbourhoods of
the constituent data points include data points from both clusters. The shape in the Ring
data set seems to be orthogonal with the cluster (see (&) and have very tight boundaries

at certain places.

~40%

Least Squares Qutlier Detection (Kanamori et al., 2009; Hido et al., 2008) is an ‘inlier-
based’ outlier-selection algorithm. Unlike the other algorithms, it is supervised, in that it
uses a given set of data points, labelled as normality. The outlier scores of the remaining
data points are given by the ratio of probability densities between the normalities and
the remaining data points. For our experiments, we slightly alter LSOD by computing
the outlier score of one data point at a time, and treating all other data points as normal.
This way, LSOD can be considered as an unsupervised outlier-selection algorithm and
thus ensures a fair comparison with the other algorithms. According to Kanamori et al.
LSOD, like LOCI, has no free parameters.

For the Banana data set, LSOD seems to model the data as a spherical structure (see (")),
such that the outlier scores increase linearly with distance from the cluster centre. For the
Densities data set, the outlier scores of LSOD seem to be less influenced by the density
of clusters (see (()). Data points appearing in the middle of the Ring data set would not

be selected as outliers (see ()).

&YQFSIJNFOUTBOESFTVMUT

In this section we present our experiments and the corresponding results. We evaluate
SOS and the four algorithms discussed in Section 4.3 (i.e., KNNDD, LOCI, LOF, and
LSOD) on eighteen real-world data sets (Section 4.4.1) and on seven synthetic data sets

(Section 4.4.2).

Stochastic Outlier Selection

3FBM XPSMEEBUBTFUT

We evaluated SOS and the four related outlier-selection algorithms on eighteen real-
world data sets (see Figure 4.16 for the list of data sets).? Except for the Delft Pump data
set (Ypma, 2001) and the Colon Gene data set (Alon, Barkai, Notterman, Gish, Ybarra,
Mack, and Levine, 1999), all data sets come from the UCI Machine Learning Repository
(Asuncion and Frank, 2010).% Because these data sets contain multiple classes that are not
necessarily defined as either normal or anomalous, they are relabelled into multiple one-
class data sets using the procedure that is described in Subsection 2.6.1. The performance

measure is the weighted AUC (see Subsection 2.6.4).

"JHV SF The weighted AUC performances of the five outlier-selection algorithms on eighteen
real-world data sets. The data sets are ordered by the performances of SOS.

Figure 4.16 shows the weighted AUC performances of the five outlier-selection
algorithms on the real-world data sets. The performance of SOS is illustrated by a solid
(purple) line, while the other outlier-selection algorithms are illustrated by dashed and
dotted lines. For clarity, the data sets are ordered according to the performance of
SOS.

The interested reader is referred to Table 5.1 on page 106 for the dimensionality, number of normalities,
and number anomalies of each data set.

These data sets have also been employed in Chapter 3, except for six sets which have been replaced by
synthetic data sets (see Subsection 4.4.2).

Experiments and results

L
)
o
m
B

©»
os]
O
(a
M

"JHV SF From left to right, the three columns illustrate, for each synthetic data set, three
instantiations where Ds set to (1) the start value Qa, (2) an intermediate value B, and (3)

the end value R\q, respectively.

Stochastic Outlier Selection

The figure reveals that SOS has a superior performance on twelve data sets. On the other

six data sets its performance was at least 98% of the best performing algorithm.

For completeness, the AUC performances of SOS, KNNDD, LOFE, LOCI, and LSOD on
the 47 real-world one-class data sets are stated in Table 4.2 for various parameter settings.
We recall that these 47 one-class data sets are the result of relabelling the 18 real-world
data using the procedure that is described in Subsection 2.6.1. In Table 4.2, the real-world
data set is stated as the data set name, as used in Figure 4.16, followed by the name of the
normal class in italics and in brackets, e.g., Iris 4 F U’ HT &dition to the maximum
achieved AUC performance as is also shown in Figure 4.16, Table 4.2 also shows the
performances for other parameter values. In the case of SOS, Is, for example, is short-
hand notation for | 5. The maximum AUC performance is given by | ¢ The parameter
value corresponding to the best AUC performance is given by | and is indicated in gray.
For KNNDD and LOF, the columns are Lcand L respectively. Note that LOCI and LSOD

have no free parameters.

4Z0UIFUJDEBUBTFUT

Although real-world data sets give a serious indication of how well the five algorithms
will perform in a real-world setting, we may gain additional insight into their behaviour
using synthetic data sets. Therefore, we designed seven synthetic data sets that contain
data points from both the normal and the anomalous class. The synthetic data sets are
two-dimensional. For each synthetic data set we introduced a single parameter, ¢ that
determines one property of the data set. In one data set, for example, ecorresponds to the
distance between two Gaussian clusters. If we gradually adjust €i.e., adjust the distance

between the two clusters while keeping the other properties constant, then we observe

5B C M FThe seven synthetic data sets controlled by parameter D

Experiments and results

how cluster-overlap influences the performances of the algorithms under consideration.
In general, the purpose of the synthetic data sets is to measure the resilience of each

algorithm for the different data-set properties.

Table 4.1 lists all seven synthetic data sets and the function of parameter € viz. what
property it determines. Besides cluster overlap (data sets (a), (c), (f), and (g)), we also

evaluate the influence of cluster densities (e) and cluster cardinality ((b) and (d)).

Figure 4.17 illustrates for each synthetic data set three instantiations with three different
values of € namely the start value, an intermediate value, and the end value. The
reader should note that, similar to the real-world data sets, the true class-labels indicate
whether a data point is anomalous or normal, and not whether it is an outlier or
inlier. Consequently, due to the unsupervised nature of the outlier-selection algorithms,
anomalous data points might not be selected as outliers (corresponding to a NJ)J T

especially as ereaches its end value, 4.

Because the synthetic data sets contain random samples from various distributions and
are generated anew for each evaluation, we applied each algorithm to 100 instantiations
of each data set per value of gand computed the average AUC performances. Figure 4.18
displays the performances of the five algorithms on the seven synthetic data sets. Again,
the performance of SOS is illustrated by a solid (purple) line and the other algorithms by
dashed lines.

%JTDVTTIPOPGUIFSFTVMUT

To compare the performances of multiple algorithms on multiple data sets, Dems$ar
(2006) suggests the Neményi test (Neményi, 1963). The Neményi test checks for
significant difference by ranking each algorithm for each data set, where the best
performing algorithm is assigned the rank of 1, the second best the rank of 2, and so
forth. Two algorithms are significantly different when their average ranks differ more

than the critical distance, which is in our case 1:438 for Q :05.

We apply the Neményi test on the performances obtained by the five outlier-selection
algorithms on the eighteen real-world data sets. The outcome is shown in the top part of
Figure 4.19 by a critical difference diagram. Groups of methods that are not significantly
different (at Q :05) are connected by a horizontal bar. For the real-world data sets,

three (partially overlapping) groups of algorithms, ranked from low to high performance,

Stochastic Outlier Selection

"JHV SF The AUC performances of the five outlier-selection algorithms on the seven synthetic
data sets.

Discussion of the results

"JHV SF C(ritical difference diagrams. 5P ®om applying the
outlier-selection algorithms on the eighteen real-world data sets. The
critical distance is 1.438. # P U UFARM applying the algorithms on
the seven synthetic data sets. The critical distance is 1.588. Groups of
algorithms that are connected are not significantly different.

are identified: (1) LOCI and KNNDD, (2) KNNDD, LSOD, and LOF, and (3) SOS. The
performance of SOS is significantly higher than the other algorithms.

From the results on synthetic data sets (b) and (d), we may conclude that SOS has
a superior performance with data sets that contain clusters with low cardinality. The
performance on data set (e) indicates that SOS copes best with data sets containing
clusters with varying densities. Although on data set (c), SOS is outperformed by the
other algorithms for intermediate values of €, the performance increases for eB 1. This
observation, combined with the superior results on data sets (a), (f), and (g), implies that

SOS is, in general, less sensitive to cluster overlap than the other algorithms.

Apart from a few exceptions, the algorithms KNNDD, LOF, and LOCI show similar
trends among the seven synthetic data sets. This was expected since they are all based
on the l:nearest neighbour algorithm. For data set (b), LOCI shows a poor performance
when the cardinality of the cluster is below 20. This is due to the requirement of LOCI to
have a sample size of at least 20 (Papadimitriou et al., 2003). We expect that without this
constraint, LOCI will perform comparably to KNNDD and LOF for e@20. Regarding
LSOD, the results on the real-world data sets already showed that it has a relatively poor
performance. Its performance on the synthetic data sets (d) and (e) confirm that LSOD is

unable to handle data sets containing clusters of different cardinality or densities.

Stochastic Outlier Selection

The bottom part of Figure 4.19 shows the critical difference diagram for the synthetic data
sets. There are two groups of algorithms, ranked from low to high performance: (1) LOCI,
LSOD, KNNDD, and LOF; and (2) SOS. The performance of SOS is significantly higher
(at Q 0:01) than the other algorithms.

$IBQUFSDPODMVTJPOT

In this chapter we set out to answer RQ2: $BO BO F FDUJWF PVUMJFS TFMF
EFWJTFE UIBU FNQMPZT UTdtHis Rl Diwfe @dvelBped Bndeddluzted
Stochastic Outlier Selection (SOS), a novel unsupervised algorithm for classifying
data points as outliers in a data set. SOS computes for each data point an outlier
probability, using affinities. The outlier probabilities provide three advantages with
respect to unbounded outlier scores as computed by existing outlier-selection algorithms
(cf. Subsection 4.1.2). First, a Bayesian risk model can be used to find an appropriate
threshold for classifying data points as outliers (see Gao and Tan, 2006). Second, an
ensemble outlier selection framework can be built by aggregating probabilities from
individual outlier-selection algorithms. Third, we expect that outlier probabilities are

easier to interpret by domain experts than outlier scores.

We described an evaluation procedure that enables us to evaluate unsupervised outlier-
selection algorithms with standard benchmark data sets. We introduced the concept of an
outlier-score plot, which allowed us to inspect visually how well an algorithm captures the
structure of a data set (cf. Subsection 4.3.1). Using both real-world data sets and synthetic
data sets, we have shown that SOS has an outstanding performance when compared to
the current outlier-selection algorithms, KNNDD, LOF, LOCI, and LSOD. The Neményi
statistical test revealed that SOS’s performance is significantly higher. The seven synthetic
data sets were parametrised by € such that the outlier-selection algorithms could be

evaluated on individual data-set properties.

Our answer to RQ2 reads as follows. From our empirical results we observe that (1) SOS
is an effective algorithm for classifying data points as outliers in a data set and that (2) SOS
compares favourably to state-of-the-art outlier-selection algorithms. We may therefore
conclude that the concept of affinity, which forms the basis SOS, is successfully applied

to the problem of outlier selection.

Chapter conclusions

E4NOgl$

5B C M FAUC performances on real-world one-class data sets.

Stochastic Outlier Selection

5BCMF $POUJOVFE

Chapter conclusions

54N0gls$

We observe that SOS is not the best-performing algorithm on all data sets. This
observations leads to an important questions: for which type of problems (i.e., real-
world data sets) is SOS the most suitable outlier-selection algorithm? We investigate this

question in the next chapter, where we evaluate 19 algorithms on 255 data sets.

Stochastic Outlier Selection

$POUFOUT

Inthis chapter we setouttoanswerRQ3: 5P XIBUFYUFOUDBOXFTPMWFUIFPOF D
QSPCMFN VTJOH B NF U BhdVNe Bré& Quddd thddrénJrisplReB thalt there is no

single best one-class classifier. For each one-class data set, there may be a different one-class

classifier that performs best. The performance of a one-class classifier is greatly determined by

the characteristics (or meta-features) of the one-class data set at hand. Our goal is to understand

the relationship between meta-features and one-class classifier performance. In the chapter, we

define 36 meta-features and apply them to 255 data sets; this procedure generates a set of meta-

feature values. These values are used as input for the next chapter, where we use meta-learning

to relate the meta-features to performance of one-class classifiers.

OVUMJIOF
No free lunch for one-class classification. The one-class classifier selection problem.
Meta-learning. Overview of one-class data sets. Preprocessing one-class data sets.

Meta-features. Results and discussion. Chapter summary.

This chapter deals with the problem of selecting the one-class classifier that will perform
best on a given one-class data set. It is a challenging problem. Given the large number of
available one-class classifiers, it is infeasible to apply them all and choose the one with
the best performance. Moreover, in real-world applications it is an even bigger problem
because domain experts may lack (1) the knowledge to pre-select a limited number
of one-class classifiers, and (2) the time to apply even a limited number of one-class
classifiers (Brazdil, Giraud-Carrier, Soares, and Vilalta, 2009). Rice (1976) formalised
the above problem for CJ O B S Z Dd¥ltBeTalgdrithiS-Selection problem. Since we are
considering one-class classifiers only, we call it the one-class classifier selection problem

(a more detailed explanation and a formal definition will be given in Section 5.2).

Meta-learning is a research area within the field of machine learning. It aims to solve

the algorithm-selection problem automatically (cf. Aha, 1992; Mitchie, Spiegelhalter, and

Taylor, 1994; King, Feng, and Sutherland, 1995; Sohn, 1999; Peng, Flach, Soares, and

Brazdil, 2002; Kalousis, Gama, and Hilario, 2004; Ali and Smith, 2006; Brazdil et al., 2009;

Jankowski, Duch, and Grabczewski, 2011; Song, Wang, and Wang, 2012). In this chapter

and the next chapter, we apply meta-learning to the one-class classification setting. In

other words, we aim to solve the one-class classifier selection problem. To the best of

our knowledge, we are the first to do so. Our third research question (RQ3) therefore
reads as follows: 5P XIBU FYUFOU DBO XFTPMWF UIF POF DMBTT DN
BNFUB MFBSOJOHBQQSPBDI

Smith-Miles (2008) lists four prerequisites for solving the B M H P &l2&tibN problem
using a meta-learning approach. We adapt the four prerequisitesforour POF DMBTT DMBT

selection problem as follows. There should be available:

1. alarge number of one-class data sets of various complexities;

2. suitable meta-features to characterise the one-class data sets;

3. alarge number of diverse one-class classifiers to apply to the one-class data sets;

4. aperformance measure to evaluate any one-class classifier performance.
By relating the meta-features (2) to the performances (4) of a large number of one-class
classifiers (3) on a large number of one-class data sets (1) we may obtain a comprehensive
set of meta-knowledge about the one-class classifiers (cf. Smith-Miles, 2008). In the
current chapter (Chapter 5), we focus on prerequisites (1) and (2) by characterising 255

one-class data sets using 36 meta-features. The main result of the current chapter are

the 36 meta-features. In Chapter 6, we continue with prerequisite (3) by applying 19

Meta-features for one-class data sets

one-class classifiers on the 255 one-class data sets. Prerequisite (4) is already satisfied,
since we employ the AUC performance measure. The AUC has been the performance
measure in the previous chapters as well. We refer to Chapter 2 for an explanation of the
AUC.

The remainder of the current chapter is organised as follows. In Section 5.1 we provide
relevant background on the one-class classifier selection problem and discuss the ‘No
Free Lunch’ theorem. In Section 5.2 we describe and define the one-class classifier
selection problem. In Section 5.3 we state the meta-learning approach. In Section 5.4
we present the one-class data sets. In Section 5.5 we discuss the use of preprocessing data
sets. In Section 5.6 we give an overview of the meta-features that we use to characterise
the one-class data sets. In Section 5.7 we present and discuss the results. They will be
used as input for the next chapter. Finally, in Section 5.8, we complete the chapter with

a summary.

/IPGSFFMVODIGPSPOF DMBTTD

In Chapter 4, five outlier-selection algorithms were applied to a variety of data sets. When
we consider the average AUC performance of these algorithms, then SOS was the best
performing algorithm. However, when we observe the performance on each particular
data set, then SOS was sometimes outperformed by another algorithm (e.g., by LSOD
on the Heart Disease data set). This observation is consistent with Song et al. (2012),
who summarise the mixed performance of various binary classification algorithms (e.g.,
Decision Trees, Support Vector Machines, and Neural Networks) on various data sets
(e.g., Iris, Thyrioid, and Sonar) as reported over the past two decades. From these mixed
performances we may conclude that (1) no single algorithm can perform uniformly well

over all data sets, and (2) there is no universally best algorithm.

Wolpert and Macready (1995) have formalised the above conclusions into the ‘No Free
Lunch’ theorem, which states: ..if algorithm A outperforms algorithm B on some cost
functions, then loosely speaking there must exist exactly as many other functions where
B outperforms A’ Please note that, in practice, the value of the cost function depends on
the data set at hand. No Free Lunch theorems have been proved and studied extensively
for the settings of supervised learning, optimization, and search (Wolpert, 1996a,b,

2001). Although the theorem has not been explicitly studied for the setting of one-class

No free lunch for one-class classification

classification, we assume that (1) no single P O F D M B T darlpbtfBrinudiférsly well
overall POF DM B T,hnd B)tlerE #s hbTuniversallybest POF DMBTT DMBTTJ F S

S5IFPOF DMBTTDMBTTJOFS TFMF

In this section we introduce the one-class classifier selection problem. It is derived from

the more general algorithm-selection problem (cf. Rice, 1976).

Rice (1976) presented a formal abstract model that we can use to explore the question:
JUITPNBOZBWBJMBCMFPOF DMBTTDMBTTJ FST XIJDIPO
E B U BThemhbdel is illustrated in Figure 5.1. The model consists of four components,

presented counter-clockwise:

o the one-class data set space 1" 9e, i.e., the power set of all real-world observations
(cf. Chapter 2);

o the meta-feature space ', which contains measurable characteristics of the one-

class data sets;
o the one-class classifier space @; and

o the performance space "6 $ which represents the mapping of each one-class

classifier to the AUC performance measure.

"J HV S FOne-class classifier selection problem (adapted from Rice (1976)).

The one-class classifier selection problem can now be formally defined as follows.

Deénition 0.0 (one-class classifier selection problem). '"PS B HIWFO POF DMBTT
%>1"9 XJUINFUB BG#FBUVOETUGF TFMFDUJX® N8 QR PO@H 4D MB

Meta-features for one-class data sets

DMBTTJ&STVPBDFBU UIF TFMFD UFEIPNOBYD NIBITHTDWM B QFS E®
NBQ QALOHh %> "6$

.FUB MFBSOJOH

In this section we describe the research field known as ‘meta-learning’. First, we explain
meta-learning by comparing it to base-learning (Subsection 5.3.1). Second, we describe
the most-common use of meta-learning, namely binary classification (Subsection 5.3.2).
Third, we discuss how meta-learning may be employed for the one-class classifier

selection problem (Subsection 5.3.3).

.FUB MFBSOJOHDPNQBSFEUPCBTF MFE

We explain meta-learning by comparing it to what is known as CBTF M F@Sl@JOH
one hand, in base learning, each data point represents a real-world observation. So, the
outlier-selection algorithms and one-class classifiers presented in the thesis are, in fact,
base learners. Base learning is the normal or default type of learning in machine learning.
(The term base learning is, however, rarely used in the machine learning literature, since

it is only relevant with respect to meta-learning.)

On the other hand, in meta-learning, each data point represents a data set. So, each data
point refers to an entire data set. The features of such data points are the characteristics
of the data sets. We refer to them as meta-features so that they can be distinguished from

the features of data points that represent real-world observations.

.FUB MFBSOJOHGPSCJOBSZDMBTTJOD

Meta-learning may be applied to a number of problems, such as classification, regression,
constraint satisfaction, and sorting. In each application, exploiting meta-knowledge
about the problem or the algorithm in order to improve the performance or selection
of the algorithms plays a central role (see Vilalta and Drissi, 2002; Smith-Miles, 2008).
Meta-learning is perhaps most often applied to the problem of binary classification, i.e.,
the algorithm-selection problem (Aha, 1992; Mitchie et al., 1994; King et al., 1995; Sohn,
1999; Peng et al., 2002; Kalousis et al., 2004; Ali and Smith, 2006; Brazdil et al., 2009;

Jankowski et al., 2011; Song et al., 2012).

Meta-learning

Rendell and Cho (1990) performed controlled experiments with artificial data sets,
which showed that some data set characteristics (e.g., data set size and amount of
noise) may drastically affect the performance of a binary classifier. That study used
two algorithms only. Subsequently, Aha (1992) developed a general method that
characterised the situations when distinct algorithms have a significant difference in
performance. Artificial data sets were generated that closely resembled a real-world data
set. So, although the number of data sets and algorithms were limited, both studies can
be regarded as applying a meta-learning approach to select binary classifiers on artificial

data sets.

The European research project StatLog (see Mitchie et al., 1994) studied meta-learning
by relating the performance of classifiers to meta-features, in terms of rules. For example,
they discovered a rule which stated that ‘data sets with extreme distributions (T L FAX
and LV S UAP7) dnld with many binary or categorical distributions (A 38%) tend to
favour symbolic learning algorithms. In their study, sixteen binary classifiers and twelve
classification data sets were employed. The main conclusion of the project was consistent
with the No Free Lunch Theorem, namely, that no algorithm uniformly outperforms all

other algorithms on all data sets.

Developments in the field of meta-learning mainly focus on four aspects: (1) meta-
features (Lee and Giraud-Carrier, 2008; Peng et al., 2002), (2) performance measures
(Giraud-Carrier, 1998; Ali and Smith, 2006; Lee and Giraud-Carrier, 2011), and (3)
algorithm recommendation frameworks (Song et al., 2012). For a more detailed overview
of the development of meta-learning we refer to Vilalta and Drissi (2002), Smith-Miles

(2008), and Jankowski et al. (2011).

.FUB MFBSOJOHGPSPOF DMBTTDMBTT

As far as we know, meta-learning for the problem of one-class classification is less studied
than for the problem of binary classification. In Section 5.2 we introduced the one-
class classifier selection problem, which resembled the algorithm-selection problem.
Because of the resemblance, we adapt the meta-learning approach employed for the
binary classification problem (cf. Subsection 5.3.2). To be precise, the one-class classifier
selection problem (see Section 5.2) relates to the fourth definition of meta-learning in the

survey paper by Vilalta and Drissi (2002). We adapt their definition as follows.

Meta-features for one-class data sets

Deénition 0.0 (Meta-learning for one-class classification). .FUB MFBSOJOH GPS P
DMBTTJ DBUJPOJTDPOTUSVDUJOHNFUB NPEFMTUIBU SFN
UPUIFQFSGPSNBODFPGBPOF DMBTTDMBTTJ FS

One-class classification differs from binary classification in the assumption that data
points from the anomalous class are rare. This assumption has consequences for the
meta-features that we can employ to characterise the one-class data sets, as we will see in

the next section.

OWFSWIJFXPGPOF DMBTTEBUB"

In this section we provide an overview of the one-class data sets. It is the first
prerequisite for solving the one-class classifier selection problem. The one-class data sets
are constructed from a variety of multi-class data sets, using the relabelling procedure
from Subsection 2.6.1. All data sets, except the Delft pump data set (Ypma, 2001), come

from the UCI Machine Learning Repository (Asuncion and Frank, 2010).

Table 5.1 lists 85 one-class data sets. (We explain in the next section how we get from 85 to

255 data one-class data sets.) The seven columns of the table represent the following. The
first column, $ P Erépresents the code of the one-class data set. The codes allow for easy
reference when we present our results. The second column, .VMUJ D M BrefrdseBtt) B T F U
the multi-class data set from which the one-class was constructed. The third column,

/P SN B M iepve&itsTthe name of class that was relabelled as the normal class. The
fourth column, N represents the dimensionality, or number of features. The fifth column,

Noca, represents the dimensionality when the one-class data set has been preprocessed
with the dimension reduction technique PCA. We explain this preprocessing procedure

in Section 5.5. The sixth column, $y, and seventh column, $, represent the number of

normalities and anomalies in the one-class data set.

Before we compute the meta-features of these one-class data sets (see Section 5.6), we

first apply three preprocessing procedures to the one-class data sets.

Overview of one-class data sets

E4Nn0gls

5B C M FOverview of the data sets.

Meta-features for one-class data sets

5BCMF $POUJOVFE

Overview of one-class data sets

54N0gal$

1SFQSPDFTTJOHPOF DMBTT EB

In this section we discuss the use of preprocessing. A preprocessing technique transforms
the data set into a data set which is (more) appropriate for further processing. Obviously,
this happens before the data set is processed by the one-class classifier. We describe three
preprocessing techniques: (1) none (Subsection 5.5.1), (2) variance (Subsection 5.5.2),
and (3) PCA (Subsection 5.5.3). Figure 5.2 illustrates the application of the three
processing techniques on a toy one-class data set (first scatter plot) that has two

features.

"JHV SF The one-class data sets are preprocessed by
three techniques. 5P Qo preprocessing, A, leaves the data
set intact. . J E E Maffance preprocessing, A rescales the
dimensions. # P U UPRMNpreprocessing, A 3 reduces the di-
mensionality of the one-class data set.

Meta-features for one-class data sets

IPQSFQSPDFTTJOH

The first preprocessing technique is actually no preprocessing at all. That is, all values in
the one-class data set are left intact. The reason that we still consider this a preprocessing
technique is for presentation purposes only. We call this preprocessing technique ‘none’
and denote it by A ;. We include this preprocessing technique in our experiments because

it will serve as a baseline for the other two preprocessing techniques.

In the top scatter plot of Figure 5.2, no preprocessing is applied; these are the original
values of the toy one-class data set. The other middle and bottom scatter plots correspond

to the other two preprocessing techniques.

/BSIBODFQSFQSPDFTTJOH

Because the features of the data points in a one-class data set may have different domains,
and because different features may be expressed in different units, each feature may have

a different scale.

Many of the one-class classifiers employ the Euclidean distance measure for determining
the distance between the data points. The scale of the feature directly influences the
distance. On the one hand, features with a rather large scale are considered to be quite
important, because they largely determine the distance between data points. On the other
hand, features with a rather small scale do not matter any more; they have no influence
on the distance. This may result in a ‘badly’ scaled one-class data set that hampers the

performance of the one-class classifier.

To overcome this scaling problem, we apply a preprocessing step that is called the
varijance preprocessing, which is denoted by A 7. Each feature is rescaled separately in
such a way that the variance of the values equals 1. Moreover, the values are shifted such
that the mean of each feature becomes 0. (This is similar to computing a standard score,
with the exception that with standard scores, the standard deviation equals 1). The middle
scatter plot in Figure 5.2 shows the result of applying this preprocessing technique to the

toy data set of the first scatter plot. Here, each feature is equally important.

1$"QSFQSPDFTTJOH

When the data points in a one-class data set have many features, we say that the one-

class data set has a high dimensionality. For example, a data point representing a digital

Preprocessing one-class data sets

image has one feature per pixel. A collection of images that are 100 by 100 pixels results
in a 10;000-dimensional data set. The performance of a one-class classifier may be
hampered by such a high dimensionality, which constitutes a problem. This problem is
known as the ‘curse of dimensionality’ (see Marimont and Shapiro, 1979). The curse of
dimensionality occurs because, as the number of features increase, the volume of the data
set increases exponentially. Stated differently, the Euclidean distances between the data

points increase, causing the relative differences between distances to decrease.

The curse of dimensionality can be mitigated by applying a dimensionality reduction
technique to the one-class data set. The third preprocessing technique that we employ
is Principal Component Analysis (PCA) (Pearson, 1901). The bottom scatter plot in
Figure 5.2 shows the result of applying this preprocessing technique to the toy data set of

the first scatter plot. We note that the preprocessed data set has only one feature.

'"JHV S FPCA.

PCA finds a linear transformation of the original data set such that the new features are
linearly separated. The new features are also called the principal components. The first
principal component usually explains most of the variation in the feature values. PCA is
a Q B S B Ndinhéisidhnlity reduction technique, which is required because we need to

re-apply the same linear transformation to the test data set.

After PCA has transformed the original one-class data set into a new data set, we keep
only the first few numbers of the principal components, viz. those that account for at
least 95% of the total variance. In our toy data set, this results in the second principal

component to be discarded, since at least 95% of the total variance is explained by

Meta-features for one-class data sets

the first principal component. The discarding of principal components ensures that the
dimensionality of the data set is reduced, while maintaining the overall structure of the

original data set.

'SPN UP POF DMBTTEBUBTFUT

We consider a preprocessed data set to be a different data set. From a theoretical point of
view, one may argue that a data point, even though it has been preprocessed, still refers
to the same real-world object, and that the one-class data set remains the same problem.
However, we take a more practical point of view, and argue as follows. Because the values
presented to the one-class classifier are different, the data set is a different problem to
be solved. In any case, it is convenient to call them different data sets. This brings us to
3 85 255 data sets in total.

Once a one-class data set has been preprocessed, its code is appended with a postfix. For
no preprocessing the postfix is ‘N, for variance preprocessing the postfix is V', and for
PCA preprocessing the postfix is ‘P. For example, the code ‘501P’ refers to data set 501
that has been preprocessed by PCA.

.FUB GFBUVSFT

In this section we describe the meta-features that we employ to characterise a one-class
data set % which is the second prerequisite for solving the one-class classifier selection

problem. Formally, a meta-feature is defined as follows.

Deénition 0.0 (Meta-feature). " NFUB GFBUVSF JToB NBRQE®H T TBJE
UP CFBDIBSBDUFSJTUJ®B>PIGOP OH BB TT EBR BQBDF PG POF
EBUBTFUT D& 4FDUJPO

So, a meta-feature can be seen as a function that takes a one-class data set as input
and produces a scalar value as output. A collection of meta-features therefore produces
a vector of values. In other words, each one-class data set is represented by a feature
vector. (See Subsection 2.2.1 for a more detailed explanation of feature vectors.) Each
feature vector is to be accompanied by a label. For example, the label can denote the one-
class classifier that performed best on that one-class data set. (Other types of labels are
discussed in Chapter 6.) We note that a combination of feature vectors and labels is, in

fact, a labelled meta-data set.

Meta-features

If the values of the meta-features correlate with the labels, then meta-rules can
be formulated (cf. the example rule found by the StatLog project mentioned in
Subsection 5.3.2). Such meta-rules can then be used to recommend a domain expert
which one-class classifier to should be applied on a new one-class data set. Here we note
that constructing meta-rules is the goal of Chapter 6. We recall that the goal in the current

chapter is to find appropriate meta-features.

Ideally, we would only employ meta-features that can be computed from the normalities,
because anomalies are assumed to be rare (cf. Chapter 1). In Subsection 5.6.1 we discuss
to what extent this assumption affects the quality of the meta-feature values. We employ
both (1) novel meta-features and (2) existing meta-features from the scientific literature.

The meta-features are grouped into six categories.
1. Elementary meta-features (Subsection 5.6.2)
2. Statistical meta-features (Subsection 5.6.3)
3. Decision tree-based meta-features (Subsection 5.6.4)
4. Information-theory-based meta-features (Subsection 5.6.5)
5. Euclidean-distance-based meta-features (Subsection 5.6.6)
6. Miscellaneous meta-features (Subsection 5.6.7)

The meta-features were chosen because of their (1) usage within the research area of

meta-learning and (2) effectiveness to characterise data sets.

$PNQVUJOHNFUB GFBUVSFT

In the thesis, as mentioned in Chapter 1, anomalies are assumed to be rare. The
assumption implied that in our comparative experiment, the one-class classifiers were
trained on the normalities only (cf. Tax, 2001). Here we remark that in case the data set
contains both sufficient normalities and anomalies, the operator may be better supported

by employing a binary classifier instead of a one-class classifier.

In order to maintain the assumption, the meta-learning approach should employ meta-
features that are based on the normalities only. This differs from meta-learning for binary
classification, where meta-features are based on both classes. As a result, we cannot

straightforwardly employ all the meta-features proposed in the literature.

Our implementation of the assumption that anomalies are rare may be too strict in order

to solve the one-class classifier selection problem. Between employing (1) all anomalies

Meta-features for one-class data sets

(as is the case in meta-learning for binary classification) and (2) no anomalies at all
(as is the case in meta-learning one-class classification), there exist a range of fractions
of anomalies. Indeed, the term ‘rare’ is vaguely defined. So, in order to solve the one-
class classifier selection problem, we start relaxing the implementation of employing no
anomalies at all. Now the following question arises: IPX NBOZ BOPNBMJFT TIPVME
UP DPNQVUF UIF NFUB GFBUYV ®h Thdoie BaitiOwe aDiMBeinplog BUB T F
as few anomalies as possible, in order to maintain a realistic situation of rare anomalies.
On the other hand, we expect that employing more anomalies increases the reliability of
the meta-features and thus increases the extent by which the one-class classifier selection
problem may be solved using a meta-learning approach. In Chapter 6 we investigate the

balance between (1) a realistic situation and (2) reliable meta-features.

Below we describe the five-step procedure for computing a meta-feature of a one-
class data set % The Iris flower data set, introduced in Subsection 2.6.1, has 50 data
points from each of the three classes ‘setosa, ‘versicolor, and ‘virginica. Applying the
relabelling procedure to the Iris flower data set, three one-class data sets are constructed
(cf. Subsection 2.6.1). The three data sets are listed in Table 5.1, and have the codes 501,
502, and 503, respectively. For brevity, we refer to specific one-class data sets by their
code instead of by their name (cf. Tax, 2012). We use data set 501 to explain the five-step

procedure.

The first step is to initialise the data set, and count the number of normalities and
anomalies. Data set 501 contains 150 data points in total, of which 50 normalities and
100 anomalies (i.e., S&S 50; S$ S 100).

The second step is to apply stratified ten-fold cross validation (cf. Subsection 2.8.3). Cross
validation increases the reliability of the value of the meta-feature and prevents over-
fitting (cf. Kohavi, 1995). In each of the ten iterations of the cross-validation, we have 90%
of the original data points available. For data set 501, this corresponds to 45 normalities

and 9o anomalies.

The third step is to apply one of the three preprocessing methods discussed in

Section 5.5.

The fourth step is to vary the number of anomalies. Initially, we let the data set contain
only normalities, i.e., % $. Subsequently, from the set of available anomalies $,, we
add a number of anomalies that equals a fraction eof the number of normalities. More
precisely, we let S$, Sbe equal to €S$y Sfor each e>70:0;0:1;0:2¢. When e 0, no

anomalies are present in the data set. When e 1, the number of anomalies is equal to

Meta-features

the number of normalities, which corresponds more to a binary meta-learning setting.
The anomalies are chosen randomly from the set of available anomalies. For data set
501, € 0:2, corresponds to randomly selecting nine anomalies from the 9o available
anomalies. Because the anomalies are chosen randomly, we repeat this step ten times.
Here we remark, for completeness, that we aim for a low value of ethat still produces

reliable meta-features.

The fifth step is actually to apply the meta-feature fto the one-class data set %that was
produced by the steps two, three, and four. Because of the ten-fold cross validation from
step two, and the randomly selected anomalies from step four, this step is performed 100
times, and thus produces 100 values. The final value of the meta-feature of the original

one-class data set is the average of the 100 values.

&MFNFOUBSZNFUB GFBUVSFT

The first category of meta-features are the elementary meta-features. These meta-features
are employed by most references (see King et al., 1995; Sohn, 1999; Kopf, Taylor, and
Keller, 2000; Ali and Smith, 2006). Below we list five of them. They are defined as

follows.
0. Number of normalities

This meta-feature returns the number of normalities in the data set.

fnumber—of—normalities % Sﬂi\f S;

where $y is the set of normalities.

0. Number of anomalies

This meta-feature returns the number of anomalies in the data set.

fnumber—of—anomalies % Sﬂ% S

where $ is the set of anomalies.

0. Dimensionality
This meta-feature is also known as the number of features or attributes in the data

set.

9
fdimensionality 70 N

Meta-features for one-class data sets

where Nis the number of features of the one-class data set.

0 & 0. Ratio of binary and categorical features
We assume that each feature within a one-class data set belongs to one of three types:
(1) binary, (2) categorical, and (3) continuous. We define the following two meta-

features, that measure the ratio of the binary and categorical features.

f o e,

binary-features 4l _N ’

- Np

fcate ical-fe » -
gorical-features N

where Ng and Np denote the number of binary and categorical features,

respectively.

4UBUJTUJDBMNFUB GFBUVSFT

The second category of meta-features is based on descriptive statistics (see Sohn, 1999;
Kopf et al., 2000; Ali and Smith, 2006). Below we list eleven of them. (Please note we

number the meta-features throughout.)

0. Mean
The meta-feature mean computes for each feature Kn the one-class data set the mean

of the values, and returns the average of those means.
] ON
fean # — Y5
e ON ?1 % e

where Yjis the R feature value of data point X

0, 0 & [0. Standard deviation
The meta-feature standard deviation computes for each feature Kn the one-class
data set the standard deviation of the values, and returns the average of all of
them. ;

POy

(0]
~on L N PJI%KG£?1 YJ,KZ_
1:std—mean /e T\' %1 0 o :

We also compute the maximum standard deviation,

f

std-max % mKaIX O O

é
N A P35 \?JKGf?l YJ‘KZ_

Meta-features

and the standard deviation of the standard deviations of each feature,

f\ N N 2
2

A P15 CI':P 3151 .

N N '

fstd-std %

where s is a vector of length N that contains the standard deviation of each

feature.

00. Normality ratio
This meta-feature computes the ratio of normality of the one-class data set. For each
feature in the data set, it performs the Lilliefors test that tests the hypothesis whether
the values could have been generated from a Normal distribution. The Lilliefors test
is a 2-sided goodness-of-fit test suitable when a fully-specified null distribution is
unknown and its parameters must be estimated (Lilliefors, 1967). This meta-feature
ranges from 0 (no features are Normally distributed) to 1 (all features are Normally

distributed).

“ 1
fnormality-ratio % _N
00 & O0. Kurtosis
The meta-feature kurtosis computes for each feature Kn the one-class data set the
kurtosis of the values, and returns the average of them. Kurtosis is a measure of
‘peakedness’ of a distribution of values. For example, when the values of one feature
are distributed normally, then the kurtosis is 3.

A~

1
0 —
N

1:kurtosis—mean

Besides the average kurtosis, we measure the maximum kurtosis over all the features

in the one-class data set.

fkurtosis—max

00. Skewness
The meta-feature skewness computes for each feature Kn the one-class data set the
absolute skewness of the values, and returns the maximum of them. Skewness is a

measure of asymmetry of the distribution of values. Because values may be skewed

Meta-features for one-class data sets

to the left or right, we take the absolute skewness.

-~ N -
foewness 78 max SEewS Y Yk ¥ki::; YorSS
00, 00 & OC. Eigenvalues

To compute the meta-features concerning eigenvalues, we first compute the sample

covariance matrix of the one-class data set. Then we compute the eigenvalues of the

g C e C C esand Ssthe rank of the covariance matrix. The largest and smallest

eigenvalues (cf. Ali and Smith, 2006) are

f " g,

eig-max

1:eig—min % €s

The relative importance of the largest eigenvalue (cf. Kopf et al., 2000) reads

S
feig—max—rel % Q“‘? &
1

Here, we note that the eigenvalues are non-negative, so the sum is strictly

positive.

%FDJTJPOUSFF CBTFENFUB GFBUYV SIEI

The third category of meta-features is based on decision trees. A decision tree is structure
where leaves represent labels ™nomaly; normalityZ and branches represent conjunctions
of features that lead to those labels (Quinlan, 1986). Figure 5.4 shows a decision tree
that is induced from data set 501N. For example, a data point with feature vector
X 5:1;3:5;1:4;0:2 is classified as a normality. We note that the absence of the
second feature Y may indicate that it does not play an important role (see Peng et al.,

2002).

The algorithm that constructs the decision tree works top-down by choosing at each step,
the feature with the highest Gini index of diversity (Mingers, 1989). The Gini index of
diversity is a measure of how often a randomly chosen data point from the data set would
be incorrectly labelled if it were randomly labelled according to the distribution of labels

in the subset.

Meta-features

54N0gal$

"JHV S F A decision tree induced from data set 501. From
the decision tree we calculate several properties that serve as
meta-features.

The idea is that the properties of the tree (e.g., shape and complexity) are a predictor of
the complexity of the one-class data set (cf. Bensusan, Giraud-Carrier, and Kennedy,
2000; Peng et al.,, 2002). A larger tree, for example, may indicate that the one-class
data set is more complex and that it may degrade the performance of certain one-class
classifiers. Bensusan et al. (2000) found that the depth and the number of leaf nodes
depend on (1) the amount of noise, (2) the number of irrelevant features, and (3) the

class distribution.

We assume, similar to Bensusan et al. (2000), that the decision trees are not pruned,
that is, no branches are cut. We remark that the decision tree is thus constructed anew
for each time the meta-feature is computed, i.e., 100 times. Twelve decision tree-based

meta-features are defined below.

00. Number of nodes

The number of nodes in the decision tree is defined as follows:

fnumber—of—nodesA % SSS D

where 5denotes the decision tree induced from one-class data set.

Meta-features for one-class data sets

00. Number of leaves

The number of leaves in the decision tree is defined as follows:

f "% S S

number-of-leaves
where - is the set of leaf nodes.

00. Nodes per class

The number of nodes per class is defined as follows:

n S5S
f % —:

nodes-per-class 2

00. Nodes per data point
The meta-feature nodes per data point computes the ratio of the number of tree
nodes to the number of data points.

~ S5S
f % ;

nodes-per-data-point o'
where S5Sdenotes the number of nodes in the tree.

00. Depth
The meta-feature depth measures the longest path from the root node to a leaf
node. The length of a path is the measured by the number of nodes it contains. The
depth indicates how difficult it is to represent the one-class data set by a decision

tree.
fdepthA % maxSlS | 1>1 5;

were 1" & denotes the set of all paths in 5and S1Sdenotes the number of nodes in
the path. Paths are assumed to start at the root node. The depth of the decision tree
in Figure 5.4 is 7.

00. Width
The meta-feature width computes the width of the decision tree, which is defined
as the maximum number of nodes in a level:

foan ¥ maxT5st.level” /o JI P>S1;2;:::; fE,:(yL:JI

Wi

The width of the decision tree in Figure 5.4 is 4.

Meta-features

00. Shape
The meta-feature shape is a function of the probabilities of arriving at the various
leaf nodes given a random walk down the tree. The probability of arriving at node
| jamong the Nsibling nodes from the ancestor / gis givenby Q/3 Q/g~N
where Q/ g 1ifitis the root node. The shape of the decision tree with is then
measured using the probability of arriving at the leaf nodes Q -* by the following

equation.

~

fshape % Q Q - logz Q -.!
>

00. Number of repeated nodes
The meta-feature number of repeated nodes measures how many features are
represented by more than one node. A high value indicates the need for feature
re-description.
N

fnumber—of—repeated—nodesA % ? U 5TG/e JUAT
1

where G/e indicates the feature that node / is concerned with.
00. Leaf corroboration
The meta-feature leaf corroboration computes the mean support of each leaf node.

The support of a leaf node is defined as the number of data points (both normalities

and anomalies) terminating in that leaf node.

0 1 .
fleaf-corroboration 8 S-_S(_g T
where - is the set of leaf nodes and T -» denotes the support of leaf node -.

00. Impurity
The meta-feature impurity computes the impurity of the tree, which is defined as

the average Gini’s Diversity Index at each node in the tree:
f "9 ! [o /e
impurity 7 8_58(25 @ Q) ’

where & /¢ and G/« denote the probability that a data point will be classified as

anomaly and normality, respectively.

Meta-features for one-class data sets

00. Mean error
The meta-feature mean error computes the average error of the decision tree, where

error is defined as the probability that a data point will be mis-classified.
f " 0% L Q F-;
mean-error S_ S N

where F -» denotes the error of leaf node -.

OC. Total error
The meta-feature total error computes the total error of the decision tree, where
error is defined as the probability that a data point will be mis-classified.

f

total-error

" Q F-

*OGPSNBUJPO UIFPSZ CBTFENFUB GFE

00. Correlation between meta-features
The meta-feature correlation between meta-features computes the average correla-
tion between all pairs of meta-features. More precisely, it is the pairwise Pearson’s
linear correlation coefficient between each pair of meta-features in the one-class

data set, and is mathematically defined as follows:

2 N N cov%ojfz_

1:correlation,\ % NN 1e ? » K K ’
1 1 JIFK

where cov¥b; f is the covariance between meta-feature dnd Knd k ,is the variance

of meta-feature J

&VDMJIJEFBO EJTUBODF CBTFENFUB GF

The fifth category of meta-features calculates statistics of the Euclidean distances between
all pairs of data points in the data set. The rationale is that many of the one-class classifiers
use the Euclidean distances as the dissimilarity measure. To the best of our knowledge,

this category of meta-features has not yet been explored.

Meta-features

Let e be a vector of length O O 1+~2 that contains the Euclidean distances between all

pairs of data points:

N

- 2
e Q SY%L it BPX'L; ;0; K™, ;J 1
L

BT

1

The vector € can also be thought of as the flattened upper triangle of the dissimilarity

matrix D as discussed in Subsection 4.2.1.

We compute five statistics of the Euclidean distance vector e: (1) the mean, (2) the
median, (3) the standard deviation, (4) the skewness, and (5) the kurtosis. These five
statistics serve as five meta-features to the one-class data set %and are defined as

follows.

00. Mean of Euclidean distances

The mean of the Euclidean distances is defined as follows:

f

"o T
euclidean-mean 08 mean [

00. Median of Euclidean distances

The median of the Euclidean distances is defined as follows:

feuclidean-median % median” F:

00. Standard deviation of Euclidean distances

The standard deviation of the Euclidean distances is defined as follows:

feuclidean-std % std” F:

00. Kurtosis of Euclidean distances

The kurtosis of the Euclidean distances is defined as follows:

"o kurt” F:

feuclidean—kurtosis

Meta-features for one-class data sets

00. Skewness of Euclidean distances

The skewness of the Euclidean distances is defined as follows:

f % skew F:

~
euclidean-skewness

JITDFMMBOFPVTNFUB GFBUVSFT

The sixth category contains two miscellaneous meta-features that do not belong to any

of the other categories: hardness and variance curve.

00. Hardness
The meta-feature hardness is a defined as the misclassification rate of a 1-Nearest

Neighbour classifier.

. 1 ° ..
fhardness % _OQ TMZJX ¥
J1

where ™Zx W is 0 when data point has been correctly classified, and 1 otherwise.
It is known as a landmarking meta-feature because by using a fast algorithm, such as
the 1-Nearest Neighbour classifier, we may get an idea of the difficulty, or hardness,
of the one-class data set. When there are no anomalies present in the one-class data

set, we randomly insert them, making it possible to use this meta-feature.

00. Variance curve
The meta-feature variance curve intends to inform us on how much difference in

variance there is between each feature in the one-class data set.

_Phik,

f "% ;
N maxJkJ

variance-curve
where Kk denotes the variance of feature Jand Ndenotes the number of features.
The meta-feature variance curve is defined between 0 and 1. Its value is 1 when
all features in the one-class data set have the same variance. The lower the value
is, the more difference there is in the variance between features. A high difference
in variance between features may indicate badly scaled features, rendering the

Euclidean-distance measure inadequate for one-class classification.

Meta-features

SFTVMUTBOEEJTDVTTJPO

In this section we present the main result of the chapter, which are the 36 meta-features.
To investigate the 36 meta-features more closely, we visualise the distribution of the
values they produce for the 255 one-class data sets with density plots. A density plot
shows how the values are distributed across the one-class data sets and may reveal
whether the values are suitable for the task of adequately predicting a one-class classifier
for a given data set (so the x-axis is the value and the y-axis is the density). The density is
estimated using Kernel Density Estimation (KDE). We may see negative values because
KDE applies some smoothing to the values. Figure 5.5 shows 36 density plots, one for
each meta-feature. We plot the distribution for three values of € namely, 0:0, 0:1, and
0:2. This allows us to investigate whether the distribution of meta-feature values changes

as the number of anomalies is increased.

When the meta-feature value is 0 for all one-class data sets, the density plot displays a
flat line. This is the case for the meta-features ‘number-of-anomalies’ and ‘impurity’, for
e 0:0.

For some meta-features, the values can become disproportionally high. This results in
a badly scaled meta-feature which makes meta-learning more difficult. Consider, for
example, the meta-features ‘dimensionality’, ‘std-std; and ‘eig-min’ When we look at their
distributions in Figure 5.5 then we can see that the majority of the values are very low,
and that there are a few outlying values. (We do not need any outlier-selection algorithm
to select those outlying values.) In order to model appropriately the meta-feature on
the entire range of values, we apply the natural logarithm to each value of the meta-

feature.

Table 5.2 provides an overview of all meta-features and indicates on which meta-features

we apply the log transformation.

Figure 5.6 shows, just like Figure 5.5, 36 distributions, but then for each log transformed
meta-feature. By looking at the 36 distributions, we can see that all meta-features are
well-behaved. We note that we only apply the log transformation to those meta-features

that need that transformation.

Figure 5.7 shows a two-dimensional scatter plot of the 255 one-class data sets. Each
marker in the scatter plot represents a one-class data set. The code of data set can be

found next to each marker. The shape of the marker, i.e., a circle, a square, or triangle,

Meta-features for one-class data sets

5B C M FOverview of the 36 meta-features used in our experiment. The column ‘Apply log’ indicates
whether we apply the log transformation to the values of that meta-feature.

indicates whether the data set is preprocessed with None, PCA, or Variance technique,

respectively.

The position of each marker is based on the 36 meta-feature values of the corresponding
one-class data set. Each one-class data set is therefore represented by a vector with
a length of 36. So, we actually have a meta-data set of 255 instances and with a
dimensionality of 36. To visualise the 36-dimensional meta-data set, we employ t-SNE,
which is a non-linear dimensionality reduction technique (van der Maaten and Hinton,
2008). t-SNE reduces the dimensionality of the meta-data set to two, while preserving
the local structure. As a result, one-class classifiers that have similar meta-features will
appear close together in the scatter plot. Figure 5.7 is thus a visualisation of one of the

meta-data sets that we will use in Chapter 6.
The meta-features used in Figure 5.7 are standardised and have the log transformation
applied to them (as indicated in Table 5.2). Moreover, €is set to 0:1, so the meta-features

are based on one-class data sets with some anomalies.

Results and discussion

E4Nn0gls

"J H V S FDensity plots of the raw meta-features for B-=0.0, 0.1, and 0.2.

Meta-features for one-class data sets

'JHVSF $POUJOVFE

Results and discussion

»
w
O
Cc
all

"J H V S FDensity plots of the log-transformed meta-features for B-=0.0,0.1, and 0.2.

Meta-features for one-class data sets

'JHVSF $POUJOVFE

Results and discussion

»
w
O
Cc
all

"JHV S FTwo-dimensional t-SNE plot of 255 one-class data sets based on meta-feature values.

Meta-features for one-class data sets

'JHVSF $POUJOVFE

Results and discussion

The one-class data sets belonging to the same group (i.e., 501N, 501P, and 501V) all have
the same colour. None-processed one-class data sets (circles) are connected to the PCA

data sets (squares) with a solid line and to the Variance data sets with a dashed line.

The figure shows that for most one-class data sets, preprocessing drastically changes the
values of the meta-features. This results in data sets within the same group to be at very
different positions in the scatter plot. However, some groups of data sets do not seem to
be affected as they appear close together. For example, the Iris data sets (501, 502, and
503), as shown in inset (a) all appear close together. The same holds for the group of one-
class data sets in insets (b) and (c). Insets (d), (e), and (f) highlight data sets where one
preprocessing greatly affects the meta-features. Moreover, we can see in insets (e) and (f)
that many data sets preprocessed with the same technique are located together. From the
presence of clusters indicates we may conclude that the meta-data set contains structure.
(Whether this structure corresponds to one-class classifier performance is investigated
in Chapter 6.)

The size of each marker is actually a preview of what is yet to come—it represents the
average AUC that is obtained by applying the 19 one-class classifiers of Chapter 6 on the

associated one-class data set.

$IBQUFSTVNNBSZ

In this chapter we started with our quest to answer RQ3: 5P XIBU FYUFOU DBO XF
UIF POF DMBTT DMBTTJ FS TEFMFDUJPO Q SIRCrafisnhlediT JOH B |
the quest was that we observed that the ‘No Free Lunch’ theorem also applies to one-
class classification. The theorem implies that there is no single best one-class classifier.
In other words, for each one-class data set, there may be a different one-class classifier
that performs best. Our goal is to select automatically the best one-class classifier using

a meta-learning approach.

We stated four prerequisites that needed to be satisfied in order to solve the one-class
classifier selection problem using a meta-learning approach: (1) a large number of one-
class data sets, (2) suitable meta-features, (3) a large number of one-class classifiers,
and (4) a performance measure. In this chapter, we satisfied prerequisites (1) and (2)
as follows. (Prerequisite (3) will be satisfied in Chapter 6 and prerequisite (4) was already

satisfied in Chapter 2 as the AUC performance measure.)

Meta-features for one-class data sets

We presented 85 one-class data sets. Because of two preprocessing techniques, (1)
variance and (2) PCA, we actually had 255 one-class data sets. We defined 36 meta-
features from six categories: (1) elementary meta-features, (2) statistical meta-features,
(3) decision tree-based meta-features, (4) information-theory-based meta-features,
(5) Euclidean-distance-based meta-features, and (6) miscellaneous meta-features. We
applied the 36 meta-features to the 255 one-class data sets, which produced a set of
meta-feature values. The 3 36 255 meta-feature values are used as input for the next
chapter, where we use meta-learning to relate the meta-features to one-class classifier

performance.

Chapter summary

L
o
o
m
¥

$POUFOUT

In this chapter we will complete the answer to RQ3: 5P XIBU FYUFOU DBO XF TPMWF |
DMBTTJOFS TFMFDUJPO QSPCMF hh brded 0 #thBvAltRdt) Be MIFBSOJOH B
the 36 meta-features computed in Chapter 5. We apply 19 one-class classifiers to the 255 one-

class data sets. We start describing our meta-learning strategy of learning when to select which

one-class classifier. Three baseline strategies are introduced to put our strategy into perspective.

The quality of the four strategies is compared and discussed. Finally, we provide our conclusions

to RQ3.

OVUMJIOF
Defining mapping and strategy. Overview of one-class classifiers. Applying 19 one-
class classifiers to 255 one-class data sets. A meta-learning strategy for a selection mapping.

Three baseline selection strategies. Results and discussion. Chapter conclusions.

In this chapter we continue to answer RQ3: 5P XIBU FYUFOU DBO XF TPMWF
DMBTTJ FSTFMFDUJPO QSPCMFN WékQIHBnNFhipBr MkeBS OJ O+
four prerequisites to solving the one-class classifier selection problem using a meta-

learning approach. For clarity, we reiterate them here.

1. A large number of one-class data sets of various complexities.
2. Existence of suitable meta-features to characterise the one-class data sets.
3. A large number of diverse one-class classifiers to apply to the one-class data sets.

4. A performance measure to evaluate one-class classifier performance.

Prerequisites (1) and (2) have been satisfied in Chapter 5 by introducing 255 one-class
data sets and 36 meta-features. Prerequisite (4) is satisfied as it is the AUC performance
measure. In the current chapter we start defining the one-class classifier selection
mapping and a corresponding strategy in Section 6.1. In Section 6.2 we introduce the
19 one-class classifiers used in our experiments. In Section 6.3 we explain how we apply
the one-class classifiers to the 255 one-class data sets. In Section 6.4 we describe our
meta-learning-based one-class classifier selection strategy. In Section 6.5 we introduce
three one-class selection strategies that do not involve meta-learning that are used to
put our strategy into perspective. In Section 6.6 we present and discuss the results and
compare the four one-class classifier selection strategies. In Section 6.7 we provide our

chapter conclusions and answer RQ3.

%FOOJOHNBQQJOHBOETUSBUF

We employ the four prerequisites to find the selection mapping 4 G%e (cf. Defini-
tion 5.1). Below we give two important definitions, one on one-class classifier selection

mapping and one on one-class classifier selection strategy.

Deénition [.0 (One-class classifier selection mapping). " POF DMBTT DMBTTJ FS
NBQQJOHJT B G¥OD®W UPBUMUBLFT BT JOQVUY% BOE ®SMBVISTCE
BPOF DMBTTDMBTTJ FS G UIBUJTUPCFBQQMJFEUP UIBL

A one-class classifier selection mapping is obtained by employing a strategy, which we

define as follows.

Deénition 0.0 (One-class classifier selection strategy). " POF DMBTT DMBTTJ FS
TUSBUFHZJTBOZQSPDFEVSFUIBUSFTVMUTJOBPOF DMB-

Meta-learning for one-class classifiers

OWFSWIJFXPGPOF DMBTTDMBT"

In our experiments we employ 19 different one-class classifiers. Seven one-class
classifiers, such as SOS and KNNDD have been employed and discussed in previous
chapters. Discussing every one-class classifier is beyond the scope of this chapter. Any
reader who wishes to learn more on a certain one-class classifier (from the remaining
twelve) is kindly referred to the literature referenced. Table 6.1 lists the 19 one-class
classifiers that we use in our experiments. For each one-class classifier the table states: (1)
the codename we use in the text, (2) the full name, and (3) the reference to the literature

in which more information can be found.

5B C M FOverview of the 19 one-class classifiers.

"QQMZJOH POF DMBTTDMBT I

In Section 5.2 we presented a formal model for the one-class classifier selection problem
(see Figure 5.1 on page 102). The fourth component of that model is the performance
space " 6% which represents the mapping of each one-class classifier to the AUC
performance measure. We are able to obtain a set of AUC performances (i.e., a subset

of the performance space) by applying one-class classifiers to one-class data sets.

Overview of one-class classifiers

In this section we apply the 19 one-class classifiers to the 255 one-class data sets. This

results in 19 255, i.e., 4;845, AUC performance values.

Figures 6.1 and 6.2 show the AUC performances in four matrices. The first matrix
shows the AUC performances that the 19 one-class classifiers obtained on the 85 None-
preprocessed one-class datasets. The one-class classifiers are shown in alphabetical order
along the top side of the matrix, and the one-class data sets are indicated along the
left side of the matrix. The colour of each cell in the matrix corresponds to the AUC
performance. The colour bar on the right shows the mapping from AUC performances
to colours. (Please note that AUC performances between o and o.5 all map to the same
colour, i.e., dark red.) For instance, the top row of the matrix, which corresponds to data
set 501N (cf. Table 5.1 on page 106), shows that all 19 one-class classifiers obtained an

AUC performance of at least 95%.

A black-coloured cell indicates that the AUC performance is missing either because (1)
the one-class classifier was not able to process the one-class data set, (2) the processing

took too long, or (3) something else went wrong.

The second and third matrix show the AUC performances which were obtained on
the one-class data sets that were preprocessed by the Variance and PCA procedures,
respectively. The order of both the one-class data sets and the one-class classifiers in these

two matrices are the same as in the first matrix.

The fourth matrix shows again the AUC performances for the None preprocessed one-
class data sets, but then in a different order. First of all, the columns, i.e., the one-class
classifiers, are ordered by the average AUC performance which is obtained on the 85 one-
class data sets. Second, the AUC performances in each column are sorted separately, in
non-ascending order. So, there is no single one-class data set per row any more. From

this matrix we can see, for instance, that MST has the best average performance.

If we compare the colours in the first three matrices, we can see, on a highly detailed level,
how the preprocessing procedures affect the performance of the one-class classifiers. As
a case in point, the third matrix has quite some more of the red colour than the first and
second matrices, which indicates that the PCA preprocessing is not always beneficial for

the AUC performance.

Figures 6.3 and 6.4 show how the Variance and PCA preprocessing procedures affect
the AUC performance of one-class classifiers, per one-class data set. The data sets are

ordered by the median AUC performance. For each data set, there are two overlapping

Meta-learning for one-class classifiers

box plots. The grey box plot describes the distribution of AUC performances for the
None-preprocessed data sets. The colour of the other box plot is either green or red. The
colour depends on whether median AUC performances of the preprocessed data set is

higher (green) or lower (red) than the None-preprocessed one-class data set.

From the two figures, we can see (1) that the overall performance on, for example, data
set 597 is improved by preprocessing it by the Variance procedure, but also (2) that the
overall performance will be degraded if preprocessed by the PCA procedure.

The computed AUCs are used for evaluating the one-class classifier selection strategies.
Since we know exactly the performance that a one-class classifier may obtain because
all values have been precomputed, we have an upper bound on the AUC performance.
The strategy used selects a one-class classifier for each one-class data set. Of course, we
will compare the precomputed AUC of the selected one-classifier with, for example, the

average or the maximum AUC for that one-class data set.

"NFUB MFBSOJOHTUSBUFHZ GP

We recall from Chapter 5 that we use meta-learning to find a selection mapping 4 G%e
such that we obtain a maximum AUC performance on a given data set % Thus, the
selection mapping is basically a function that maps one-class data sets to one-class
classifiers. (In other words, the one-class data sets are the domain of 4and the one-class

classifiers are the codomain of 4.

In this section we describe our suggested solution to the one-class classifier selection
problem. In other words, we explain how we employ a meta-learning strategy in order to

obtain a one-class classifier selection mapping.

The section is structured as follows. In Subsection 6.4.1, we describe how the meta-
data set looks like. In Subsection 6.4.2, we explain how we prepare the meta-data set for
binary classification. In Subsection 6.4.3, we present the general classification approach.
In Subsection 6.4.4, we discuss how we select a subset of features. In Subsection 6.4.5, we

present the seven variants of the classification approach.

A meta-learning strategy for a selection mapping

E4N0dI$

"J HV S FAUC matrices for preprocessing techniques None (left) and Variance (right).

Meta-learning for one-class classifiers

"J HV S FAUCmatrices for the preprocessing technique PCA (left) and None, ordered by AUC (right).

A meta-learning strategy for a selection mapping

E4N0dI$

"J HV S FBoxplots indicating the influence of preprocessing Variance on the AUC performance.

Meta-learning for one-class classifiers

"J HV S FBoxplots indicating the influence of preprocessing PCA on the AUC performance.

A meta-learning strategy for a selection mapping

SIFNFUB EBUBTFU

As mentioned in Chapter 5, a meta-learning strategy involves machine learning. More
precisely we use a form of classification to obtain a mapping from data sets to one-class

classifiers.

The data set that we use in our machine learning procedure was earlier obtained by (1)
computing 36 meta-features of 255 one-class data sets in Section 5.6 and (2) applying 19
one-class classifiers on the same 255 one-class data sets. Thus, the data set has 255 data
points (the one-class data sets) where each data point is a feature vector of length 36 (the
meta-features). The data set is labelled, but the labels do not have a binary form as seen

thus far. Each data point (one-class data set) has 19 AUC values associated with it.

1SFQBSJOHUIFNFUB EBUBTFUGPSDMB

We cannot straightforwardly apply any classifier to such a labelled data set. Therefore, we
employ the following classification procedure to obtain a mapping from one-class data

sets to one-class classifiers.

At this point we need to handle the data set as follows. The features of each data point
(i.e., the meta-features of the one-class data set) can remain the same. The labels (i.e.,
the 19 AUC values) have to be transformed. Instead of trying to learn a mapping from
the set of one-class data sets to the set of 19 one-class classifiers, we perform a simplified
classification task. Given two one-class classifiers, say Jand Kwe learn which one-class
classifier is the better one. The new label for the data point is 1 if the AUC performance of
one-class classifier Js higher than that of Kand 0 otherwise. On the transformed meta-

data set we apply a binary classifier.

(FOFSBMDMBTTJODBUJPOBQQSPBDI

As stated above we are ready to apply a binary classifier on the transformed meta-data
set. Since the meta-data set has only 255 data points, and since we want to train the
binary classifier with as much data points as possible, the leave-one-out cross-validation

is preferred over the 10-fold cross-validation.

In leave-one-out cross-validation, the classifier is trained on 254 data points and tested
on the remaining data point. As we know, two thirds of the data points are actually

preprocessed versions of the first 85 data sets. So, the binary classifier may be at an unfair

Meta-learning for one-class classifiers

advantage when, for example, the training meta-data set contains one-class datasets
501N and 501P, and we test it for 501V. (These three one-class data sets may have
too many meta-features in common.) The solution is to employ leave- U | Sdatrcross-
validation instead of leave-one-out cross validation. This ensures a fair training and
testing environment. Now, the binary classifier is being trained on 252 one-class data
points and tested on the remaining three data points (for example, 501N, 501P, 501V).

This is repeated 85 times, such that the binary classifier has tested all data points.

We have 19 one-class classifiers, which results in 19 18 ~2 171 pairs of one-class
classifiers. (It does not make sense to compare a one-class classifier with itself and
comparing one-class classifiers Jwith Ks the same as comparing Kvith J The meta-
data set is therefore transformed 171 times and we apply a binary classifier on each of

them.

Since the classifying procedure is quite involved with 171 binary classifiers and leave-
three-out cross-validation, it would be adequate to employ a binary classifier that is cheap
to use. In our experiments we have chosen to employ the K-Nearest Neighbour binary

classifier, where we set K arbitrarily to 3.

We count, per data point, i.e., for each one-class data set, how often each one-class
classifier has been selected by the 171 binary classifiers. The one-class classifier that has
been selected the most often is the one-class classifier that we let our one-class classifier
selection mapping select for that one-class data set. The final result is a mapping of 255

one-class data sets to 255 times one of the 19 one-class classifiers.

In Section 5.7 we noticed that some meta-features have very high values for certain one-

class data sets. To mitigate this, we applied the log transformation.

‘'FBUVSFTFMFDUJPO

In total we have 36 meta-features. Not all 36 meta-features are informative, and some
may even be degrading the quality of the selection mapping. Earlier, for our one-
class data sets, we used PCA as a preprocessing technique to solve this problem
(cf. Subsection 5.5.3). However, if we use PCA on the meta-data set, then we will
not know which meta-feature is the most informative. In other words, we would lose
interesting information. So, rather than performing PCA, we select a subset of the meta-
features using a technique called Recursive Feature Elimination (RFE) (Guyon, Weston,

Barnhill, and Vapnik, 2002).

A meta-learning strategy for a selection mapping

RFE works as follows. A Support Vector Machine (SVM) with a linear kernel is applied
to the meta-data set with all 36 features. The SVM finds an optimal linear separation
(i.e., discriminant function) between the two classes (i.e., 1 if classifier Js better than K
and 0 otherwise). The discriminant function consists of 36 weights, where each weight
determines the importance of a feature. The feature with the least importance (i.e., lowest
weight) is eliminated from the meta-data set. The SVM is applied again, but then on the

remaining 35 features—hence the name Recursive Feature Elimination.

RFE is performed 171 times, once for each pair of one-class classifiers. The 20 features
that are deemed most important after 171 instantiations of RFE are selected to become

the features of the meta-data set that we will use for the meta-learning approach.

4FWFOWBSJBOUT

For our meta-data set, we may choose whether we wish to use meta-features that are (1)
standardised or not, (2) log transformed or not, and (3) selected or not. There is no meta-
data set with ‘selected meta-features’ because applying feature selection to raw meta-
features did not work, i.e., the feature ranking algorithm fails to process the raw meta-
features. This is most likely due to the large values in the raw meta-features. Together
with the raw meta-features, we have seven different meta-data sets which we will employ

for our meta-learning approach. They are:

o raw meta-features;

o standardised meta-features;

« standardised and selected meta-features;
o log meta-features;

« log and selected meta-features;

log and standardised meta-features; and

o log, standardised, and selected meta-features.

Subsequently, we apply each variant to each meta-data set with anomaly fraction e>

70:0;0:1; 0:2:+. This results in 21 selection mappings.

In Section 6.5 we introduce three baseline selection strategies for reason of comparison.
Finally, in Section 6.6 we evaluate the performance of our strategy and the seven

variants.

Meta-learning for one-class classifiers

S5ISFFCBTFMJOFTFMFDUJPO TU.

To put the performance of our strategy into a proper perspective, we introduce three
baseline strategies for selecting a one-class classifier. These three strategies only depend
on the precomputed AUC performances and do not employ any meta-learning. They
are called: random (Subsection 6.5.1), best-on-average (Subsection 6.5.2), and oracle

(Subsection 6.5.3).

SBOEPNTUSBUFHZ

The first strategy is the ‘randomy’ strategy. As the name suggests, this strategy selects
randomly one of the 19 one-class classifiers. This is the same as having no strategy, or

in other words, having no prior knowledge about any of the one-class classifiers.

#FTU PO BWFSBHFTUSBUFHZ

The second strategy is the ‘best-on-average’ strategy. This strategy selects the one-class
classifier that obtained the overall best AUC performance on all data sets. It therefore
always selects the same one-class classifier, independent of the one-class data set at hand.
In our case, this corresponds to the one-class classifier MST. This strategy is useful if one
does have prior knowledge of the one-class classifiers, but does not know when to select

which one-class classifier.

OSBDMFTUSBUFHZ

The third strategy is the ‘oracle’ strategy. The oracle strategy always selects the one-class
classifier with the highest AUC performance possible. This is possible because we have all
the AUC performances at our disposal. If we assume that the 19 one-class classifiers used
in our experiment are the only ones that exist, then this is the optimal strategy. However,
it is also cheating because, in practice, we do not have the AUC performances for a new
data set available—hence the name oracle. It is worthwhile to include this strategy into
our comparisons because this allows us to see how close our meta-learning strategy is to

the optimal performance.

Three baseline selection strategies

SFTVMUTBOEEJTDVTTJPO

In Section 6.4 we introduced our meta-learning strategy to solve the one-class classifier
selection problem. Our meta-learning strategy has seven variants and three settings
of the eparameter, producing 21 selection mappings. In Section 6.5 we described the
random, best-on-average, and oracle baseline selection strategies, which each produce
one mapping. In the current section we compare the four baseline selection strategies by

evaluating the quality of the mappings they produce.

The quality of a mapping is determined by the one-class classifier it selects for each one-
class data set. Given a one-class data set, and the selected one-class classifier, we look
up the precomputed AUC performance (see Section 6.3). Because we have 255 one-
class data sets, each mapping has 255 AUC values associated with it. These 255 values

determine the quality of a mapping.

The meta-learning, best-on-average, and oracle strategies are deterministic in the sense
that they produce the same mapping for the same one-class data sets. The random
strategy is, as its name implies, stochastic, meaning that it produces a different mapping
every time, even if the one-class data sets remain the same. For the random strategy we
use the expected AUC performance on a given data set, which equals the average of all

19 AUC performances obtained for that data set.

The remainder of the section is structured as follows. In Subsection 6.6.1 we compare the
meta-learning strategy to the other three strategies on a high level. In Subsection 6.6.2
we look more closely at how the seven variants of the meta-learning strategy compare to

each other.

.FUB MFBSOJOHTUSBUFHZCFUUFS UIBC

In this subsection we aim to obtain an overview of the qualities of the mappings
that the four strategies have produced. This allows us to see whether there are any
remarkable differences. We recall that, in total, we have 24 mappings (21 from our
meta-learning strategy, and 3 from the other strategies). In order to obtain an adequate
overview of the qualities of 21 mappings, we visualise the distributions of the associated
AUC performances. Figure 6.5 contains, for each mapping, a graph that represents the
distribution of the AUC performances. We recall that the AUC performance range from
0 to 1. The graphs are generated by KDE, which allows us look at the AUC performances

Meta-learning for one-class classifiers

as distributions. Please note that KDE smooths the graphs that causes the values to go
beyond 1. This is a side-effect of most mappings leading to a large number of high AUC

performances.

"J H V S FDistribution of the AUCs of the mappings generated by the four strategies.

The 21 mappings produced by the meta-learning strategy are grouped together for
purpose of establishing a good overview. (We have a closer look at the differences among
the 21 meta-learning mappings in the next Subsection.) The meta-learning mappings
are indicated by light-blue lines. The random, best-on-average, and oracle strategies
are indicated by a grey dashed line, a purple dash-dotted line, and a black dotted line,
respectively. If one line is higher than another line for some AUC performance, then the
corresponding mapping has selected more one-class classifiers that obtained that AUC

performance.

Using Figure 6.5, we now discuss the random, oracle, best-on-average, and meta-learning
strategies respectively. The mapping produced by the random strategy has led to relatively
more AUCs between roughly 0:5 and 0:8 than any other mapping (i.e., expected AUCs,
since the random strategy is stochastic). A consequence is that the random mapping leads
to few AUCs that are higher than 0:8. From the figure we may conclude that the random
strategy has the lowest quality of the four strategies.

We recall that the oracle strategy is to choose the best one-class classifier available

per one-class data set. Thus, the graph shows the distribution of the highest AUC

Results and discussion

performance obtained on the 255 one-class data sets. While this strategy is impossible in

practice, it provides us a perspective.

The random and oracle strategies may be regarded as two extremes at the spectrum of
one-class classifier selection strategies. Selecting a random one-class classifier, on the one
hand, is what we would do if we knew absolutely nothing about one-class data sets, meta-
features, and one-class classifiers. Selecting the best one-class classifier for every one-class
data set, on the other hand, is what we could do if we were omniscient regarding one-class
data sets, meta-features, and one-class classifiers. All mappings produced by the best-on-

average and meta-learning strategies are situated between these two extremes.

The mapping produced by the best-on-average strategy effectively shows the AUC
performances obtained by the MST one-class classifier. We can clearly see that this

mapping has a much higher quality than the average random mapping.

The 21 mappings produced by our meta-learning strategy all have an AUC distribution
similar to that of the best-on-average mapping. This indicates that we are at least looking
at the right direction. However, there appears to some variety between the 21 mappings.
Some mappings have a higher quality than the best-on-average, and others have lower

quality.

Still, the question that remains is, which of the seven variants combined with which

setting of eproduces the best mapping?

$PNQBSJOHUIFTFWFONFUB MFBSOJOH

In this subsection we have a closer look at the seven variants of our meta-learning one-
class classifier selection strategy. Figure 6.6 shows seven sub-plots, where each sub-
plot corresponds to one of the seven variants. Each sub-plot contains a graph of the
meta-learning variant with eset to 0:0, 0:1, and 0:2. Moreover, we have plotted the
random, best-on-average, and oracle mappings. The graphs of these three mappings are
the same in each of the seven sub-plots and therefore provide a good anchoring point for

comparison with the seven variants.

Because we have already seen in Figure 6.5 that all the mappings lie between the random
and the oracle mappings, it makes sense to have a look at the AUC performances relative

to those two mappings.

The y-axis in each sub-plot denotes the relative AUC, and is computed as follows.

Meta-learning for one-class classifiers

The absolute AUC associated with a particular one-class classifier for a particular one-

class data set %is transformed into the relative AUC, which is defined as follows.

Deeénition 0.0 (Relative AUC). F SFMBBSWE B POF DMBTT DMBTTJ FS
TVCUSBDUJOHGASIGC SBOEPINBEGFEMVUEFFE CZ UIF EJ FSFODF ¢
PSBDMF BOE UA$TSBOEPN

AUCYY ; W & AUCY%tl,; 9

AUC g%t ; % — —;
AUC%uly, % & AUCY%u,; %

XIFSFu TVCTDSJQUFECZ. 3 BOEOJOEJDBUF UIF POF DMI
UPCFUSBOTGPSNFE UIFSBOEPNNBQQJOH B&EFOHFIPEBHOM
UIFFYQFDUFE"9/SBWGVFIFGBOEPN NBQQJOH

The relative AUC is 0 when it is equal to the AUC produced by the random mapping
and 1 when it is equal to the oracle mapping. The random and oracle mapping therefore
appear as two horizontal lines in the seven sub-plots. The relative AUC is lower than 0 if it
is lower than the random mapping. The lower bound of the relative AUC depends on both
random and oracle AUCs. We only show the relative AUCs between 1 and 1.

The x-axis represents the 255 data sets. Please note that the data sets are ordered per
mapping, so we cannot compare the performance per data set. We have arranged matters
in this way because otherwise it would be very difficult to compare the mappings.

Moreover, we are most interested in the overall quality of the mappings.

From Figure 6.6 we can see that even the best-on-average strategy is worse at selecting
than the random strategy for some number of one-class data sets. (This is another
confirmation that there is no free lunch for one-class classification. In fact, we may ask
ourselves whether there exists a one-class classifier selection strategy, other than the

oracle strategy, that always performs better than random?)

To compare the seven variants in a better way we define the Average Relative AUC
(ARA).

Deénition [.0 (Average Relative AUC (ARA)). F "WFSBHF 36E#MBG BWROF DMBT
DMBTTJ FSTFMFDUJPONBQQJOH 4JT E6E$SOBE BTCUBRBWHE BB
- POF DMBTTEBUBTFUT

255

ARA" 4 — Q AUC, %4 % ; %
255 3,

Results and discussion

E4N0dI$

"J HV S FComparing the seven variants of the meta-learning strategy with the other strategies.

Meta-learning for one-class classifiers

XIFSP@gEFOPUFT UIF POF DMBTT DMBTTJ FS BT TFMFDUFE
NBQQJOH 4

Table 6.2 shows the ARA of each meta-learning variant. The rows are sorted by the first
column (e 0:0). The last two columns show the differences that € 0:1 and e 0:2

have with respectto e 0:0.

5B C M FARA of each meta-learning variant.

Table 6.2 confirms that all seven variants of the meta-learning strategy perform better
than the random strategy (because they all have a positive ARA). The random and oracle
selection mappings have an ARA of 0 and 1, respectively (see Table 6.3). The best-on-
average strategy has an ARA of 0:51, which puts it between the ‘log, selected’ and the

‘log, standardised, selected’ meta-learning strategies for e 0:0.

5B C M F ARA of each baseline
selection strategy.

Below we discuss the influence of the two dimensions: (1) the setting of eand (2) the
variants. In Chapter 5 we expected that including anomalies in the one-class data sets
for the computation of the meta-features would increase the quality of the meta-learning
mappings. However, from the table we can see that setting eto 0:1 or 0:2, for the four
best performing variants (i.e, those that include the option ‘log’), decreases the mapping
quality. One reason why e 0:1and e 0:2 perform worse, is that the meta-features do

not distinguish between the two classes. So, including anomalies may distort the values of

Results and discussion

the meta-features in a negative manner. Thus, increasing the fraction of anomalies used

to compute the meta-features, generally decreases the performance.

The variant ‘log, standardised, selected” employs all the three options and it performs best.
Its ARA is 58% higher than the raw variant, which employ none of the three options. This
means, in a general sense, that the quality of the meta-learning strategy can be improved

by transforming and selecting the raw meta-features.

Now the time is ripe to discuss the influence of the three options (i.e., log, standardised,
and selected) on the quality of the meta-learning mapping. The variants that employ the
log option appear to be the best four variants. Just employing the log option to raw meta-
features increases the ARA from :33 to :49. The influence of the standardised option is
not consistent. On the one hand, employing the standardised option on the raw meta-
features increases the quality to :043 and to the ‘log, selection’ variant it adds :02 ARA.
On the other hand, employing it in combination with the log option, it does not appear
to make a difference. The selected option, in general, does improve the quality, but not
too much. It increases the ‘log’ variant by :01 and the ‘log, standardised” variant by :03.

It decreases the quality of the ‘standardised’ variant by :04.

$IBQUFSDPODMVTJPOT

In this chapter, we continued with our journey to answer RQ3: 5P XIBU FYUFOU DBO XF
UIFPOF DMBTT DMBTTJ FS TFMFDUJPO Q SR MeRappléd JOH B |
19 one-class classifiers to the 255 one-class data sets presented in Chapter 5. Second, we
defined the terms one-class classifier selection strategy and one-class classifier selection
mapping. Third, we presented our suggestion to solve the one-class classifier selection
problem, by a meta-learning strategy. The aim of the meta-learning strategy was to
learn a mapping from one-class data sets to one-class classifiers, such that the AUC was
maximised. To learn the mapping, the 36 meta-features of Chapter 5 were used to form
a meta-data set. The meta-data set had one parameter, € which controlled the fraction
of anomalies present, when computing the meta-features. The meta-learning strategy
had seven variants, which, together with three settings for € resulted in 21 different
one-class classifier selection mappings. Fourth, three baseline selection strategies were
introduced: random, best-on-average, and oracle. These three strategies were meant to

put the performance of our meta-learning strategy into perspective. Fifth, we compared

Meta-learning for one-class classifiers

and discussed the quality of the four strategies. We are now ready to formulate our

conclusion to RQ3.

To answer RQ3 we need to define what it means to solve the one-class classifier selection
problem completely. According to the model in Chapter 5, the question reads: when do

we arrive at a one-class classifier selection mapping that maximises the AUC?

In Subsection 6.5.1, we defined that the random one-class classifier selection strategy is
actually equal to having no strategy. It therefore makes sense to define this as the lower
bound. Moreover, the oracle strategy delivers what is the maximal achievable result. We
know this for sure, because we had precomputed all AUC performances by applying 19
one-class classifiers to 255 one-class data sets. In Subsection 6.6.2, we defined the ARA,

which is, by definition, 0 for the random strategy and 1 for the oracle.

So, when we consider the variant of our meta-learning strategy with the highest ARA,
namely the ‘log, standardised, selected’ variant, then we may conclude that, given the
255 one-class data sets and 19 one-class classifiers, we can solve the one-class classifier

selection problem using a meta-learning approach for 52%.

In our quest to answer RQ3, which spans Chapters 5 and 6, we have made the following

choices regarding the four prerequisites and our meta-learning approach:

« 255 one-class data sets,

o 36 meta-features,

e 19 one-class classifiers,

« AUC performance measure,

 Optional log transformation of certain meta-features,

 Optional standardised of meta-features,

« Optional selecting top 20 meta-features,

o Feature selection using a Support Vector Machine with a linear kernel, and

 Using 191 3-NN binary classifiers for multi-label classification using.
These choices together offered a complete exercise into applying meta-learning for the
one-class classifier selection problem. Some of these choices were based on availability
(e.g., the data sets and one-class classifiers), some were supported by scientific literature

(e.g., the meta-features), and some were guided by preliminary results (e.g., log

transformation, feature selection).

Chapter conclusions

54N0dls

We do not claim that these choices are all optimal. Many choices could have been made
differently, which may have led to better solutions of the one-class classifier selection
problem. However, it is beyond the scope of this thesis to provide a complete exploration

of all choices made; that would take too much time.

On the basis of our results as shown in Chapters 5 and 6, we believe that the one-class
classifier selection cannot be solved completely. In other words, we believe that there is
no strategy that obtains an ARA of 1:0 (unless the number of one-class data sets and
one-class classifiers is trivially low). The reason for our belief is that we experience that,

just as with one-class classification, there is no free lunch for meta-learning.

Meta-learning for one-class classifiers

$POUFOUT

This chapter provides answers to the three research questions posed in Chapter 1. Moreover, a
definitive conclusion to the problem statement is formulated. Finally, four directions for future

research are suggested.

OVUMJIOF

Answers to the research questions. Answer to the problem statement. Future research.

In this chapter we answer the three research questions on the basis of the work
presented in the thesis (Section 7.1). Subsequently, we formulate our conclusion to the
problem statement (Section 7.2). Finally, we suggest four directions for future research

(Section 7.3).

"OTXFSTUPUIFSFTFBSDIRVFTU

Research question:)PX TIPVME XF FWBMVBUF BOE DPNQBSF U
PGPVUMJFS TFMFDUJPO BMHPSJUINT

The answer to the first research question is derived from Chapters 2 and 3. In Chapter 2
we described four methods for the evaluation of outlier-selection algorithms and one-
class classifiers: (1) derivation of one-class data sets from multi-class data sets, (2)
simulation of anomalies, (3) cross-validation with training and test data sets, and
(4) computation of the AUC performance measure. Moreover, we described three
techniques to compare the performances: (5) the Friedman test, (6) the post-hoc

Neményi statistical test, and (7) the critical difference diagram.

In Chapter 3, we aimed to evaluate and compare five outlier-selection algorithms from
the fields of ML and KDD. However, prior to the evaluation, i.e., applying the outlier
selection to one-class data sets, we framed LOF and LOCI into the one-class classifier
setting. By doing so, each outlier-selection algorithm was treated under the same
circumstances. Subsequently, we were able to employ the four evaluation methods and

three comparison techniques listed above.

Although AUC is the most widely-used performance measure within Machine Learning,
it is certainly not the only way to evaluate outlier-selection algorithms and one-class
classifiers. In any case, we strongly discourage the use of visualizing the classifications
by the algorithms only, since that may lead to a subjective evaluation. Instead, we advise
to employ (1) a performance measure that has a proven statistical validity and (2)
statistical tests to compare the performances and to test whether there is any significant

difference.

From our own experimental approach and results we may conclude that outlier-selection
algorithms should be evaluated and compared by: (1) ensuring that they are treated
under the same circumstances, (2) measuring their performance in an objective manner
using statistically valid techniques, and (3) comparing their performance with statistical

tests.

Conclusions

Research question 0: $BO BO F FDUJWF PVUMJFS TFMFDUJPO B
UIBUFNQMPZTUIFDPODFQUPG B 0OJUZ

The answer to the second research question is derived from Chapter 4. We developed
and evaluated the Stochastic Outlier Selection (SOS) algorithm, a novel, unsupervised
algorithm for classifying outliers in a data set. SOS employs the concept of affinities to

compute for each data point an outlier probability.

From our empirical results we observe that (1) SOS is an effective algorithm for
classifying outliers in a data set and that (2) SOS compares favourably to state-of-
the-art outlier-selection algorithms. We may therefore conclude that the concept of
affinities, which forms the basis SOS, is successfully applied to the problem of outlier

selection.

Research question 0: 5P XIBU FYUFOU DBO XF TPMWF UIF POF
TFMFDUJPO QSPCMFNVTJOHBNFUB MFBSOJOHBQQSP

The answer to the third research question is derived from Chapters 5 and 6. We defined
that the one-class classifier selection problem is completely solved when we have found
a one-class classifier selection mapping that maximises the AUC. We employed the ARA

to evaluate to what extent we solve the one-class classifier selection problem.

On the one hand, we have the random one-class classifier selection strategy, which is
equal to having no strategy, i.e., an ARA of 0. On the other hand, we have the oracle
strategy, which is what is maximal achievable, i.e., an ARA of 1. In other words, the
random and the oracle strategies solve the one-class classifier selection problem for 0%

and 100%, respectively.

The ‘log, standardised, selected’ variant of our meta-learning strategy obtained the
highest ARA, namely the 0:52. It was slightly higher than the best-on-average strategy,
which had an ARA of 0:51. We may therefore conclude that, given the 255 one-class
data sets and 19 one-class classifiers used in our experiments, we can solve the one-class

classifier selection problem using a meta-learning approach for 52%.

Because (1) the ARA has not been employed by any previous study and (2) we were, to
the best of our knowledge, the first to attempt to solve the one-class classifier selection
problem using a meta-learning approach, it is difficult to put the 52% into a proper
perspective. Still, we may consider that our result, according to our definition, indicates
that we are beyond half-way of solving the one-class classifier selection problem. In

Section 7.3 we provide additional research directions that may improve the result.

Answers to the research questions

"OTXFSUPUIFQSPCMFN TUBUFN

In this section we provide an answer to the problem statement. Our answer is based on

the answers to the three research questions as presented in the previous section.

Problem statement: 5P XIBU FYUFOU DBO PVUMJFS TFMFDUJPC
EPNBJOFYQFSUT XJUISFBM XPSMEBOPNBMZ EFUFDUJ

In Chapter 1 we stated three conditions that ought to be satisfied in order for a domain
expert to be supported by outlier-selection algorithms. The three conditions, and how

we addressed them, are as follows:

First, a domain expert should know how to evaluate and compare the performance of the
algorithms. We have described and shown how to evaluate and compare the performance

of outlier-selection algorithms and one-class classifiers.

Second, a domain expert should have one or more algorithms available that are
considered state-of-the-art. We developed a new state-of-the art outlier-selection
algorithm called SOS. Besides SOS, we have performed experiments with five algorithms
in Chapter 3, four algorithms in Chapter 4, and nineteen algorithms in Chapter 6. These

algorithms are all available to the domain expert.

Third, a domain expert should know when to apply which algorithm. We have shown
that, to a certain extent, a meta-learning approach can provide an expert insight into

when to apply which one-class classifier given a certain data set.

Seeing that the above three conditions have been satisfied, we may conclude that the

domain expert can be supported to some extent.

'VUVSFSFTFBSDI

The research presented in this thesis was complex and promising. Our results were not
always the last verdict. Promising areas of future work remain. In this section, we mention

four of the most interesting directions.

First, in our research we concentrated on unsupervised outlier-selection algorithms and
semi-supervised one-class classifiers that make use of normal data points only. There are
also algorithms that can make use of anomalies in the training data set, such as SVDD.
We expect that the AUC increases when there are anomalies included in the data set. The

success of such an inclusion may be dependent on the number of anomalies.

Conclusions

So, possible future research in the first direction is to investigate whether SOS can be
extended in such a way that it can make use of any anomalies in the data set. Then, SOS
could be evaluated using the evaluation techniques presented in the thesis and compared

with the few other outlier-selection algorithms that do make use of anomalies.

Second, continuing on the first research direction, one could investigate the use of
active learning for anomaly detection. Active learning is a research field within Machine
Learning that deals with algorithms that are able to select unlabelled data points from
the training data set and present these to the domain expert for labelling. The algorithm
is then able to make use of the extra label such that its performance will increase. In this
scenario, the domain expert is involved in the classification of the data points. In other

words, we have a human-in-the-loop system.

Third, in our research regarding meta-learning we focused on learning a mapping from
a one-class data set to one-class classifiers. Our experiments involved many choices
regarding the data sets, the one class classifiers, and the meta-features. Moreover, our
meta-learning approach in itself has many parameters, such as the feature selection
aspect and the use of 191 binary classifiers. As mentioned in Section 6.7, a complete

exploration of these aspects is beyond the scope of the thesis.

So, an obvious research direction is to continue to vary these choices and to investigate
other settings for the parameters of the meta-learning approach. We expect that the ARA
may be further improved by changing one or more of the following seven aspects: (1) one-
class data sets, (2) meta-features, (3) one-class classifiers, (4) preprocessing techniques,
(5) meta-feature transformations, (6) meta-feature selection, and (7) classifier setting for

multi-label classification.

However, we should note that, this way, the meta-learning approach may remain a black
box to the domain expert. In order to gain more insight into the one-class classifiers and
when to use them, one could also mine so-called association rules. Association rules
typically take the form of ‘if meta-feature Yhas value Zuse one-class classifier [When
sufficient consistent association rules have been mined, the domain expert could apply

them to a new unseen data set.

Fourth, in our research we concentrated on the Fuclidean-distance measure. The reason
we that did so was to be able to use many feature-based data sets in our experiments.
While this is fair and practical from an experimental point-of-view, we believe that often,
additional research is required when applying an outlier-selection algorithm to a real-

world problem, such as anomaly detection in the maritime domain.

Future research

54N0gls$

In many real-world problems, especially ones that involve time-series or trajectories, the
Euclidean-distance measure may be insufficient or even impossible to use. Then, the
research should be focused on representing correctly the real-world objects or events
through a suitable dissimilarity measure. Furthermore, it would be interesting to see

which algorithm performs best with such a dissimilarity measure.

Conclusions

SFGFSFODFT

C.C. Aggarwal and P.S. Yu. Outlier detection for high dimensional data. "$. 4*(.0%
3 F D,B&H8:37-46, 2001. (Cited on page 56)

D.W. Aha. Generalizing from case studies: A case study. In D.H. Sleeman and P. Edwards,
editors, LSPDFFEJOHTPGUIF3UI*OUFSOBUJPQORMs$PQGFSFO|
San Francisco, CA, 1992. Morgan Kaufmann Publishers. (Cited on pages 100, 103,

and 104)

D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. .BDIJOF
-FBS #3066, 1991. (Cited on page 84)

S. Ali and K.A. Smith. On learning algorithm selection for classification. "QQMJFE 4P
$PNQVE®-I8, 2006. (Cited on pages 100, 103, 104, 114, 115, and 117)

U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.]. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. 1SPDFFEJOHT PG UIF /BUJPOE

4D JF Q@ H:8745-50, June 1999. ISSN 0027-8424. (Cited on page 89)

A. Asuncion and A. Frank. UCI Machine learning repository, 2010. URL http://archive.

ics.uci.edu/ml. (Cited on pages 29, 52, 89, and 105)

M.]J. Bayarri and J.O. Berger. The interplay of Bayesian and Frequentist analysis. 4UBUJTUJDB
4 D J F19(D$8-80, Feb. 2004. ISSN 0883-4237. (Cited on page 75)

H. Bensusan, C. Giraud-Carrier, and C. Kennedy. A higher-order approach to meta-
learning. In 1SPDFFEJOHT PG UIF &%$.- 22 8PSLTIPQ PO .FUE
"VUPNBUJD "EWJDF 4USBUFHJFT GPS .PEFM,%gshFDUJPC

109-117, June 2000. (Cited on page 118)

C.M. Bishop. /FVSBM OFUXPSLT GPS QB EnSasifPRE,HO51UIP O
(Cited on page 137)

A.P. Bradley. The use of the area under the ROC curve in the evaluation of machine
learning algorithms. 1BUUF S O 3 FB(P)H1Qs5}+hdd B97. (Cited on pages 31,
32,and 43)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

P. Brazdil, C Giraud-Carrier, C. Soares, and R. Vilalta. .FUBMFBSOJOH "QQMJDBU
N J O.J@khitive Technologies. Springer-Verlag Berlin Heidelberg, 2009. (Cited on

pages 100 and 103)

M.M. Breunig, H.P. Kriegel, R.T. Ng, and]. Sander. LOF: Identifying density-based local
outliers. "$. 4*(.0% 3 FDREH3-104, 2000. (Cited on pages 10, 43, 46, 84,
87,and 137)

V. Chandola, A. Banerjee, and V. Kumar. Outlier detection: A survey. "$. $PNQVUJOH
4V SWHZ):T-72, July 2009. (Cited on page 7)

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. *OUSPEVDUJPOMIP BMHPS
Press, third edit edition, Sept. 2009. (Cited on page 78)

D.R. Davies and R. Parasuraman. F QTZDIP M P H Z RA&dwhidP b, B ddkr,
United Kingdom, 1982. (Cited on page 3)

D. de Ridder, D.M.]. Tax, and R.PW. Duin. An experimental comparison of one-class
classification methods. In 1SPDFFEJOHT PG UIF ®UI "OOVBM $POGF
4DIPPM GPS $PNQV Updgadt1B-Q 18, INIB, Ahk Métherlands, 1998. ASCI.

(Cited on pages 44 and 45)

GK.D. de Vriess. ,FSOFM NFUIPET GPS. WIEL Thebis, USiRiiteiDWdP SIF T

Amsterdam, Amsterdam, 2012. (Cited on page 22)

G.K.D. de Vries, V. Malaisé, M. van Someren, PW. Adriaans, and G. Schreiber. Semi-
automatic ontology extension in the maritime domain. In A. Nijholt, M. Pantic,
M. Poel, and H. Hondorp, editors, 1SPDFFEJOHT PG F -2Ul #FMHJB
$POGFSFODF PO "S U padaskBsio 7 Dlhfchdd, TheANexhefands, 2008.
(Cited on page 179)

J. Demsar. Statistical comparisons of classifiers over multiple datasets. +PVSOBM PG .BD1J
-FB S OJOH,3:k-Bd& BoSA (Cited on pages 34, 35, 36, and 92)

R.PW. Duin, M. Loog, E. P¢kalska, and D.M.J. Tax. '"FBUVSF CBTFE EJTTJNJM
DMB TTJLExButd NPe®in Computer Science. Springer Berlin / Heidelberg, 2010.
(Cited on pages 21 and 22)

Eclipse. 3JD 1 $ M JF O lavhiMtBefk &hPHBtpl// www.eclipse.org. Accessed June 2010.
(Cited on page 179)

References

	Cover
	Title
	Colofon
	Preface
	Contents

