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�$�P�O�U�F�O�U�T��
What is common in a terrorist attack, a forged painting, and a rotten apple? The answer is: all

three are anomalies; they are real-world observations that deviate from what is considered to be

normal. Detecting anomalies is of utmost importance because an undetected anomaly can be

dangerous or expensive. A human domain expert may suffer from three cognitive limitations:

fatigue, information overload, and emotional bias. The cognitive limitations will hamper the

detection of anomalies. Outlier-selection algorithms are capable of automatically classifying data

points as outliers in large amounts of data. In the thesis, we study whether a domain expert can

effectively be supported by such algorithms. This chapter introduces the problem statement and

the three accompanying research questions. Subsequently, we state our research methodology

and provide an outline of the remainder of the thesis.

..

�0�V�U�M�J�O�F��
������Anomaly detection. ������Outlier selection. ������Problem statement. ������Research questions.

������Research methodology. ������Structure of the thesis.

.. ��



...

�$�I�B
�Q

�U
�F

�S
��

..������. �"�O�P�N�B�M�Z �E�F�U�F�D�U�J�P�O

e world around us seems to be quite normal. Laws of physics dictate how an apple
falls, rules teach people not to steal, and schedules tell us when the next train is due.
So, usually we know what to expect. However, sometimes, unexpected things happen.
For those occasions we use the term anomaly. In the thesis we deĕne an anomaly as
follows.

Deĕnition . (Anomaly). �"�O �B�O�P�N�B�M�Z �J�T �B�O �P�C�T�F�S�W�B�U�J�P�O �P�S �F�W�F�O�U �U�I�B�U �E�F�W�J�B�U�F�T �R�V�B�M�J�U�B�U�J�W�F�M�Z

�G�S�P�N �X�I�B�U �J�T �D�P�O�T�J�E�F�S�F�E �U�P �C�F �O�P�S�N�B�M�
 �B�D�D�P�S�E�J�O�H �U�P �B �E�P�N�B�J�O �F�Y�Q�F�S�U��

In awkward situations, it transpires that the world around us is full of anomalies. Yet, we
have to live with them and we, as researchers and domain experts, are given the task to
investigate them. at is one of the aims of this study.

In Subsection .., we describe the Poseidon project in which our research has been
performed. Subsection .. discusses anomaly detection in the maritime domain, and
Subsection .. provides examples of anomaly detection in other domains.

..����������. �5�I�F �1�P�T�F�J�E�P�O �Q�S�P�K�F�D�U

In , a multi-disciplinary research project called ‘Poseidon’ was initiated by the
Embedded Systems Institute (ESI) with ales Nederland B.V. as the carrying industrial
partner. Tilburg University (TiU), one of Poseidon’s academic partners, was involved
in the main research activity, which was to improve the safety and security in the
maritime domain.Ƭ In particular, TiUwas responsible for developing computer programs
or algorithms that automatically detect maritime anomalies. is thesis describes the
research that was conducted during the Poseidon project at TiU. Below we take a closer
look at anomaly detection in the maritime domain.

..����������. �"�O�P�N�B�M�Z �E�F�U�F�D�U�J�P�O �J�O �U�I�F �N�B�S�J�U�J�N�F �E�P�N�B�J�O

Maintaining safety and security of maritime traffic is of great importance for preventing
or responding to accidents, terrorist attacks, or piracy. Human operators (i.e., domain

Ƭ Here we note that safety and security are different concepts. Safety refers to protection against
accidental events. In addition, security refers to protection against intentional damages. In our research
both concepts are involved. e nature of our research does not necessitate that we deal with both
concepts separately. erefore we speak of maintaining safety and security of maritime traffic.
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experts) monitoring maritime safety and security typically watch a large visual display
on which all vessel movements in a coastal region are plotted. With the help of the visual
display, unexpected deviations from normality, i.e., anomalies, should be detected by
the human operator. Despite the visual aid, anomalies oen remain undetected. Below
we mention three cognitive limitations that may underlie the shortcoming of human
anomaly detection.

• Fatigue: human operators are bad at maintaining vigilance for a sustained period
of time (Davies and Parasuraman, ).

• Information overload: the amount of information displayed is too much for a
single human operator to process.

• Emotional bias: human operators suffer from an emotional bias, e.g., towards an
outcome that is in their best interest.

We note that computers do not suffer from these three limitations. In fact, maintaining
vigilance and processing large volumes of data are the hallmarks of computers. However,
a computer may be biased from the start (e.g., it is wrongly designed), but so far
it certainly has no emotional bias. Of course, in comparison with human operators,
computers fall short in �V�O�E�F�S�T�U�B�O�E�J�O�Hmaritime situations. e situation awareness of
experienced operators relies largely on knowledge and familiarity with vessels, sea lanes,
rules and regulations, the weather, and so forth. Obviously, for the time being, computers
have no common sense or expert knowledge in the form of intuition that they can
use.

An important lesson from the early days of artiĕcial intelligence is that such common
sense of expert knowledge is rather difficult to program into a computer algorithm, if it
is possible at all (Russel and Norvig, ). Simply specifying all maritime knowledge in
terms of rules leads to a system that is—again we admit—too rigid and that cannot deal
with the probabilistic variations in the real world. erefore, the best way to proceed is
() to let the computer algorithm take care of the tasks requiring (a) vigilance and (b)
cognitive processing power and () to leave the interpretation of the maritime situation
largely to the expert.

..����������. �"�O�P�N�B�M�Z �E�F�U�F�D�U�J�P�O �J�O �P�U�I�F�S �E�P�N�B�J�O�T

Although the Poseidon project is targeted towards the maritime domain, it is not the
sole application domain in which anomalies occur. To underline the general importance

..Anomaly detection. ��
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of automatic anomaly detection, we mention three studies that apply anomaly detection
algorithms to different problems:

. detecting seizures in humans (Gardner, Krieger, Vachtsevanos, and Litt, ),

. detecting credit card fraud (Whitrow, Hand, Juszczak, Weston, and Adams, ),
and

. change detection in satellite images (Robin, Moisan, and Le Hégarat-Mascle,
).

..������. �0�V�U�M�J�F�S �T�F�M�F�D�U�J�P�O

e challenging task that we are facing in this study is: how can an algorithm support
the expert in the detection of anomalies? We conjecture that the qualities of men
and machines are complementary. Currently, a computer algorithm cannot work with
the real-world observations directly. erefore, the real-world observations need to be
recorded and represented as data. In general, we may say that the expert’s goal is to label
real-world observations. For this purpose, we assume two possible labels, ‘anomaly’ and
‘normality’.

At the computer side we see the following. e algorithm’s goal is to classify the
corresponding data points. We assume two possible classiĕcations, namely ‘outlier’ and
‘inlier’. An exact deĕnition of an outlier depends on the implementation of the outlier-
selection algorithm at hand. Below we provide a general deĕnition of an outlier.

Deĕnition . (Outlier). �"�O �P�V�U�M�J�F�S �J�T �B �E�B�U�B �Q�P�J�O�U �U�I�B�U �E�F�W�J�B�U�F�T �R�V�B�O�U�J�U�B�U�J�W�F�M�Z �G�S�P�N �U�I�F

�N�B�K�P�S�J�U�Z �P�G �U�I�F �E�B�U�B �Q�P�J�O�U�T�
 �B�D�D�P�S�E�J�O�H �U�P �B�O �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N��

An inlier is a data point that is not an outlier. So, we distinguish between the labels of the
expert and the classiĕcations of the algorithm. As a direct consequence of this distinction
we note that they may not always agree with each other.

e labels given by the expert are regarded as ground truth.ƭ In other words, the expert
is always right. e challenge is to let the algorithm classify the data points such that
the agreement is maximised. e expert is the only one who may label the real-world
observations as an anomaly or as a normality. e algorithm has no expert knowledge

ƭ For sake of simplicity, we assume labels created by one expert only. Establishing ground truth from
multiple, possibly disagreeing, experts is an interesting research problem on its own. In human
computation, or crowdsourcing, for example, the challenge is to combine the labels provided by
hundreds or thousands of people (see Janssens, ; Welinder, Branson, Belongie, and Perona, ).
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and no common sense, and so has no notion of what is considered normal.e algorithm
has only at its disposition the data points that represent the real world observations. e
data points are a numerical representation of the real-world observations.

Figure . shows such a representation. For a certain number of vessels, two features
are recorded or measured. e two features are ‘speed over ground’ and ‘rate of turn’.
e corresponding two-dimensional feature space is shown in Figure .. e x-axis
corresponds to the feature speed over ground, and the y-axis corresponds to the feature
rate of turn.

�'�J�H�V�S�F ������Example of a two-dimensional feature space where
the data points represent real-world observations.

Let us consider that we observe a number of vessels sailing the sea. Of each vessel, we
record andmeasure () the speed over ground and () the rate of turn. e resulting data
set is plotted in Figure ..

e expert labels one vessel as anomalous, because it is sailing too fast. e remaining
vessels are labelled as normalities. e anomalous vessel is denoted by an orange asterisk
and the normal vessels are denoted by green circles. Since speed over ground is a feature
that is measured, the anomalous vessel lies outside the cluster of normal vessels. Because
of the clear separation between the anomaly and the normalities, we may expect that
an outlier-selection algorithm performs its task perfectly, i.e, classifying the data point
that corresponds to the anomalous vessel as an outlier, and the remaining data points as
inliers.

If the speed over ground was not measured and our feature representation would only
comprise of the feature rate of turn, then the anomalous vessel would lie inside the cluster

..Outlier selection. ��
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of normal vessels. As a consequence, the algorithmwould classify the corresponding data
point as an inlier, which would result in a disagreement.

On the one hand, data are oen cheap, especially when they come from sensors
that automatically record real-world observations. On the other hand, labels are oen
expensive, especially when they are created by experts. In practical situations, we cannot
assume that the expert labels every real-world observation that is recorded.

Oen, the outlier-selection algorithm must be able to classify using the data points
without any labels. When the algorithm classiĕes �V�O�M�B�C�F�M�M�F�Edata points, it is called
�V�O�T�V�Q�F�S�W�J�T�F�EƮ and falls within the Unsupervised Outlier Selection (UOS) setting.

Algorithms in the One-Class Classiĕcation (OCC) setting are called one-class classiĕers.
A one-class classiĕer is �T�F�N�J���T�V�Q�F�S�W�J�T�F�Ebecause the labels of the normal data points are
provided by the expert. Because anomalies are rare; we do not assume that any data points
belong to the anomalous class.⁴ ey learn a model from only one class, namely the
normal class (Tax, ); hence its name. Both settings are explained in Chapter .

..������. �1�S�P�C�M�F�N �T�U�B�U�F�N�F�O�U

e importance of automating the detection of real-world anomalies is clear from the
above. So we will investigate whether outlier-selection algorithms are able to support
the domain expert, such that the three cognitive limitations of the domain expert are
mitigated. For this purpose, we formulate the following problem statement.

Problem statement: �5�P �X�I�B�U �F�Y�U�F�O�U �D�B�O �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T �T�V�Q�Q�P�S�U

�E�P�N�B�J�O �F�Y�Q�F�S�U�T �X�J�U�I �S�F�B�M���X�P�S�M�E �B�O�P�N�B�M�Z �E�F�U�F�D�U�J�P�O� 

e ĕrst question that comes to mind is: �X�I�F�Ocan we state that a human expert is
being supported? In the thesis, we consider a domain expert to be supported by outlier-
selection algorithms when the following three conditions are satisĕed.

Ʈ Please note that the terms ‘unsupervised’ and ‘semi-supervised’ refer to the �J�O�Q�V�Uof the algorithm, and
not to the �P�V�U�Q�V�U. It is, however, oen the case that unsupervised machine learning algorithms do not
classify the unlabelled data points. (For example, unsupervised clustering algorithms output clusters
and unsupervised dimensionality reduction algorithms output lower-dimensional representations of
the unlabelled data set.)

⁴ Wenote that if the data set contains sufficient data points from �C�P�U�Ithe normal class and the anomalous
class, then the domain expertmay be better supported by a supervised binary classiĕer, which is beyond
the scope of the thesis.
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. A domain expert knows how to evaluate and compare the performance of the
algorithms.

. A domain expert has one or more effective algorithms available.

. A domain expert knows when to apply which algorithm.

In the next section we transform each condition into a research question.

..������. �3�F�T�F�B�S�D�I �R�V�F�T�U�J�P�O�T

In order to answer the problem statement, we investigate three research questions
(RQs). e thee research questions correspond to the three conditions mentioned in
Section .. Below, we list the three research questions and provide a motivation for each
of them.

Outlier-selection algorithms have been well studied in the research ĕelds of Machine
Learning (ML) and Knowledge Discovery in Databases (KDD) (Chandola, Banerjee,
and Kumar, ). Both ĕelds have produced their own algorithms and corresponding
evaluation procedures. Here we note that not all algorithms within each ĕeld have been
compared with each other under the same circumstances. Our ĕrst condition for a
domain expert to be supported by outlier-selection algorithms stated that a domain
expert should know how the performance of outlier-selection algorithms should be
evaluated and compared. erefore, the ĕrst research question reads as follows.

Research question : �)�P�X �T�I�P�V�M�E �X�F �F�W�B�M�V�B�U�F �B�O�E �D�P�N�Q�B�S�F �U�I�F �Q�F�S�G�P�S�N�B�O�D�F

�P�G �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T� 

e performance of an outlier-selection algorithm is mainly determined by the
characteristics of the real-word data set at hand. Data characteristics such as cluster
overlap may degrade the performance of an outlier-selection algorithm.

As mentioned in Subsection ., each outlier-selection algorithm quantiĕes, in one way
or another, the relationship between all the data points in the data set. For the research
domains of clustering and dimensionality reduction, quantifying the relationship among
data points plays an important role. Recently, several algorithms within those two
domains employed effectively the concept of ‘affinity’ to fulĕl that role (Hinton and
Roweis, ; Frey and Dueck, ; van der Maaten, b). In our study we aim to
investigate () whether the concept of affinity is also effective for classifying data points
as outliers and () whether the performance would be less degraded by the two example
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data characteristics mentioned above. Hence, our second research question reads as
follows.

Research question : �$�B�O �B�O �F���F�D�U�J�W�F �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N �C�F �E�F�W�J�T�F�E

�U�I�B�U �F�N�Q�M�P�Z�T �U�I�F �D�P�O�D�F�Q�U �P�G �B���O�J�U�Z� 

Because each real-world application is different, each real-world data set has different
characteristics. For example, in one data set, the data points may form neat clusters,
whereas in another data set, there may be hardly any structure. As a result of these
varying data characteristics, no single outlier-selection algorithm outperforms all others
on all data sets. It would be beneĕcial for a domain expert to know when to apply which
algorithm.erefore, we aim to understand the relationship between data characteristics
and algorithm performance. Rice () formalised this as the algorithm selection
problem. In order to address the algorithm selection problem, i.e, in order to support
the domain expert, we adopt a meta-learning approach (Smith-Miles, ). Our third
research question reads as follows.

Research question : �5�P �X�I�B�U �F�Y�U�F�O�U �D�B�O �X�F �T�P�M�W�F �U�I�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S

�T�F�M�F�D�U�J�P�O �Q�S�P�C�M�F�N �V�T�J�O�H �B �N�F�U�B���M�F�B�S�O�J�O�H �B�Q�Q�S�P�B�D�I� 

e answers to these three research questions enable us to formulate an answer to the
problem statement.

..�$�P�O�U�S�J�C�V�U�J�P�O�T

Answering the research questions resulted in three main contributions.

• A framework for evaluating both semi-supervised and unsupervised outlier-
selection algorithms.

• A novel outlier-selection algorithm called ‘Stochastic Outlier Selection’ that has a
signiĕcantly higher performance and is more robust (to data perturbations and
varying densities) than four related algorithms.

• As far as we know, the ĕrst meta-learning study for one-class classiĕcation where
we aim to model the performance of  one-class classiĕers on  one-class data
sets using  meta-features.

Two additional contributions are () Presto, an application to create artiĕcial vessel tra-
jectories and () the organisation the ĕrst international workshop on Maritime Anomaly
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Detection (MAD). Presto and the MAD workshop are described in Appendices A and B,
respectively.

..������. �3�F�T�F�B�S�D�I �N�F�U�I�P�E�P�M�P�H�Z

Within our research we employ an inductive research methodology, which consists of
ĕve stages: () review and analyse the scientiĕc literature, () design and develop a novel
outlier-selection algorithm, () implement the outlier-selection algorithm in MATLAB®,
() perform comparative experiments, and () analyse the obtained results. Table .
shows which stages are employed to address each of the three research questions. Below
we discuss the ĕve stages.

�5�B�C�M�F ������Overview of the research methodology and its öve stages
employed to address the three research questions.

..�3�F�W�J�F�X �B�O�E �B�O�B�M�Z�T�F �T�D�J�F�O�U�J�ö�D �M�J�U�F�S�B�U�V�S�F

We review and analyse the scientiĕc literature for three reasons. First, to identify the
current state-of-the-art in outlier selection for RQ. Second, to design and develop a
novel and effective algorithm for RQ. ird, to establish a well-founded experimental
set-up for RQ. Appropriate literature is found in, but not limited to, the research ĕelds
of () machine learning, () knowledge discovery and databases, () information theory,
() probability theory, and () graph theory.

..�%�F�T�J�H�O �B�O�E �E�F�W�F�M�P�Q �B �O�P�W�F�M �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N

Investigating RQ requires the development of an outlier-selection algorithm that
employs the concept of affinity. e algorithm relies on concepts from () probability
theory, () graph theory, and () information theory, of which the appropriate literature
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has been studied.We examine the intricacies of the novel algorithm, such as the inĘuence
of its parameter(s) and its sensitivity to data perturbations.

..�*�N�Q�M�F�N�F�O�U �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N �J�O �.�"�5�-�"�#�¥

We implement the developed algorithm in a programming language since we wish
to evaluate its performance. e widely-used and freely-available Data Description
Toolbox by Tax () provides implementations of a large number of outlier-selection
algorithms in the programming language MATLAB®. In order to make use of this
toolbox, we decided to implement our algorithm in the programming language
MATLAB® as well. For a good comparison, adequate implementations are also required
for outlier-selection algorithms that have been developed previously by other authors,
of which to our regret no (appropriate) implementation are available. is holds for the
outlier-selection algorithms Local Outlier Factor (LOF) and Local Correlation Integral
(LOCI) (Breunig, Kriegel, Ng, and Sander, ; Papadimitriou, Kitagawa, Gibbons, and
Faloutsos, ). Our MATLAB® implementations of LOF and LOCI are now part of the
Data Description Toolbox.

..�1�F�S�G�P�S�N �D�P�N�Q�B�S�B�U�J�W�F �F�Y�Q�F�S�J�N�F�O�U�T

Once all necessary implementations are present, we are able to perform comparative
experiments. is is required for all research questions. In a typical machine learning
experiment, the experimental set-up consists of evaluating, i.e, applying, one or more
algorithms to one or more data sets. e same holds for outlier selection and one-class
classiĕcation. To study the outlier-selection algorithms in greater detail, we may () vary
the parameters of the algorithms, and () vary the characteristics of the data sets. e
experimental set-up involves three evaluation methods. First, cross-validation ensures
that the performance generalises to an independent test data set. Second, the Area
Under the ROC Curve is used as performance measure. ird, the post-hoc Neményi
statistical test is employed to test for statistical signiĕcance among the performances of
the algorithms. ese three techniques will be further explained in Chapter .

..�"�O�B�M�Z�T�F �P�C�U�B�J�O�F�E �S�F�T�V�M�U�T

Aer a comparative experiment has been performed, we continue with the analysis of
the obtained results. Typically, in the machine learning literature, the performances are
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averaged and the algorithm with the highest average performance is presented as the
best. However, the ‘No Free Lunch’ theorem implies that for each algorithm there exists
a data set on which it is outperformed (Wolpert and Macready, ). erefore, we also
investigate under which conditions, i.e., data characteristics, an algorithm performs best.
As mentioned in the previous section, we aim to understand the relationship between
data characteristics and algorithm performance.

..������. �4�U�S�V�D�U�V�S�F �P�G �U�I�F �U�I�F�T�J�T

e problem statement and the three accompanying research questions introduced in
Sections . and . are investigated over the course of seven chapters. Table . lists
which chapters address the problem statement and research questions. Belowwe provide
a brief description of the contents of each chapter.

�5�B�C�M�F ������The problem statement (PS) and the three accompanying research ques-
tions (RQs) are addressed in different chapters throughout the thesis.

..�$�I�B�Q�U�F�S ���� �*�O�U�S�P�E�V�D�U�J�P�O

In Chapter , we deĕne the concepts of an anomaly and an outlier. We illustrate
the importance of anomaly detection by listing examples from the maritime domain
and three other application domains. ree cognitive limitations of anomaly detection
by domain experts are given. We mention recent results that indicate that outlier-
selection algorithms can effectively support the domain expert. Based on these results we
formulate our problem statement and three accompanying research questions.Moreover,
we describe the employed research methodology. e chapter is concluded by an
overview of the thesis.
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..�$�I�B�Q�U�F�S ���� �#�B�D�L�H�S�P�V�O�E �B�O�E �F�Y�Q�F�S�J�N�F�O�U�B�M �T�F�U���V�Q

In Chapter , we introduce the main concepts and explain the experimental set-up that
is employed throughout the subsequent chapters. is is partly based on a review and
the analysis of the relevant literature concerning anomaly detection, outlier selection,
and machine learning. e chapter consists of four parts. First, we present two outlier-
selection settings that we consider in the thesis: () unsupervised outlier selection and ()
one-class classiĕcation.We highlight their similarities and differences, andwemake clear
when which setting is appropriate. Second, we describe two types of data representations
that outlier-selection algorithms can process: () feature-vector representation and ()
similarity-matrix representation. Both representations have their uses. ird, we explain
in detail the experimental set-up. It relies on statistical techniques such as the () Area
Under theROCCurve (AUC) performancemeasure, () the post-hocNeményi statistical
test, and () cross validation. Fourth, we explain how to transform ordinary multi-
class data sets into one-class data sets so that they can be used for our comparative
experiments.

..�$�I�B�Q�U�F�S ���� �&�W�B�M�V�B�U�J�O�H �B�O�E �D�P�N�Q�B�S�J�O�H �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T

In Chapter , we aim to answer RQ. We describe how anomalies are detected in
the ĕelds of ML and KDD. Both ĕelds have their own anomaly-detection algorithms
and corresponding evaluation procedures. Two well-known outlier-selection algorithms
from the ĕeld of KDDare framed into the one-class classiĕcation framework so that these
can be compared with three algorithms from the ĕeld of ML in a statistically valid way.
We perform a comparative evaluation of the ML and KDD outlier-selection algorithms
on real-world datasets and discuss the results.

..�$�I�B�Q�U�F�S ���� �4�U�P�D�I�B�T�U�J�D �0�V�U�M�J�F�S �4�F�M�F�D�U�J�P�O

In Chapter , we aim to answer RQ. We present a novel, unsupervised algorithm
for classifying outliers, called Stochastic Outlier Selection (SOS). SOS uses affinity to
compute for each data point an outlier probability. e probabilities that are computed
by SOS provide several advantages with respect to the unbounded outlier scores as
computed by related algorithms. Using outlier-score plots, we illustrate and discuss the
qualitative performances of SOS and four related algorithms. en we evaluate SOS and
the four algorithms on eighteen real-world data sets and seven synthetic data sets. e
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results obtained on these  data sets show that SOS () has a signiĕcantly higher average
performance and () is more robust to data perturbations and varying densities than
the four related algorithms. From these results we may conclude that SOS is an effective
algorithm for classifying data points as outliers.We observe that SOS is, however, not the
best-performing algorithm on every data set. is observation is consistent with the No
Free Lunch theorem, which is discussed in Chapter .

..�$�I�B�Q�U�F�S ���� �.�F�U�B���G�F�B�U�V�S�F�T �G�P�S �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U�T

e research required to formulate an answer to RQ is split over the Chapters  and . In
Chapter , we discuss theNo Free Lunch theorem, which states that there is no single best
one-class classiĕer. For each one-class data set, theremay be a different one-class classiĕer
that performs best. e performance of a one-class classiĕer is greatly determined by the
characteristics, or meta-features, of the one-class data set. We present three methods for
preprocessing data that may improve the performance of certain one-class classiĕers on
certain one-class data sets.e results in this chapter are obtained in three steps. First, we
implement  meta-features. Second, we apply the meta-features to  data sets. ird,
we select empirically the most informative meta-features. e selected meta-features are
used as input for Chapter , where we use meta-learning to relate the meta-features to
the one-class classiĕer performance.

..�$�I�B�Q�U�F�S ���� �.�F�U�B���M�F�B�S�O�J�O�H �G�P�S �P�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�F�S�T

In Chapter , we aim to answer RQ by using the output from Chapter . First, we
describe  one-class classiĕers. Subsequently, we perform a comparative experiment
by applying the  one-class classiĕers on the  one-class data sets from Chapter . To
answer RQ, we aim to understand the relationship between the previously computed
meta-features and the one-class classiĕer performances. To this end, we set up a meta-
learning experiment, wherewe aim to solve the one-class classiĕer selection problem, i.e.,
predict the most appropriate one-class classiĕer for a given, unseen, one-class data set.
e results indicate that by using the meta-learning approach, we can solve the one-class
classiĕer selection problem with an accuracy of .

..Structure of the thesis. ����
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..�$�I�B�Q�U�F�S ���� �$�P�O�D�M�V�T�J�P�O�T

In Chapter  we complete the thesis. We discuss the ĕndings of the thesis on a general
level. By reviewing the answers to the three research questions, we arrive at three
conclusions. From the conclusions, we formulate an answer to the problem statement.
Finally, we give recommendations for future research.

...
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.

�$�P�O�U�F�O�U�T��
In this chapter we introduce the main concepts for answering the research questions. In the

örst part of the chapter (from Section 2.2 to Section 2.7) we assume that the outlier selection is

unsupervised. The second part of the chapter (Section 2.8) deals with the one-class classiöcation

setting. For certain applications, the assessments of the domain expert are available to the

algorithm. If that is the case, then the one-class classiöcation setting may be employed.

..

�0�V�U�M�J�O�F��
������The relationship between the domain expert and the outlier-selection algorithm. ������Rep-

resenting real-world observations as data points. ������Outlier-selection algorithm. ������Domain

expert. ������Hits, misses, correct rejects, and false alarms. ������Evaluating the performance of an

outlier-selection algorithm. ������Method for comparing outlier-selection algorithms. ������One-class

classiöcation setting. ������Chapter summary.
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..������. �5�I�F �S�F�M�B�U�J�P�O�T�I�J�Q �C�F�U�X�F�F�O �U�I�F �E�P�N�B�J�O �F�Y�Q�F�S�U �B�O�E �U�I�F
�P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N

e domain expert and the outlier-selection algorithm form a symbiotic relationship;
they rely on each other in two ways (see Table .). First, the domain expert conĕgures
the parameters of the outlier-selection algorithm. Second, the outlier-selection algorithm
�T�I�P�V�M�Esupport the domain expert in order to mitigate hisƬ cognitive limitations. We
remark that the word ‘should’ is emphasised because this is essentially the problem
statement to which we aim to formulate an answer.ƭ

�5�B�C�M�F ������The symbiotic relationship and parallels between the domain
expert and the outlier-selection algorithm.

FromTable .we can read the following two sentences. First, the domain expert employs
domain knowledge and experience on the real world to detect those observations that are
abnormal as anomalies. Second, the outlier-selection algorithm employs techniques from
mathematics and statistics on the data set to classify those data points that are outlying
as outliers. e words have been put side-by-side in the table in order to emphasise
the parallels that exist. e two most important parallels are (i) between (real-world)
observations and data points and (ii) between anomalies and outliers.

To illustrate the relationship between the domain expert and the outlier-selection
algorithm in more detail, we employ a data Ęow diagram. e data Ęow diagram in
Figure . shows the Ęowof data, i.e., the relationship, between () the domain expert and

Ƭ For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.
ƭ We may ask ourselves the converse: �5�P �X�I�B�U �F�Y�U�F�O�U �D�B�O �U�I�F �E�P�N�B�J�O �F�Y�Q�F�S�U �D�P�O���H�V�S�F �U�I�F �B�M�H�P�S�J�U�I�N� 

However, this is beyond the scope of the thesis.
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() the outlier-selection algorithm, and the three accompanying concepts: () the real-
world, () the data representation, and () the data set. As such, the data Ęow diagram
may serve as an overview referencewhile the ĕve concepts are discussed in the remainder
of the chapter.

�'�J�H�V�S�F ������Dataøowdiagram illustrating the relationshipbetween thedomain
expert (square) and the outlier-selection algorithm (top circle).

We highlight the main Ęow of data, which starts at the bottom-le corner and proceeds
counter-clockwise: �P�C�T�F�S�W�B�U�J�P�O�Tfrom the �S�F�B�M���X�P�S�M�Eare �S�F�Q�S�F�T�F�O�U�F�E �B�T �E�B�U�B, which are
subsequently stored in a �E�B�U�B �T�F�U.e �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�Nprocesses the data set and
may classify certain �E�B�U�B �Q�P�J�O�U�Tas �P�V�U�M�J�F�S�T.e outliers are in turn evaluated by the �E�P�N�B�J�O

�F�Y�Q�F�S�Uwho may then decide whether the real-world observation should be considered as
an �B�O�P�N�B�M�Zand consequently act upon it.emain Ęow of data and the other supporting
Ęows of data are discussed in the subsequent sections.

In data-Ęow-diagram terminology, a circle represents a function (i.e., () ‘outlier-
selection algorithm’ and () ‘represent as data’), a square represents an end-user (i.e.,
() ‘domain expert’) and a cylinder represents a data store (i.e, () ‘data set’). e ()
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‘real world’ is represented by a cloud-shape (which is not common in data Ęow diagram
terminology). e arrows represent the data transfer from one concept to another
concept.

e remainder of the chapter is organised as follows. We should ĕrst note that, in
Sections .–., we assume the unsupervised outlier-selection setting. In other words,
we assume that the data set has not been labelled by the domain expert.

In Section . we explain how real-world observations can be represented as data
points. In Section . we give a deĕnition of an outlier-selection algorithm. Section .
discusses the characteristics of the domain expert. Section . describes four types
of (dis)agreements between the domain expert and the outlier-selection algorithm. In
Section . we explain how we evaluate an outlier-selection algorithm. In Section . we
describe how multiple outlier-selections may be compared with each other.

In Section . we change the setting from unsupervised to semi-supervised. In other
words, now we assume that the domain expert has labelled (part of) the data set. We
describe the one-class classiĕcation setting and introduce the concept of cross-validation,
which is needed for the evaluation of one-class classiĕers. Finally, we provide a summary
of the chapter in Section ..

..������. �3�F�Q�S�F�T�F�O�U�J�O�H �S�F�B�M���X�P�S�M�E �P�C�T�F�S�W�B�U�J�P�O�T �B�T �E�B�U�B �Q�P�J�O�U�T

From Figure . we see that the outlier-selection algorithm does not operate on real-
world observations directly. e real-world observations need to be represented as
data points ĕrst. e six Euler diagrams in Figure . show the relationships between
different sets (i.e., data concepts). Below, we discuss the ĕrst four Euler diagrams, namely
(a) to (d). e discussion of diagrams (e) and (f) is deferred to Sections . and .,
respectively.

e set of all real-world observations of a certain application domain (e.g., vessels from
the maritime domain) is denoted by �9 (see Figure .(a)). An observation is a generic
term and may refer to, for example, events, physical objects, and digital records in a
database.We assume that each real-world observation is labelled by a domain expert (e.g.,
the coastguard operator) as either normal or anomalous. (It includes all the observations,
also the ones that the domain expert has not seen.) is is illustrated in Figure .(b),
where �" indicates the set of anomalies, which is a subset of the real-world observations,
i.e., �" ` �9. Each real-world observation is either recorded as a data point or unrecorded
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�'�J�H�V�S�F ������Six Euler diagrams illustrating the relationships between the following sets:
real-world observations, anomalies, normalities, data set, outliers, inliers, hits, false alarms,
misses, and correct rejects.

(see Figure .(c)). Recording occurs when the real-world observation is, for example,
caught on camera. All recorded data points are stored in a data set, which is denoted by
�%. e unrecorded real-world observations cannot be processed by the outlier-selection
algorithm. If we combine diagrams (b) and (c), we observe that a data set can contain
both normal and anomalous data points (see Figure .(d)).

..Representing real-world observations as data points. ����
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ere are several approaches to represent real-world observations as data (Gärtner,
Lloyd, and Flach, ). We describe two of them that are employed most commonly:
() the feature-vector representation (Subsection ..) and () the dissimilarity-matrix
representation (Subsection ..). In Subsection .. we explain the difference between
the two representations. In Subsection .. we describe how a dissimilarity matrix can
be obtained from feature vectors.

..����������. �'�F�B�U�V�S�F���W�F�D�U�P�S �S�F�Q�S�F�T�F�O�U�B�U�J�P�O

e ĕrst approach to represent real-world observations as data points is through feature
vectors (cf.Witten and Frank, ).e number of data points in a data set �%is denoted
by �O. In the thesis we assume that all values are numerical, as opposed to categorical,
symbolic, or binary. In a feature-vector representation each data point is represented by
an �N-dimensional, real-valued, feature vector x � � �Y1; : : : ; �Y�N� > �3�N. As such, a data
point can be regarded as a point in an �N-dimensional Euclidean space. e data set �%is
represented by a matrix X of size �O� �N, i.e., number of data points � number of features.
e vector x�Jdenotes the �Jth row of the matrix X.

When the observations are physically embedded in the real world, one or more of its
features must be measured in order to obtain a feature vector. Figure . illustrates
an example of the feature-vector representation concerning apples and oranges. Of 
apples and oranges, two features are measured: width and height. e table in the middle
displays the ĕrst seven data points. e scatter plot on the right shows all  apples and
oranges.

�'�J�H�V�S�F ������Illustrationof the feature-vector representation. �-�F�G�U��Real-world observations of an apple
and an orange. �.�J�E�E�M�F��Apples and oranges represented as two-dimensional feature vectors together
with a class-label. �3�J�H�I�U��The data set visualised using a scatter plot.

..Background and experimental set-up.����
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e data set is completely labelled, i.e., the domain expert has indicated for each
observationwhether it is an apple or an orange.e scatter plot indicates that the features
width and height are insufficient to distinguish between apples and oranges. Such a sub-
optimal data representation may be improved by () measuring more features such as
weight, or () extracting features from digital images, if they are available (cf. van der
Maaten, a).

Here we remark that in application domains with a database, the observations are already
represented as data, and may be stored in the correct format. When the recordsƮ in the
database have been entered manually, data cleaning is necessary in cases where the data
is blurred and any algorithm processing the data produces unreliable classiĕcations (cf.
van Erp, ). Each record in the database is considered as a feature vector in the data
set.

..����������. �%�J�T�T�J�N�J�M�B�S�J�U�Z���N�B�U�S�J�Y �S�F�Q�S�F�T�F�O�U�B�U�J�P�O

e second approach to represent data is the dissimilarity-matrix representation,
which is also known as a featureless representation (Pękalska and Duin, ). It is a
relative description. Such a relative description of a real-world observation is obtained
by measuring its dissimilarity to other real-world observations. e dissimilarity is
expressed as a non-negative scalar and is computed by a dissimilarity measure �E. If we
have �Oreal-world observations, then �O2 � �Odissimilarities need to be computed. (A real-
world observation need not be compared to itself.) e result is a dissimilarity matrix
with size �O� �O, and 0’s (zeros) on the diagonal.edissimilarity-matrix representation has
the advantage that any dissimilarity measure can be used as well as any outlier-selection
algorithm that operates in vector spaces (Duin, Loog, Pękalska, and Tax, ).

..����������. �5�I�F �E�J�ò�F�S�F�O�D�F �C�F�U�X�F�F�O �U�I�F �S�F�Q�S�F�T�F�O�U�B�U�J�P�O�T

Finally we emphasise the differences between the two representations. Because a feature
vector has a ĕxed length �N, complex real-world observations may be better represented
using a dissimilarity matrix. For example, different moving object trajectories may have
different durations and therefore a different number of measurements, i.e., different

Ʈ In the ĕeld of Knowledge Discovery in Databases (KDD), which focusses on the real-world application
of machine learning algorithms, the terms ‘data set’, ‘data point’, and ‘feature’ are more commonly
known as ‘database’, ‘record’, and ‘ĕeld’ (or ‘attribute’), respectively (Fayyad, Piatetsky-Shapiro, Smyth,
and Uthurusamy, b).

..Representing real-world observations as data points. ����
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values of �N(cf. de Vries, ). Other types of complex real-world observations include
text-documents and social-network graphs.

A feasible feature-vector representation of real-world observations might be difficult to
obtain or insufficient for learning purposes, e.g., when domain experts cannot deĕne
features in a straightforward way, when data are high dimensional, or when features
consist of both continuous and categorical variables (Pękalska and Duin, ).

e main difference between both representations is that in the feature-vector
representation the observation is deĕned by itself, whereas in the dissimilarity-matrix
representation, the observation is deĕnedwith respect to other observations.We reiterate
that feature vectors are an absolute description of real-world observations, and that a
dissimilarity matrix is a relative description of real-world observations.

..����������. �0�C�U�B�J�O�J�O�H �B �E�J�T�T�J�N�J�M�B�S�J�U�Z �N�B�U�S�J�Y �G�S�P�N �G�F�B�U�V�S�F �W�F�D�U�P�S�T

Feature vectors X can be transformed into a dissimilarity matrix D (cf. Duin et al.,
). Here we illustrate such a transformation by using the Euclidean distance as the
dissimilarity measure on the feature vectors displayed in Figure .. e Euclidean
distance is deĕned as follows.

�E�J�K�

¿
ÁÁÀ

�N

Q
�L� 1

Š�Y�K�L� �Y�J�L•
2

; ..������

where �Y�J�Ldenotes the �Lth feature value of �Jth data point, i.e., cell �J; �Lof matrix X. From
Equation . it follows () that the dissimilarity measure is symmetric, i.e., �E�J�K� �E�K�J, and
() that the dissimilarity between a data point and itself is zero, i.e., �E�J�J� 0. e six data
points on the le side of Figure . are connected by green lines with varying brightness.
Both the length and the brightness of these green lines illustrate the dissimilarity between
data point x2 and the other ĕve data points.

e right side of Figure . shows the matrix X containing six data points characterised
by two features. Next to matrix X we ĕnd a colour bar that maps a range of values to
a range of colours. For example, 0 is mapped to white and 8 is mapped to dark blue.
e dissimilarity matrix D is obtained by applying Equation . to each pair of data
points in the matrix X. (e bold, upright letter ‘D’ should not be confused with the
calligraphic letter ‘�%’ that denotes a data set.) e brightness of each green line is equal
to the brightness of the corresponding cell in the second row of D. In fact, because the

..Background and experimental set-up.����
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�'�J�H�V�S�F ������Transforming feature vectors into a dissimilarity matrix.

Euclidean distance �Eis symmetric, the resulting dissimilarity matrix D is symmetric,
meaning that the rows are equal to the columns. erefore, the brightness of the green
lines are also equal to the brightness of the cells of the second column.

..������. �0�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N

In this section we discuss the concept of an outlier-selection algorithm. Once the real-
world observations have been represented as data points, the data points can be processed
by an outlier-selection algorithm. In general, an outlier-selection algorithm takes as input
a (un)labelled data set and classiĕes each data point either as an outlier or an inlier.is is
illustrated in the Euler diagram in Figure .(e). e classiĕcations are transferred to the
domain expert (discussed in Section .). e manner in which data points are classiĕed
differs per outlier-selection algorithm. In formal terms, an outlier-selection algorithm is
deĕned as follows.

Deĕnition . (Outlier-selection algorithm). �"�O �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N �J�T �B �N�B�Q�Q�J�O�H

�G� �9 � ˜ outlier; inlier• �B�O�E �Gˆx• �J�T �T�B�J�E �U�P �C�F �U�I�F �D�M�B�T�T�J���D�B�U�J�P�O �P�G �E�B�U�B �Q�P�J�O�Ux > �9��

Each outlier-selection algorithm discussed in the thesis is based on an outlier-scoring
algorithm, which outputs an outlier score instead of a classiĕcation. An outlier score
is a scalar that signiĕes the degree of ‘outlierness’ of a data point. An outlier-scoring
algorithm is formally deĕned as follows.

Deĕnition . (Outlier-scoring algorithm). �"�O �P�V�U�M�J�F�S���T�D�P�S�J�O�H �B�M�H�P�S�J�U�I�N �J�T �B �N�B�Q�Q�J�O�H �u�

�9 � �3�B�O�E �uˆx• �J�T �T�B�J�E �U�P �C�F �U�I�F �P�V�U�M�J�F�S �T�D�P�S�F �P�G �E�B�U�B �Q�P�J�O�Ux > �9��

Deĕnitions . and . are adapted from the deĕnitions of binary classiĕcation and
scoring algorithms as formulated by Vanderlooy ().

..Outlier-selection algorithm. ����
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e computed outlier scores are transformed into classiĕcations ˜ outlier; inlier• . A
classiĕcation of data point x is obtained by applying a threshold �b> �3on the outlier
score of data point x as computed by the outlier-scoring algorithm �u.

�Ĝx• �

¢̈
¨̈̈
¦
¨̈̈
¤̈

outlier if �uˆx• A �b;

inlier if �uˆx• B �b;
..������

where the value of the threshold �bis set by the domain expert (see Section .).

Because each outlier-scoring algorithm presented in the thesis, is transformed similarly
into an outlier-selection algorithm (namely, by applying a threshold to the outlier scores),
we do not distinguish between the outlier-selection algorithmand the underlying outlier-
scoring algorithm. In the remainder of the thesis we only use the term outlier-selection
algorithm, or algorithm for short, and we may say that it both computes outlier scores
and classiĕes data points as outlier or inlier.

..������. �%�P�N�B�J�O �F�Y�Q�F�S�U

In this Subsection we discuss the concept of domain expert, and how it relates to
the other concepts. e data Ęow diagram in Figure . shows four data transfers
from the domain expert: () parameters to the outlier-selection algorithm, () labels:
™anomaly;normalityž (of which the line is dashed) to the data set, () features or
dissimilarity measure to represent the real-world observations as data, and () anomaly
detections to the real world. We discuss each data transfer below.

Regarding (), the domain expert conĕgures the parameters of the outlier-selection
algorithm. Each application domain, i.e., the corresponding data sets, requires a speciĕc
conĕguration of the parameters for the outlier-selection algorithm to perform optimally.
In subsequent chapters we come across the different kinds of parameters.

Regarding (), when an expert labels a real-world observation as an anomaly, we
may also say: () that the observation is detected as an anomaly, and () that the
observation belongs to the anomaly class �$A. is is illustrated in the Euler diagram in
Figure .(d). For some application domains, these labels are available to the outlier-
selection algorithm. In our comparative experiments, the labels provided by the domain
expert are considered to be the ground truth. In other words, the domain expert is always

..Background and experimental set-up.����
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right. e classiĕcations made by the outlier-selection algorithm are compared to the
labels provided by the domain expert (see Section .).

Regarding (), in Section . we explained two approaches to represent real-world
observations as data points. In a real-world application, the domain expert has the
domain knowledge to decide which approach is most appropriate. We assume that the
features or the dissimilarity measure are deĕned by the domain expert.

Regarding (), the outlier-selection algorithm outputs classiĕcations in order to �T�V�Q�Q�P�S�U

the domain expert, who has to decide whether the classiĕcation is valid and whether
further action is required. In the maritime domain, an example action is for the
coastguard operator to send a rescue helicopter.

..������. �)�J�U�T�
 �N�J�T�T�F�T�
 �D�P�S�S�F�D�U �S�F�K�F�D�U�T�
 �B�O�E �G�B�M�T�F �B�M�B�S�N�T

From the above we know that a domain expert labels and an outlier-selection algorithm
classiĕes. ey may not always agree with each other, as will be explained in this section.
Comparing the classiĕcations ˜ outlier; inlier• with the labels ™anomaly;normalityž is
necessary for the evaluation of the outlier-selection algorithm (see Section .).

Figure . shows a confusion matrix (Mitchell, ; Witten and Frank, ). e
confusion matrix shows the four possible outcomes when we compare the label of the
real-world observation given by the expert to the classiĕcation of the corresponding data
point given by the algorithm. e possible outcomes (and the four corresponding sets)
are: () hit (�)�J), () false alarm (�'�" ), () miss (�.�J ), and () correct reject (�$�3).

As we can see in Figure ., if the expert labels an observation as an anomaly and the
algorithm classiĕes the corresponding data point as an outlier, then the outcome is a
‘hit’. In this case, the expert and the algorithm agree with each other. e hit square in
Figure . is green colour to illustrate agreement between the expert and the algorithm.
e expert and the algorithm also agree with each other when the expert labels a real-
world observation as a normality and the algorithm classiĕes the data point as an inlier.
is results in a correct reject, which means that the outlier-selection algorithm has
correctly rejected the hypothesis that the observation is anomalous. e corresponding
square is coloured olive. e remaining two outcomes (i.e., false alarm and miss) are the
result of disagreement between the expert and the algorithm.e squares corresponding
to false alarm and miss are located in the top right and bottom le. e two squares
are coloured purple and red to indicate disagreement. We remark that the colours used

..Hits, misses, correct rejects, and false alarms. ����
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four possible outcomes when the label of the
expert concerning a real-world observation
is compared with the classiöcation of the al-
gorithm concerning the corresponding data
point. The four possible outcomes are: hit,
false alarm, miss, and correct rejection.

in Figure . are employed consistently throughout the thesis to indicate the outcomes.
Formally, the four sets corresponding the outcomes are deĕned as follows.

�)�J� ™x > �%Tx > �$A and x > �$Ož ..������

�'�" � ™x > �%Tx > �$N and x > �$Ož ..������

�.�J � ™x > �%Tx > �$A and x > �$Iž ..������

�$�3 � ™x > �%Tx > �$N and x > �$Iž ..������

e four sets are also illustrated in the Euler diagram in Figure .(f) on page . is
concludes our discussion of Figure ..

Let us illustrate the four possible outcomes using an example data set as shown in
Figure .. Here we note that the four scatters plots show the same example data set;
only the colours and the shapes of the data points are different.

e top-le scatter plot shows the example data set as it is available to the outlier-selection
algorithm. e data set contains two clusters of data points. e small cluster on the le
is much more dense than the big cluster on the right. ere are two data points that lie

..Background and experimental set-up.����
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somewhat outside the clusters. It is up to the outlier-selection algorithm to process the
data set and to classify each data point.

e top-right scatter plot shows the labels given by the domain expert. e two data
points that lie somewhat outside of the clusters, appear to be anomalies according to the
domain expert. e remaining data points are labelled as normalities. e panel inside
the scatter plot zooms in on the area around the le anomaly. is is to show that on
a smaller scale, the anomaly lies indeed somewhat outside the small, dense cluster. In
passing, we note that the labels are not available to the outlier-selection algorithm.

�'�J�H�V�S�F ������An illustration of the four possible outcomes. �5�P�Q �M�F�G�U��Real-world observa-
tions represented as data points. �5�P�Q �S�J�H�I�U��The domain expert labels two observations
as anomalous. �#�P�U�U�P�N �M�F�G�U��The outlier-selection algorithm classiöes many data points
as outliers. �#�P�U�U�P�N �S�J�H�I�U��Comparing the classiöcations with the labels results in four
possible outcomes.

..Hits, misses, correct rejects, and false alarms. ����
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e bottom-le scatter plot shows the classiĕcations made by the outlier-selection
algorithm. e algorithm selects as outliers () the two anomalies and () many data
points that are inside the large cluster.

Finally, the bottom-right scatter plot shows the four possible outcomeswhenwe compare
the classiĕcations made by the outlier-selection algorithm, and the labels given by the
domain expert. In this example, there are no misses because the outlier-selection has
classiĕed all anomalies as outliers. However, there are many false alarms, because many
normalities in the large cluster have been incorrectly classiĕed as outliers.

e large number of false alarms may indicate that the domain expert has chosen a
suboptimal threshold. If the domain expert would have set the threshold to a higher
value, then the le-most anomalous data point may have been classiĕed as an inlier,
which would result in a miss (cf. Equation .). In Section . and Subsection ..
speciĕcally, we further explain choosing appropriate thresholds.

..������. �&�W�B�M�V�B�U�J�O�H �U�I�F �Q�F�S�G�P�S�N�B�O�D�F �P�G �B�O �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O
�B�M�H�P�S�J�U�I�N

In this section we discuss the evaluation of the performance of an outlier-selection
algorithm. Evaluation comes down to measuring the classiĕcation performance of an
algorithmon a particular data set. For this, we employ the labels associatedwith each data
point, even though these were not available to the algorithm. When the performances
of multiple outlier-selection algorithms are measured, they can be compared (how this
precisely takes place is explained in Section .).

Our description of the evaluation of outlier-selection algorithms is structured as follows.
In Subsection .., we discuss how binary- and multi-classiĕcation data sets can be
transformed into one-class data sets such that they are usable for evaluating outlier-
selection algorithms. In Subsection .., we describe a procedure that simulates
anomalies using one-class data sets. In Subsection .., we explain how the performance
measure known as Area Under the ROC Curve (AUC) is computed. In Subsection ..,
we describe the weighted version of AUC, which is appropriate for aggregating over
multiple data sets.

..Background and experimental set-up.����
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..����������. �$�P�O�T�U�S�V�D�U�J�O�H �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U�T �G�S�P�N �B �N�V�M�U�J���D�M�B�T�T �E�B�U�B �T�F�U

To evaluate the performance of an outlier-selection algorithm, we need data sets where
the data points are labelled as normal and anomalous. Such a data set is called a one-class
data set �%. In order to obtain a good sense of the characteristics of an outlier-selection
algorithm we need a large number of varied one-class data sets.

One-class data sets are not as abundant as multi-class data sets (�%M). A multi-class
data set contains two or more classes �$ that are not necessarily labelled as normal or
anomalous;

�%M �
�N

�
�J� 1

�$�J; ..������

where �N is the number of classes. For example, the Iris Ęower data set (Fisher, )
consists of  data points from each of the three classes: () Setosa, () Versicolor, and
() Virginica. Figure .(top) shows a scatter plot of the Iris Ęower data set. Normally,
multi-class data sets are used for binary classiĕcation (Asuncion and Frank, ).

We can construct a one-class data set from a multi-class data set by relabelling one class
as the normal class (�$N) and the remaining �N� 1 classes as anomalous (�$A). Let

�%�J� �$A 8 �$N such that �$A �
�N

�
�K� 1
�Kx �J

�$�Kand �$N � �$�J: ..������

For a multi-class data set containing �Nclasses, we can repeat this �Ntimes, where each
class is relabelled as the normal class once (Tax, ). We remark that a one-class
data set contains the same data points as the multi-class data set, but with different
labels. e bottom row of Figure . shows three one-class datasets: �%1, �%2, and �%3 that
are constructed from the Iris Ęower data set. ese one-class data sets are suitable for
evaluating an outlier-selection algorithm.

..����������. �4�J�N�V�M�B�U�J�O�H �B�O�P�N�B�M�J�F�T

In data sets that are obtained from multi-class data sets, as described in Subsection ..,
usually both the normal and the anomalous class are well-represented, i.e., clustered.
As such, an unsupervised outlier-selection algorithm would not classify any anomalous
data points as outliers. Figure . shows a scatter plot of a ‘Banana’ data set where both

..Evaluating the performance of an outlier-selection algorithm. ����



...

�$�I�B
�Q

�U
�F

�S
��

�'�J�H�V�S�F ������Illustration of relabelling a multi-class data set into multiple one-class data sets.
�5�P�Q��The Iris øower data set is a multi-class data set that consists of three classes: Setosa (. ),
Versicolor (. ), and Virginica (. ). �#�P�U�U�P�N��By relabelling the data points, three one-class data sets are
obtained. Each of the three classes is made once the normal class (. ).

classes are well-represented. (is data set will be used for the remainder of this chapter
to explain the evaluation procedure.)

In order to use such a data set for the evaluation of outlier-selection algorithms, we
employ a three-step procedure that simulates the anomalies to be rare. First, all data
points of the anomalous class are removed from the data set. Second, the outlier-selection
algorithm computes the outlier scores for all normal data points. ird, we add one of
the anomalous data points and compute its outlier score, and remove it thereaer. e
third step is repeated until all anomalous data points have been processed by the outlier-
selection algorithm.e result is an outlier score for each normality and anomaly.

Figure . shows for the outlier scores of all data points in theBanana data set.e vertical
dotted line separates the anomalies (�$A) from the normalities (�$N). (e other elements
in the ĕgure are explained in Subsection ...)We note that overall the anomalies have a
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�'�J�H�V�S�F ������The complete Banana data set. In
order to evaluate theoutlier-selection algorithm
we simulate anomalies to be rare.

higher outlier score than the normalities. e outlier scores are used in Subsection ..
to measure the AUC performance of the outlier-selection algorithm.

..����������. �"�S�F�B �6�O�E�F�S �U�I�F �$�V�S�W�F �Q�F�S�G�P�S�N�B�O�D�F �N�F�B�T�V�S�F

In this section we explain how we measure the performance of an outlier-selection al-
gorithm. In the thesis we employ the AUC performance measure (Bradley, ).

e computed outlier scores from Subsection .. are converted to classiĕcations
˜ outlier; inlier• using a threshold �b(see Equation . on page ), so that these can
be compared to the labels ™anomaly;normalityž provided by the expert, resulting in a
certain number of hits, false alarms, misses, and correct rejections. e four outcomes
introduced in Section . have four associated rates.

hit rate � S�)�JS ~ S�$A S ..������

false alarm rate � S�'�" S ~ S�$N S ..��������

miss rate � S�.�J S ~ S�$A S ..��������

correct reject rate � S�$�3S ~ S�$N S ..��������

..Evaluating the performance of an outlier-selection algorithm. ����
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�� �'�J�H�V�S�F ������Outlier scores of the data points in

the Banana data set. The dashed line indicates the
threshold chosen by the domain expert.

Unless the outlier-selection algorithm classiĕes every data point correctly, there exists a
trade-off between the hit rate and the false alarm rate. e rates are determined by the
threshold �b, of which the optimal setting depends on the application and the associated
cost of misclassiĕcation. By changing the threshold �bfrom the lowest possible value to
the highest possible value, we obtain a range of �G�B�M�T�F �B�M�B�S�N �S�B�U�F�Tand �I�J�U �S�B�U�F�T.

A plot of the range of �G�B�M�T�F �B�M�B�S�N �S�B�U�F�Tagainst the range of �I�J�U �S�B�U�F�Tis called an ROC curve.
Figure . shows the ROC curve for the Banana data set that corresponds to the outlier
scores shown in Figure .. An ROC curve shows us how the threshold inĘuences the
�G�B�M�T�F �B�M�B�S�N �S�B�U�Fand the �I�J�U �S�B�U�F. e threshold �b̀ � 0:57 minimises the number of false
alarms while maximising the number of hits. is threshold corresponds to the dashed
horizontal line in Figure ..

By integrating the ROC curve we obtain the Area Under the ROC Curve (AUC). e
AUC is always between 0 to 1,where a higher value is better.erefore, theAUCexpresses
the performance of an outlier-selection algorithm in a single value that is independent
of the threshold (Vanderlooy, ).

A completely random outlier-selection algorithm, which outputs random classiĕcations,
has on average, an AUC of 0:5. Employing the AUC as performance measure avoids the
use of one particular threshold �band ensures a fair comparison of algorithms (Bradley,
). Of course, in a real-world setting the algorithm will be applied with a threshold �b

that is optimal for the task at hand.
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�'�J�H�V�S�F ��������An ROC curve plots the false alarm rate agains the hit rate
for all possible thresholds.

Deĕnition . (AUC performance). ���F �"�6�$�P�G �B�O �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N �u�
 �H�J�W�F�O �B

�E�B�U�B �T�F�U�%�
 �J�T �E�F���O�F�E �B�T

AUC‰�u; �%Ž�
1

S�$A S� S�$N S
Q

xA>�$A

Q
xN>�$N

��™�û xA• A �û xN•ž ; ..��������

�X�I�F�S�F��˜ �• �J�T �U�I�F �J�O�E�J�D�B�U�P�S �G�V�O�D�U�J�P�O �U�I�B�U �S�F�U�V�S�O�T �B �W�B�M�V�F �P�G1 �J�G �U�I�F �B�O�P�N�B�M�ZxA �I�B�T �B �I�J�H�I�F�S

�P�V�U�M�J�F�S �T�D�P�S�F �U�I�B�O �U�I�F �O�P�S�N�B�M�J�U�ZxN�
 �B�O�E0 �P�U�I�F�S�X�J�T�F��

Please note that the AUC performance measure treats both the misclassiĕcation of an
anomaly and a normality as equal (Fawcett, ). is may not be optimal is a real-
world situation, but since we cannot assume anything about the data sets used in our
experiments, the AUC is a suitable performance measure.

..����������. �8�F�J�H�I�U�F�E �"�6�$

When applying an outlier-selection algorithm to multiple one-class data sets that are
constructed from the same multi-class data set, we report performances with the help of
the weighted AUC.

To compute the weighted AUC, i.e., multi-class AUC (cf. Fawcett, ), the AUCs of the
one-class data sets are averaged, where each one-class data set is weighted according to
the prevalence of the normal class, �$N�J.

..Evaluating the performance of an outlier-selection algorithm. ����
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..��������

e use of a weighted average prevents one-class data sets containing few normalities
from dominating the results (Hempstalk and Frank, ).

..������. �.�F�U�I�P�E �G�P�S �D�P�N�Q�B�S�J�O�H �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T

Whenmultiple outlier-selection algorithms have been evaluated onmultiple data sets, we
can compare their performances. A full list of (weighted) AUC performance measures
allows for a detailed examination. We admit that raw numbers are inappropriate to
arrive at general conclusions (cf. Demšar, ). In practice, we see that some machine
learning papers report and draw conclusions from the average AUC performance⁴
of outlier-selection algorithms across data sets from different applications domains.
However, as Webb () states, ‘it is debatable whether error rates in different domains
are commensurable, and hence whether averaging error rates across domains is very
meaningful.’ erefore, as we explain in this section, we test for signiĕcant difference
between the outlier-selection algorithms.

To compare multiple algorithms on multiple datasets, we follow Demšar (), who
suggests to apply the following three steps. e ĕrst step is to apply the statistical
Friedman test (Subsection ..). When the ĕrst step has a positive outcome we continue
with the second step, which is to apply the post-hoc Neményi test (Subsection ..).e
third step is to visualise the outcome of the second step (i.e., the signiĕcant differences
between the algorithms) using a critical difference diagram (Subsection ..). We
conclude the section in Subsection ...

..����������. �'�S�J�F�E�N�B�O �U�F�T�U

e Friedman test (Friedman, ) is used to investigate whether there is a signiĕcant
difference between the performances of the outlier-selection algorithms. e Friedman
test ĕrst ranks the algorithms for each data set, where the best performing algorithm is
assigned the rank of 1, the second best the rank of 2, and so forth.

⁴ Please note that the weighted AUC presented in Subsection .. aggregates AUC performances for
one-class data sets from a single multi-class data set.

..Background and experimental set-up.����
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en it checks whether themeasured average ranks �32�Kare signiĕcantly different from the
mean rank. For example, if there are four outlier-selection algorithms, the mean rank is
2:5. Iman andDavenport () proposed the �' �' statistic, which is less conservative than
the Friedman statistic:

�' �' �
ˆ �/ � 1• �o2�'

�/ ˆ �N� 1• � �o2�'
; ..��������

where �/ is the number of data sets, �Nis the number of algorithms, and �o2�' is the Friedman
statistic:

�o2�' �
12�/

�Nˆ �N� 1•

’
–
”

Q
�K

�32�K�
�Nˆ �N� 1•2

4

“
—
•

: ..��������

e �' �' statistic is distributed according to the �'-distribution with �N � 1 and
ˆ �N� 1• ˆ �/ � 1• degrees of freedom. When there is a signiĕcant difference, we proceed
with the post-hoc Neményi test.

..����������. �/�F�N�Ï�O�Z�J �U�F�T�U

e post-hoc Neményi test (Neményi, ) checks for each pair of outlier-selection
algorithms whether there is a signiĕcant difference in performance. e performance of
two outlier-selection algorithms is signiĕcantly different when the difference between
their average ranks is greater than or equal to the critical difference:

CD � �R�[

¾
�Nˆ �N� 1•

6�/
; ..��������

where �R�[ is the Studentised range statistic divided by
º

2. e next step is to report the
post-hoc analysis using a critical difference diagram.

..����������. �$�S�J�U�J�D�B�M �E�J�ò�F�S�F�O�D�F �E�J�B�H�S�B�N

Critical difference diagrams are a visual representation of the post-hoc analysis of
comparing multiple outlier-selection algorithms (Demšar, ). Figure . shows a
critical difference diagram for four algorithms (C., C.+m, C.+cf, C.m+cf). is
example is taken from (Demšar, )⁵. e arrows indicate the average ranks of the
algorithms. Groups of algorithms that are not signiĕcantly different at a signiĕcance level

⁵ e actual algorithms are not important, but the interested reader may want to know that the C. is a
top-down decision tree induction algorithm, and the other three algorithms are variations on C..
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of . (i.e., �Q= .) are connected by a horizontal bar. e critical difference diagram
reveals that two pairs of algorithms have a signiĕcantly different performance: () C.
and C.+m and () C. and C.m+cf.

�'�J�H�V�S�F ��������A critical difference diagram visualises the result of a comparison of algorithms with the
Neményi test. Groups of algorithms that are not signiöcantly different (at �Q= .10) are connected by a
horizontal bar (after (Demšar, 2006)).

A critical difference diagram offers three advantages over presenting the results in textual
or numerical form. First, it presents the order of the outlier-selection algorithms in terms
of average ranks. Second, it shows the magnitude of the differences between the average
ranks. ird, it indicates whether the differences are signiĕcant.

..����������. �4�F�D�U�J�P�O �D�P�O�D�M�V�T�J�P�O

In the sectionwe described the three steps for comparingmultiple algorithms onmultiple
data sets. e comparisons to be performed in the subsequent chapters involve all three
steps. However, because in the thesis the Friedman test (step ) always results in a positive
outcome, we do not explicitly report it. Instead, we report the results of the Neményi test
(step ) using a critical difference diagram (step ).

..������. �0�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�D�B�U�J�P�O �T�F�U�U�J�O�H

We start recalling that the data Ęow diagram in Figure . on page  contains a dashed
line from the domain expert to the data set. e dashed line indicates that the labels
™anomaly;normalityž are not necessarily transferred. If the labels are transferred, then
the data set is labelled, otherwise it is unlabelled.

So far, our description of evaluating and comparing outlier-selection algorithms has
assumed that algorithms process unlabelled data sets, only. is means that the outlier-
selection algorithm does not know whether the domain expert considers a data point to

..Background and experimental set-up.����
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be a normality or an anomaly. We refer to this assumption as the unsupervised outlier-
selection setting.

In certain real-world situations the domain expert has labelled some real-world
observations. en, we can employ a �T�F�N�J-supervised setting known as the one-class
classiĕcation setting (Tax, ), which is the subject of this section.

e remainder of this section is structured as follows. In Subsection .. we describe the
similarities and differences between an unsupervised outlier-selection algorithm and a
semi-supervised outlier-selection algorithm, i.e., a one-class classiĕer. In Subsection ..
we explain how a one-class classiĕer is trained and tested. In Subsection .. we describe
the cross validation, which is used to generalise the performance measure.

..����������. �0�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�F�S

Algorithms that make use of the labels provided by the domain expert are known as one-
class classiĕers. A one-class classiĕer is named as such since itmakes use of one class only,
namely the normal class. So, in this setting it is assumed that anomalies are rare.⁶

A one-class classiĕer takes as input a labelled data set �%and outputs classiĕcations
˜ outlier; inlier• . erefore, Deĕnition . and consequently Deĕnition . on page 
also apply to one-class classiĕers.

..����������. �5�S�B�J�O�J�O�H �B�O�E �U�F�T�U�J�O�H

e main difference between a one-class classiĕer and an outlier-selection algorithm is
that a one-class classiĕer needs to be �U�S�B�J�O�F�Ebefore it can classify data points. We let
the training data set contain only normalities, in order to mimic the low number of
anomalies that occur in most real-world applications. Figure . illustrates a trained
one-class classiĕer on the Banana data set. e red dashed line represents the selection
boundary of the one-class classiĕer. If a new, unseen data point, i.e., a test data point, lies
outside the selection boundary, it is classiĕed as an outlier. Otherwise, the data point is
classiĕed as an inlier. Analogously to an outlier-selection algorithm, the classiĕcations
are compared to the labels of the domain expert, which results in the four outcomes

⁶ If the data set contains sufficient data points from both the normal class and the anomalous class, then
the domain expert may be better supported by a supervised binary classiĕer, which is beyond the scope
of the thesis.

..One-class classiöcation setting. ����
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�� �'�J�H�V�S�F ��������Training and testing a one-class classiöer. �-�F�G�U��A one-class classiöer is trained on the

normal class only. The dashed line represents the decision boundary. �3�J�H�I�U��A trained one-class
classiöer is tested on both classes, which results in four possible outcomes.

introduced in Section .. e scatter plot on the right-hand-side in Figure . shows
the (dis)agreements aer testing a trained one-class classiĕer (cf. Section .).

Training a one-class classiĕer is also known as the one-class classiĕer building amodel of
the normal class. Once trained, the model remains ĕxed. As a result, a one-class classiĕer
requires an evaluation procedure that differs from an outlier-selection algorithm.

A one-class classiĕer evaluates each testing data point by itself. In other words, the
classiĕcation of a testing data point does not depend on other testing points, but only on
the model. So, for a one-class classiĕer, the procedure to simulate anomalies (described
in Subsection ..) is not needed. Because an outlier-selection algorithm does not build
amodel, but re-processes the entire data set, it is usually slower than a one-class classiĕer.
As we will explain in the next subsection, for a proper evaluation of a one-class classiĕer,
it is important that it is tested on unseen data points.

..����������. �$�S�P�T�T �W�B�M�J�E�B�U�J�P�O

To estimate the AUC performance of a one-class classiĕer, we employ a technique called
cross validation. In �L-fold cross validation, e.g., �L� 10, the data set �%is split randomly
into �Lmutually exclusive subsets, i.e., folds, �%1; �%2; : : : ; �%�Lof equal size (Kohavi, ).
We ensure that the cross-validation is stratiĕed, which means each fold contains both
normalities and anomalies with the same proportions as the original data set. e one-
class classiĕer is trained and tested �Ltimes. Each time �U> 1; 2; : : : ; �L, the one-class

..Background and experimental set-up.����



...

�$
�I�

B
�Q

�U
�F

�S
��

classiĕer is trained on �%� �%�Uand tested on �%�U. (We recall that a one-class classiĕer is
trained on the normalities only.)is results in �LAUCperformances, which are averaged
to one AUC performance. In our experiments, we employ ten-fold cross validation. To
minimise the bias introduced by the random selection of folds, we repeat the ten-fold
cross-validation ten times. Figure . shows a scatter plot of a training set and a test set,
respectively.e training set consists of nine folds and the test consists of one fold.

�'�J�H�V�S�F ��������To evaluate an outlier-selection algorithm, the data set is split into a training data set
and a test data set.

..������. �$�I�B�Q�U�F�S �T�V�N�N�B�S�Z

In this chapter we introduced the main concepts of the thesis and explained the
experimental set-up that is employed for answering RQ, RQ, and RQ. We illustrated
the relationship between () the domain expert, () the outlier-selection algorithm, ()
the real-world, () the data representation, and () the data set.

Outlier selection can be performed within two settings: () the unsupervised outlier-
selection setting and () the one-class classiĕcation setting, which is semi-supervised.
We started our explanation of the concepts by assuming the unsupervised setting. We
described two types of data representations that outlier-selection algorithms can process:
() feature-vector representation and () similarity-matrix representation. We outlined
the two responsibilities of the domain expert, which are: () to conĕgure the parameters
of the outlier-selection algorithm and () to assess its classiĕcations.

We described how to transform ordinary multi-class data sets into one-class data sets
so that they can be used for our comparative experiments. We explained how the
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performance of an outlier-selection algorithm is measured using the AUC performance
measure. We discussed the three steps to compare the performances of multiple outlier-
selection algorithms on multiple data sets, namely: () applying the Friedman statistical
test, () applying the post-hoc Neményi statistical test, and () visualising the signiĕcant
differences using a critical difference diagram. In the ĕrst seven sections we assumed the
unsupervised outlier-selection setting, and in Section . we changed our assumption to
the one-class classiĕcation setting.We described the technique of cross validation, which
is used to evaluate one-class classiĕers.With all the concepts and the experimental set-up
explained, we are now ready to address RQ.
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�$�P�O�U�F�O�U�T��
In this chapter,weprovideananswer toRQ1: �)�P�X �T�I�P�V�M�E�X�F �F�W�B�M�V�B�U�F �B�O�E�D�P�N�Q�B�S�F �U�I�F �Q�F�S�G�P�S�N�B�O�D�F

�P�G �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T� Two well-known unsupervised outlier-selection algorithms from

the öeld of KDD are transformed into one-class classiöers so that these can be compared with

three outlier-selection algorithms from the öeld of ML in a statistically valid way.
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e problem of outlier selection is well studied in the ĕelds of Machine Learning (ML)
and Knowledge Discovery in Databases (KDD). Both ĕelds have produced their own
outlier-selection algorithms and corresponding evaluation procedures. In ML, Nearest
Neighbour (NN), Parzen Windows, and Support Vector Machines (SVM) are well-
known algorithms that have variants which can be used for one-class classiĕcation (these
are known as K-Nearest Neighbour Data Description (KNNDD), Parzen Window Data
Description (PWDD), and Support Vector Data Description (SVDD)). Within the ĕeld
of KDD, the heuristic local-density estimation algorithms LOF and LOCI are generally
considered to be superior outlier-selection algorithms. To the best of our knowledge, so
far, the performances of these ML and KDD algorithms have not been compared. As a
direct consequence we are able to formulate the null hypothesis: all algorithms have an
equal performance.

e ĕrst research question (RQ) reads: �)�P�X �T�I�P�V�M�E �X�F �F�W�B�M�V�B�U�F �B�O�E �D�P�N�Q�B�S�F �U�I�F

�Q�F�S�G�P�S�N�B�O�D�F �P�G �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T� To answer this question we apply the
following two steps. First, we formalise LOF and LOCI into algorithms with a one-class
classiĕcation setting. Second, we evaluate the ML and KDD outlier-selection algorithms
on 24 real-world data sets, and compare their results. For the evaluation and comparison
we employ the techniques explained in Chapter .

Chapter  is organised as follows. Section . describes how outliers are selected in
the ĕelds of ML and KDD. In Sections . and . we describe the ML and KDD
outlier-selection algorithms, respectively, and explain how they compute a measure of
outlierness. We provide the set-up of our experiments in Section . and their results
in Section .. Section . discusses the results in terms of three observations: () Local
density estimates outperform global density estimates, () LOF outperforms LOCI, and
() Domain-based and density-based algorithms are competitive. Finally, Section .
concludes by stating that the ĕelds of ML and KDD have outlier-selection algorithms
that are competitive in performance and deserve treatment on equal footing.

..������. �0�V�U�M�J�F�S �T�F�M�F�D�U�J�P�O �J�O �.�- �B�O�E �,�%�%

ere is a growing interest in the automatic selection of abnormal or suspicious
patterns in large data volumes to detect terrorist activity, illegal ĕnancial transactions,
or potentially dangerous situations in industrial processes. e interest is reĘected in
the development and evaluation of outlier-selection algorithms (Tax and Duin, ;
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Breunig et al., ; Tax, ; Papadimitriou et al., ). In recent years, outlier-
selection algorithms have been proposed in two related ĕelds: ML and KDD. Although
both ĕelds have considerable overlap in their objectives and subject of study, there
appears to be some separation in the study of outlier-selection algorithms. In the ML
ĕeld, outlier selection is generally based on data description algorithms inspired by NN,
Parzen Windows, and SVM (Tax and Duin, ; Tax, ). ese algorithms originate
from statistics and pattern recognition, and have a solid theoretical foundation (Parzen,
; Schölkopf and Smola, ). In the KDD ĕeld, the LOF algorithm (Breunig et al.,
) and the LOCI algorithm (Papadimitriou et al., ) are the two main algorithms
for outlier selection. Like most algorithms from KDD, LOF and LOCI are targeted to
process large volumes of data (Fayyad, Piatetsky-Shapiro, and Smyth, a).

Interestingly, within both ĕelds the evaluation of their outlier-selection algorithmsoccurs
quite isolated from the other ĕeld. In the KDD ĕeld, LOF and LOCI are rarely compared
toML algorithms such asNN, PWDD, and SVDD (cf. Breunig et al., ; Papadimitriou
et al., ) and in theML ĕeld, LOF and LOCI are seldommentioned. As a case in point,
in the review of outlier-selection algorithms byHodge andAustin (), LOF and LOCI
are not mentioned at all.

Hido, Tsuboi, Kashima, Sugiyama, andKanamori () recently compared LOF, SVDD,
and several other outlier-selection algorithms. However, their study is Ęawed because
their approach has three serious drawbacks. First, the performances are obtained using a
test set which contains the same normal data points as in the training set. Secondly, Hido
et al. state that cross-validation is not available to LOF and SVDD. irdly, no statistical
tests for signiĕcance of the obtained performances are carried out. In our opinion, a
separate test set, cross-validation, and a statistical test are crucial for a sound empirical
evaluation and comparison.

To the best of our knowledge, this is the ĕrst time that outlier-selection algorithms from
the ĕelds of ML and KDD are evaluated and compared in a statistically valid way, using
a separate test set, cross-validation, and statistical tests.

For our purpose, we adopt the one-class classiĕcation setting (Tax, ). e setting
allows outlier-selection algorithms from different settings to be () evaluated using
the well-known performance measure AUC (Bradley, ), and () compared using
statistically sound comparison test such as the Friedman test (Friedman, ) and the
post-hoc Neményi test (Neményi, ).

..Outlier selection in ML and KDD. ����
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e outlier-selection algorithms of which the performances are compared are: KNNDD,
PWDD, and SVDD from the ĕeld of ML and LOF and LOCI from the ĕeld of KDD.
de Ridder, Tax, and Duin () and Tax () already presented the ML algorithms as
one-class classiĕers. erefore, we need only reformulate LOF and LOCI in terms of the
one-class classiĕcation setting.

..������. �.�- �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T

In this section we brieĘy discuss the outlier-selection algorithms from the ĕeld of
Machine Learning (ML). e three algorithms K-Nearest Neighbour Data Description
(KNNDD), Parzen Window Data Description (PWDD), and Support Vector Data De-
scription (SVDD) are explained in Subsections .., .., and .., respectively.

..����������. �,���/�F�B�S�F�T�U �/�F�J�H�I�C�P�V�S �%�B�U�B �%�F�T�D�S�J�Q�U�J�P�O

e ĕrst ML algorithm is the K-Nearest Neighbour Data Description (KNNDD) by
de Ridder, Tax, and Duin (). e outlier score computed by KNNDD is the ratio
between two distances.e ĕrst distance is the distance between the test data point x�Jand
its �Lth nearest neighbour in the training set NNˆx�J; �L• .e second distance is the distance
between the �Lth nearest training data point and its �Lth nearest neighbour. Formally:

�uKNNDDˆx�J; �L; �%train• �
�E‰x�J;NNˆx�J; �L•Ž

�EŠNNˆx�J; �L• ;NN‰NNˆx�J; �L• ; �LŽ•
: ..������

eKNNDDalgorithm is similar to LOF andLOCI in the sense that it locally samples the
density. e main difference with LOF and LOCI is that KNNDD is less complex.

..����������. �1�B�S�[�F�O �8�J�O�E�P�X �%�B�U�B �%�F�T�D�S�J�Q�U�J�P�O

e second ML algorithm is the Parzen Window Data Description (PWDD), which
is based on Parzen Windows as proposed by Parzen (). PWDD estimates the
probability density function of the normal class x�J:

�uPWDDˆx�J; �I; �%train• �
1

�/�I

�/

Q
�K� 1

�, ‹
x�J� x�K

�I
• ; ..������
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where �/ isS�%trainS, �I is a smoothing parameter, and �, typically is aGaussian kernel:

�, ˆ �Y• �
1

º
2�b

�F�
1
2 �Y2 : ..������

e parameter �I is optimised using a leave-one out maximum likelihood estimation
(de Ridder et al., ). Since the outlier score �uPWDD is a probability and not a distance,
the threshold function (cf. Equation .) for PWDD becomes:

�G�1�8�%�%̂x�J• �

¢̈
¨̈̈
¦
¨̈̈
¤̈

inlier if �uPWDDˆx�J; �I; �%train• C�b;

outlier if �uPWDDˆx�J; �I; �%train• @�b;
..������

such that a data point with a too low probability is classiĕed as an outlier. PWDD, unlike
LOF, LOCI, and KNNDD, estimates the density globally rather than locally.

..����������. �4�V�Q�Q�P�S�U �7�F�D�U�P�S �%�B�U�B �%�F�T�D�S�J�Q�U�J�P�O

e third ML algorithm is the Support Vector Data Description (SVDD) from Tax
and Duin (). We conĕne ourselves to a brief description of this kernel-based data-
description algorithm. e interested reader is referred to Tax and Duin () and Tax
() for a full description of the SVDD algorithm.

SVDD is a domain-based outlier-selection algorithm inspired by Support Vector
Machines (SVM) (Vapnik, ). It is domain based because, unlike LOF, LOCI, and
PWDD, SVDD does not estimate the data density directly. Instead, it ĕnds an optimal
boundary around the normal class by ĕtting a non-linearly transformed hypersphere
withminimal volume using the kernel trick, such that it enclosesmost of the normal data
points.e optimal boundary is found using quadratic programming, where only distant
normal data points are allowed to be outside the boundary (Vapnik, ; Schölkopf and
Smola, ). e outlier score �uSVDD is deĕned as the distance between data point x�J

and the normal boundary. In our experiments we employ a Gaussian kernel of which the
parameter �Tis found as described in Tax and Duin ().

..������. �,�%�% �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T

In this section we describe two popular outlier-selection algorithms from the ĕeld
of Knowledge Discovery in Databases (KDD), namely Local Outlier Factor (LOF) by

..KDD outlier-selection algorithms. ����



...

�$�I�B
�Q

�U
�F

�S
��

Breunig, Kriegel, Ng, and Sander () and Local Correlation Integral (LOCI) by
Papadimitriou, Kitagawa, Gibbons, and Faloutsos (). Both algorithms are based
on �M�P�D�B�Mdensities, meaning that they consider a data point to be an outlier when its
surrounding space contains �S�F�M�B�U�J�W�F�M�Zfew data points (i.e., when the data density in that
part of the data space is relatively low).

We frame the KDD outlier-selection algorithms LOF and LOCI into the one-class
classiĕcation setting (Janssens and Postma, ) by letting them compute an outlier
score �uby: () constructing a neighbourhood around x�J, () estimating the density of
the neighbourhood, and () comparing this density to the neighbourhood densities
of the neighbouring data points. e main difference between LOF and LOCI is that
the latter considers densities at multiple scales (i.e., multiple levels of granularity).
Subsections .. and .. explain how the three steps are implemented in LOF and
LOCI, respectively.

..����������. �-�P�D�B�M �0�V�U�M�J�F�S �'�B�D�U�P�S

e ĕrst KDD algorithm is the heuristic algorithm LOF (Breunig et al., ). e
user needs to specify one parameter, �L, which represents the number of neighbours
constituting the neighbourhood used for assessing the local density. Below, we explain
how LOF implements the three steps.

..�4�U�F�Q ���� �$�P�O�T�U�S�V�D�U�J�O�H �U�I�F �O�F�J�H�I�C�P�V�S�I�P�P�E

In order to construct the neighbourhood of a data point x�J, LOF deĕnes the
neighbourhood border distance �Eborder of x�Jas the distance �Efrom x�Jto its �Lth nearest
neighbour NNˆx�J; �L• :

�Eborderˆx�J; �L• � �E‰x�J;NNˆx�J; �L•Ž: ..������

Consequently, a neighbourhood �/ ˆx�J; �L• is constructed, containing all data points x�K

of which the distance to x�J is not greater than the neighbourhood border distance
�Eborder:

�/ ˆx�J; �L• � ˜ x�K> �%train ƒ ˜x�J• S�E‰x�J; x�KŽB �Eborderˆx�J; �L•• : ..������

It should be noted that x�Jis not included in the neighbourhood. Figure . illustrates the
concept of the neighbourhood border distance for �L� 3.

..Evaluating and comparing outlier-selection algorithms.����
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�'�J�H�V�S�F ������Illustration of the örst step of LOF for �L= 3 on a two-dimensional synthetic data set.
�-�F�G�U��The border distance �Eborder is equal to the distance between data point �Y�Jand its 3rd nearest
neighbour. �3�J�H�I�U��The neighbourhood containing three data points.

..�4�U�F�Q ���� �&�T�U�J�N�B�U�J�O�H �U�I�F �O�F�J�H�I�C�P�V�S�I�P�P�E �E�F�O�T�J�U�Z

To estimate the density of the constructed neighbourhood, the reachability distance is
introduced. is distance ensures that a minimal distance between the two data points x�J

and x�Kis maintained, by ‘keeping’ data point x�Joutside the neighbourhood of data point
x�K. e use of the reachability distance causes a smoothing effect of which the strength
depends on the parameter �L. e reachability distance �Ereach is formally given by:

�Ereach‰x�J; x�K; �LŽ� maxš�Eborder‰x�K; �LŽ; �E‰x�K; x�JŽŸ: ..������

It should be noted that the reachability distance �Ereach is an asymmetric measure. e
neighbourhood density �j of data point x�Jdepends on the number of data points in the
neighbourhood, T�/ ˆx�J; �L•T, and on their reachability distances. It is deĕned as:

�jˆx�J; �L• �
T�/ ˆx�J; �L•T

P
x�K>�/ ‰x�J;�LŽ

�Ereach‰x�J; x�K; �LŽ
: ..������

Data points x�Kin the neighbourhood that are further away from data point x�J, have a
smaller contribution to the neighbourhood density �jˆx�J; �L• .

..�4�U�F�Q ���� �$�P�N�Q�B�S�J�O�H �U�I�F �O�F�J�H�I�C�P�V�S�I�P�P�E �E�F�O�T�J�U�J�F�T

In the third step, the neighbourhood density �j of data point x�Jis compared with those
of its surrounding neighbourhoods. e comparison results in an outlier factor �q and
requires the neighbourhood densities �j ‰x�K; �LŽ of the data points x�Kthat are inside the
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neighbourhood of x�J. e outlier factor �qis deĕned formally as:

�q̂ x�J; �L• �

P
x�K>�/ ‰x�J;�LŽ

�j ‰x�K; �LŽ

�j ˆx�J; �L•

T�/ ˆx�J; �L•T
: ..������

Adata point which lies deep inside a cluster receives an outlier factor of around 1 because
it has a neighbourhood density equal to its neighbours. Conversely, a data point which
lies outside a cluster has a relatively low neighbourhood density and therefore receives a
higher outlier factor.

..�-�0�' �B�T �P�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�F�S

To ĕt LOF into the one-class classiĕcation setting it needs to compute an outlier score �u.
We can interpret the local outlier factor �qfrom Equation . as an outlier score because
a data point with a higher local outlier factor �q is considered to be a stronger outlier.
erefore, we reformulate LOF as a one-class classiĕer with an outlier score measure
�uLOF that is equivalent to the local outlier factor �q. e outlier score �uLOFˆx�J; �L; �%train•

for a data point x�Jwith respect to a set of training data points �%train is deĕned as:

�uLOFˆx�J; �L; �%train• � �q̂ x�J; �L• :

..����������. �-�P�D�B�M �$�P�S�S�F�M�B�U�J�P�O �*�O�U�F�H�S�B�M

e Local Correlation Integral (LOCI) was proposed by Papadimitriou, Kitagawa,
Gibbons, and Faloutsos () as an improvement over LOF. More speciĕcally, the
authors state that the choice of the neighbourhood size, �L, in LOF is non-trivial and may
lead to erroneous outlier selections. LOCI is claimed to be an improvement over LOF
because it considers the local density at multiple scales or levels of granularity. Below
we explain how LOCI implements the three steps (neighbourhood construction, density
estimation, and density comparison) and we describe how we reformulate LOCI as a
one-class classiĕer.

..Evaluating and comparing outlier-selection algorithms.����
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..�4�U�F�Q ���� �$�P�O�T�U�S�V�D�U�J�O�H �U�I�F �O�F�J�H�I�C�P�V�S�I�P�P�E

LOCI differs from LOF because LOCI considers local densities at multiple scales. LOCI
achieves this by iteratively performing the three steps, each time using a neighbourhood
of increasing radius �S> �3� . Papadimitriou et al. describe how to determine the relevant
radii �Ssuch that not every possible radius (or scale) has to be considered. We denote the
set of relevant radii as �3.

A second difference with LOF is that LOCI deĕnes two neighbourhoods for a data point
x�J: () the extended neighbourhood, �/ ext, and () the local neighbourhood, �/ loc. e
extended neighbourhood of a data point x�Jcontains all data points x�Kthat are within
radius �Sfrom x�J:

�/ extˆx�J; �S• � ™x�K> �%train T�E‰x�K; x�JŽB �SŸ8 x�J; ..��������

and the (smaller) local neighbourhood contains all data points that are within radius �[�S

from data point x�J:

�/ locˆx�J; �S; �[• � ™x�K> �%train T�E‰x�K; x�JŽB �[�SŸ8 x�J; ..��������

where �[ deĕnes the ratio between the two neighbourhoods (�[ > ˆ0; 1� ). Please note
that x�Jis included in the two neighbourhoods, contrarily to LOF. Figure . illustrates
an extended neighbourhood containing six data points and the associated six local
neighbourhoods, for one certain radius (�S� 25:0, �[ � 0:5).

�'�J�H�V�S�F ������Illustration of the örst step of LOCI applied to the same two-
dimensional synthetic data set as shown in Figure 3.1 for �S= 25.0, �: = 0.5.
�-�F�G�U��The extended neighbourhood contains six data points. �3�J�H�I�U��The six
local neighbourhoods with �:�S= 12.5 for the data points within the extended
neighbourhood.

..KDD outlier-selection algorithms. ����
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Papadimitriou et al. recommend to deĕne �[ @1 in order () to improve the density
estimation of the extended neighbourhood and () to avoid singularities in the data point
distribution. In case �[ � 1, a singularity may occur, for example, when all data points in
the neighbourhood of x�J, except for x�Jitself, lie on the neighbourhood border.

..�4�U�F�Q ���� �&�T�U�J�N�B�U�J�O�H �U�I�F �O�F�J�H�I�C�P�V�S�I�P�P�E �E�F�O�T�J�U�Z

In LOCI, the density of the local neighbourhood of a data point x�Jis denoted by �jˆx�J; �[�S• ,
and is equal to the number of data points in the local neighbourhood, i.e., T�/ locˆx�J; �S; �[•T.
e extended neighbourhood of a data point x�Jhas a density �̂jˆx�J; �S; �[• , which is deĕned
as the average density of the local neighbourhoods of all data points in the extended
neighbourhood of data point x�J. In formal terms:

�̂jˆx�J; �S; �[• �

P
x�K>�/ ext‰x�J;�SŽ

�j‰x�K; �[�SŽ

T�/ extˆx�J; �S•T
: ..��������

..�4�U�F�Q ���� �$�P�N�Q�B�S�J�O�H �U�I�F �O�F�J�H�I�C�P�V�S�I�P�P�E �E�F�O�T�J�U�J�F�T

e local neighbourhood density of data point x�Jis compared to the extended neigh-
bourhood density by means of the Multi-Granularity Deviation Factor (MDEF):

MDEF ˆx�J; �S; �[• � 1 �
�j ˆx�J; �[�S•
�̂jˆx�J; �S; �[•

: ..��������

MDEF quantiĕes the ‘lagging behind’ of the local neighbourhood density. A data point
which lies deep inside a cluster has a local neighbourhood density equal to its neighbours
and therefore receives an MDEF value around 0. e MDEF value approaches 1 as a data
point lies more outside a cluster.

To determine whether a data point is an outlier, LOCI introduces the normalisedMDEF,
which is deĕned as:

�kMDEF ˆx�J; �S; �[• �
�k̂�jˆx�J; �S; �[•

�̂jˆx�J; �S; �[•
; ..��������

where �k̂�jˆx�J; �S; �[• is the standard deviation of all �j‰x�K; �[�SŽin �/ extˆx�J; �S• . e normalised
MDEF becomes smaller when the local neighbourhoods have the same density. is
causes a cluster of uniformly distributed data points to have a tighter decision boundary
than, for example, a Gaussian distributed cluster.

..Evaluating and comparing outlier-selection algorithms.����
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LOCI considers a data point x�Jto be an outlier when, for any radius �S> �3,

MDEFˆx�J; �S; �[• A �L�k � �kMDEFˆx�J; �S; �[• ; ..��������

where �L�k � 3 in Papadimitriou et al. ().

..�-�0�$�* �B�T �P�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�F�S

To use LOCI within the one-class classiĕcation setting, we reformulate LOCI as a one-
class classiĕer by deĕning an outlier score. We deĕne the outlier score �uLOCI as the
maximum ratio of MDEF to �kMDEF of all radii �S> �3:

�uLOCIˆx�J; �[; �%train• � max
�S>�3

œ
MDEFˆx�J; �S; �[•
�kMDEFˆx�J; �S; �[•

¡ : ..��������

..������. �&�Y�Q�F�S�J�N�F�O�U�B�M �T�F�U���V�Q

Aer the successful transformation of LOF and LOCI from the unsupervised outlier-
selection setting into the one-class classiĕcation setting, we will now provide our
experimental set-up. We aim to establish how the ĕve outlier-selection algorithms from
different settings can compared to each other. Reaching our aim means formulating an
answer to RQ.

is section describes the set-up of our experiments where we evaluate and compare
the performances of KNNDD, PWDD, SVDD, LOF, and LOCI. For clarity, we have
summarized the main features of the ĕve outlier-selection algorithms in Table .. For
our experiments we employ the techniques described in Chapter . e techniques
include: () transforming a multi-class data set into several one-class data sets, () cross
validation, () the AUC performance measure, and () the Friedman and Neményi
statistical tests.

In Subsection .. we describe the data sets. e details of the cross-validation differ
slightly from the ones presented in Chapter . erefore, we describe the evaluation, i.e.,
the cross-validation procedure of the current experiment in Subsection ...

..Experimental set-up. ����
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�5�B�C�M�F ������The main features of the ML and KDD outlier-selection
algorithms used in our experiments.

..����������. �%�B�U�B �T�F�U�T

In order to evaluate the algorithms on a wide variety of data sets (i.e., varying in size,
dimensionality, class volume overlap), we use 24 real-world multi-class data sets from
the UCIMachine Learning RepositoryƬ (Asuncion and Frank, ) as redeĕned as one-
class classiĕcation data sets by David Tax (�?�i�i�T�,�f�f�B�+�i�X�2�r�B�X�i�m�/�2�H�7�i�X�M�H�f�(�/���p�B�/�i):
�"�S�S�I�Z�U�I�N�J�B, �#�B�M�B�O�D�F���T�D�B�M�F, �#�J�P�N�F�E, �#�S�F�B�T�U, �$�B�O�D�F�S �X�Q�C�D, �$�P�M�P�O �(�F�O�F, �%�F�M�� �1�V�N�Q, �%�J�B�C�F�U�F�T,
�&�D�P�M�J, �(�M�B�T�T �#�V�J�M�E�J�O�H, �)�F�B�S�U, �)�F�Q�B�U�J�U�J�T, �)�P�V�T�J�O�H, �*�N�Q�P�S�U�T, �*�P�O�P�T�Q�I�F�S�F, �*�S�J�T, �-�J�W�F�S, �4�P�O�B�S,
�4�Q�F�D�U�G, �4�V�S�W�J�W�B�M, �7�F�I�J�D�M�F, �7�P�X�F�M, �8�B�W�F�G�P�S�Nƭ, and �8�J�O�F. Because these data sets contain
multiple classes that are not necessarily deĕned as either normal or anomalous, they
are relabelled into multiple one-class data sets using the procedure that is described in
Subsection ...

..����������. �&�W�B�M�V�B�U�J�P�O

We apply the following procedure for the evaluation of an algorithm on a one-class data
set. An independent test set containing  randomly selected data point of the entire
data set is reserved. With the remaining  a -fold cross-validation procedure (see
Subsection ..) is applied to optimise the parameters (i.e., �L� 1; 2; : : : ; 50 for LOF and
KNNDD; �[ � 0:1; 0:2; : : : ; 1:0 for LOCI; �I for PWDD; and �Tfor SVDD). Each algorithm
is trained with the optimal parameter value obtained by the cross-validation. Its AUC
performance (see Subsection ..) is evaluated using the independent test set that was
reserved at the beginning of this procedure. e entire procedure is repeated  times.
We report on the performances of the algorithms applied on an entire multi-class data

Ƭ Except the Del Pump data set which is taken from Ypma ().
ƭ e author has been informed that �8�B�W�F�G�P�S�Nis, in fact, generated by an algorithm and regrets that the

analysis cannot be redone in time to account for this.
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set, i.e., the weighted AUC (see Subsection ..). en we perform the Friedman and
post-hoc Neményi test (see Subsection .).

..������. �3�F�T�V�M�U�T

Table . presents the weighted AUC performances of each algorithm on the  real-
world data sets. e best performance for each data set is in bold. e average ranks of
the algorithms are shown at the bottom of the table. On these  real-world data sets,
SVDD and LOF perform best, both with an average rank of 2:083. With an average rank

�5�B�C�M�F ������TheweightedAUCperformance inpercentages obtainedby the
Machine Learning and Knowledge Discovery outlier-selection algorithms
on 24 real-world data sets. The best performance per data set is in bold. The
corresponding average rank for each algorithm is reported in the bottom
row.

..Results. ����
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of 2:625, KNNDDperforms surprisingly well. LOCI and PWDDperform the worst, with
average ranks of 3:917 and 4:292, respectively. Interestingly, SVDD seems to performwell
on those data sets where LOFperformsworse and vice versa. Apparently, both algorithms
are complementary with respect to the nature of the data set at hand.

To see whether there is a signiĕcant difference between these average ranks, we calculate
the Friedman statistic, �o2�' � 48:53, which results in an �' �' statistic of �' �' � 23:52. With ĕve
algorithms and  data sets, �' �' is distributed according to the �' distributionwith 5� 1 � 4
and ˆ5 � 1• � ˆ24 � 1• � 92 degrees of freedom. e critical value of �' ˆ4; 92• for �[ � :05
is 2:471, so we must reject the null-hypothesis, which states that all algorithms have an
equal performance (see the beginning of the chapter).

Subsequently, we continue with the Neményi test, for which the critical distance CD, for
�[ � :05, is 1:245. We identify two groups of algorithms. e performances of LOCI and
PWDD are signiĕcantly worse than that of KNNDD, LOF, and SVDD.

Figure . graphically displays the result of the Neményi test in a critical difference
diagram. Groups of algorithms that are not signiĕcantly different (at �Q � :05) are
connected.e diagram reveals that, in terms of performances, the algorithms examined
fall into two groups. e group of best-performing algorithms consists of SVDD, LOF,
and KNNDD. e other cluster contains PWDD and LOCI.

�'�J�H�V�S�F ������Comparison of all algorithms against each other with the
Neményi test. Groups of algorithms that are not signiöcantly different
(at �Q= .05) are connected.

..������. �%�J�T�D�V�T�T�J�P�O

We have evaluated ĕve outlier-selection algorithms; three from the ĕeld of ML and two
from the ĕeld of KDD on a variety of real-world data sets. e performances of the
algorithmshave been statistically compared using the Friedman andNeményi tests. From

..Evaluating and comparing outlier-selection algorithms.����
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the obtained experimental results we report three main observations. We describe each
observation separately and provide possible reasons for each of them below.

..����������. �0�C�T�F�S�W�B�U�J�P�O ���� �-�P�D�B�M �E�F�O�T�J�U�Z �F�T�U�J�N�B�U�F�T �P�V�U�Q�F�S�G�P�S�N �H�M�P�C�B�M �E�F�O�T�J�U�Z
�F�T�U�J�N�B�U�F�T

e ĕrst observation is that PWDD performs signiĕcantly worse than LOF. It may be
explained by the fact that PWDD performs a global density estimate. Such an estimation
becomes an obstacle when there exist large differences in the density, because data points
in sparse clusters will be erroneously classiĕed as outliers.

LOF and LOCI overcome this problem by performing an additional step. Instead of
using the density estimate as an outlier score, they locally compare the density with the
neighbourhood. is produces an estimate which is both relative and local, and enables
LOF and LOCI to cope with different densities across different subspaces. For LOF, the
local density estimate results in a better performance. For LOCI, however, this is not the
case. Possible reasons are discussed in the second observation below.

..����������. �0�C�T�F�S�W�B�U�J�P�O ���� �-�0�' �P�V�U�Q�F�S�G�P�S�N�T �-�0�$�*

esecond observation is that LOCI is outperformed by LOF.is is unexpected because
LOCI () considers local densities just like LOF and () performs a multi-scale analysis
of the data set, which is oen stated as an important improvement over LOF. We provide
two possible reasons for the relative weak performance of LOCI.

e ĕrst possible reason is that LOF considers three consecutive neighbourhoods to
compute the outlier score. LOCI, instead, considers two neighbourhoods, only. e
three-fold density analysis of LOF is more profound than the two-fold analysis of LOCI
and therefore LOF yields a better estimation of the data density.

e second possible reason for the observed results is that LOCI constructs a
neighbourhood with a given radius, and not with a given number of data points. For
small radii, the extended neighbourhood may contain one data point only, implying that
there may be no deviation in the density and that outliers might be missed at a small
scale. In contrast, LOF does not suffer from the limited number of data points because it
constructs a neighbourhood with a given number of data points.

..Discussion. ����
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..����������. �0�C�T�F�S�W�B�U�J�P�O ���� �%�P�N�B�J�O���C�B�T�F�E �B�O�E �E�F�O�T�J�U�Z���C�B�T�F�E �B�M�H�P�S�J�U�I�N�T �B�S�F
�D�P�N�Q�F�U�J�U�J�W�F

e third observation we make is that domain-based (SVDD) and density-based (LOF)
algorithms are competitive in performance. To obtain adequate estimates, density-based
algorithms require data sets to contain many data points, especially when they have a
high dimensionality.is implies that in case of sparsely sampled data sets, density-based
algorithms may fail to detect outliers (cf. Aggarwal and Yu, ). SVDD describes only
the domain in the data point space (i.e., it deĕnes a closed boundary around the normal
class), and does not estimate the complete data density. It is therefore less sensitive to an
inaccurate sampling and better able to deal with small sample sizes (Tax, ).

..������. �$�I�B�Q�U�F�S �D�P�O�D�M�V�T�J�P�O�T

In this chapter, we focussed on RQ: �)�P�X �T�I�P�V�M�E �X�F �F�W�B�M�V�B�U�F �B�O�E �D�P�N�Q�B�S�F �U�I�F �Q�F�S�G�P�S�N�B�O�D�F

�P�G �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T� Previously, the KDD algorithms LOF and LOCI had not
been compared with each other—and not with any other outlier-selection algorithm—in
a statistically valid way. In the chapter, we have been able to evaluate and compare
LOF and LOCI with three outlier-selection ML algorithms KNNDD, PWDD, and
SVDD in a statistically valid way, by framing LOF and LOCI into the one-class
classiĕer setting. By doing so, each outlier-selection algorithm is treated under the same
circumstances.

From the experimental results we may conclude that the techniques presented in
Chapter  allow for a statistical evaluation and comparison of outlier-selection
techniques. When the outlier-selection algorithms come from different settings, i.e.,
the unsupervised outlier-selection setting (e.g., the ĕeld of KDD) and the one-class
classiĕcation setting (e.g., the ĕeld of ML), they should be framed in a common setting.
We achieved this by transforming LOF and LOCI into the one-class classiĕcation
setting.

In addition to our main conclusion concerning RQ, it is worth mentioning that we
have determined that, for the data sets presented in Subsection.., the algorithms with
the best average performance are KNNDD, LOF, and SVDD. Our ĕndings indicate that
both ĕelds have produced outlier-selection algorithms that are competitive and deserve
treatment on equal footing. Such a ĕnding may not have been possible without framing
LOF and LOCI into the one-class classiĕcation setting.

..Evaluating and comparing outlier-selection algorithms.����
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Framing KDD algorithms into the one-class classiĕcation setting thus facilitates the
comparison of algorithms across ĕelds and may lead to novel algorithms that combine
ideas of both ĕelds. For instance, our results suggest that it may be worthwhile to develop
outlier-selection algorithms that combine elements of domain-based and local density-
based algorithms.

We identify two directions for future research. e ĕrst direction is to combine the best
of both ĕelds. For example, to develop an outlier-selection algorithm that () employs
local densities (cf. LOF from the ĕeld of KDD) and () has a theoretical, and possibly
probabilistic, foundation (cf. SVDD from the ĕeld of ML). As a direct result of these
ideas, we introduce in Chapter  Stochastic Outlier Selection (SOS).

e second direction is to investigate the complementarity of LOF and SVDD with
respect to the nature of the data set. e relative strengths of both algorithms appear
to depend on the characteristics of the data set. erefore, in Chapter  we investigate
which data set characteristics determine the relative performance of an outlier-selection
algorithm and a one-class classiĕer.

..Chapter conclusions. ����
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�4�U�P�D�I�B�T�U�J�D�0�V�U�M�J�F�S�4�F�M�F�D�U�J�P�O.

�$�P�O�U�F�O�U�T��
In this chapter we attempt to answer RQ2: �$�B�O �B�O �F�ò�F�D�U�J�W�F �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N �C�F �E�F�W�J�T�F�E

�U�I�B�U �F�N�Q�M�P�Z�T �U�I�F �D�P�O�D�F�Q�U �P�G �B�ó�O�J�U�Z� To this end, we design and evaluate a novel, unsupervised

algorithm for classifying data points as outliers, called Stochastic Outlier Selection (SOS). SOS

uses affinity to compute for each data point an outlier probability. A data point is considered

to be an outlier when the other data points have insufficient affinity with it. We evaluate SOS

on real-world and synthetic data sets. The results obtained on these data sets show that SOS (1)

has a signiöcantly higher performance and (2) is more robust to data perturbations and varying

densities than four related algorithms. From these resultswemay conclude that SOS is an effective

algorithm for classifying data points as outliers.

.
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In this chapter we propose a novel, unsupervised algorithm for classifying data points
as outliers. e algorithm is called Stochastic Outlier Selection (SOS). It applies the
concept of affinity to the problem of outlier selection. We explain and motivate the use of
affinity in Section .. How the SOS algorithm selects outliers is described in Section ..
Section . presents four related unsupervised outlier-selection algorithms: K-Nearest
Neighbour Data Description (KNNDD), Local Outlier Factor (LOF), Local Correlation
Integral (LOCI), and Least Squares Outlier Detection (LSOD). Using outlier-score plots,
we illustrate and discuss the qualitative performances of SOS and the four algorithms. In
Section ., we evaluate all ĕve algorithms on eighteen real-world data sets, and by the
Neményi statistical test (cf. Subsection ..) we show that SOS performs signiĕcantly
better. Moreover, seven synthetic data sets are used to gain insight into the behaviour of
the algorithms. From our experiments we may conclude that SOS is more robust against
data perturbations and varying densities than the other four algorithms. e results are
discussed in Section .. Finally, we give our conclusions in Section ..

..������. �"�O �B�ó�O�J�U�Z���C�B�T�F�E �B�Q�Q�S�P�B�D�I �U�P �P�V�U�M�J�F�S �T�F�M�F�D�U�J�P�O

We recall from Chapter  that the objective is to classify automatically those data points
as outliers that are labelled as anomalous by the expert. Each algorithm approaches this
objective in a different way. e SOS algorithm, which is the topic of the current chapter,
selects outliers using an affinity-based approach.

e general idea of SOS is as follows. SOS employs the concept of affinity to quantify
the relationship from one data point to another data point. Affinity is proportional to the
similarity between two data points. So, a data point has little affinity with a dissimilar data
point. A data point is selected as an outlier when all the other data points have insufficient
affinitywith it.e concept of affinity and the SOS algorithmare explainedmore precisely
in the next section. First, in Subsection .., we mention two problems to which affinity
has been successfully applied. As a result of employing affinity, SOS computes outlier
probabilities instead of outlier scores. e advantages of computing probabilities with
respect to scores are discussed in Subsection ...

..����������. �5�X�P �T�V�D�D�F�T�T�G�V�M �B�Q�Q�M�J�D�B�U�J�P�O�T �P�G �B�ó�O�J�U�Z

So far, affinity has been applied successfully to at least two other problems: () clustering
and () dimensionality reduction. ey will be discussed brieĘy below. To the best of our

..Stochastic Outlier Selection.����
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knowledge, SOS is the ĕrst algorithm that applies the concept of affinity to the problem
of outlier selection.

First, affinity has been successfully applied to the problem of clustering. e goal of
clustering is to select a (given) number of data points that serve as the representatives
of the clusters (i.e., cluster exemplars) in a data set. e clustering algorithm ‘Affinity
Propagation’ by Frey and Dueck () updates iteratively the affinity that a data point
has to a potential cluster exemplar by passing messages. In other words, the clustering
algorithm employs affinity to quantify the relationships among data points.

Second, affinity has been successfully applied to the problem of dimension reduction.
e goal of dimension reduction is to map a high-dimensional data set onto a low-
dimensional space (Roweis and Saul, ; Tenenbaum, de Silva, and Langford, ).
e challenge is to preserve the structure of the data set as much as possible. Several
algorithms address this challenge successfully by concentrating on preserving the local
relationships using affinity (Hinton and Roweis, ; van der Maaten and Hinton,
; van der Maaten, b). Again, as with clustering, affinity is used to quantify the
relationships among data points.

Because of these two successful applications of affinity, we expect that affinity is also
beneĕcial to outlier selection and in particular to the SOS algorithm. Here we note that
affinity is calculated differently in the two applications. Our deĕnition of affinity (which
is presented in Subsection ..) is based on the deĕnition found in theworks concerning
dimension reduction because that allows us to compute outlier probabilities.

..����������. �0�V�U�M�J�F�S �Q�S�P�C�B�C�J�M�J�U�J�F�T �J�O�T�U�F�B�E �P�G �T�D�P�S�F�T

Current outlier-selection algorithms typically compute unbounded outlier scores (see
Gao and Tan, ). e scores computed by such algorithms differ widely in their scale,
range, and meaning. Moreover, the scores may also differ from data set to data set for the
same algorithm (Kriegel, Kröger, Schubert, and Zimek, ).

SOS computes outlier �Q�S�P�C�B�C�J�M�J�U�J�F�T, i.e., the probability that a data point is an outlier.
Because an outlier probability is a number between 0 and 1, both the minimum and
the maximum value of outlier probabilities are consistent from data set to data set.
We state three reasons why outlier probabilities are favourable to outlier scores. e
ĕrst reason is that outlier probabilities are easier to interpret by an expert than outlier
scores (Kriegel et al., ). e second reason is that outlier probabilities allow to select

..An affinity-based approach to outlier selection. ����
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an appropriate threshold for outlier selection (i.e., classiĕcation) using a Bayesian risk
model (Gao and Tan, ). A Bayesian risk model takes into account the relative cost
of misclassiĕcations. Employing a Bayesian risk model is not possible with unbounded
outlier scores. e third reason is that outlier probabilities provide a more robust
approach for developing an ensemble outlier selection framework out of individual
outlier-selection algorithms than unbounded outlier scores (Kriegel, Kröger, Schubert,
and Zimek, ).

Whereas Gao and Tan () andKriegel et al. () suggest converting the unbounded
outlier scores from existing algorithms into calibrated probabilities, SOS computes the
outlier probabilities directly from the data.

..������. �5�I�F �4�U�P�D�I�B�T�U�J�D �0�V�U�M�J�F�S �4�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N

In this section we describe how SOS selects outliers. Stated more formally, cf.
Deĕnition . on page , we describe how the outlier-selection algorithm �GSOS maps
data points to the classiĕcations ‘outlier’ and ‘inlier’.

e data that is used by SOS, i.e., the input data, the intermediate data, and the
output data, can be represented as ĕve matrices. Figure . shows the ĕve matrices and
summarises SOS as a series of matrix transformations. e numbers above the arrow
denote the subsections that discuss the matrix transformations. Next to each matrix we
ĕnd a colour bar that maps a range of values to a range of colours. In the case of matrix X,
for example, 0 is mapped to white and 8 is mapped to dark blue. As such, Figure . may
serve as an overview reference throughout our description of SOS.

Subsections ..—.. are concerned with the outlier scoring part �uSOS that maps data
points to outlier probabilities. We brieĘy mention the purpose of each subsection. In
Subsection .., we discuss the input data and the dissimilarity between data points
(i.e., input matrix X and dissimilarity matrix D). In Subsection .., we explain how
dissimilarities are transformed into affinities (i.e., affinity matrix A). In Subsection ..
we continue our description by using graph theory, and generate stochastic neighbour
graphs that are based on binding probabilities (i.e., binding matrix B). We present three
ways of computing the outlier probabilities (i.e., outputmatrix Φ). In Subsection .. we
show that by sampling stochastic neighbour graphs, we can estimate outlier probabilities.
rough marginalisation we can compute exactly the outlier probabilities as is described

..Stochastic Outlier Selection.����
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�'�J�H�V�S�F ������From input to output in övematrices: (1) the input matrix �9containing the feature values
of the data points, (2) the dissimilarity matrix �%, (3) the affinity matrix �", (4) the binding probability
matrix �#, and (5) the output matrix �- containing the outlier probabilities. The transformations from
one matrix to the next matrix are explained in the subsections stated above the arrows.

in Subsection ... With the help of probability theory, we observe in Subsection ..
that the outlier probabilities can also be computed in closed form.

In Subsection .., the outlier scoring part �uSOS is transformed into the outlier-
selection algorithm �GSOS, so that SOS can classify data points as outliers. Finally, in
Subsection .., we explain in detail the concept of perplexity that allows SOS to create
so neighbourhoods.

..����������. �*�O�Q�V�U �U�P �U�I�F �B�M�H�P�S�J�U�I�N

SOS is an unsupervised outlier-selection algorithm. erefore, SOS requires as input an
unlabelled data set �%, only. We recall from Chapter  that an unlabelled data set means
that the labels ‘anomaly’ and ‘normality’ are unavailable. erefore, SOS does not know
whether a domain expert considers the real-world observations (that correspond to the
data points) to be anomalous or normal. Nevertheless, SOS is able to classify the data
points in the data set either as ‘outlier’ or ‘inlier’.

e number of data points in the unlabelled data set �%is denoted by �O. In our description
of SOS, each data point is represented by an �N-dimensional, real-valued, feature vector
x � � �Y1; : : : ; �Y�N� > �3�N. As such, a data point can be regarded as a point in an �N-
dimensional Euclidean space. e data set �%is represented by a matrix X of size �O� �N,
i.e., number of data points � number of features. e vector x�Jdenotes the �Jth row of the
matrix X. In our description of SOS we do not distinguish between the data set �%and
the corresponding matrix X, and oen refer to the data set by X for readability.
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Figure . shows the example data set that we use throughout our description of SOS.
e data set contains six data points (. ), and each data point has two features. e
corresponding two-dimensional points are plotted on the le side of Figure .. On
the right side of the ĕgure, the same data set is represented by matrix X. We recall
that the colour of the cells in the matrix X correspond to the feature values of the data
points.

e features of the data points are used to measure the �E�J�T�T�J�N�J�M�B�S�J�U�Zbetween pairs of
data points. (Dissimilarity forms the basis for affinity, see the next subsection.) e
dissimilarity between data point x�Jand data point x�Kis a non-negative scalar that is
computed by a dissimilarity measure �E. In our description and in our experiments we
employ the Euclidean distance as the dissimilarity measure between pairs of data points.
Let

�E�J�K�

¿
ÁÁÀ

�N

Q
�L� 1

Š�Y�K�L� �Y�J�L•
2

; ..������

where �Y�J�Ldenotes the �Lth feature value of �Jth data point, i.e., cell �J; �Lof matrix X. From
Equation . it follows () that our employed dissimilarity measure is symmetric, i.e.,
�E�J�K� �E�K�J, and () that the dissimilarity between a data point and itself is zero, i.e.,
�E�J�J� 0. e data points on the le side of Figure . are connected by green lines
with varying brightnesses. Both the length and the brightnesses of these green lines
illustrate the dissimilarity between data point x2 and the other ĕve data points. e
right side of Figure . shows the dissimilarity matrix D that is obtained by applying
Equation . to each pair of data points in the matrix X. (e bold, upright letter ‘D’
should not be confused with the calligraphic letter ‘�%’ that denotes a data set.) e

�'�J�H�V�S�F ������The example data set used for our SOS description. Each data point has two features and
is a point in two-dimensional Euclidean space. The dissimilarity �E2,6 (and �E6,2) is the Euclidean distance
between data points �Y2 and �Y6 (see Equation 4.1).
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brightnesses of the green lines are equal to the brightnesses of the cells in the second row
of D. In fact, because the Euclidean distance �Eis symmetric, the resulting dissimilarity
matrix D is symmetric, meaning that the rows are equal to the columns. erefore, the
brightnesses of the green lines are also equal to the brightnesses of the cells of the second
column.

In the next subsection, dissimilarities are used to compute �B���O�J�U�J�F�Tbetween data
points. In other words, the dissimilarity matrix D is transformed into the affinity
matrix A.

..����������. �5�S�B�O�T�G�P�S�N�J�O�H �E�J�T�T�J�N�J�M�B�S�J�U�Z �J�O�U�P �B�ó�O�J�U�Z

Asmentioned in Section ., we employ affinity in order to quantify the relationship from
one data point to another data point. Our deĕnition of affinity is based on the deĕnitions
used for the problem of dimension reduction (Hinton and Roweis, ; Goldberger,
Roweis, Hinton, and Salakhutdinov, ; van der Maaten and Hinton, ).

Deĕnition . (Affinity). �-�F�U �E�J�K�E�F�O�P�U�F �U�I�F �E�J�T�T�J�N�J�M�B�S�J�U�Z �U�I�B�U �E�B�U�B �Q�P�J�O�Ux�K�I�B�T �U�P �E�B�U�B �Q�P�J�O�U

x�J�� ���F�O �U�I�F �B���O�J�U�Z �U�I�B�U �E�B�U�B �Q�P�J�O�Ux�J�I�B�T �X�J�U�I �E�B�U�B �Q�P�J�O�Ux�K�J�T �H�J�W�F�O �C�Z

�B�J�K�

¢̈
¨̈̈
¦
¨̈̈
¤̈

expŠ� �E2�J�K~2�k2�J• if �Jx �K

0 if �J� �K;
..������

�X�I�F�S�F �k2
�J�
 �L�O�P�X�O �B�T �U�I�F �W�B�S�J�B�O�D�F�
 �J�T �B �T�D�B�M�B�S �B�T�T�P�D�J�B�U�F�E �X�J�U�I �E�B�U�B �Q�P�J�O�Ux�J��

We note that () the affinity that data point x�Jhas with data point x�Kdecays Gaussian-like
with respect to the dissimilarity �E�J�K, and () a data point has no affinity with itself, i.e.,
�B�J�J� 0 (the justiĕcation is discussed below).

In words, Equation . states that the affinity that data point x�Jhas with data point x�Kis
proportional to the probability density at x�Kunder a Gaussian distribution that has mean
x�Jand variance �k2�J. A graphical comparison of three variance values for Equation . is
provided in Figure .. A lower variance causes the affinity to decay faster. e higher
a variance is, the less affinity is inĘuenced by the dissimilarity. As an extreme example,
an inĕnitely high variance yields an affinity of 1, no matter how high the dissimilarity
is (because e0 � 1). Stated differently, the Gaussian distribution becomes a uniform
distribution.
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�'�J�H�V�S�F ������From dissimilarity to affinity. �-�F�G�U��Graphs of the affinity �B�J�Kwith respect to the
dissimilarity �E�J�Kas deönedby Equation 4.2, for three values of the variance �J2�J. �3�J�H�I�U��The affinitymatrix
�" is obtained by applying Equation 4.2 to each cell in the dissimilarity matrix �%.

SOS has one parameter only, which is called the perplexity parameter and is denoted by
�I. e perplexity parameter �I can be compared with the parameter �Las in �L-nearest
neighbours, with two important differences. First, because affinity decays smoothly,
‘being a neighbour’ is not a binary property, but a smooth property. In fact, in the next
subsectionwe formalise ‘being a neighbour’ into a probabilistic property using Stochastic
Neighbour Graphs. Second, unlike the parameter �L, perplexity is not restricted to be an
integer, but can be any real number between 1 and �O� 1. Stated differently, a data point
can have a minimum of 1 and a maximum of �O� 1 effective neighbours. Perplexity may
therefore be interpreted as a smooth measure for the effective number of neighbours.
Because a data point has no affinity with itself, i.e., �B�J�J� 0, it is never its own neighbour,
which implies (as wewill see later) that only �P�U�I�F�Sdata points have inĘuence on its outlier
probability.

e value of each variance �k2�J is determined using an adaptive approach such that each
data point has the same number of effective neighbours, i.e., �I. e adaptive approach
yields a different variance for each data point, causing the affinity to be asymmetric
(Hinton and Roweis, ). To be precise, the affinities �B�J�Kand �B�K�Jare equal only when
() the dissimilarities �E�J�Kand �E�K�Jare equal, which is always the case with the Euclidean
distance but need not be the case with other dissimilarity measures, and () the variances
�k2�J and �k2�Kare equal, which is rarely the case unless the two data points are equally
dissimilar to their own neighbours. As a counterexample to asymmetric affinity we
mention the dimensionality reduction algorithm by van der Maaten and Hinton (),
which symmetrises purposefully the affinities between data points (i.e., �B�J�K� ½�B�J�K� ½�B�K�J),
such that dissimilar data points are not isolated but joined with one of the clusters
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in the low-dimensional mapping. e purpose of SOS, however, is to classify these
dissimilar data points as outliers, and, therefore, does not symmetrise the affinities.
We elaborate upon the details of assigning the variances with the adaptive approach in
Subsection ...

Figure . shows the variances for the data points in the example data set. e radii of
the six circles correspond to the variances for the six data points (and please note that
the circles do not represent a boundary). In all ĕgures and calculations concerning the
example data set, the perplexity �I is set to 4:5, with Figure . being the only exception
to this. In Figure ., the perplexity �I is set to 3:5 because otherwise, the radii of the six
circles would be to be too large to create an illustrative ĕgure (see Figure . for the
variances that correspond to all possible settings of the perplexity parameter). Figure .
shows, for example, that for data point x6 to have 3:5 effective neighbours, the variance
�k26 must be set higher than the other variances.

Using the dissimilarity matrix D and Equation ., we compute the affinity that each data
point has to every other data point, resulting in the affinity matrix A (illustrated in the
right side of Figure .).e affinitymatrix A is in two aspects similar to the dissimilarity

�'�J�H�V�S�F ������The radii of the circles correspond to the variance for the
data points. The variance �J2�J adapts to the density of the data and is
determined for eachdatapoint �Y�Jseparately, such that eachdatapoint
has the same number of effective neighbours, i.e., perplexity. In this
ögure the perplexity is set to 3.5. The variance inøuences the amount
of affinity that adatapoint has to theother datapoints (see Figure 4.3).
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matrix D, () the size is �O� �Oand () the diagonal is 0, because data points have no affinity
with themselves.However, unlikeD,A is not symmetric, because the affinity between two
data points is not symmetric. e �Jth row of the affinity matrix, denoted by a�J, is called
the �B���O�J�U�Z �E�J�T�U�S�J�C�V�U�J�P�Oof data point x�J. Let

a�J� � �B�J;1; : : : ; �B�J;�O� ; ..������

where �B�J�Jis 0. We note that the affinity distribution is not a probability distribution
because it does not sum to 1. In the next subsection we continue with the affinity matrix
A to generate a Stochastic Neighbour Graph.

..����������. �4�U�P�D�I�B�T�U�J�D �O�F�J�H�I�C�P�V�S �H�S�B�Q�I�T �C�B�T�F�E �P�O �B�ó�O�J�U�J�F�T

In the remainder of our description of SOS, we employ graph theory, because () it
provides a solid mathematical framework to perform calculations with affinities, and ()
it allows us to derive outlier probabilities. To model explicitly the data points and their
relationships (i.e., affinities) using vertices and directed edges, we generate a Stochastic
Neighbour Graph (SNG). e set of vertices �7 is associated with the data set X. So, each
vertex �W�Jcorresponds to data point x�J. Generating the directed edges between the vertices
depends on �C�J�O�E�J�O�H �Q�S�P�C�B�C�J�M�J�U�J�F�T. erefore, we ĕrst introduce (A) the concept of binding
probabilities and subsequently deĕne (B) the generative process for an SNG. Finally, we
introduce (C) the binary property of being an outlier given one SNG.

..�" �#�J�O�E�J�O�H �Q�S�P�C�B�C�J�M�J�U�J�F�T

e binding probability �C�J�Kis the probability that vertex �W�Jbinds to vertex �W�K, i.e., the
probability of generating a directed edge from �W�Jto �W�K. We denote a directed edge from �W�J
to �W�Kby ‘�J� �K’. e binding probability �C�J�Kis proportional (denoted by Œ) to the affinity
that data point x�Jhas with data point x�K.

�C�J�K� �Q‰�J� �K> �&�(ŽŒ �B�J�K; ..������

which is equal to the affinity �B�J�Knormalised, such that P �O
�L� 1 �C�J�Lsums to 1.

�C�J�K�
�B�J�K

P �O
�L� 1 �B�J�L

: ..������
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�'�J�H�V�S�F ������The binding matrix �#is obtained
bynormalising each row in the affinitymatrix �".

We note that �C�J�Jis always 0, because �B�J�Jis always 0 (see Equation .). By applying
Equation . to every cell in the affinity matrix A, we obtain the binding matrix B
(see Figure .). e binding probabilities for one vertex �W�J form together a �C�J�O�E�J�O�H

�E�J�T�U�S�J�C�V�U�J�P�O, which is a discrete probability distribution

b�J� � �C�J;1; : : : ; �C�J;�O� : ..������

Similar to the affinity distribution a�Jfrom Equation ., the binding distribution b�Jis the
�Jth row of the binding matrix B.

We can illustrate the binding probabilities by representing the data set as a graph, where
each data point x�Jis associated with a vertex �W�J. Because each vertex has �T�P�N�Fprobability
of binding to any other vertex, the graph is fully connected. Figure . shows this graph
four times (these are not yet Stochastic Neighbour Graphs, those are shown later, in
Figure .). e brightness of each directed edge �J� �Kis determined by the binding
probability �C�J�K, as can be seen on the right side of Figure ., where the binding matrix
B is depicted four times. e same graph is shown four times, i.e., graph (a) to graph
(d), where each graph illustrates a different aspect. In graph (a), ĕve directed edges are
coloured orange. e brightness of an orange edge is associated with the probability that
vertex �W1 binds to another vertex. e corresponding binding distribution b1 sums to
1. e associated row in the binding matrix B, i.e., the ĕrst row, is also coloured orange.
From the graphwe can see, for example, that the probability that �W1 binds to �W6 is relatively
low (� :04). If we reconsider Figure . on page , then we can see that the low binding
probability �C1;6 is due to the low affinity �B1;6, which is due to the high dissimilarity �E1;6,
which is duemostly to the large difference in the values of the ĕrst feature of data points x1

and x6. In graph (b), the ĕve edges from vertex �W6 are coloured orange.We can see that the
binding distribution b6 is distributed more evenly than b1, because from the perspective
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of data point x6, the other ĕve data points are roughly equally distant. In both graph
(c) and graph (d), ĕve edges are coloured cyan, to illustrate the probability that �P�U�I�F�S

vertices bind to vertex �W1 and vertex �W6, respectively. ese binding probabilities do not
necessarily sum to 1. From graph (d), (and similarly from the sixth column in the binding
matrix B), we can see that all vertices have a low probability to bind to vertex �W6. Please
note that these four graphs only serve to illustrate the concept of binding probabilities,
and will not be used to compute outlier probabilities.

..�# �(�F�O�F�S�B�U�J�O�H �B �T�U�P�D�I�B�T�U�J�D �O�F�J�H�I�C�P�V�S �H�S�B�Q�I

Aer the introduction of the binding probabilities, we deĕne formally the Stochastic
Neighbour Graph (SNG) and discuss the generative process for an SNG.We do so by two
assumptions and four subsequent consequences. Aer that we describe the generative
process of the set of directed edges �&�( .

Deĕnition . (Stochastic neighbour graph). �" �4�U�P�D�I�B�T�U�J�D �/�F�J�H�I�C�P�V�S �(�S�B�Q�I �	�4�/�(�
�J�T �B

�H�S�B�Q�I �(� ˆ �7; �&�( • �X�J�U�I �B �T�F�U �P�G �W�F�S�U�J�D�F�T�7 �B�O�E �B �T�F�U �P�G �E�J�S�F�D�U�F�E �F�E�H�F�T�&�( �� �-�F�U �N�B�U�S�J�YX �C�F �B

�E�B�U�B �T�F�U �D�P�O�U�B�J�O�J�O�H �O �E�B�U�B �Q�P�J�O�U�T�� �'�P�S �F�B�D�I �E�B�U�B �Q�P�J�O�Ux�J>X�
 �B �W�F�S�U�F�Y �W�J�J�T �B�E�E�F�E �U�P�7��

�-�F�U �E �C�F �U�I�F �E�J�T�T�J�N�J�M�B�S�J�U�Z �N�F�B�T�V�S�F �	�F���H���
 �U�I�F �&�V�D�M�J�E�F�B�O �E�J�T�U�B�O�D�F �B�T �T�U�B�U�F�E �C�Z �&�R�V�B�U�J�P�O�®���«�
�� �-�F�U �I

�C�F �U�I�F �Q�F�S�Q�M�F�Y�J�U�Z �Q�B�S�B�N�F�U�F�S�
 �X�I�F�S�F �I>�1; �O� 1� �� ���F�O �N�B�U�S�J�YD �J�T �U�I�F �E�J�T�T�J�N�J�M�B�S�J�U�Z �N�B�U�S�J�Y �P�G

�T�J�[�F �O� �O �U�I�B�U �J�T �P�C�U�B�J�O�F�E �C�Z �B�Q�Q�M�Z�J�O�H �E�J�T�T�J�N�J�M�B�S�J�U�Z �N�F�B�T�V�S�F �E �P�O �B�M�M �Q�B�J�S�T �P�G �E�B�U�B �Q�P�J�O�U�T �J�O �E�B�U�B

�T�F�UX�� ���F�O™�k21 ; : : : ; �k2�Ož �B�S�F �O �W�B�S�J�B�O�D�F�T�
 �X�I�P�T�F �W�B�M�V�F�T �B�S�F �E�F�U�F�S�N�J�O�F�E �J�O �4�V�C�T�F�D�U�J�P�O�®���¬���²

�V�T�J�O�H �Q�F�S�Q�M�F�Y�J�U�Z �I�� ���F�O �N�B�U�S�J�YA �J�T �U�I�F �B���O�J�U�Z �N�B�U�S�J�Y �P�G �T�J�[�F �O� �O �B�T �P�C�U�B�J�O�F�E �C�Z �B�Q�Q�M�Z�J�O�H

�&�R�V�B�U�J�P�O�®���¬�X�J�U�I �U�I�F �O �W�B�S�J�B�O�D�F�T �U�P �F�B�D�I �D�F�M�M �P�G �U�I�F �E�J�T�T�J�N�J�M�B�S�J�U�Z �N�B�U�S�J�YD�� ���F�O �N�B�U�S�J�YB �J�T

�U�I�F �C�J�O�E�J�O�H �N�B�U�S�J�Y �P�G �T�J�[�F �O� �O �B�T �P�C�U�B�J�O�F�E �C�Z �B�Q�Q�M�Z�J�O�H �&�R�V�B�U�J�P�O�®���¯�U�P �F�B�D�I �D�F�M�M �P�G �U�I�F �B���O�J�U�Z

�N�B�U�S�J�YA��

���F �T�F�U �P�G �E�J�S�F�D�U�F�E �F�E�H�F�T�&�( �J�T �H�F�O�F�S�B�U�F�E �C�Z �U�I�F �G�P�M�M�P�X�J�O�H �T�U�P�D�I�B�T�U�J�D �C�J�O�E�J�O�H �Q�S�P�D�F�E�V�S�F�� �-�F�Ub�J

�C�F �U�I�F �C�J�O�E�J�O�H �E�J�T�U�S�J�C�V�U�J�P�O �P�G �W�F�S�U�F�Y �W�J�
 �X�I�J�D�I �J�T �U�I�F �J�U�I�S�P�X �P�G �U�I�F �C�J�O�E�J�O�H �N�B�U�S�J�YB�� �-�F�U �F�B�D�I

�W�F�S�U�F�Y �W�J> �7�C�J�O�E �J�O�E�F�Q�F�O�E�F�O�U�M�Z �U�P �P�O�F �P�U�I�F�S �W�F�S�U�F�Y �W�K�
 �X�I�F�S�F �U�I�F �J�O�E�F�Y �K �J�T �B�O �J�O�U�F�H�F�S �T�B�N�Q�M�F�E

�G�S�P�N �U�I�F �C�J�O�E�J�O�H �E�J�T�U�S�J�C�V�U�J�P�Ob�J�� �-�F�U �J� �K �E�F�O�P�U�F �B �E�J�S�F�D�U�F�E �F�E�H�F �G�S�P�N �W�F�S�U�F�Y �W�J�U�P �W�F�S�U�F�Y �W�K��

���F �E�J�S�F�D�U�F�E �F�E�H�F �J� �K �J�T �B�E�E�F�E �U�P�&�( �J�G �W�F�S�U�F�Y �W�J�C�J�O�E�T �U�P �W�F�S�U�F�Y �W�K��

Below we discuss seven properties of an SNG that are implied by Deĕnition . and the
two generative procedures. We illustrate our description by Figure .. Figure . shows
three possible SNGs for the example data set with the binding matrix B that is illustrated
in Figure .. (e right side of the ĕgure is introduced below.)
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�'�J�H�V�S�F ������Illustration of binding probabilities. �-�F�G�U��Each vertex �Wi in the graph is associated with a
binding probability distribution �C�J. �3�J�H�I�U��The bindingmatrix �#. A darker cell in thematrix corresponds
to a higher binding probability.
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First, an SNG always has �Odirected edges because there are �Overtices that each connect
to one vertex. Second, although the vertices of an SNG are ĕxed given a data set X,
each generated SNG may be different because the directed edges are generated using a
stochastic binding procedure. ird, each binding distribution b�Jis based on the affinity
distribution a�J, so an SNG reĘects the relationship between data points. Fourth, an SNG
has no self-loops, i.e., no vertex binds to itself because �C�J�Jis 0, and as a consequence
the index �Kthat is sampled from the binding distribution will never be equal to �J. Fih,
the vertices bind independently, which means that vertices do not inĘuence each other’s
binding process. Sixth, each vertex �W�Jhas an out-degree of 1, denoted by deg�

�( ˆ �W�J• � 1,
because each vertex binds to one other vertex. Seventh, because the binding process
is stochastic, more than one vertex may bind to the same vertex. For example, both
vertices �W1 and �W2 may bind to vertex �W3. Vertex �W3 now has an in-degree of 2, denoted by
deg�

�( ˆ �W3• � 2. is implies that there is (at least) one vertex in the graph that no vertex
binds to and thus has an in-degree of 0. In Figure . we can see, for instance, that in both
graphs �( �Band �( �C, vertex �W6 has an in-degree of 0. In graph �( �D, vertex �W6 has an in-degree
of 3. It is possible (albeit improbable) to generate this graph, because each vertex (except
vertex �W6 itself) has some probability of binding to vertex �W6. In the next subsection we
elaborate on the probability of constructing a particular SNG.

..�$ �#�F�J�O�H �B�O �P�V�U�M�J�F�S �H�J�W�F�O �P�O�F �4�/�(

If there is a directed edge from �W�Jto �W�K, i.e., �J� �K> �&�( , then we say that x�Kis a neighbour
of x�J. In other words, data point x�Jchooses data point x�Kas a neighbour. If there is no
directed edge from �W�K�C�B�D�Lto �W�J, i.e., �K� �J¶ �&�( , then x�Kis not a neighbour of x�J.

Wedeĕne that a data point is an outlier in graph �( , when the data point has noneighbours
in graph �( . In graphical terms, a data point x�Jbelongs to the outlier class �$O if its
corresponding vertex �W�Jhas no inbound edges in graph �( , i.e., its in-degree deg�

�( is
zero:

�$O S�( � ™x�J>X Tdeg�
�( ˆ �W�J• � 0ž : ..������

In words, there is no vertex �W�Kthat binds to vertex �W�J,

�$O S�( � ™x�J>X T̈ �W�K> �7 � �K� �J> �&�(ž ; ..������
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�'�J�H�V�S�F ������Three stochastic neighbour graphs (SNGs) generated with perplexity �I set to 4.5.
�-�F�G�U��The three SNGs �(�B, �(�C, and �(�Dare sampled from the discrete probability distribution �1̂ �(• .
In Figure 4.8 it is indicated where the three SNGs are in the set of all graphs �(. �3�J�H�I�U��The
probability �Q̂�(�J• is the probability that graph �(�Jis generated (see Equation 4.10). The outlier
class �$OS�(�Jcontains the data points that are outliers given graph �(�J(see Equation 4.7).

or, similarly, all vertices �W�Kdo not bind to vertex �W�J,

�$O S�( � ™x�J>X T¦ �W�K> �7 � �K� �J¶ �&�(ž : ..������

e right side of Figure ., lists, for the three SNGs, the data points that belong to the
outlier class �$O S�( .

At this moment, being an outlier is a �C�J�O�B�S�Zproperty; given one particular SNG �( , a data
point is either a member of the outlier class or not. e next subsection explains that by
generating many SNGs, we can estimate the outlier �Q�S�P�C�B�C�J�M�J�U�Z.
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..����������. �&�T�U�J�N�B�U�J�O�H �P�V�U�M�J�F�S �Q�S�P�C�B�C�J�M�J�U�J�F�T �U�I�S�P�V�H�I �T�B�N�Q�M�J�O�H

In the previous subsection the outlier class �$O is established deterministically given one
particular SNG �( . But because �( itself is generated stochastically (using the binding
probabilities), the outlier class �$O becomes a stochastic subset of the data set. erefore,
data points are currently randomly selected as outlier, which is an obstacle.

We alleviate this obstacle by taking not one, but all possible SNGs into account. For a data
set containing �Odata points, there are ˆ �O� 1• �Obinding combinations possible, because
each of the �Overtices binds independently to one of �O� 1 vertices. We denote the set of
all ˆ �O� 1• �Opossible graphs by �(. For our example data set, the set �( contains 56 � 15;625
SNGs.

Because the binding probabilities are not distributed uniformly, certain edges are more
probable to be generated than other edges. For instance, in our example data set, the edge
2 � 1 is more probable than the edge 2 � 6. As a consequence, certain SNGs are more
probable to be generated than others. Since the vertices �7are constant, the probability of
generating a certain SNG �( depends only on the binding probabilities.

�Q̂�(• � M
�J� �K>�&�(

�C�J�K: ..��������

e sampling probabilities of the three SNGs are listed on the right side of
Figure ..

e set of all graphs �( is thus associated with a discrete probability distribution �1̂ �(• .
To sample an SNG from the probability distribution, denoted by �( � �1̂ �(• , means to
generate an SNG. Figure . shows the probability mass and the cumulative probability
mass for �(, for three values of the perplexity �I. A lower perplexity (e.g., �I � 4:0, blue
line) yields less uniform binding distributions, and consequently leads to more variation
in the probabilities by which SNGs are sampled. Figure . is annotated by three arrows
pointing to the red line. ese three arrows indicate the ‘positions’ of the three SNGs of
Figure . in �1̂ �(• . We can see that �( �Bis themost probable SNG to be generated, because
each data point chooses as its neighbour the data point to which it has the most affinity.
We can also see that �( �Dis one of the least probable SNGs.

We are now ready to use a sampling procedure to estimate the probability that a data
point belongs to the outlier class. Given a number of sampled SNGs �( , we compute the
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�'�J�H�V�S�F ������Discrete probability distribution for the set of all SNGs. �-�F�G�U��The probability mass for the
discrete probability distribution for the set of all Stochastic NeighbourGraphs (SNGs) �( for the example
data set, for three values of the perplexity �I. For this plot, the graphs in the set are ordered ascendingly
by their probability of beinggenerated. The annotations �(�B, �(�C, and �(�Dcorrespond to theprobability of
the three SNGs shown in Figure 4.7. �3�J�H�I�U��The cumulative probability mass for �(. The high sensitivity
to the perplexity is due to the small number of data points in the example data set.

�S�F�M�B�U�J�W�F �G�S�F�R�V�F�O�D�Zthat the data point belongs to the outlier class. As the number of samples
�4approaches inĕnity, the relative frequency converges to the outlier probability.

�Q̂x�J> �$O• � lim
�4� ª

1
�4

�4

Q
�T� 1

��šx�J> �$O S�( ˆ �T• Ÿ ; �( ˆ �T• � �1̂ �(• ; ..��������

where ��˜ �• is an indicator random variable that has a value of 1 if data point x�Jbelongs
to the outlier class �$O given graph �( , and 0 otherwise.

e sampling procedure implies that if a particular data point belongs to the outlier class
for all possible graphs, then its outlier probability is 1 (since the sum of the probabilities
of all possible graphs is 1, i.e., P �(>�( �Q̂�(• � 1). Similarly, if a data point is a member of
the outlier class for 30% of the sampled graphs, then its outlier probability is 0:3. We
note that the sampling procedure leads to an outlier probability that is a probability from
a Frequentist point of view (Bayarri and Berger, ), and that it is not obtained by
normalising an unbounded outlier score as in, for example, Gao and Tan () and
Kriegel et al. ().

e outlier probabilities during the ĕrst 1;000;000 iterations of one run of the sampling
procedure are plotted in Figure .. e ĕgure reveals that when the perplexity is set to
4:5, the estimated outlier probabilities of data points x1 to x6 of the example data set, aer
1;000;000 samples, are: 0:336, 0:234, 0:237, 0:323, 0:224, and 0:788, respectively. Because
sampling SNGs is a stochastic process, each run produces in the beginning (say, the ĕrst
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�'�J�H�V�S�F ������Convergence of the outlier probabilities by repeatedly sampling SNGs. The plot shows the
örst 1,000,000 sampling iterations of one run.

10 iterations) different outlier probabilities. Eventually (say, aer 10;000 iterations), all
runs produce outlier probabilities that converge to the same values.

..����������. �$�P�N�Q�V�U�J�O�H �P�V�U�M�J�F�S �Q�S�P�C�B�C�J�M�J�U�J�F�T �U�I�S�P�V�H�I �N�B�S�H�J�O�B�M�J�T�B�U�J�P�O

e relative frequency computed by Equation . only converges to the outlier
probability when the number of samples approaches inĕnity. It turns out that we can
compute the outlier probability exactly, by enumerating once over all possible SNGs.
If we state the enumeration procedure in more technical terms, then we say that we
compute the marginal probability of any particular data point being an outlier, by
marginalising out the stochastic graph �( . Because one SNG is more probable than the
other (due to the binding probabilities), it is important to take this into account as
well.

�Q̂x�J> �$O• � Q
�(>�(

��™x�J> �$O S�(ž � �Q̂�(• ..��������

� Q
�(>�(

��™x�J> �$O S�(ž � M
�R� �S>�&�(

�C�R�S: ..��������

e exact outlier probabilities for the data points in the example data set, as computed
by marginalisation, are: 0:335; 0:235; 0:237; 0:323; 0:224, and 0:788, respectively.

So, instead of �F�T�U�J�N�B�U�J�O�Hthe outlier probabilities by sampling, say, ,, SNGs,we can
�D�P�N�Q�V�U�F �F�Y�B�D�U�M�Zthe outlier probabilities by marginalising over , SNGs. However,
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such a gain holds only for small data sets, such as our example data set. To illustrate
how quickly the size of �(, i.e., S�(S, grows with respect to �O, consider �O� 5, �O� 10, and
�O� 100. ese data set sizes correspond to S�(S� 1024, S�(S� 3:5 � 109, and S�(S� 3:7 �

10199, respectively. So, even small data sets lead to a combinatorial explosion, making
Equation . intractable to compute. In the next subsection we present a way to avoid
this problem.

..����������. �$�P�N�Q�V�U�J�O�H �P�V�U�M�J�F�S �Q�S�P�C�B�C�J�M�J�U�J�F�T �J�O �D�M�P�T�F�E �G�P�S�N

Because each vertex binds to exactly one other vertex, the outlier probability can be
computed in closed form, without actually enumerating all the SNGs in �(. Here we note
that if a vertexwould have been allowed to bind to �N�V�M�U�J�Q�M�Fvertices, the outlier probability
could not be computed in closed form.

We observe that the probability that data point x�Jbelongs to the outlier class, is equal
to the probability that its in-degree is zero, i.e., the probability that none of the other
vertices bind to vertex �W�J. Without using graph-theoretical terms, the outlier probability
of data point x�Jcan be reformulated as the joint probability that data point x�Jis never
chosen as a neighbour by the other data points. As a consequence, we can compute the
outlier probabilities directly, without generating any SNG.

eorem . (Outlier probability). �-�F�UX �C�F �B �E�B�U�B �T�F�U �D�P�O�U�B�J�O�J�O�H �O �E�B�U�B �Q�P�J�O�U�T�� �-�F�U�$O

�E�F�O�P�U�F �U�I�F �P�V�U�M�J�F�S �D�M�B�T�T�� �*�G �B�J�K�J�T �U�I�F �B���O�J�U�Z �U�I�B�U �E�B�U�B �Q�P�J�O�Ux�J�I�B�T �X�J�U�I �E�B�U�B �Q�P�J�O�Ux�K�
 �U�I�F�O �C�Z

�&�R�V�B�U�J�P�O�®���¯�X�F �I�B�W�F �U�I�B�U �C�J�K�J�T �U�I�F �O�P�S�N�B�M�J�T�F�E �B���O�J�U�Z�
 �J���F���
 �U�I�F �Q�S�P�C�B�C�J�M�J�U�Z �U�I�B�Ux�J�D�I�P�P�T�F�Tx�K

�B�T �J�U�T �O�F�J�H�I�C�P�V�S�� ���F�O �U�I�F �Q�S�P�C�B�C�J�M�J�U�Z �U�I�B�U �E�B�U�B �Q�P�J�O�Ux�J�C�F�M�P�O�H�T �U�P �U�I�F �P�V�U�M�J�F�S �D�M�B�T�T �J�T �H�J�W�F�O �C�Z

�Q̂x�J> �$O• � M
�Kx �J

‰1 � �C�K�JŽ: ..��������

�1�S�P�P�G��We recall from Equation . that a data point x�Jbelongs to the set of outliers �$O,
given one SNG graph �( , when the corresponding vertex �W�Jhas an in-degree of zero:

x�J> �$O S�( 
� deg�
�( ˆ �W�J• � 0 : ..��������
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Weaim to compute themarginal probability that a data point is an outlier, given all SNGs.
By associating the right-hand side of Equation .with an indicator randomvalue �� ˜ �• ,
which has a value of 1 if �W�Jhas an in-degree of zero and has a value of 0 otherwise, we
may rewrite the probability as the expected value of the indicator random variable (cf.
Cormen et al., , p. ),

�Q̂x�J> �$O• � �&�( � ��™deg�
�( ˆ �W�J• � 0ž� ; ..��������

where the subscripted �( indicates the sample space. By rewriting Equation ., which
states that the in-degree of �W�Jis zero if none of the vertices bind to �W�J, as a product, we
obtain,

�Q̂x�J> �$O• � �&�(

<@@@@>
M
�Kx �J

��™�K� �J¶ �&�(ž
=AAAA?

: ..��������

Substituting the indicator random variable by its complement yields,

�Q̂x�J> �$O• � �&�(

<@@@@>
M
�Kx �J

Š1 � ��™�K� �J> �&�(ž•
=AAAA?

: ..��������

Because the vertices bind independently, the expected value operator is multiplicative
(Ross, , p. ), which allows us to move the expected value operator inside the
product,

�Q̂x�J> �$O• � M
�Kx �J

‹ 1 � �&�( � ��™�K� �J> �&�(ž�• : ..��������

We employ the same argument that we used for Equation ., and we rewrite the
expected value of the indicator random variable as the binding probability,

�Q̂x�J> �$O• � M
�Kx �J

Š1 � �Q‰�K� �J> �&�(Ž• ; ..��������

..Stochastic Outlier Selection.����



...

�$
�I�

B
�Q

�U
�F

�S
��

which is equal to the probability that data point x�Kchooses data point x�Jas its neighbour
(see Equation .). Hence, the probability that data point x�Jbelongs to the outlier class is

�Q̂x�J> �$O• � M
�Kx �J

‰1 � �C�K�JŽ; ..��������

which, in words, states that the outlier probability of data point x�Jis the probability that
data point x�Jis never chosen as a neighbour by the other data points.

Figure . illustrates, for completeness, the ĕnal matrix transformation. e output
matrix Φ, which holds the outlier probabilities, is obtained by applying Equation .
to the binding matrix B. e right side of Figure . contains a plot of our example data
set with the data points ĕlled with the colour corresponding to their outlier probability
(see the colour bar next to matrix B). By Equation . we formally conclude our
description of how SOS computes outlier probabilities, in terms of Deĕnition .: the
scores produced by the outlier scoring algorithm �uSOS, are equivalent to the outlier
probabilities.

�uSOSˆx�J• � �Q̂x�J> �$O• : ..��������

In the next subsection we transform the outlier scoring algorithm �uSOS into an
outlier-selection algorithm, �GSOS, i.e., we transform the outlier probabilities into the
classiĕcations ‘outlier’ and ‘inlier’.

�'�J�H�V�S�F ��������Outlier probabilities of the example data set. �-�F�G�U��The outlier probabilities in the output
matrix �- are obtained by applying Equation 4.14 to the bindingmatrix �#. �3�J�H�I�U��A plot of our example
data setwith thedata points ölled by the colour corresponding to their outlier probability as computed
by SOS.
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..����������. �$�M�B�T�T�J�G�Z�J�O�H �P�V�U�M�J�F�S�T

In the previous six subsections, we have presented SOS as an outlier �T�D�P�S�J�O�Halgorithm
�uSOS, because itmaps data points onto outlier scores (seeDeĕnition .). It is time for SOS
to fulĕl its name and transform it into an outlier �T�F�M�F�D�U�J�P�Oalgorithm �GSOS. We recall from
Chapter , and in particular Equation . on page , that any outlier scoring algorithm
canbe transformed into an outlier-selection algorithm. Stated differently, by thresholding
the computed outlier scores, classiĕcations of the form ‘outlier’ and ‘inlier’ are obtained.
Although SOS computes outlier probabilities instead of outlier scores, classiĕcations are
obtained in the same way.

�GSOSˆx• �

¢̈
¨̈̈
¦
¨̈̈
¤̈

outlier if �uSOSˆx• A �b;

inlier if �uSOSˆx• B �b:
..��������

If the expert sets the threshold �b to 0:5, then applying Equation . to the outlier
probabilities of the example data set results in the classiĕcations as shown in Figure ..
e ĕgure reveals that the ĕrst ĕve data points, i.e., ˜ x1; : : : ; x5• , are classiĕed as inlier
and that data point x6 is classiĕed as outlier. We can indeed verify that only the outlier
probability of x6, i.e., �uSOSˆx6• � 0:788, exceeds the threshold of 0:5. e selection
boundary is obtained using the ĕrst ĕve data points. So, the selection boundary indicates
the region where a sixth data point would be classiĕed as inlier. Because in the example
data set, data point x6 lies outside the selection boundary, it is classiĕed as outlier.

Choosing a proper threshold for a certain real-world application can be challenging. If we
are equipped with a loss associated with misclassiĕcations, the Bayesian risk framework
may be used to set the threshold so that the average expected loss of our decisions is
minimised (Zellner, ).

..����������. �"�E�B�Q�U�J�W�F �W�B�S�J�B�O�D�F�T �W�J�B �U�I�F �Q�F�S�Q�M�F�Y�J�U�Z �Q�B�S�B�N�F�U�F�S

A possible challenge with the outlier probability in Equation . is that two data points
that are similar to each other, but dissimilar from the remaining data points may have
a low outlier probability, because the two data points have sufficient affinity with each
other. We avoid this challenge by setting adaptively the variances �k2�J that are used for
computing affinities in Equation ..
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�'�J�H�V�S�F ��������Classiöcations made by SOS on the example data set.
Data point �Y6 is selected as outlier. The red, dashed line illustrates the
selection boundary that corresponds to a threshold �Aof 0.5.

We recall from Subsection .. that SOS has one parameter �I, called the perplexity.
So far, we have treated the perplexity parameter �I as a smooth measure for the
effective number of neighbours of a data point, set by the expert. In fact, perplexity
is a measurement that stems from the ĕeld of information theory. Perplexity may
be computed for a probability distribution, for example, to compare it with another
probability distribution (Jelinek, Mercer, Bahl, and Baker, ). In SOS, perplexity
is employed to set adaptively the variances in such a way that each data point has �I

effective neighbours (Hinton and Roweis, ). To be precise, we require that the
binding distribution b�Jof each data point x�Jhas a perplexity that is equal to the perplexity
parameter set by the expert,

�Iˆb�J• � 2�) ˆ b�J• ; ..��������

where �) ˆb�J• is the Shannon entropy of b�J(Shannon, ; MacKay, ),

�) ˆb�J• � �
�O

Q
�K� 1
�Kx �J

�C�J�Klog2 ‰�C�J�KŽ : ..��������

We remark that �C�J�Jis not taken into account, because a data point is never its own
neighbour. As a consequence of this requirement, the variances adapt to the local density
of data points, in such a way that a higher density leads to a lower variance, causing the
affinity �B�J�Kto decay faster. e effect of such an adaptive variance is that x�Jdistributes,
in general, around  of its affinity to its �I nearest neighbours. So, indeed, the value
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of perplexity �I may be interpreted as a smooth measure for the effective number of
neighbours of a data point (van der Maaten and Hinton, ).

Figure . shows the inĘuence that the perplexity parameter �I has on the outlier
probabilities. Having a ĕxed perplexity �I, rather than a ĕxed variance �k2 (cf. bandwidth
in kernel density estimation (Parzen, )), allows the SOS algorithm () to classify
accurately data points in data sets with varying densities, and () to avoid the challenge
with small clusters of outliers.

�'�J�H�V�S�F ��������Inøuence of the perplexity �I on the outlier probabilit-
ies of the six data points in the example data set.

Figure . shows how the variance inĘuences the perplexity of the binding distribution.
e values of the variances that correspond to the desired perplexity (which is set by the
expert) are found using a binary search. e binary search starts with a sufficiently large
interval (e.g., from 0:1 to 30) in which the desired variances lie. (is initial interval is
derived from the distances between the data points.) In each iteration, the binary search
bisects the interval and then selects a subinterval until the desired variances for each data
point are found. Figure . shows the ĕrst  iterations of a binary search for the example
data set. e ĕgure shows that the perplexity of each binding distribution converges to
the desired perplexity (�I � 4:5).

..������. �2�V�B�M�J�U�B�U�J�W�F �F�W�B�M�V�B�U�J�P�O �P�G �4�0�4 �B�O�E �G�P�V�S �S�F�M�B�U�F�E �B�M�H�P�S�J�U�I�N�T

In this section we introduce and discuss four related outlier-selection algorithms
and evaluate them, together with SOS, in a qualitative manner. e aim is to make
this qualitative evaluation complementary to the quantitative evaluation (of the same
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�'�J�H�V�S�F ��������Six graphs of the perplexity �Iˆ �C�J• with respect to the variance �J2�Jfor the six data points
in the example data set. For each data point, a different variance is required such that the binding
probability distribution �C�Jhas the desired perplexity �Iof 4.5 (denoted by the horizontal, red line). �-�F�G�U��
Semi-log plot with a logarithmic scale on the x-axis. �3�J�H�I�U��Linear plot with the same graphs, zoomed
in on the range of values where each variance corresponds to the desired perplexity.

�'�J�H�V�S�F ��������The örst 10 iterations of the binary search that sets adaptively the
variances. The desired perplexity �I is set to 4.5. �5�P�Q��The current variance for each
of the six data points in the example data set. �#�P�U�U�P�N��The current perplexities given
the current values of the variances.
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algorithms) presented in Section .. e four related algorithms are: K-Nearest
Neighbour Data Description (KNNDD) by Tax (), Local Outlier Factor (LOF) by
Breunig et al. (), Local Correlation Integral (LOCI) by Papadimitriou et al. (),
and Least Squares Outlier Detection (LSOD) by Hido et al. () and Kanamori, Hido,
and Sugiyama (). Please note that the algorithms KNNDD, LOF, and LOCI have
also been employed in Chapter . ere, the algorithms were semi-supervised. In the
current chapter we employ their unsupervised versions. (SVDD is not included in this
comparison because there is no unsupervised version available.)

To achieve our aim, we ĕrst explain outlier-score plots in Subsection ... Subsequently,
for each algorithm (SOS included) we () provide a brief description and () discuss
several of its strong and weak points using the outlier-score plots shown in Figure .
(Subsections ..–..).

..����������. �0�V�U�M�J�F�S���T�D�P�S�F �Q�M�P�U�T

We qualitatively evaluate SOS and the four related algorithms using outlier-score plots
on three small example data sets.e ĕeen corresponding outlier-score plots are shown
in Figure .. An outlier-score plot is a two-dimensional plot that shows how well the
algorithm captures the structure of a particular data set. (ey are related to the plots
employed in Aha, Kibler, and Albert (), which illustrate the decision boundaries of
various instance-based learning algorithms.) So, an outlier-score plot may increase our
understanding of outlier-selection algorithms.

In practice, an outlier-score plot is obtained as follows. First, we assume that we have
a two-dimensional data set X. Second, we generate a set of data points Z whose
feature vectors correspond to the pixels of the resulting outlier-score plot. For instance,
generating a plot of size 100 by 100 pixels requires SZS� 10;000 data points. ird, we
remove one data point (xnew) of Z and add it to X. Fourth, we apply the outlier-selection
algorithm to the data set X and record the outlier score (or probability in the case of SOS)
for data point xnew. Fih, we remove xnew from X. Steps , , and  are repeated until Z is
empty. Sixth, the pixels of the plot are coloured by mapping the recorded outlier scores
onto a colourmap (cf. the colourmap next to the outputmatrix in Figure . on page ).
e mapping of colours to outlier probabilities / scores varies by plot, since the possible

..Stochastic Outlier Selection.����



...

�$
�I�

B
�Q

�U
�F

�S
��

�'�J�H�V�S�F ��������Outlier-score plots for SOS and four related outlier-selection algorithms as applied to
three small example data sets. The colour at a certain location corresponds to the outlier probability
/ score that would be assigned to a new data point, should it appear at that location.
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minimumandmaximum scoresmay differ by algorithm and by data set (except for SOS).
Finally, in order to see the data set X, its data points are plotted as white dots.Ƭ

e ĕrst data set in Figure ., �#�B�O�B�O�B, contains a banana-shaped cluster with 100 data
points.e asymmetric shape allows us to investigate how algorithms copewith irregular
distributions. e second data set, �%�F�O�T�J�U�J�F�T, contains two Gaussian-distributed clusters
with 50 data points each. e second cluster is denser than the ĕrst, which allows us
to investigate how the algorithms cope with varying densities. e third data set, �3�J�O�H,
contains a rotated ellipse-shaped cluster with 150 data points. e ring allows us to
investigate how algorithms copewith lowdensity regions that are enclosed by data points.
We note that each of the ĕve algorithms is applied to exactly the same three data sets and
that its parameter settings are kept constant. e number of data points has no inĘuence
on the outlier-score plots. We are now ready for a description and qualitative evaluation
of SOS and the four related algorithms.

..����������. �4�0�4

e results of SOS are shown in the top row of Figure ..We see that SOS has a smooth
boundary around the data points. For the Banana data set, the shape is captured well. For
the Densities data set, we see that the boundary around the denser cluster is tighter than
around the big, sparse cluster (see ..F.�* ).is indicates that SOS takes the relative density of
the data well into account. For the Ring data set, the outlier probability assigned to a data
point in the middle of the ring would be roughly equal to those appearing outside the
ring (see ..F.�+). e transition from a low to high outlier probability seems oen smoother
than with the other algorithms, which can be explained by the use of affinities that causes
the property of ‘being a neighbour’ to be a smooth property.

Ƭ We restrict ourselves to two dimensions because it is not practical to visualise higher-dimensional
outlier-score plots. For instance, a three-dimensional data set would require us to show the colour
(outlier score) of all the 10;000;000 data points that lie in the cube of 100 by 100 by 100 voxels.e goal
of outlier-score plots to gain an intuitive understanding of the outlier-selection algorithms. However,
because the outlier scores computed by each of the ĕve algorithms are determined by the Euclidean
distance between the data points, we may expect that the performance of each algorithm to be affected
similarly by higher-dimensional data sets. In Section .. we report on the performances obtained on
real-world data sets, which have a variety of dimensionalities.
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..����������. �,�/�/�%�%

e K-Nearest Neighbour Data Description (KNNDD) by Tax () is an algorithm
with one free parameter �L. KNNDDdeĕnes the outlier score for a data point x as the ratio
of the distance between x and its �L-nearest neighbour xœ, and the distance between xœand
�J�U�T �L-nearest neighbour. KNNDD differs from SOS in that it employs discrete rather than
so neighbourhood boundaries (this holds for LOF and LOCI too).

For the Banana data set, KNNDD generalises the shape of the data too much. e outlier
scores for the Densities data set increase similarly for both clusters, which means that
KNNDD is not so much inĘuenced by the density of the data. Data points appearing in
the middle of the Ring data set get a moderately higher outlier score. KNNDD has the
drawback that outlier scores are unbounded (see ..F.�" ).

..����������. �-�0�'

e Local Outlier Factor (Breunig et al., ) computes an outlier score by estimating
the relative density in the neighbourhood of the data point. A data point, whose
nearest neighbours have a smaller neighbourhood with an equal number of data points,
is assigned a higher outlier score. e neighbourhood size is determined by a free
parameter �L.

LOF’s outlier scores are also unbounded (see ..F.�# ). It captures the shape of the data in the
Banana data set better than KNNDD. At the boundary between the two clusters in the
Density data set, the outlier scores exhibit a discontinuity (see ..F.�$ ), which is due to the
use of discrete neighbourhood boundaries, and the fact that LOF takes densities explicitly
into account, as opposed to KNNDD. e outlier scores in the middle of the Ring data
set are more increased than with KNNDD.

..����������. �-�0�$�*

e Local Correlation Integral (Papadimitriou et al., ) also estimates the relative
density in the neighbourhood of the data point, but then for a whole range of
neighbourhood sizes. e outlier score is based on the maximum ratio between the
local and global densities that is found in the range. Although some values in the actual
algorithm can be adjusted, Papadimitriou et al. claim that LOCI has no free parameters,
and will therefore be treated as such. e same holds for LSOD.

..Qualitative evaluation of SOS and four related algorithms. ����
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e outlier scores computed by LOCI do have a maximum, but this maximum may
be different per data set. For the Banana data set, LOCI forms a strange shape around
the data points. e strange shapes (see ..F.�%) in the Densities data set, mostly include
higher outlier scores, and are probably a result of the fact that the neighbourhoods of
the constituent data points include data points from both clusters. e shape in the Ring
data set seems to be orthogonal with the cluster (see ..F.�&) and have very tight boundaries
at certain places.

..����������. �-�4�0�%

Least Squares Outlier Detection (Kanamori et al., ; Hido et al., ) is an ‘inlier-
based’ outlier-selection algorithm. Unlike the other algorithms, it is supervised, in that it
uses a given set of data points, labelled as normality. e outlier scores of the remaining
data points are given by the ratio of probability densities between the normalities and
the remaining data points. For our experiments, we slightly alter LSOD by computing
the outlier score of one data point at a time, and treating all other data points as normal.
is way, LSOD can be considered as an unsupervised outlier-selection algorithm and
thus ensures a fair comparison with the other algorithms. According to Kanamori et al.
LSOD, like LOCI, has no free parameters.

For the Banana data set, LSOD seems to model the data as a spherical structure (see ..F.�' ),
such that the outlier scores increase linearly with distance from the cluster centre. For the
Densities data set, the outlier scores of LSOD seem to be less inĘuenced by the density
of clusters (see ..F.�( ). Data points appearing in the middle of the Ring data set would not
be selected as outliers (see ..F.�) ).

..������. �&�Y�Q�F�S�J�N�F�O�U�T �B�O�E �S�F�T�V�M�U�T

In this section we present our experiments and the corresponding results. We evaluate
SOS and the four algorithms discussed in Section . (i.e., KNNDD, LOCI, LOF, and
LSOD) on eighteen real-world data sets (Section ..) and on seven synthetic data sets
(Section ..).
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..����������. �3�F�B�M���X�P�S�M�E �E�B�U�B �T�F�U�T

We evaluated SOS and the four related outlier-selection algorithms on eighteen real-
world data sets (see Figure . for the list of data sets).ƭ Except for the Del Pump data
set (Ypma, ) and the Colon Gene data set (Alon, Barkai, Notterman, Gish, Ybarra,
Mack, and Levine, ), all data sets come from the UCI Machine Learning Repository
(Asuncion and Frank, ).ƮBecause these data sets containmultiple classes that are not
necessarily deĕned as either normal or anomalous, they are relabelled into multiple one-
class data sets using the procedure that is described in Subsection ...e performance
measure is the weighted AUC (see Subsection ..).

�'�J�H�V�S�F ��������The weighted AUC performances of the öve outlier-selection algorithms on eighteen
real-world data sets. The data sets are ordered by the performances of SOS.

Figure . shows the weighted AUC performances of the ĕve outlier-selection
algorithms on the real-world data sets. e performance of SOS is illustrated by a solid
(purple) line, while the other outlier-selection algorithms are illustrated by dashed and
dotted lines. For clarity, the data sets are ordered according to the performance of
SOS.

ƭ e interested reader is referred to Table . on page  for the dimensionality, number of normalities,
and number anomalies of each data set.

Ʈ ese data sets have also been employed in Chapter , except for six sets which have been replaced by
synthetic data sets (see Subsection ..).
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�'�J�H�V�S�F ��������From left to right, the three columns illustrate, for each synthetic data set, three
instantiations where �Dis set to (1) the start value �Dstart , (2) an intermediate value �Dinter , and (3)
the end value �Dend , respectively.
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e ĕgure reveals that SOS has a superior performance on twelve data sets. On the other
six data sets its performance was at least 98 of the best performing algorithm.

For completeness, the AUC performances of SOS, KNNDD, LOF, LOCI, and LSOD on
the  real-world one-class data sets are stated in Table . for various parameter settings.
We recall that these  one-class data sets are the result of relabelling the  real-world
data using the procedure that is described in Subsection ... In Table ., the real-world
data set is stated as the data set name, as used in Figure ., followed by the name of the
normal class in italics and in brackets, e.g., ‘Iris �	�4�F�U�P�T�B�
’. In addition to the maximum
achieved AUC performance as is also shown in Figure ., Table . also shows the
performances for other parameter values. In the case of SOS, �I5, for example, is short-
hand notation for �I � 5. e maximum AUC performance is given by �I�C. e parameter
value corresponding to the best AUC performance is given by �I and is indicated in gray.
For KNNDD and LOF, the columns are �L�Cand �L, respectively. Note that LOCI and LSOD
have no free parameters.

..����������. �4�Z�O�U�I�F�U�J�D �E�B�U�B �T�F�U�T

Although real-world data sets give a serious indication of how well the ĕve algorithms
will perform in a real-world setting, we may gain additional insight into their behaviour
using synthetic data sets. erefore, we designed seven synthetic data sets that contain
data points from both the normal and the anomalous class. e synthetic data sets are
two-dimensional. For each synthetic data set we introduced a single parameter, �e, that
determines one property of the data set. In one data set, for example, �ecorresponds to the
distance between two Gaussian clusters. If we gradually adjust �e, i.e., adjust the distance
between the two clusters while keeping the other properties constant, then we observe

�5�B�C�M�F ������The seven synthetic data sets controlled by parameter �D.
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how cluster-overlap inĘuences the performances of the algorithms under consideration.
In general, the purpose of the synthetic data sets is to measure the resilience of each
algorithm for the different data-set properties.

Table . lists all seven synthetic data sets and the function of parameter �e, viz. what
property it determines. Besides cluster overlap (data sets (a), (c), (f), and (g)), we also
evaluate the inĘuence of cluster densities (e) and cluster cardinality ((b) and (d)).

Figure . illustrates for each synthetic data set three instantiations with three different
values of �e, namely the start value, an intermediate value, and the end value. e
reader should note that, similar to the real-world data sets, the true class-labels indicate
whether a data point is anomalous or normal, and not whether it is an outlier or
inlier. Consequently, due to the unsupervised nature of the outlier-selection algorithms,
anomalous data points might not be selected as outliers (corresponding to a �N�J�T�T),
especially as �ereaches its end value, �eend.

Because the synthetic data sets contain random samples from various distributions and
are generated anew for each evaluation, we applied each algorithm to  instantiations
of each data set per value of �e, and computed the average AUCperformances. Figure .
displays the performances of the ĕve algorithms on the seven synthetic data sets. Again,
the performance of SOS is illustrated by a solid (purple) line and the other algorithms by
dashed lines.

..������. �%�J�T�D�V�T�T�J�P�O �P�G �U�I�F �S�F�T�V�M�U�T

To compare the performances of multiple algorithms on multiple data sets, Demšar
() suggests the Neményi test (Neményi, ). e Neményi test checks for
signiĕcant difference by ranking each algorithm for each data set, where the best
performing algorithm is assigned the rank of , the second best the rank of , and so
forth. Two algorithms are signiĕcantly different when their average ranks differ more
than the critical distance, which is in our case 1:438 for �Q� :05.

We apply the Neményi test on the performances obtained by the ĕve outlier-selection
algorithms on the eighteen real-world data sets. e outcome is shown in the top part of
Figure . by a critical difference diagram. Groups of methods that are not signiĕcantly
different (at �Q� :05) are connected by a horizontal bar. For the real-world data sets,
three (partially overlapping) groups of algorithms, ranked from low to high performance,
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�'�J�H�V�S�F ��������The AUC performances of the öve outlier-selection algorithms on the seven synthetic
data sets.
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�'�J�H�V�S�F ��������Critical difference diagrams. �5�P�Q��From applying the
outlier-selection algorithms on the eighteen real-world data sets. The
critical distance is 1.438. �#�P�U�U�P�N��From applying the algorithms on
the seven synthetic data sets. The critical distance is 1.588. Groups of
algorithms that are connected are not signiöcantly different.

are identiĕed: () LOCI and KNNDD, () KNNDD, LSOD, and LOF, and () SOS. e
performance of SOS is signiĕcantly higher than the other algorithms.

From the results on synthetic data sets (b) and (d), we may conclude that SOS has
a superior performance with data sets that contain clusters with low cardinality. e
performance on data set (e) indicates that SOS copes best with data sets containing
clusters with varying densities. Although on data set (c), SOS is outperformed by the
other algorithms for intermediate values of �e, the performance increases for �eB1. is
observation, combined with the superior results on data sets (a), (f), and (g), implies that
SOS is, in general, less sensitive to cluster overlap than the other algorithms.

Apart from a few exceptions, the algorithms KNNDD, LOF, and LOCI show similar
trends among the seven synthetic data sets. is was expected since they are all based
on the �L-nearest neighbour algorithm. For data set (b), LOCI shows a poor performance
when the cardinality of the cluster is below . is is due to the requirement of LOCI to
have a sample size of at least  (Papadimitriou et al., ). We expect that without this
constraint, LOCI will perform comparably to KNNDD and LOF for �e@20. Regarding
LSOD, the results on the real-world data sets already showed that it has a relatively poor
performance. Its performance on the synthetic data sets (d) and (e) conĕrm that LSOD is
unable to handle data sets containing clusters of different cardinality or densities.
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ebottompart of Figure . shows the critical difference diagram for the synthetic data
sets.ere are two groups of algorithms, ranked from low to high performance: () LOCI,
LSOD, KNNDD, and LOF; and () SOS. e performance of SOS is signiĕcantly higher
(at �Q� 0:01) than the other algorithms.

..������. �$�I�B�Q�U�F�S �D�P�O�D�M�V�T�J�P�O�T

In this chapter we set out to answer RQ: �$�B�O �B�O �F���F�D�U�J�W�F �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N �C�F

�E�F�W�J�T�F�E �U�I�B�U �F�N�Q�M�P�Z�T �U�I�F �D�P�O�D�F�Q�U �P�G �B���O�J�U�Z� To this end, we developed and evaluated
Stochastic Outlier Selection (SOS), a novel unsupervised algorithm for classifying
data points as outliers in a data set. SOS computes for each data point an outlier
probability, using affinities. e outlier probabilities provide three advantages with
respect to unbounded outlier scores as computed by existing outlier-selection algorithms
(cf. Subsection ..). First, a Bayesian risk model can be used to ĕnd an appropriate
threshold for classifying data points as outliers (see Gao and Tan, ). Second, an
ensemble outlier selection framework can be built by aggregating probabilities from
individual outlier-selection algorithms. ird, we expect that outlier probabilities are
easier to interpret by domain experts than outlier scores.

We described an evaluation procedure that enables us to evaluate unsupervised outlier-
selection algorithmswith standard benchmark data sets.We introduced the concept of an
outlier-score plot, which allowedus to inspect visually howwell an algorithmcaptures the
structure of a data set (cf. Subsection ..). Using both real-world data sets and synthetic
data sets, we have shown that SOS has an outstanding performance when compared to
the current outlier-selection algorithms, KNNDD, LOF, LOCI, and LSOD.eNeményi
statistical test revealed that SOS’s performance is signiĕcantly higher.e seven synthetic
data sets were parametrised by �e, such that the outlier-selection algorithms could be
evaluated on individual data-set properties.

Our answer to RQ reads as follows. From our empirical results we observe that () SOS
is an effective algorithm for classifying data points as outliers in a data set and that () SOS
compares favourably to state-of-the-art outlier-selection algorithms. We may therefore
conclude that the concept of affinity, which forms the basis SOS, is successfully applied
to the problem of outlier selection.

..Chapter conclusions. ����
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�5�B�C�M�F ������AUC performances on real-world one-class data sets.
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We observe that SOS is not the best-performing algorithm on all data sets. is
observations leads to an important questions: for which type of problems (i.e., real-
world data sets) is SOS the most suitable outlier-selection algorithm? We investigate this
question in the next chapter, where we evaluate  algorithms on  data sets.

..Stochastic Outlier Selection.����
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.

�$�P�O�U�F�O�U�T��
In this chapterwe set out to answerRQ3: �5�P �X�I�B�U�F�Y�U�F�O�U�D�B�O�X�F �T�P�M�W�F�U�I�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�F�S �T�F�M�F�D�U�J�P�O

�Q�S�P�C�M�F�N �V�T�J�O�H �B �N�F�U�B���M�F�B�S�O�J�O�H �B�Q�Q�S�P�B�D�I� The ‘No Free Lunch’ theorem implies that there is no

single best one-class classiöer. For each one-class data set, there may be a different one-class

classiöer that performs best. The performance of a one-class classiöer is greatly determined by

the characteristics (or meta-features) of the one-class data set at hand. Our goal is to understand

the relationship between meta-features and one-class classiöer performance. In the chapter, we

deöne 36meta-features and apply them to 255 data sets; this procedure generates a set of meta-

feature values. These values are used as input for the next chapter, where we use meta-learning

to relate the meta-features to performance of one-class classiöers.
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is chapter deals with the problem of selecting the one-class classiĕer that will perform
best on a given one-class data set. It is a challenging problem. Given the large number of
available one-class classiĕers, it is infeasible to apply them all and choose the one with
the best performance. Moreover, in real-world applications it is an even bigger problem
because domain experts may lack () the knowledge to pre-select a limited number
of one-class classiĕers, and () the time to apply even a limited number of one-class
classiĕers (Brazdil, Giraud-Carrier, Soares, and Vilalta, ). Rice () formalised
the above problem for �C�J�O�B�S�Z �D�M�B�T�T�J���F�S�Tas the algorithm-selection problem. Since we are
considering one-class classiĕers only, we call it the one-class classiĕer selection problem
(a more detailed explanation and a formal deĕnition will be given in Section .).

Meta-learning is a research area within the ĕeld of machine learning. It aims to solve
the algorithm-selection problem automatically (cf. Aha, ;Mitchie, Spiegelhalter, and
Taylor, ; King, Feng, and Sutherland, ; Sohn, ; Peng, Flach, Soares, and
Brazdil, ;Kalousis, Gama, andHilario, ;Ali and Smith, ; Brazdil et al., ;
Jankowski, Duch, and Grąbczewski, ; Song, Wang, and Wang, ). In this chapter
and the next chapter, we apply meta-learning to the one-class classiĕcation setting. In
other words, we aim to solve the one-class classiĕer selection problem. To the best of
our knowledge, we are the ĕrst to do so. Our third research question (RQ) therefore
reads as follows: �5�P �X�I�B�U �F�Y�U�F�O�U �D�B�O �X�F �T�P�M�W�F �U�I�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �T�F�M�F�D�U�J�P�O �Q�S�P�C�M�F�N �V�T�J�O�H

�B �N�F�U�B���M�F�B�S�O�J�O�H �B�Q�Q�S�P�B�D�I� 

Smith-Miles () lists four prerequisites for solving the �B�M�H�P�S�J�U�I�Nselection problem
using ameta-learning approach.We adapt the four prerequisites for our �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S

selection problem as follows. ere should be available:

. a large number of one-class data sets of various complexities;

. suitable meta-features to characterise the one-class data sets;

. a large number of diverse one-class classiĕers to apply to the one-class data sets;

. a performance measure to evaluate any one-class classiĕer performance.

By relating the meta-features () to the performances () of a large number of one-class
classiĕers () on a large number of one-class data sets () wemay obtain a comprehensive
set of meta-knowledge about the one-class classiĕers (cf. Smith-Miles, ). In the
current chapter (Chapter ), we focus on prerequisites () and () by characterising 
one-class data sets using  meta-features. e main result of the current chapter are
the  meta-features. In Chapter , we continue with prerequisite () by applying 

..Meta-features for one-class data sets.������
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one-class classiĕers on the  one-class data sets. Prerequisite () is already satisĕed,
since we employ the AUC performance measure. e AUC has been the performance
measure in the previous chapters as well. We refer to Chapter  for an explanation of the
AUC.

e remainder of the current chapter is organised as follows. In Section . we provide
relevant background on the one-class classiĕer selection problem and discuss the ‘No
Free Lunch’ theorem. In Section . we describe and deĕne the one-class classiĕer
selection problem. In Section . we state the meta-learning approach. In Section .
we present the one-class data sets. In Section . we discuss the use of preprocessing data
sets. In Section . we give an overview of the meta-features that we use to characterise
the one-class data sets. In Section . we present and discuss the results. ey will be
used as input for the next chapter. Finally, in Section ., we complete the chapter with
a summary.

..������. �/�P �G�S�F�F �M�V�O�D�I �G�P�S �P�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�D�B�U�J�P�O

InChapter , ĕve outlier-selection algorithmswere applied to a variety of data sets.When
we consider the average AUC performance of these algorithms, then SOS was the best
performing algorithm. However, when we observe the performance on each particular
data set, then SOS was sometimes outperformed by another algorithm (e.g., by LSOD
on the Heart Disease data set). is observation is consistent with Song et al. (),
who summarise the mixed performance of various binary classiĕcation algorithms (e.g.,
Decision Trees, Support Vector Machines, and Neural Networks) on various data sets
(e.g., Iris, yrioid, and Sonar) as reported over the past two decades. From these mixed
performances we may conclude that () no single algorithm can perform uniformly well
over all data sets, and () there is no universally best algorithm.

Wolpert and Macready () have formalised the above conclusions into the ‘No Free
Lunch’ theorem, which states: ‘…if algorithm A outperforms algorithm B on some cost
functions, then loosely speaking there must exist exactly as many other functions where
B outperforms A.’ Please note that, in practice, the value of the cost function depends on
the data set at hand. No Free Lunch theorems have been proved and studied extensively
for the settings of supervised learning, optimization, and search (Wolpert, a,b,
). Although the theorem has not been explicitly studied for the setting of one-class

..No free lunch for one-class classiöcation. ������



...

�$�I�B
�Q

�U
�F

�S
��

classiĕcation, we assume that () no single �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�Scan perform uniformly well
over all �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U�T, and () there is no universally best �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S.

..������. �5�I�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�F�S �T�F�M�F�D�U�J�P�O �Q�S�P�C�M�F�N

In this section we introduce the one-class classiĕer selection problem. It is derived from
the more general algorithm-selection problem (cf. Rice, ).

Rice () presented a formal abstract model that we can use to explore the question:
�8�J�U�I �T�P �N�B�O�Z �B�W�B�J�M�B�C�M�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S�T�
 �X�I�J�D�I �P�O�F �J�T �M�J�L�F�M�Z �U�P �Q�F�S�G�P�S�N �C�F�T�U �P�O �N�Z �P�O�F���D�M�B�T�T

�E�B�U�B �T�F�U� e model is illustrated in Figure .. e model consists of four components,
presented counter-clockwise:

• the one-class data set space �1ˆ �9• , i.e., the power set of all real-world observations
(cf. Chapter );

• the meta-feature space �' , which contains measurable characteristics of the one-
class data sets;

• the one-class classiĕer space Φ; and

• the performance space �"�6�$, which represents the mapping of each one-class
classiĕer to the AUC performance measure.

�'�J�H�V�S�F ������One-class classiöer selection problem (adapted fromRice (1976)).

e one-class classiĕer selection problem can now be formally deĕned as follows.

Deĕnition . (one-class classiĕer selection problem). �'�P�S �B �H�J�W�F�O �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U

�%> �1ˆ �9• �
 �X�J�U�I �N�F�U�B���G�F�B�U�V�S�F�T �Gˆ �%• > �' �
 ���O�E �U�I�F �T�F�M�F�D�U�J�P�O �N�B�Q�Q�J�O�H �4ˆ �Ĝ�%•• �J�O�U�P �P�O�F���D�M�B�T�T

..Meta-features for one-class data sets.������
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�D�M�B�T�T�J���F�S �T�Q�B�D�FΦ�
 �T�V�D�I �U�I�B�U �U�I�F �T�F�M�F�D�U�F�E �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �u>Φ �N�B�Y�J�N�J�T�F�T �U�I�F �Q�F�S�G�P�S�N�B�O�D�F

�N�B�Q�Q�J�O�HAUC‰�u; �%Ž> �"�6�$��

..������. �.�F�U�B���M�F�B�S�O�J�O�H

In this section we describe the research ĕeld known as ‘meta-learning’. First, we explain
meta-learning by comparing it to base-learning (Subsection ..). Second, we describe
the most-common use of meta-learning, namely binary classiĕcation (Subsection ..).
ird, we discuss how meta-learning may be employed for the one-class classiĕer
selection problem (Subsection ..).

..����������. �.�F�U�B���M�F�B�S�O�J�O�H �D�P�N�Q�B�S�F�E �U�P �C�B�T�F �M�F�B�S�O�J�O�H

We explain meta-learning by comparing it to what is known as �C�B�T�F �M�F�B�S�O�J�O�H. On the
one hand, in base learning, each data point represents a real-world observation. So, the
outlier-selection algorithms and one-class classiĕers presented in the thesis are, in fact,
base learners. Base learning is the normal or default type of learning inmachine learning.
(e term base learning is, however, rarely used in the machine learning literature, since
it is only relevant with respect to meta-learning.)

On the other hand, in meta-learning, each data point represents a data set. So, each data
point refers to an entire data set. e features of such data points are the characteristics
of the data sets. We refer to them as meta-features so that they can be distinguished from
the features of data points that represent real-world observations.

..����������. �.�F�U�B���M�F�B�S�O�J�O�H �G�P�S �C�J�O�B�S�Z �D�M�B�T�T�J�ö�D�B�U�J�P�O

Meta-learningmay be applied to a number of problems, such as classiĕcation, regression,
constraint satisfaction, and sorting. In each application, exploiting meta-knowledge
about the problem or the algorithm in order to improve the performance or selection
of the algorithms plays a central role (see Vilalta and Drissi, ; Smith-Miles, ).
Meta-learning is perhaps most oen applied to the problem of binary classiĕcation, i.e.,
the algorithm-selection problem (Aha, ; Mitchie et al., ; King et al., ; Sohn,
; Peng et al., ; Kalousis et al., ; Ali and Smith, ; Brazdil et al., ;
Jankowski et al., ; Song et al., ).

..Meta-learning. ������
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Rendell and Cho () performed controlled experiments with artiĕcial data sets,
which showed that some data set characteristics (e.g., data set size and amount of
noise) may drastically affect the performance of a binary classiĕer. at study used
two algorithms only. Subsequently, Aha () developed a general method that
characterised the situations when distinct algorithms have a signiĕcant difference in
performance. Artiĕcial data sets were generated that closely resembled a real-world data
set. So, although the number of data sets and algorithms were limited, both studies can
be regarded as applying a meta-learning approach to select binary classiĕers on artiĕcial
data sets.

e European research project StatLog (see Mitchie et al., ) studied meta-learning
by relating the performance of classiĕers tometa-features, in terms of rules. For example,
they discovered a rule which stated that ‘data sets with extreme distributions (�T�L�F�XA 1
and �L�V�S�U�P�T�J�TA 7) and with many binary or categorical distributions (A 38%) tend to
favour symbolic learning algorithms.’ In their study, sixteen binary classiĕers and twelve
classiĕcation data sets were employed. e main conclusion of the project was consistent
with the No Free Lunch eorem, namely, that no algorithm uniformly outperforms all
other algorithms on all data sets.

Developments in the ĕeld of meta-learning mainly focus on four aspects: () meta-
features (Lee and Giraud-Carrier, ; Peng et al., ), () performance measures
(Giraud-Carrier, ; Ali and Smith, ; Lee and Giraud-Carrier, ), and ()
algorithm recommendation frameworks (Song et al., ). For amore detailed overview
of the development of meta-learning we refer to Vilalta and Drissi (), Smith-Miles
(), and Jankowski et al. ().

..����������. �.�F�U�B���M�F�B�S�O�J�O�H �G�P�S �P�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�D�B�U�J�P�O

As far as we know,meta-learning for the problem of one-class classiĕcation is less studied
than for the problem of binary classiĕcation. In Section . we introduced the one-
class classiĕer selection problem, which resembled the algorithm-selection problem.
Because of the resemblance, we adapt the meta-learning approach employed for the
binary classiĕcation problem (cf. Subsection ..). To be precise, the one-class classiĕer
selection problem (see Section .) relates to the fourth deĕnition ofmeta-learning in the
survey paper by Vilalta and Drissi (). We adapt their deĕnition as follows.

..Meta-features for one-class data sets.������
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Deĕnition . (Meta-learning for one-class classiĕcation). �.�F�U�B���M�F�B�S�O�J�O�H �G�P�S �P�O�F���D�M�B�T�T

�D�M�B�T�T�J���D�B�U�J�P�O �J�T �D�P�O�T�U�S�V�D�U�J�O�H �N�F�U�B���N�P�E�F�M�T �U�I�B�U �S�F�M�B�U�F �U�I�F �N�F�U�B���G�F�B�U�V�S�F�T �P�G �B �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U

�U�P �U�I�F �Q�F�S�G�P�S�N�B�O�D�F �P�G �B �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S��

One-class classiĕcation differs from binary classiĕcation in the assumption that data
points from the anomalous class are rare. is assumption has consequences for the
meta-features that we can employ to characterise the one-class data sets, as we will see in
the next section.

..������. �0�W�F�S�W�J�F�X �P�G �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U�T

In this section we provide an overview of the one-class data sets. It is the ĕrst
prerequisite for solving the one-class classiĕer selection problem. e one-class data sets
are constructed from a variety of multi-class data sets, using the relabelling procedure
from Subsection ... All data sets, except the Del pump data set (Ypma, ), come
from the UCI Machine Learning Repository (Asuncion and Frank, ).

Table . lists  one-class data sets. (We explain in the next section howwe get from to
 data one-class data sets.) e seven columns of the table represent the following. e
ĕrst column, �$�P�E�F, represents the code of the one-class data set. e codes allow for easy
referencewhenwe present our results.e second column, �.�V�M�U�J���D�M�B�T�T �E�B�U�B �T�F�U, represents
the multi-class data set from which the one-class was constructed. e third column,
�/�P�S�N�B�M �D�M�B�T�T, represents the name of class that was relabelled as the normal class. e
fourth column, �N, represents the dimensionality, or number of features.eĕh column,
�NPCA, represents the dimensionality when the one-class data set has been preprocessed
with the dimension reduction technique PCA. We explain this preprocessing procedure
in Section .. e sixth column, �$N, and seventh column, �$A, represent the number of
normalities and anomalies in the one-class data set.

Before we compute the meta-features of these one-class data sets (see Section .), we
ĕrst apply three preprocessing procedures to the one-class data sets.

..Overview of one-class data sets. ������
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�5�B�C�M�F ������Overview of the data sets.
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..������. �1�S�F�Q�S�P�D�F�T�T�J�O�H �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U�T

In this sectionwe discuss the use of preprocessing. A preprocessing technique transforms
the data set into a data set which is (more) appropriate for further processing. Obviously,
this happens before the data set is processed by the one-class classiĕer. We describe three
preprocessing techniques: () none (Subsection ..), () variance (Subsection ..),
and () PCA (Subsection ..). Figure . illustrates the application of the three
processing techniques on a toy one-class data set (ĕrst scatter plot) that has two
features.

�'�J�H�V�S�F ������The one-class data sets are preprocessed by
three techniques. �5�P�Q��No preprocessing, Δ�/ , leaves the data
set intact. �.�J�E�E�M�F��Variance preprocessing, Δ�7, rescales the
dimensions. �#�P�U�U�P�N��PCA preprocessing, Δ�1, reduces the di-
mensionality of the one-class data set.

..Meta-features for one-class data sets.������
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..����������. �/�P �Q�S�F�Q�S�P�D�F�T�T�J�O�H

e ĕrst preprocessing technique is actually no preprocessing at all. at is, all values in
the one-class data set are le intact. e reason that we still consider this a preprocessing
technique is for presentation purposes only. We call this preprocessing technique ‘none’
and denote it by Δ�/ .We include this preprocessing technique in our experiments because
it will serve as a baseline for the other two preprocessing techniques.

In the top scatter plot of Figure ., no preprocessing is applied; these are the original
values of the toy one-class data set.e othermiddle and bottom scatter plots correspond
to the other two preprocessing techniques.

..����������. �7�B�S�J�B�O�D�F �Q�S�F�Q�S�P�D�F�T�T�J�O�H

Because the features of the data points in a one-class data set may have different domains,
and because different features may be expressed in different units, each feature may have
a different scale.

Many of the one-class classiĕers employ the Euclidean distance measure for determining
the distance between the data points. e scale of the feature directly inĘuences the
distance. On the one hand, features with a rather large scale are considered to be quite
important, because they largely determine the distance between data points. On the other
hand, features with a rather small scale do not matter any more; they have no inĘuence
on the distance. is may result in a ‘badly’ scaled one-class data set that hampers the
performance of the one-class classiĕer.

To overcome this scaling problem, we apply a preprocessing step that is called the
variance preprocessing, which is denoted by Δ�7. Each feature is rescaled separately in
such a way that the variance of the values equals 1. Moreover, the values are shied such
that the mean of each feature becomes 0. (is is similar to computing a standard score,
with the exception thatwith standard scores, the standard deviation equals 1).emiddle
scatter plot in Figure . shows the result of applying this preprocessing technique to the
toy data set of the ĕrst scatter plot. Here, each feature is equally important.

..����������. �1�$�" �Q�S�F�Q�S�P�D�F�T�T�J�O�H

When the data points in a one-class data set have many features, we say that the one-
class data set has a high dimensionality. For example, a data point representing a digital

..Preprocessing one-class data sets. ������



...

�$�I�B
�Q

�U
�F

�S
��

image has one feature per pixel. A collection of images that are 100 by 100 pixels results
in a 10;000-dimensional data set. e performance of a one-class classiĕer may be
hampered by such a high dimensionality, which constitutes a problem. is problem is
known as the ‘curse of dimensionality’ (see Marimont and Shapiro, ). e curse of
dimensionality occurs because, as the number of features increase, the volume of the data
set increases exponentially. Stated differently, the Euclidean distances between the data
points increase, causing the relative differences between distances to decrease.

e curse of dimensionality can be mitigated by applying a dimensionality reduction
technique to the one-class data set. e third preprocessing technique that we employ
is Principal Component Analysis (PCA) (Pearson, ). e bottom scatter plot in
Figure . shows the result of applying this preprocessing technique to the toy data set of
the ĕrst scatter plot. We note that the preprocessed data set has only one feature.

�'�J�H�V�S�F ������PCA.

PCA ĕnds a linear transformation of the original data set such that the new features are
linearly separated. e new features are also called the principal components. e ĕrst
principal component usually explains most of the variation in the feature values. PCA is
a �Q�B�S�B�N�F�U�S�J�Ddimensionality reduction technique, which is required because we need to
re-apply the same linear transformation to the test data set.

Aer PCA has transformed the original one-class data set into a new data set, we keep
only the ĕrst few numbers of the principal components, viz. those that account for at
least  of the total variance. In our toy data set, this results in the second principal
component to be discarded, since at least  of the total variance is explained by
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the ĕrst principal component. e discarding of principal components ensures that the
dimensionality of the data set is reduced, while maintaining the overall structure of the
original data set.

..����������. �'�S�P�N ���� �U�P ������ �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U�T

We consider a preprocessed data set to be a different data set. From a theoretical point of
view, one may argue that a data point, even though it has been preprocessed, still refers
to the same real-world object, and that the one-class data set remains the same problem.
However, we take a more practical point of view, and argue as follows. Because the values
presented to the one-class classiĕer are different, the data set is a different problem to
be solved. In any case, it is convenient to call them different data sets. is brings us to
3 � 85 � 255 data sets in total.

Once a one-class data set has been preprocessed, its code is appended with a postĕx. For
no preprocessing the postĕx is ‘N’, for variance preprocessing the postĕx is ‘V’, and for
PCA preprocessing the postĕx is ‘P’. For example, the code ‘P’ refers to data set 
that has been preprocessed by PCA.

..������. �.�F�U�B���G�F�B�U�V�S�F�T

In this section we describe the meta-features that we employ to characterise a one-class
data set �%, which is the second prerequisite for solving the one-class classiĕer selection
problem. Formally, a meta-feature is deĕned as follows.

Deĕnition . (Meta-feature). �" �N�F�U�B���G�F�B�U�V�S�F �J�T �B �N�B�Q�Q�J�O�H �f� �% � �3�B�O�E �fˆ �%• �J�T �T�B�J�E

�U�P �C�F �B �D�I�B�S�B�D�U�F�S�J�T�U�J�D �P�G �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U�%> �1ˆ �9• �
 �X�I�F�S�F�1ˆ �9• �J�T �U�I�F �T�Q�B�D�F �P�G �P�O�F���D�M�B�T�T

�E�B�U�B �T�F�U�T �	�D�G�� �4�F�D�U�J�P�O�¯���¬�
��

So, a meta-feature can be seen as a function that takes a one-class data set as input
and produces a scalar value as output. A collection of meta-features therefore produces
a vector of values. In other words, each one-class data set is represented by a feature
vector. (See Subsection .. for a more detailed explanation of feature vectors.) Each
feature vector is to be accompanied by a label. For example, the label can denote the one-
class classiĕer that performed best on that one-class data set. (Other types of labels are
discussed in Chapter .) We note that a combination of feature vectors and labels is, in
fact, a labelled meta-data set.

..Meta-features. ������
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If the values of the meta-features correlate with the labels, then meta-rules can
be formulated (cf. the example rule found by the StatLog project mentioned in
Subsection ..). Such meta-rules can then be used to recommend a domain expert
which one-class classiĕer to should be applied on a new one-class data set. Here we note
that constructingmeta-rules is the goal of Chapter .We recall that the goal in the current
chapter is to ĕnd appropriate meta-features.

Ideally, we would only employmeta-features that can be computed from the normalities,
because anomalies are assumed to be rare (cf. Chapter ). In Subsection .. we discuss
to what extent this assumption affects the quality of the meta-feature values. We employ
both () novel meta-features and () existing meta-features from the scientiĕc literature.
e meta-features are grouped into six categories.

. Elementary meta-features (Subsection ..)

. Statistical meta-features (Subsection ..)

. Decision tree-based meta-features (Subsection ..)

. Information-theory-based meta-features (Subsection ..)

. Euclidean-distance-based meta-features (Subsection ..)

. Miscellaneous meta-features (Subsection ..)

e meta-features were chosen because of their () usage within the research area of
meta-learning and () effectiveness to characterise data sets.

..����������. �$�P�N�Q�V�U�J�O�H �N�F�U�B���G�F�B�U�V�S�F�T

In the thesis, as mentioned in Chapter , anomalies are assumed to be rare. e
assumption implied that in our comparative experiment, the one-class classiĕers were
trained on the normalities only (cf. Tax, ). Here we remark that in case the data set
contains both sufficient normalities and anomalies, the operatormay be better supported
by employing a binary classiĕer instead of a one-class classiĕer.

In order to maintain the assumption, the meta-learning approach should employ meta-
features that are based on the normalities only.is differs frommeta-learning for binary
classiĕcation, where meta-features are based on both classes. As a result, we cannot
straightforwardly employ all the meta-features proposed in the literature.

Our implementation of the assumption that anomalies are rare may be too strict in order
to solve the one-class classiĕer selection problem. Between employing () all anomalies
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(as is the case in meta-learning for binary classiĕcation) and () no anomalies at all
(as is the case in meta-learning one-class classiĕcation), there exist a range of fractions
of anomalies. Indeed, the term ‘rare’ is vaguely deĕned. So, in order to solve the one-
class classiĕer selection problem, we start relaxing the implementation of employing no
anomalies at all. Now the following question arises: �I�P�X �N�B�O�Z �B�O�P�N�B�M�J�F�T �T�I�P�V�M�E �X�F �F�N�Q�M�P�Z

�U�P �D�P�N�Q�V�U�F �U�I�F �N�F�U�B���G�F�B�U�V�S�F�T �P�G �B �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U� On the one hand, we aim to employ
as few anomalies as possible, in order to maintain a realistic situation of rare anomalies.
On the other hand, we expect that employing more anomalies increases the reliability of
themeta-features and thus increases the extent by which the one-class classiĕer selection
problem may be solved using a meta-learning approach. In Chapter  we investigate the
balance between () a realistic situation and () reliable meta-features.

Below we describe the ĕve-step procedure for computing a meta-feature of a one-
class data set �%. e Iris Ęower data set, introduced in Subsection .., has  data
points from each of the three classes ‘setosa’, ‘versicolor’, and ‘virginica’. Applying the
relabelling procedure to the Iris Ęower data set, three one-class data sets are constructed
(cf. Subsection ..). e three data sets are listed in Table ., and have the codes ,
, and , respectively. For brevity, we refer to speciĕc one-class data sets by their
code instead of by their name (cf. Tax, ). We use data set  to explain the ĕve-step
procedure.

e ĕrst step is to initialise the data set, and count the number of normalities and
anomalies. Data set  contains  data points in total, of which  normalities and
 anomalies (i.e., S�$N S� 50; S�$A S� 100).

e second step is to apply stratiĕed ten-fold cross validation (cf. Subsection ..). Cross
validation increases the reliability of the value of the meta-feature and prevents over-
ĕtting (cf. Kohavi, ). In each of the ten iterations of the cross-validation, we have 
of the original data points available. For data set , this corresponds to  normalities
and  anomalies.

e third step is to apply one of the three preprocessing methods discussed in
Section ..

e fourth step is to vary the number of anomalies. Initially, we let the data set contain
only normalities, i.e., �%� �$N. Subsequently, from the set of available anomalies �$A, we
add a number of anomalies that equals a fraction �eof the number of normalities. More
precisely, we let S�$A Sbe equal to �eS�$N Sfor each �e> ˜ 0:0; 0:1; 0:2• . When �e � 0, no
anomalies are present in the data set. When �e� 1, the number of anomalies is equal to
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the number of normalities, which corresponds more to a binary meta-learning setting.
e anomalies are chosen randomly from the set of available anomalies. For data set
, �e � 0:2, corresponds to randomly selecting nine anomalies from the  available
anomalies. Because the anomalies are chosen randomly, we repeat this step ten times.
Here we remark, for completeness, that we aim for a low value of �ethat still produces
reliable meta-features.

e ĕh step is actually to apply the meta-feature �f to the one-class data set �%that was
produced by the steps two, three, and four. Because of the ten-fold cross validation from
step two, and the randomly selected anomalies from step four, this step is performed 
times, and thus produces  values. e ĕnal value of the meta-feature of the original
one-class data set is the average of the  values.

..����������. �&�M�F�N�F�O�U�B�S�Z �N�F�U�B���G�F�B�U�V�S�F�T

eĕrst category ofmeta-features are the elementarymeta-features.esemeta-features
are employed by most references (see King et al., ; Sohn, ; Köpf, Taylor, and
Keller, ; Ali and Smith, ). Below we list ĕve of them. ey are deĕned as
follows.

. Number of normalities
is meta-feature returns the number of normalities in the data set.

�fnumber-of-normalitiesˆ �%• � S�$N S; ..������

where �$N is the set of normalities.

. Number of anomalies
is meta-feature returns the number of anomalies in the data set.

�fnumber-of-anomaliesˆ �%• � S�$A S; ..������

where �$A is the set of anomalies.

. Dimensionality
is meta-feature is also known as the number of features or attributes in the data
set.

�fdimensionalityˆ �%• � �N; ..������
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where �Nis the number of features of the one-class data set.

 & . Ratio of binary and categorical features
Weassume that each featurewithin a one-class data set belongs to one of three types:
() binary, () categorical, and () continuous. We deĕne the following two meta-
features, that measure the ratio of the binary and categorical features.

�fbinary-featuresˆ �%• �
�N�C

�N
; ..������

�fcategorical-featuresˆ �%• �
�N�D

�N
; ..������

where �N�C, and �N�D denote the number of binary and categorical features,
respectively.

..����������. �4�U�B�U�J�T�U�J�D�B�M �N�F�U�B���G�F�B�U�V�S�F�T

e second category of meta-features is based on descriptive statistics (see Sohn, ;
Köpf et al., ; Ali and Smith, ). Below we list eleven of them. (Please note we
number the meta-features throughout.)

. Mean
emeta-featuremean computes for each feature �Kin the one-class data set themean
of the values, and returns the average of those means.

�fmeanˆ �%• �
1

�O�N
�

�O

Q
�J� 1

�N

Q
�K� 1

�Y�J�K; ..������

where �Y�J�Kis the �Kth feature value of data point x�J.

,  & . Standard deviation
e meta-feature standard deviation computes for each feature �Kin the one-class
data set the standard deviation of the values, and returns the average of all of
them.

�fstd-meanˆ �%• �
1
�N

�
�N

Q
�K� 1

¿
ÁÁÀ P �O

�J� 1 �Y2�J�K

�O
� Œ

P �O
�J� 1 �Y�J�K

�O
‘

2

: ..������

We also compute the maximum standard deviation,

�fstd-maxˆ �%• �
�Nmax

�K� 1

¿
ÁÁÀ P �O

�J� 1 �Y2�J�K

�O
� Œ

P �O
�J� 1 �Y�J�K

�O
‘

2

; ..������
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and the standard deviation of the standard deviations of each feature,

�fstd-stdˆ �%• �

¿
ÁÁÀ P �N

�J� 1 s2�J
�N

� Œ
P �N

�J� 1 s�J

�N
‘

2

; ..������

where s is a vector of length �N that contains the standard deviation of each
feature.

. Normality ratio
ismeta-feature computes the ratio of normality of the one-class data set. For each
feature in the data set, it performs the Lilliefors test that tests the hypothesis whether
the values could have been generated from a Normal distribution. e Lilliefors test
is a -sided goodness-of-ĕt test suitable when a fully-speciĕed null distribution is
unknown and its parameters must be estimated (Lilliefors, ).ismeta-feature
ranges from 0 (no features are Normally distributed) to 1 (all features are Normally
distributed).

�fnormality-ratioˆ �%• �
1
�N

�
�N

Q
�K� 1

lillieŠ� �Y1�K; �Y2�K; �Y3�K; : : : ; �Y�O�K� • : ..��������

 & . Kurtosis
e meta-feature kurtosis computes for each feature �Kin the one-class data set the
kurtosis of the values, and returns the average of them. Kurtosis is a measure of
‘peakedness’ of a distribution of values. For example, when the values of one feature
are distributed normally, then the kurtosis is 3.

�fkurtosis-meanˆ �%• �
1
�N

�
�N

Q
�K� 1

kurtŠ� �Y1�K; �Y2�K; �Y3�K; : : : ; �Y�O�K� • : ..��������

Besides the average kurtosis, wemeasure themaximumkurtosis over all the features
in the one-class data set.

�fkurtosis-maxˆ �%• �
�Nmax

�K� 1
kurtŠ� �Y1�K; �Y2�K; �Y3�K; : : : ; �Y�O�K� • : ..��������

. Skewness
e meta-feature skewness computes for each feature �Kin the one-class data set the
absolute skewness of the values, and returns the maximum of them. Skewness is a
measure of asymmetry of the distribution of values. Because values may be skewed
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to the le or right, we take the absolute skewness.

�fskewnessˆ �%• �
�Nmax

�K� 1
SSskewŠ� �Y1�K; �Y2�K; �Y3�K; : : : ; �Y�O�K� • SS: ..��������

,  & . Eigenvalues
To compute the meta-features concerning eigenvalues, we ĕrst compute the sample
covariance matrix of the one-class data set. en we compute the eigenvalues of the
covariance matrix. e solutions �e1; �e2; �e3; : : : ; �e�Sare called the eigenvalues, where
�e1 C �e2 C� C �e�S, and �Sis the rank of the covariancematrix.e largest and smallest
eigenvalues (cf. Ali and Smith, ) are

�feig-maxˆ �%• � �e1 ; ..��������

�feig-minˆ �%• � �e�S: ..��������

e relative importance of the largest eigenvalue (cf. Köpf et al., ) reads

�feig-max-relˆ �%• � �e1~
�S

Q
�J� 1

�e�J: ..��������

Here, we note that the eigenvalues are non-negative, so the sum is strictly
positive.

..����������. �%�F�D�J�T�J�P�O �U�S�F�F���C�B�T�F�E �N�F�U�B���G�F�B�U�V�S�F�T

e third category ofmeta-features is based on decision trees. A decision tree is structure
where leaves represent labels™anomaly;normalityž and branches represent conjunctions
of features that lead to those labels (Quinlan, ). Figure . shows a decision tree
that is induced from data set N. For example, a data point with feature vector
x � �5:1; 3:5; 1:4; 0:2� is classiĕed as a normality. We note that the absence of the
second feature �Y2 may indicate that it does not play an important role (see Peng et al.,
).

e algorithm that constructs the decision tree works top-down by choosing at each step,
the feature with the highest Gini index of diversity (Mingers, ). e Gini index of
diversity is a measure of how oen a randomly chosen data point from the data set would
be incorrectly labelled if it were randomly labelled according to the distribution of labels
in the subset.
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�'�J�H�V�S�F ������A decision tree induced from data set 501. From
the decision tree we calculate several properties that serve as
meta-features.

e idea is that the properties of the tree (e.g., shape and complexity) are a predictor of
the complexity of the one-class data set (cf. Bensusan, Giraud-Carrier, and Kennedy,
; Peng et al., ). A larger tree, for example, may indicate that the one-class
data set is more complex and that it may degrade the performance of certain one-class
classiĕers. Bensusan et al. () found that the depth and the number of leaf nodes
depend on () the amount of noise, () the number of irrelevant features, and () the
class distribution.

We assume, similar to Bensusan et al. (), that the decision trees are not pruned,
that is, no branches are cut. We remark that the decision tree is thus constructed anew
for each time the meta-feature is computed, i.e.,  times. Twelve decision tree-based
meta-features are deĕned below.

. Number of nodes
e number of nodes in the decision tree is deĕned as follows:

�fnumber-of-nodesˆ �%• � S�5S; ..��������

where �5denotes the decision tree induced from one-class data set.
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. Number of leaves
e number of leaves in the decision tree is deĕned as follows:

�fnumber-of-leavesˆ �%• � S�- S; ..��������

where �- is the set of leaf nodes.

. Nodes per class
e number of nodes per class is deĕned as follows:

�fnodes-per-classˆ �%• �
S�5S
2

: ..��������

. Nodes per data point
e meta-feature nodes per data point computes the ratio of the number of tree
nodes to the number of data points.

�fnodes-per-data-pointˆ �%• �
S�5S
�O

; ..��������

where S�5Sdenotes the number of nodes in the tree.

. Depth
e meta-feature depth measures the longest path from the root node to a leaf
node. e length of a path is the measured by the number of nodes it contains. e
depth indicates how difficult it is to represent the one-class data set by a decision
tree.

�fdepthˆ �%• � max S�1S; ¦ �1> �1̂ �5• ; ..��������

were �1̂ �5• denotes the set of all paths in �5, and S�1Sdenotes the number of nodes in
the path. Paths are assumed to start at the root node. e depth of the decision tree
in Figure . is 7.

. Width
e meta-feature width computes the width of the decision tree, which is deĕned
as the maximum number of nodes in a level:

�fwidthˆ �%• � maxT�5 s.t. levelˆ �/ • � �JT¦ �J>š1; 2; : : : ; �f�E�F�Q�U�IŸ: ..��������

e width of the decision tree in Figure . is 4.
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. Shape
e meta-feature shape is a function of the probabilities of arriving at the various
leaf nodes given a random walk down the tree. e probability of arriving at node
�/ �Jamong the �Nsibling nodes from the ancestor �/ �Bis given by �Q̂�/ �J• � �Q̂�/ �B•~�N

where �Q̂�/ �B• � 1 if it is the root node. e shape of the decision tree with is then
measured using the probability of arriving at the leaf nodes �Q̂�-• by the following
equation.

�fshapeˆ �%• � � Q
�->�-

�Q̂�-• log2 �Q̂�-• : ..��������

. Number of repeated nodes
e meta-feature number of repeated nodes measures how many features are
represented by more than one node. A high value indicates the need for feature
re-description.

�fnumber-of-repeated-nodesˆ �%• �
�N

Q
�J� 1

��›U� �5T�Ĝ�/ • � �J� UA1  ; ..��������

where �Ĝ�/ • indicates the feature that node �/ is concerned with.

. Leaf corroboration
e meta-feature leaf corroboration computes the mean support of each leaf node.
e support of a leaf node is deĕned as the number of data points (both normalities
and anomalies) terminating in that leaf node.

�fleaf-corroborationˆ �%• �
1

S�- S
Q
�->�-

�T̂�-• ; ..��������

where �- is the set of leaf nodes and �T̂�-• denotes the support of leaf node �-.

. Impurity
e meta-feature impurity computes the impurity of the tree, which is deĕned as
the average Gini’s Diversity Index at each node in the tree:

�fimpurityˆ �%• �
1

S�5S
Q

�5

�Q2�B̂ �/ • �Q2�Ô �/ • ; ..��������

where �Q2�B̂ �/ • and �Q2�Ô �/ • denote the probability that a data point will be classiĕed as
anomaly and normality, respectively.
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. Mean error
e meta-feature mean error computes the average error of the decision tree, where
error is deĕned as the probability that a data point will be mis-classiĕed.

�fmean-errorˆ �%• �
1

S�- S
Q
�->�-

�F̂�-• ; ..��������

where �F̂�-• denotes the error of leaf node �-.

. Total error
e meta-feature total error computes the total error of the decision tree, where
error is deĕned as the probability that a data point will be mis-classiĕed.

�ftotal-errorˆ �%• � Q
�->�-

�F̂�-• : ..��������

..����������. �*�O�G�P�S�N�B�U�J�P�O���U�I�F�P�S�Z���C�B�T�F�E �N�F�U�B���G�F�B�U�V�S�F�T

. Correlation between meta-features
e meta-feature correlation between meta-features computes the average correla-
tion between all pairs of meta-features. More precisely, it is the pairwise Pearson’s
linear correlation coefficient between each pair of meta-features in the one-class
data set, and is mathematically deĕned as follows:

�fcorrelationˆ �%• �
2

�N̂ �N� 1•
�

�N

Q
�J� 1

�N

Q
�K� �J� 1

cov‰f�J; f�KŽ

�kf�J�kf�K
; ..��������

where cov‰f�J; f�KŽis the covariance betweenmeta-feature �Jand �Kand �kf�Jis the variance
of meta-feature �J.

..����������. �&�V�D�M�J�E�F�B�O���E�J�T�U�B�O�D�F���C�B�T�F�E �N�F�U�B���G�F�B�U�V�S�F�T

eĕh category ofmeta-features calculates statistics of the Euclidean distances between
all pairs of data points in the data set.e rationale is thatmany of the one-class classiĕers
use the Euclidean distances as the dissimilarity measure. To the best of our knowledge,
this category of meta-features has not yet been explored.
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Let e be a vector of length �Ô�O� 1•~2 that contains the Euclidean distances between all
pairs of data points:

e �

<@@@@@>

¿
ÁÁÀ

�N

Q
�L� 1

Š�Y�K�L� �Y�J�L•
2

RRRRRRRRRRRRRR

�J>˜ 1; � ; �O• ; �K>˜ 1; � ; �J� 1•

=AAAAA?

:

e vector e can also be thought of as the Ęattened upper triangle of the dissimilarity
matrix D as discussed in Subsection ...

We compute ĕve statistics of the Euclidean distance vector e: () the mean, () the
median, () the standard deviation, () the skewness, and () the kurtosis. ese ĕve
statistics serve as ĕve meta-features to the one-class data set �%and are deĕned as
follows.

. Mean of Euclidean distances
e mean of the Euclidean distances is deĕned as follows:

�feuclidean-meanˆ �%• � meanˆ �F• : ..��������

. Median of Euclidean distances
e median of the Euclidean distances is deĕned as follows:

�feuclidean-medianˆ �%• � medianˆ �F• : ..��������

. Standard deviation of Euclidean distances
e standard deviation of the Euclidean distances is deĕned as follows:

�feuclidean-stdˆ �%• � stdˆ �F• : ..��������

. Kurtosis of Euclidean distances
e kurtosis of the Euclidean distances is deĕned as follows:

�feuclidean-kurtosisˆ �%• � kurtˆ �F• : ..��������
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. Skewness of Euclidean distances
e skewness of the Euclidean distances is deĕned as follows:

�feuclidean-skewnessˆ �%• � skewˆ �F• : ..��������

..����������. �.�J�T�D�F�M�M�B�O�F�P�V�T �N�F�U�B���G�F�B�U�V�S�F�T

e sixth category contains two miscellaneous meta-features that do not belong to any
of the other categories: hardness and variance curve.

. Hardness
e meta-feature hardness is a deĕned as the misclassiĕcation rate of a -Nearest
Neighbour classiĕer.

�fhardnessˆ �%• �
1
�O

�O

Q
�J� 1

��™�Z�Jx �M�Jž; ..��������

where ��™�Z�Jx �M�Jž is 0 when data point �Jhas been correctly classiĕed, and 1 otherwise.
It is known as a landmarkingmeta-feature because by using a fast algorithm, such as
the -Nearest Neighbour classiĕer, we may get an idea of the difficulty, or hardness,
of the one-class data set. When there are no anomalies present in the one-class data
set, we randomly insert them, making it possible to use this meta-feature.

. Variance curve
e meta-feature variance curve intends to inform us on how much difference in
variance there is between each feature in the one-class data set.

�fvariance-curveˆ �%• �
P �N

�J� 1 �kf�J
�N� max�J�kf�J

; ..��������

where �kf�Jdenotes the variance of feature �Jand �Ndenotes the number of features.
e meta-feature variance curve is deĕned between 0 and 1. Its value is 1 when
all features in the one-class data set have the same variance. e lower the value
is, the more difference there is in the variance between features. A high difference
in variance between features may indicate badly scaled features, rendering the
Euclidean-distance measure inadequate for one-class classiĕcation.
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..������. �3�F�T�V�M�U�T �B�O�E �E�J�T�D�V�T�T�J�P�O

In this section we present the main result of the chapter, which are the  meta-features.
To investigate the  meta-features more closely, we visualise the distribution of the
values they produce for the  one-class data sets with density plots. A density plot
shows how the values are distributed across the one-class data sets and may reveal
whether the values are suitable for the task of adequately predicting a one-class classiĕer
for a given data set (so the x-axis is the value and the y-axis is the density). e density is
estimated using Kernel Density Estimation (KDE). We may see negative values because
KDE applies some smoothing to the values. Figure . shows  density plots, one for
each meta-feature. We plot the distribution for three values of �e, namely, 0:0, 0:1, and
0:2. is allows us to investigate whether the distribution of meta-feature values changes
as the number of anomalies is increased.

When the meta-feature value is 0 for all one-class data sets, the density plot displays a
Ęat line. is is the case for the meta-features ‘number-of-anomalies’ and ‘impurity’, for
�e� 0:0.

For some meta-features, the values can become disproportionally high. is results in
a badly scaled meta-feature which makes meta-learning more difficult. Consider, for
example, themeta-features ‘dimensionality’, ‘std-std’, and ‘eig-min’.When we look at their
distributions in Figure . then we can see that the majority of the values are very low,
and that there are a few outlying values. (We do not need any outlier-selection algorithm
to select those outlying values.) In order to model appropriately the meta-feature on
the entire range of values, we apply the natural logarithm to each value of the meta-
feature.

Table . provides an overview of all meta-features and indicates on whichmeta-features
we apply the log transformation.

Figure . shows, just like Figure .,  distributions, but then for each log transformed
meta-feature. By looking at the  distributions, we can see that all meta-features are
well-behaved. We note that we only apply the log transformation to those meta-features
that need that transformation.

Figure . shows a two-dimensional scatter plot of the  one-class data sets. Each
marker in the scatter plot represents a one-class data set. e code of data set can be
found next to each marker. e shape of the marker, i.e., a circle, a square, or triangle,
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�5�B�C�M�F ������Overviewof the 36meta-features used in our experiment. The column ‘Apply log’ indicates
whether we apply the log transformation to the values of that meta-feature.

indicates whether the data set is preprocessed with None, PCA, or Variance technique,
respectively.

e position of each marker is based on the  meta-feature values of the corresponding
one-class data set. Each one-class data set is therefore represented by a vector with
a length of . So, we actually have a meta-data set of  instances and with a
dimensionality of . To visualise the -dimensional meta-data set, we employ t-SNE,
which is a non-linear dimensionality reduction technique (van der Maaten and Hinton,
). t-SNE reduces the dimensionality of the meta-data set to two, while preserving
the local structure. As a result, one-class classiĕers that have similar meta-features will
appear close together in the scatter plot. Figure . is thus a visualisation of one of the
meta-data sets that we will use in Chapter .

e meta-features used in Figure . are standardised and have the log transformation
applied to them (as indicated in Table .). Moreover, �eis set to 0:1, so the meta-features
are based on one-class data sets with some anomalies.
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�'�J�H�V�S�F ������Density plots of the raw meta-features for �D= 0.0, 0.1, and 0.2.
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�'�J�H�V�S�F ������ �	�$�P�O�U�J�O�V�F�E�
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�'�J�H�V�S�F ������Density plots of the log-transformed meta-features for �D= 0.0, 0.1, and 0.2.
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�'�J�H�V�S�F ������ �	�$�P�O�U�J�O�V�F�E�
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�'�J�H�V�S�F ������Two-dimensional t-SNE plot of 255 one-class data sets based on meta-feature values.
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�'�J�H�V�S�F ������ �	�$�P�O�U�J�O�V�F�E�
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e one-class data sets belonging to the same group (i.e., N, P, and V) all have
the same colour. None-processed one-class data sets (circles) are connected to the PCA
data sets (squares)with a solid line and to theVariance data sets with a dashed line.

e ĕgure shows that for most one-class data sets, preprocessing drastically changes the
values of the meta-features. is results in data sets within the same group to be at very
different positions in the scatter plot. However, some groups of data sets do not seem to
be affected as they appear close together. For example, the Iris data sets (, , and
), as shown in inset (a) all appear close together. e same holds for the group of one-
class data sets in insets (b) and (c). Insets (d), (e), and (f) highlight data sets where one
preprocessing greatly affects the meta-features. Moreover, we can see in insets (e) and (f)
that many data sets preprocessed with the same technique are located together. From the
presence of clusters indicates we may conclude that the meta-data set contains structure.
(Whether this structure corresponds to one-class classiĕer performance is investigated
in Chapter .)

e size of each marker is actually a preview of what is yet to come—it represents the
average AUC that is obtained by applying the  one-class classiĕers of Chapter  on the
associated one-class data set.

..������. �$�I�B�Q�U�F�S �T�V�N�N�B�S�Z

In this chapter we started with our quest to answer RQ: �5�P �X�I�B�U �F�Y�U�F�O�U �D�B�O �X�F �T�P�M�W�F

�U�I�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �T�F�M�F�D�U�J�P�O �Q�S�P�C�M�F�N �V�T�J�O�H �B �N�F�U�B���M�F�B�S�O�J�O�H �B�Q�Q�S�P�B�D�I� e rationale of
the quest was that we observed that the ‘No Free Lunch’ theorem also applies to one-
class classiĕcation. e theorem implies that there is no single best one-class classiĕer.
In other words, for each one-class data set, there may be a different one-class classiĕer
that performs best. Our goal is to select automatically the best one-class classiĕer using
a meta-learning approach.

We stated four prerequisites that needed to be satisĕed in order to solve the one-class
classiĕer selection problem using a meta-learning approach: () a large number of one-
class data sets, () suitable meta-features, () a large number of one-class classiĕers,
and () a performance measure. In this chapter, we satisĕed prerequisites () and ()
as follows. (Prerequisite () will be satisĕed in Chapter  and prerequisite () was already
satisĕed in Chapter  as the AUC performance measure.)
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We presented  one-class data sets. Because of two preprocessing techniques, ()
variance and () PCA, we actually had  one-class data sets. We deĕned  meta-
features from six categories: () elementary meta-features, () statistical meta-features,
() decision tree-based meta-features, () information-theory-based meta-features,
() Euclidean-distance-based meta-features, and () miscellaneous meta-features. We
applied the  meta-features to the  one-class data sets, which produced a set of
meta-feature values. e  �  �  meta-feature values are used as input for the next
chapter, where we use meta-learning to relate the meta-features to one-class classiĕer
performance.
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�$�P�O�U�F�O�U�T��
In this chapter we will complete the answer to RQ3: �5�P �X�I�B�U �F�Y�U�F�O�U �D�B�O �X�F �T�P�M�W�F �U�I�F �P�O�F���D�M�B�T�T

�D�M�B�T�T�J�ö�F�S �T�F�M�F�D�U�J�P�O �Q�S�P�C�M�F�N �V�T�J�O�H �B �N�F�U�B���M�F�B�S�O�J�O�H �B�Q�Q�S�P�B�D�I� In order to achieve that, we will us

the 36 meta-features computed in Chapter 5. We apply 19 one-class classiöers to the 255 one-

class data sets. We start describing our meta-learning strategy of learning when to select which

one-class classiöer. Three baseline strategies are introduced to put our strategy into perspective.

The quality of the four strategies is compared and discussed. Finally, we provide our conclusions

to RQ3.

..

�0�V�U�M�J�O�F��
������Deöning mapping and strategy. ������Overview of one-class classiöers. ������Applying 19 one-

class classiöers to 255 one-class data sets. ������A meta-learning strategy for a selection mapping.

������Three baseline selection strategies. ������Results and discussion. ������Chapter conclusions.
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In this chapter we continue to answer RQ: �5�P �X�I�B�U �F�Y�U�F�O�U �D�B�O �X�F �T�P�M�W�F �U�I�F �P�O�F���D�M�B�T�T

�D�M�B�T�T�J���F�S �T�F�M�F�D�U�J�P�O �Q�S�P�C�M�F�N �V�T�J�O�H �B �N�F�U�B���M�F�B�S�O�J�O�H �B�Q�Q�S�P�B�D�I� We recall from Chapter  the
four prerequisites to solving the one-class classiĕer selection problem using a meta-
learning approach. For clarity, we reiterate them here.

. A large number of one-class data sets of various complexities.

. Existence of suitable meta-features to characterise the one-class data sets.

. A large number of diverse one-class classiĕers to apply to the one-class data sets.

. A performance measure to evaluate one-class classiĕer performance.

Prerequisites () and () have been satisĕed in Chapter  by introducing  one-class
data sets and  meta-features. Prerequisite () is satisĕed as it is the AUC performance
measure. In the current chapter we start deĕning the one-class classiĕer selection
mapping and a corresponding strategy in Section .. In Section . we introduce the
 one-class classiĕers used in our experiments. In Section . we explain how we apply
the one-class classiĕers to the  one-class data sets. In Section . we describe our
meta-learning-based one-class classiĕer selection strategy. In Section . we introduce
three one-class selection strategies that do not involve meta-learning that are used to
put our strategy into perspective. In Section . we present and discuss the results and
compare the four one-class classiĕer selection strategies. In Section . we provide our
chapter conclusions and answer RQ.

..������. �%�F�ö�O�J�O�H �N�B�Q�Q�J�O�H �B�O�E �T�U�S�B�U�F�H�Z

We employ the four prerequisites to ĕnd the selection mapping �4̂ �Ĝ�%•• (cf. Deĕni-
tion .). Below we give two important deĕnitions, one on one-class classiĕer selection
mapping and one on one-class classiĕer selection strategy.

Deĕnition . (One-class classiĕer selection mapping). �" �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �T�F�M�F�D�U�J�P�O

�N�B�Q�Q�J�O�H �J�T �B �G�V�O�D�U�J�P�O �4� �% � �G �U�I�B�U �U�B�L�F�T �B�T �J�O�Q�V�U �B �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U�
�%�
 �B�O�E �S�F�U�V�S�O�T

�B �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S�
 �G�
 �U�I�B�U �J�T �U�P �C�F �B�Q�Q�M�J�F�E �U�P �U�I�B�U �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U��

A one-class classiĕer selection mapping is obtained by employing a strategy, which we
deĕne as follows.

Deĕnition . (One-class classiĕer selection strategy). �" �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �T�F�M�F�D�U�J�P�O

�T�U�S�B�U�F�H�Z �J�T �B�O�Z �Q�S�P�D�F�E�V�S�F �U�I�B�U �S�F�T�V�M�U�T �J�O �B �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �T�F�M�F�D�U�J�P�O �N�B�Q�Q�J�O�H��
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..������. �0�W�F�S�W�J�F�X �P�G �P�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�F�S�T..

(Japkowicz, Myers, and Gluck, ; Tax, Juszczak, Pękalska, and Duin, ; Parra, Deco, and Miesbach, ; Tax and Duin, ; Ypma and Duin, ; Bishop, ; Breunig et al., ; Pękalska, Tax, and Duin, ; Lanckriet, Ghaoui, Bhattacharyya, and Jordan, ; Juszczak, Tax, Pękalska, and Duin, ; Tax, ; Parzen, ; Kraaijveld and Duin, ; Kohonen, )

In our experiments we employ  different one-class classiĕers. Seven one-class
classiĕers, such as SOS and KNNDD have been employed and discussed in previous
chapters. Discussing every one-class classiĕer is beyond the scope of this chapter. Any
reader who wishes to learn more on a certain one-class classiĕer (from the remaining
twelve) is kindly referred to the literature referenced. Table . lists the  one-class
classiĕers that we use in our experiments. For each one-class classiĕer the table states: ()
the codename we use in the text, () the full name, and () the reference to the literature
in which more information can be found.

�5�B�C�M�F ������Overview of the 19 one-class classiöers.

..������. �"�Q�Q�M�Z�J�O�H ���� �P�O�F���D�M�B�T�T �D�M�B�T�T�J�ö�F�S�T �U�P ������ �P�O�F���D�M�B�T�T �E�B�U�B �T�F�U�T

In Section . we presented a formal model for the one-class classiĕer selection problem
(see Figure . on page ). e fourth component of that model is the performance
space �"�6�$, which represents the mapping of each one-class classiĕer to the AUC
performance measure. We are able to obtain a set of AUC performances (i.e., a subset
of the performance space) by applying one-class classiĕers to one-class data sets.

..Overview of one-class classiöers. ������
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In this section we apply the  one-class classiĕers to the  one-class data sets. is
results in 19 � 255, i.e., 4;845, AUC performance values.

Figures . and . show the AUC performances in four matrices. e ĕrst matrix
shows the AUC performances that the  one-class classiĕers obtained on the  None-
preprocessed one-class datasets. e one-class classiĕers are shown in alphabetical order
along the top side of the matrix, and the one-class data sets are indicated along the
le side of the matrix. e colour of each cell in the matrix corresponds to the AUC
performance. e colour bar on the right shows the mapping from AUC performances
to colours. (Please note that AUC performances between  and . all map to the same
colour, i.e., dark red.) For instance, the top row of the matrix, which corresponds to data
set N (cf. Table . on page ), shows that all  one-class classiĕers obtained an
AUC performance of at least .

A black-coloured cell indicates that the AUC performance is missing either because ()
the one-class classiĕer was not able to process the one-class data set, () the processing
took too long, or () something else went wrong.

e second and third matrix show the AUC performances which were obtained on
the one-class data sets that were preprocessed by the Variance and PCA procedures,
respectively.e order of both the one-class data sets and the one-class classiĕers in these
two matrices are the same as in the ĕrst matrix.

e fourth matrix shows again the AUC performances for the None preprocessed one-
class data sets, but then in a different order. First of all, the columns, i.e., the one-class
classiĕers, are ordered by the average AUCperformancewhich is obtained on the  one-
class data sets. Second, the AUC performances in each column are sorted separately, in
non-ascending order. So, there is no single one-class data set per row any more. From
this matrix we can see, for instance, that MST has the best average performance.

If we compare the colours in the ĕrst threematrices, we can see, on a highly detailed level,
how the preprocessing procedures affect the performance of the one-class classiĕers. As
a case in point, the third matrix has quite some more of the red colour than the ĕrst and
second matrices, which indicates that the PCA preprocessing is not always beneĕcial for
the AUC performance.

Figures . and . show how the Variance and PCA preprocessing procedures affect
the AUC performance of one-class classiĕers, per one-class data set. e data sets are
ordered by the median AUC performance. For each data set, there are two overlapping
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box plots. e grey box plot describes the distribution of AUC performances for the
None-preprocessed data sets. e colour of the other box plot is either green or red. e
colour depends on whether median AUC performances of the preprocessed data set is
higher (green) or lower (red) than the None-preprocessed one-class data set.

From the two ĕgures, we can see () that the overall performance on, for example, data
set  is improved by preprocessing it by the Variance procedure, but also () that the
overall performance will be degraded if preprocessed by the PCA procedure.

e computed AUCs are used for evaluating the one-class classiĕer selection strategies.
Since we know exactly the performance that a one-class classiĕer may obtain because
all values have been precomputed, we have an upper bound on the AUC performance.
e strategy used selects a one-class classiĕer for each one-class data set. Of course, we
will compare the precomputed AUC of the selected one-classiĕer with, for example, the
average or the maximum AUC for that one-class data set.

..������. �" �N�F�U�B���M�F�B�S�O�J�O�H �T�U�S�B�U�F�H�Z �G�P�S �B �T�F�M�F�D�U�J�P�O �N�B�Q�Q�J�O�H

We recall from Chapter  that we use meta-learning to ĕnd a selection mapping �4̂ �Ĝ�%••

such that we obtain a maximum AUC performance on a given data set �%. us, the
selection mapping is basically a function that maps one-class data sets to one-class
classiĕers. (In other words, the one-class data sets are the domain of �4and the one-class
classiĕers are the codomain of �4).

In this section we describe our suggested solution to the one-class classiĕer selection
problem. In other words, we explain how we employ a meta-learning strategy in order to
obtain a one-class classiĕer selection mapping.

e section is structured as follows. In Subsection .., we describe how the meta-
data set looks like. In Subsection .., we explain how we prepare the meta-data set for
binary classiĕcation. In Subsection .., we present the general classiĕcation approach.
In Subsection .., we discuss how we select a subset of features. In Subsection .., we
present the seven variants of the classiĕcation approach.

..A meta-learning strategy for a selection mapping. ������
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�'�J�H�V�S�F ������AUC matrices for preprocessing techniques None (left) and Variance (right).
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�'�J�H�V�S�F ������AUCmatrices for the preprocessing technique PCA (left) andNone, ordered byAUC (right).
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�'�J�H�V�S�F ������Boxplots indicating the inøuence of preprocessing Variance on the AUC performance.
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�'�J�H�V�S�F ������Boxplots indicating the inøuence of preprocessing PCA on the AUC performance.
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..����������. �5�I�F �N�F�U�B���E�B�U�B �T�F�U

As mentioned in Chapter , a meta-learning strategy involves machine learning. More
precisely we use a form of classiĕcation to obtain a mapping from data sets to one-class
classiĕers.

e data set that we use in our machine learning procedure was earlier obtained by ()
computing  meta-features of  one-class data sets in Section . and () applying 
one-class classiĕers on the same  one-class data sets. us, the data set has  data
points (the one-class data sets) where each data point is a feature vector of length  (the
meta-features). e data set is labelled, but the labels do not have a binary form as seen
thus far. Each data point (one-class data set) has  AUC values associated with it.

..����������. �1�S�F�Q�B�S�J�O�H �U�I�F �N�F�U�B���E�B�U�B �T�F�U �G�P�S �D�M�B�T�T�J�ö�D�B�U�J�P�O

We cannot straightforwardly apply any classiĕer to such a labelled data set.erefore, we
employ the following classiĕcation procedure to obtain a mapping from one-class data
sets to one-class classiĕers.

At this point we need to handle the data set as follows. e features of each data point
(i.e., the meta-features of the one-class data set) can remain the same. e labels (i.e.,
the  AUC values) have to be transformed. Instead of trying to learn a mapping from
the set of one-class data sets to the set of  one-class classiĕers, we perform a simpliĕed
classiĕcation task. Given two one-class classiĕers, say �Jand �K, we learn which one-class
classiĕer is the better one.e new label for the data point is 1 if the AUC performance of
one-class classiĕer �Jis higher than that of �K, and 0 otherwise. On the transformed meta-
data set we apply a binary classiĕer.

..����������. �(�F�O�F�S�B�M �D�M�B�T�T�J�ö�D�B�U�J�P�O �B�Q�Q�S�P�B�D�I

As stated above we are ready to apply a binary classiĕer on the transformed meta-data
set. Since the meta-data set has only  data points, and since we want to train the
binary classiĕer with as much data points as possible, the leave-one-out cross-validation
is preferred over the -fold cross-validation.

In leave-one-out cross-validation, the classiĕer is trained on  data points and tested
on the remaining data point. As we know, two thirds of the data points are actually
preprocessed versions of the ĕrst  data sets. So, the binary classiĕer may be at an unfair
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advantage when, for example, the training meta-data set contains one-class datasets
N and P, and we test it for V. (ese three one-class data sets may have
too many meta-features in common.) e solution is to employ leave-�U�I�S�F�F-out cross-
validation instead of leave-one-out cross validation. is ensures a fair training and
testing environment. Now, the binary classiĕer is being trained on  one-class data
points and tested on the remaining three data points (for example, N, P, V).
is is repeated  times, such that the binary classiĕer has tested all data points.

We have  one-class classiĕers, which results in  �  ~ �  pairs of one-class
classiĕers. (It does not make sense to compare a one-class classiĕer with itself and
comparing one-class classiĕers �Jwith �Kis the same as comparing �Kwith �J.) e meta-
data set is therefore transformed  times and we apply a binary classiĕer on each of
them.

Since the classifying procedure is quite involved with  binary classiĕers and leave-
three-out cross-validation, it would be adequate to employ a binary classiĕer that is cheap
to use. In our experiments we have chosen to employ the K-Nearest Neighbour binary
classiĕer, where we set K arbitrarily to .

We count, per data point, i.e., for each one-class data set, how oen each one-class
classiĕer has been selected by the  binary classiĕers. e one-class classiĕer that has
been selected the most oen is the one-class classiĕer that we let our one-class classiĕer
selection mapping select for that one-class data set. e ĕnal result is a mapping of 
one-class data sets to  times one of the  one-class classiĕers.

In Section . we noticed that some meta-features have very high values for certain one-
class data sets. To mitigate this, we applied the log transformation.

..����������. �'�F�B�U�V�S�F �T�F�M�F�D�U�J�P�O

In total we have  meta-features. Not all  meta-features are informative, and some
may even be degrading the quality of the selection mapping. Earlier, for our one-
class data sets, we used PCA as a preprocessing technique to solve this problem
(cf. Subsection ..). However, if we use PCA on the meta-data set, then we will
not know which meta-feature is the most informative. In other words, we would lose
interesting information. So, rather than performing PCA, we select a subset of the meta-
features using a technique called Recursive Feature Elimination (RFE) (Guyon, Weston,
Barnhill, and Vapnik, ).

..A meta-learning strategy for a selection mapping. ������
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RFE works as follows. A Support Vector Machine (SVM) with a linear kernel is applied
to the meta-data set with all  features. e SVM ĕnds an optimal linear separation
(i.e., discriminant function) between the two classes (i.e., 1 if classiĕer �Jis better than �K

and 0 otherwise). e discriminant function consists of  weights, where each weight
determines the importance of a feature.e feature with the least importance (i.e., lowest
weight) is eliminated from the meta-data set. e SVM is applied again, but then on the
remaining  features—hence the name Recursive Feature Elimination.

RFE is performed  times, once for each pair of one-class classiĕers. e  features
that are deemed most important aer  instantiations of RFE are selected to become
the features of the meta-data set that we will use for the meta-learning approach.

..����������. �4�F�W�F�O �W�B�S�J�B�O�U�T

For our meta-data set, we may choose whether we wish to use meta-features that are ()
standardised or not, () log transformed or not, and () selected or not.ere is nometa-
data set with ‘selected meta-features’ because applying feature selection to raw meta-
features did not work, i.e., the feature ranking algorithm fails to process the raw meta-
features. is is most likely due to the large values in the raw meta-features. Together
with the raw meta-features, we have seven different meta-data sets which we will employ
for our meta-learning approach. ey are:

• raw meta-features;

• standardised meta-features;

• standardised and selected meta-features;

• log meta-features;

• log and selected meta-features;

• log and standardised meta-features; and

• log, standardised, and selected meta-features.

Subsequently, we apply each variant to each meta-data set with anomaly fraction �e >

˜ 0:0; 0:1; 0:2:• . is results in  selection mappings.

In Section . we introduce three baseline selection strategies for reason of comparison.
Finally, in Section . we evaluate the performance of our strategy and the seven
variants.

..Meta-learning for one-class classiöers.������
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..������. �5�I�S�F�F �C�B�T�F�M�J�O�F �T�F�M�F�D�U�J�P�O �T�U�S�B�U�F�H�J�F�T

To put the performance of our strategy into a proper perspective, we introduce three
baseline strategies for selecting a one-class classiĕer. ese three strategies only depend
on the precomputed AUC performances and do not employ any meta-learning. ey
are called: random (Subsection ..), best-on-average (Subsection ..), and oracle
(Subsection ..).

..����������. �3�B�O�E�P�N �T�U�S�B�U�F�H�Z

e ĕrst strategy is the ‘random’ strategy. As the name suggests, this strategy selects
randomly one of the  one-class classiĕers. is is the same as having no strategy, or
in other words, having no prior knowledge about any of the one-class classiĕers.

..����������. �#�F�T�U���P�O���B�W�F�S�B�H�F �T�U�S�B�U�F�H�Z

e second strategy is the ‘best-on-average’ strategy. is strategy selects the one-class
classiĕer that obtained the overall best AUC performance on all data sets. It therefore
always selects the same one-class classiĕer, independent of the one-class data set at hand.
In our case, this corresponds to the one-class classiĕer MST. is strategy is useful if one
does have prior knowledge of the one-class classiĕers, but does not know when to select
which one-class classiĕer.

..����������. �0�S�B�D�M�F �T�U�S�B�U�F�H�Z

e third strategy is the ‘oracle’ strategy. e oracle strategy always selects the one-class
classiĕer with the highest AUCperformance possible.is is possible because we have all
the AUC performances at our disposal. If we assume that the  one-class classiĕers used
in our experiment are the only ones that exist, then this is the optimal strategy. However,
it is also cheating because, in practice, we do not have the AUC performances for a new
data set available—hence the name oracle. It is worthwhile to include this strategy into
our comparisons because this allows us to see how close our meta-learning strategy is to
the optimal performance.

..Three baseline selection strategies. ������
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..������. �3�F�T�V�M�U�T �B�O�E �E�J�T�D�V�T�T�J�P�O

In Section . we introduced our meta-learning strategy to solve the one-class classiĕer
selection problem. Our meta-learning strategy has seven variants and three settings
of the �eparameter, producing  selection mappings. In Section . we described the
random, best-on-average, and oracle baseline selection strategies, which each produce
one mapping. In the current section we compare the four baseline selection strategies by
evaluating the quality of the mappings they produce.

e quality of a mapping is determined by the one-class classiĕer it selects for each one-
class data set. Given a one-class data set, and the selected one-class classiĕer, we look
up the precomputed AUC performance (see Section .). Because we have  one-
class data sets, each mapping has  AUC values associated with it. ese  values
determine the quality of a mapping.

e meta-learning, best-on-average, and oracle strategies are deterministic in the sense
that they produce the same mapping for the same one-class data sets. e random
strategy is, as its name implies, stochastic, meaning that it produces a different mapping
every time, even if the one-class data sets remain the same. For the random strategy we
use the expected AUC performance on a given data set, which equals the average of all
 AUC performances obtained for that data set.

e remainder of the section is structured as follows. In Subsection .. we compare the
meta-learning strategy to the other three strategies on a high level. In Subsection ..
we look more closely at how the seven variants of the meta-learning strategy compare to
each other.

..����������. �.�F�U�B���M�F�B�S�O�J�O�H �T�U�S�B�U�F�H�Z �C�F�U�U�F�S �U�I�B�O �S�B�O�E�P�N

In this subsection we aim to obtain an overview of the qualities of the mappings
that the four strategies have produced. is allows us to see whether there are any
remarkable differences. We recall that, in total, we have  mappings ( from our
meta-learning strategy, and  from the other strategies). In order to obtain an adequate
overview of the qualities of  mappings, we visualise the distributions of the associated
AUC performances. Figure . contains, for each mapping, a graph that represents the
distribution of the AUC performances. We recall that the AUC performance range from
0 to 1. e graphs are generated by KDE, which allows us look at the AUC performances

..Meta-learning for one-class classiöers.������



...

�$
�I�

B
�Q

�U
�F

�S
��

as distributions. Please note that KDE smooths the graphs that causes the values to go
beyond 1. is is a side-effect of most mappings leading to a large number of high AUC
performances.

�'�J�H�V�S�F ������Distribution of the AUCs of the mappings generated by the four strategies.

e  mappings produced by the meta-learning strategy are grouped together for
purpose of establishing a good overview. (We have a closer look at the differences among
the  meta-learning mappings in the next Subsection.) e meta-learning mappings
are indicated by light-blue lines. e random, best-on-average, and oracle strategies
are indicated by a grey dashed line, a purple dash-dotted line, and a black dotted line,
respectively. If one line is higher than another line for some AUC performance, then the
corresponding mapping has selected more one-class classiĕers that obtained that AUC
performance.

Using Figure ., we nowdiscuss the random, oracle, best-on-average, andmeta-learning
strategies respectively.emapping produced by the random strategy has led to relatively
more AUCs between roughly 0:5 and 0:8 than any other mapping (i.e., expected AUCs,
since the random strategy is stochastic). A consequence is that the randommapping leads
to few AUCs that are higher than 0:8. From the ĕgure we may conclude that the random
strategy has the lowest quality of the four strategies.

We recall that the oracle strategy is to choose the best one-class classiĕer available
per one-class data set. us, the graph shows the distribution of the highest AUC

..Results and discussion. ������



...

�$�I�B
�Q

�U
�F

�S
��

performance obtained on the  one-class data sets. While this strategy is impossible in
practice, it provides us a perspective.

e random and oracle strategies may be regarded as two extremes at the spectrum of
one-class classiĕer selection strategies. Selecting a random one-class classiĕer, on the one
hand, is what we would do if we knew absolutely nothing about one-class data sets, meta-
features, and one-class classiĕers. Selecting the best one-class classiĕer for every one-class
data set, on the other hand, is what we could do if wewere omniscient regarding one-class
data sets, meta-features, and one-class classiĕers. All mappings produced by the best-on-
average and meta-learning strategies are situated between these two extremes.

e mapping produced by the best-on-average strategy effectively shows the AUC
performances obtained by the MST one-class classiĕer. We can clearly see that this
mapping has a much higher quality than the average random mapping.

e  mappings produced by our meta-learning strategy all have an AUC distribution
similar to that of the best-on-average mapping. is indicates that we are at least looking
at the right direction. However, there appears to some variety between the  mappings.
Some mappings have a higher quality than the best-on-average, and others have lower
quality.

Still, the question that remains is, which of the seven variants combined with which
setting of �eproduces the best mapping?

..����������. �$�P�N�Q�B�S�J�O�H �U�I�F �T�F�W�F�O �N�F�U�B���M�F�B�S�O�J�O�H �T�U�S�B�U�F�H�Z �W�B�S�J�B�O�U�T

In this subsection we have a closer look at the seven variants of our meta-learning one-
class classiĕer selection strategy. Figure . shows seven sub-plots, where each sub-
plot corresponds to one of the seven variants. Each sub-plot contains a graph of the
meta-learning variant with �eset to 0:0, 0:1, and 0:2. Moreover, we have plotted the
random, best-on-average, and oracle mappings. e graphs of these three mappings are
the same in each of the seven sub-plots and therefore provide a good anchoring point for
comparison with the seven variants.

Because we have already seen in Figure . that all the mappings lie between the random
and the oracle mappings, it makes sense to have a look at the AUC performances relative
to those two mappings.

e y-axis in each sub-plot denotes the relative AUC, and is computed as follows.
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e absolute AUC associated with a particular one-class classiĕer for a particular one-
class data set �%is transformed into the relative AUC, which is deĕned as follows.

Deĕnition . (Relative AUC). ���F �S�F�M�B�U�J�W�F�"�6�$�P�G �B �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �J�T �D�P�N�Q�V�U�F�E �C�Z

�T�V�C�U�S�B�D�U�J�O�H �U�I�F �S�B�O�E�P�N�"�6�$�G�S�P�N �U�I�F �B�C�T�P�M�V�U�F�"�6�$�E�J�W�J�E�F�E �C�Z �U�I�F �E�J���F�S�F�O�D�F �C�F�U�X�F�F�O �U�I�F

�P�S�B�D�M�F �B�O�E �U�I�F �S�B�O�E�P�N�"�6�$�T��

AUCrel‰�u�. ; �%Ž�
AUC‰�u�. ; �%Ž� �&� AUC‰�u�3; �%Ž�

AUC‰�u�0; �%Ž� �&� AUC‰�u�3; �%Ž�
; ..������

�X�I�F�S�F �u�
 �T�V�C�T�D�S�J�Q�U�F�E �C�Z �.�
 �3�
 �B�O�E �0 �J�O�E�J�D�B�U�F �U�I�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �T�F�M�F�D�U�F�E �C�Z �U�I�F �N�B�Q�Q�J�O�H

�U�P �C�F �U�S�B�O�T�G�P�S�N�F�E�
 �U�I�F �S�B�O�E�P�N �N�B�Q�Q�J�O�H�
 �B�O�E �U�I�F �P�S�B�D�M�F �N�B�Q�Q�J�O�H�
 �S�F�T�Q�F�D�U�J�W�F�M�Z�� ���F�&�J�O�E�J�D�B�U�F�T

�U�I�F �F�Y�Q�F�D�U�F�E �W�B�M�V�F �P�G �U�I�F�"�6�$�P�G �U�I�F �S�B�O�E�P�N �N�B�Q�Q�J�O�H��

e relative AUC is 0 when it is equal to the AUC produced by the random mapping
and 1 when it is equal to the oracle mapping. e random and oracle mapping therefore
appear as two horizontal lines in the seven sub-plots.e relative AUC is lower than 0 if it
is lower than the randommapping.e lower bound of the relativeAUCdepends on both
random and oracle AUCs. We only show the relative AUCs between � 1 and 1.

e x-axis represents the  data sets. Please note that the data sets are ordered per
mapping, so we cannot compare the performance per data set.We have arrangedmatters
in this way because otherwise it would be very difficult to compare the mappings.
Moreover, we are most interested in the overall quality of the mappings.

From Figure . we can see that even the best-on-average strategy is worse at selecting
than the random strategy for some number of one-class data sets. (is is another
conĕrmation that there is no free lunch for one-class classiĕcation. In fact, we may ask
ourselves whether there exists a one-class classiĕer selection strategy, other than the
oracle strategy, that always performs better than random?)

To compare the seven variants in a better way we deĕne the Average Relative AUC
(ARA).

Deĕnition . (Average Relative AUC (ARA)). ���F �"�W�F�S�B�H�F �3�F�M�B�U�J�W�F�"�6�$�P�G �B �P�O�F���D�M�B�T�T

�D�M�B�T�T�J���F�S �T�F�M�F�D�U�J�P�O �N�B�Q�Q�J�O�H �4 �J�T �E�F���O�F�E �B�T �U�I�F �B�W�F�S�B�H�F �P�G �¬�¯�¯ �S�F�M�B�U�J�W�F�"�6�$�T �B�T �P�C�U�B�J�O�F�E �P�O �U�I�F

�¬�¯�¯ �P�O�F���D�M�B�T�T �E�B�U�B�T�F�U�T��

ARAˆ �4• �
1

255
�

255
Q
�J� 1

AUCrel‰�4̂ �%�J• ; �%�JŽ ..������
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�'�J�H�V�S�F ������Comparing the seven variants of the meta-learning strategy with the other strategies.
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�X�I�F�S�F �4ˆ �%�J• �E�F�O�P�U�F�T �U�I�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �B�T �T�F�M�F�D�U�F�E �C�Z �U�I�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �T�F�M�F�D�U�J�P�O

�N�B�Q�Q�J�O�H �4��

Table . shows the ARA of each meta-learning variant. e rows are sorted by the ĕrst
column (�e� 0:0). e last two columns show the differences that �e� 0:1 and �e� 0:2
have with respect to �e� 0:0.

�5�B�C�M�F ������ARA of each meta-learning variant.

Table . conĕrms that all seven variants of the meta-learning strategy perform better
than the random strategy (because they all have a positive ARA). e random and oracle
selection mappings have an ARA of 0 and 1, respectively (see Table .). e best-on-
average strategy has an ARA of 0:51, which puts it between the ‘log, selected’ and the
‘log, standardised, selected’ meta-learning strategies for �e� 0:0.

�5�B�C�M�F ������ARA of each baseline
selection strategy.

Below we discuss the inĘuence of the two dimensions: () the setting of �eand () the
variants. In Chapter  we expected that including anomalies in the one-class data sets
for the computation of the meta-features would increase the quality of the meta-learning
mappings. However, from the table we can see that setting �eto 0:1 or 0:2, for the four
best performing variants (i.e, those that include the option ‘log’), decreases the mapping
quality. One reason why �e� 0:1 and �e� 0:2 perform worse, is that the meta-features do
not distinguish between the two classes. So, including anomaliesmay distort the values of
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the meta-features in a negative manner. us, increasing the fraction of anomalies used
to compute the meta-features, generally decreases the performance.

evariant ‘log, standardised, selected’ employs all the three options and it performs best.
Its ARA is  higher than the raw variant, which employ none of the three options.is
means, in a general sense, that the quality of the meta-learning strategy can be improved
by transforming and selecting the raw meta-features.

Now the time is ripe to discuss the inĘuence of the three options (i.e., log, standardised,
and selected) on the quality of the meta-learning mapping. e variants that employ the
log option appear to be the best four variants. Just employing the log option to raw meta-
features increases the ARA from :33 to :49. e inĘuence of the standardised option is
not consistent. On the one hand, employing the standardised option on the raw meta-
features increases the quality to :043 and to the ‘log, selection’ variant it adds :02 ARA.
On the other hand, employing it in combination with the log option, it does not appear
to make a difference. e selected option, in general, does improve the quality, but not
too much. It increases the ‘log’ variant by :01 and the ‘log, standardised’ variant by :03.
It decreases the quality of the ‘standardised’ variant by :04.

..������. �$�I�B�Q�U�F�S �D�P�O�D�M�V�T�J�P�O�T

In this chapter, we continued with our journey to answer RQ: �5�P �X�I�B�U �F�Y�U�F�O�U �D�B�O �X�F �T�P�M�W�F

�U�I�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S �T�F�M�F�D�U�J�P�O �Q�S�P�C�M�F�N �V�T�J�O�H �B �N�F�U�B���M�F�B�S�O�J�O�H �B�Q�Q�S�P�B�D�I� First, we applied
 one-class classiĕers to the  one-class data sets presented in Chapter . Second, we
deĕned the terms one-class classiĕer selection strategy and one-class classiĕer selection
mapping. ird, we presented our suggestion to solve the one-class classiĕer selection
problem, by a meta-learning strategy. e aim of the meta-learning strategy was to
learn a mapping from one-class data sets to one-class classiĕers, such that the AUC was
maximised. To learn the mapping, the  meta-features of Chapter  were used to form
a meta-data set. e meta-data set had one parameter, �e, which controlled the fraction
of anomalies present, when computing the meta-features. e meta-learning strategy
had seven variants, which, together with three settings for �e, resulted in  different
one-class classiĕer selection mappings. Fourth, three baseline selection strategies were
introduced: random, best-on-average, and oracle. ese three strategies were meant to
put the performance of our meta-learning strategy into perspective. Fih, we compared
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and discussed the quality of the four strategies. We are now ready to formulate our
conclusion to RQ.

To answer RQ we need to deĕne what it means to solve the one-class classiĕer selection
problem completely. According to the model in Chapter , the question reads: when do
we arrive at a one-class classiĕer selection mapping that maximises the AUC?

In Subsection .., we deĕned that the random one-class classiĕer selection strategy is
actually equal to having no strategy. It therefore makes sense to deĕne this as the lower
bound. Moreover, the oracle strategy delivers what is the maximal achievable result. We
know this for sure, because we had precomputed all AUC performances by applying 
one-class classiĕers to  one-class data sets. In Subsection .., we deĕned the ARA,
which is, by deĕnition, 0 for the random strategy and 1 for the oracle.

So, when we consider the variant of our meta-learning strategy with the highest ARA,
namely the ‘log, standardised, selected’ variant, then we may conclude that, given the
 one-class data sets and  one-class classiĕers, we can solve the one-class classiĕer
selection problem using a meta-learning approach for .

In our quest to answer RQ, which spans Chapters  and , we have made the following
choices regarding the four prerequisites and our meta-learning approach:

•  one-class data sets,

•  meta-features,

•  one-class classiĕers,

• AUC performance measure,

• Optional log transformation of certain meta-features,

• Optional standardised of meta-features,

• Optional selecting top  meta-features,

• Feature selection using a Support Vector Machine with a linear kernel, and

• Using  -NN binary classiĕers for multi-label classiĕcation using.

ese choices together offered a complete exercise into applying meta-learning for the
one-class classiĕer selection problem. Some of these choices were based on availability
(e.g., the data sets and one-class classiĕers), some were supported by scientiĕc literature
(e.g., the meta-features), and some were guided by preliminary results (e.g., log
transformation, feature selection).
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We do not claim that these choices are all optimal. Many choices could have been made
differently, which may have led to better solutions of the one-class classiĕer selection
problem. However, it is beyond the scope of this thesis to provide a complete exploration
of all choices made; that would take too much time.

On the basis of our results as shown in Chapters  and , we believe that the one-class
classiĕer selection cannot be solved completely. In other words, we believe that there is
no strategy that obtains an ARA of 1:0 (unless the number of one-class data sets and
one-class classiĕers is trivially low). e reason for our belief is that we experience that,
just as with one-class classiĕcation, there is no free lunch for meta-learning.
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This chapter provides answers to the three research questions posed in Chapter 1. Moreover, a

deönitive conclusion to the problem statement is formulated. Finally, four directions for future

research are suggested.
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In this chapter we answer the three research questions on the basis of the work
presented in the thesis (Section .). Subsequently, we formulate our conclusion to the
problem statement (Section .). Finally, we suggest four directions for future research
(Section .).

..������. �"�O�T�X�F�S�T �U�P �U�I�F �S�F�T�F�B�S�D�I �R�V�F�T�U�J�P�O�T

Research question : �)�P�X �T�I�P�V�M�E �X�F �F�W�B�M�V�B�U�F �B�O�E �D�P�N�Q�B�S�F �U�I�F �Q�F�S�G�P�S�N�B�O�D�F

�P�G �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T� 

e answer to the ĕrst research question is derived from Chapters  and . In Chapter 
we described four methods for the evaluation of outlier-selection algorithms and one-
class classiĕers: () derivation of one-class data sets from multi-class data sets, ()
simulation of anomalies, () cross-validation with training and test data sets, and
() computation of the AUC performance measure. Moreover, we described three
techniques to compare the performances: () the Friedman test, () the post-hoc
Neményi statistical test, and () the critical difference diagram.

In Chapter , we aimed to evaluate and compare ĕve outlier-selection algorithms from
the ĕelds of ML and KDD. However, prior to the evaluation, i.e., applying the outlier
selection to one-class data sets, we framed LOF and LOCI into the one-class classiĕer
setting. By doing so, each outlier-selection algorithm was treated under the same
circumstances. Subsequently, we were able to employ the four evaluation methods and
three comparison techniques listed above.

Although AUC is themost widely-used performancemeasure withinMachine Learning,
it is certainly not the only way to evaluate outlier-selection algorithms and one-class
classiĕers. In any case, we strongly discourage the use of visualizing the classiĕcations
by the algorithms only, since that may lead to a subjective evaluation. Instead, we advise
to employ () a performance measure that has a proven statistical validity and ()
statistical tests to compare the performances and to test whether there is any signiĕcant
difference.

From our own experimental approach and results wemay conclude that outlier-selection
algorithms should be evaluated and compared by: () ensuring that they are treated
under the same circumstances, () measuring their performance in an objective manner
using statistically valid techniques, and () comparing their performance with statistical
tests.
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Research question : �$�B�O �B�O �F���F�D�U�J�W�F �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N �C�F �E�F�W�J�T�F�E

�U�I�B�U �F�N�Q�M�P�Z�T �U�I�F �D�P�O�D�F�Q�U �P�G �B���O�J�U�Z� 

e answer to the second research question is derived from Chapter . We developed
and evaluated the Stochastic Outlier Selection (SOS) algorithm, a novel, unsupervised
algorithm for classifying outliers in a data set. SOS employs the concept of affinities to
compute for each data point an outlier probability.

From our empirical results we observe that () SOS is an effective algorithm for
classifying outliers in a data set and that () SOS compares favourably to state-of-
the-art outlier-selection algorithms. We may therefore conclude that the concept of
affinities, which forms the basis SOS, is successfully applied to the problem of outlier
selection.

Research question : �5�P �X�I�B�U �F�Y�U�F�O�U �D�B�O �X�F �T�P�M�W�F �U�I�F �P�O�F���D�M�B�T�T �D�M�B�T�T�J���F�S

�T�F�M�F�D�U�J�P�O �Q�S�P�C�M�F�N �V�T�J�O�H �B �N�F�U�B���M�F�B�S�O�J�O�H �B�Q�Q�S�P�B�D�I� 

e answer to the third research question is derived from Chapters  and . We deĕned
that the one-class classiĕer selection problem is completely solved when we have found
a one-class classiĕer selection mapping that maximises the AUC. We employed the ARA
to evaluate to what extent we solve the one-class classiĕer selection problem.

On the one hand, we have the random one-class classiĕer selection strategy, which is
equal to having no strategy, i.e., an ARA of 0. On the other hand, we have the oracle
strategy, which is what is maximal achievable, i.e., an ARA of 1. In other words, the
random and the oracle strategies solve the one-class classiĕer selection problem for 0%

and 100%, respectively.

e ‘log, standardised, selected’ variant of our meta-learning strategy obtained the
highest ARA, namely the 0:52. It was slightly higher than the best-on-average strategy,
which had an ARA of 0:51. We may therefore conclude that, given the  one-class
data sets and  one-class classiĕers used in our experiments, we can solve the one-class
classiĕer selection problem using a meta-learning approach for 52%.

Because () the ARA has not been employed by any previous study and () we were, to
the best of our knowledge, the ĕrst to attempt to solve the one-class classiĕer selection
problem using a meta-learning approach, it is difficult to put the 52% into a proper
perspective. Still, we may consider that our result, according to our deĕnition, indicates
that we are beyond half-way of solving the one-class classiĕer selection problem. In
Section . we provide additional research directions that may improve the result.
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..������. �"�O�T�X�F�S �U�P �U�I�F �Q�S�P�C�M�F�N �T�U�B�U�F�N�F�O�U

In this section we provide an answer to the problem statement. Our answer is based on
the answers to the three research questions as presented in the previous section.

Problem statement: �5�P �X�I�B�U �F�Y�U�F�O�U �D�B�O �P�V�U�M�J�F�S���T�F�M�F�D�U�J�P�O �B�M�H�P�S�J�U�I�N�T �T�V�Q�Q�P�S�U

�E�P�N�B�J�O �F�Y�Q�F�S�U�T �X�J�U�I �S�F�B�M���X�P�S�M�E �B�O�P�N�B�M�Z �E�F�U�F�D�U�J�P�O� 

In Chapter  we stated three conditions that ought to be satisĕed in order for a domain
expert to be supported by outlier-selection algorithms. e three conditions, and how
we addressed them, are as follows:

First, a domain expert should know how to evaluate and compare the performance of the
algorithms.We have described and shown how to evaluate and compare the performance
of outlier-selection algorithms and one-class classiĕers.

Second, a domain expert should have one or more algorithms available that are
considered state-of-the-art. We developed a new state-of-the art outlier-selection
algorithm called SOS. Besides SOS, we have performed experiments with ĕve algorithms
in Chapter , four algorithms in Chapter , and nineteen algorithms in Chapter . ese
algorithms are all available to the domain expert.

ird, a domain expert should know when to apply which algorithm. We have shown
that, to a certain extent, a meta-learning approach can provide an expert insight into
when to apply which one-class classiĕer given a certain data set.

Seeing that the above three conditions have been satisĕed, we may conclude that the
domain expert can be supported to some extent.

..������. �'�V�U�V�S�F �S�F�T�F�B�S�D�I

e research presented in this thesis was complex and promising. Our results were not
always the last verdict. Promising areas of futurework remain. In this section,wemention
four of the most interesting directions.

First, in our research we concentrated on unsupervised outlier-selection algorithms and
semi-supervised one-class classiĕers that make use of normal data points only. ere are
also algorithms that can make use of anomalies in the training data set, such as SVDD.
We expect that the AUC increases when there are anomalies included in the data set. e
success of such an inclusion may be dependent on the number of anomalies.
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So, possible future research in the ĕrst direction is to investigate whether SOS can be
extended in such a way that it can make use of any anomalies in the data set. en, SOS
could be evaluated using the evaluation techniques presented in the thesis and compared
with the few other outlier-selection algorithms that do make use of anomalies.

Second, continuing on the ĕrst research direction, one could investigate the use of
active learning for anomaly detection. Active learning is a research ĕeld within Machine
Learning that deals with algorithms that are able to select unlabelled data points from
the training data set and present these to the domain expert for labelling. e algorithm
is then able to make use of the extra label such that its performance will increase. In this
scenario, the domain expert is involved in the classiĕcation of the data points. In other
words, we have a human-in-the-loop system.

ird, in our research regarding meta-learning we focused on learning a mapping from
a one-class data set to one-class classiĕers. Our experiments involved many choices
regarding the data sets, the one class classiĕers, and the meta-features. Moreover, our
meta-learning approach in itself has many parameters, such as the feature selection
aspect and the use of  binary classiĕers. As mentioned in Section ., a complete
exploration of these aspects is beyond the scope of the thesis.

So, an obvious research direction is to continue to vary these choices and to investigate
other settings for the parameters of themeta-learning approach.We expect that the ARA
maybe further improved by changing one ormore of the following seven aspects: () one-
class data sets, () meta-features, () one-class classiĕers, () preprocessing techniques,
() meta-feature transformations, () meta-feature selection, and () classiĕer setting for
multi-label classiĕcation.

However, we should note that, this way, the meta-learning approach may remain a black
box to the domain expert. In order to gain more insight into the one-class classiĕers and
when to use them, one could also mine so-called association rules. Association rules
typically take the form of ‘if meta-feature �Yhas value �Z, use one-class classiĕer �[’. When
sufficient consistent association rules have been mined, the domain expert could apply
them to a new unseen data set.

Fourth, in our research we concentrated on the Euclidean-distance measure. e reason
we that did so was to be able to use many feature-based data sets in our experiments.
While this is fair and practical from an experimental point-of-view, we believe that oen,
additional research is required when applying an outlier-selection algorithm to a real-
world problem, such as anomaly detection in the maritime domain.

..Future research. ������
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In many real-world problems, especially ones that involve time-series or trajectories, the
Euclidean-distance measure may be insufficient or even impossible to use. en, the
research should be focused on representing correctly the real-world objects or events
through a suitable dissimilarity measure. Furthermore, it would be interesting to see
which algorithm performs best with such a dissimilarity measure.

..Conclusions.������
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