Test-Retest Reliability of Subjective Survival Expectations

de Bresser, Jochem

Document version:
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Test-Retest Reliability of Subjective Survival Expectations

Jochem de Bresser
Test-Retest Reliability of Subjective Survival Expectations*
Jochem de Bresser
Tilburg University†
Netspar‡
September 8, 2016

Abstract
This paper analyzes the test-retest reliability of subjective survival expectations. Using a nationally representative sample from the Netherlands, we compare probabilities reported by the same individuals in two different surveys that were fielded in the same month. We evaluate reliability both at the level of reported probabilities and through a model that relates expectations to socio-demographic variables. Test-retest correlations of survival probabilities are between 0.5 and 0.7, which is similar to subjective well-being (Krueger and Skade, 2008). Correlations are weaker and averages differ more among respondents above the age of 65, which calls into question data quality for older respondents. Only 20% of probabilities are equal across surveys, but up to 61-77% are consistent once we account for rounding. Models that analyze all probabilities jointly reveal that similar associations emerge between covariates and the hazard of death in both datasets. Moreover, expectations are persistent at the level of the individual as indicated by the importance of individual effects. This unobserved heterogeneity is strongly correlated across surveys. Taken together this evidence supports the reliability of subjective survival expectations.

Key words: Subjective expectations, life expectancy, test-retest reliability, rounding

JEL-codes: D84; J14; C34

*This work is part of the research programme Innovational Research Incentives Scheme Veni with project number 451-15-018, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). I also thank Netspar for financially supporting data collection. All errors are my own.
†Tilburg University, P.O. Box 90153, 5000 LE Tilburg the Netherlands. Email: j.r.debresser@uvt.nl.
‡Netspar, P.O. Box 90153, 5000 LE Tilburg, The Netherlands
1 Introduction

Expectations play an important role in economic models of inter-temporal decision making, such as life-cycle models of labor supply and saving (e.g. French, 2005; De Nardi et al., 2010; French and Jones, 2011). Over the past two decades, researchers have started to recognize the potential of data that measure subjective expectations held by survey respondents, especially when elicited in terms of probabilities (see Manski, 2004, for a review). However, the validity of such intrinsically subjective data remains controversial. This paper is the first to evaluate the test-retest reliability of expectations reported by survey respondents. We focus on expectations regarding one’s own survival and compare the responses of the same individuals in the same month between two surveys, both of which measure a number of points on the subjective survival curve.

Our data come from a large household panel that is representative for the Dutch population: the CentERpanel. One survey, the Pension Barometer (PB), allows respondents to report any integer probability between 0 and 100 percent. The other, the DNB Household Survey (DHS), restricts responses to an 11-point scale ranging from 0 to 10. Such 11-point scale limits the resolution at which respondents can report, forcing them to round their subjective probabilities. Nonetheless, it has been applied in several large scale household surveys, such as the Rand version of the HRS in the U.S., SHARE in Europe and the LISS panel in the Netherlands. With the exception of Bissonnette et al. (2011), researchers have interpreted the answers to 11-point scales as exact probabilities.

We evaluate the reliability of reported expectations in two ways. Firstly, we check whether the probabilities are consistent with each other one-by-one. We compare probabilities reported by the same individuals for the same target ages, taking into account that the different answer scales affect the resolution at which respondents report their expectations. Secondly, we formulate a model in which we use all reported probabilities simultaneously to look at the relationships between subjective survival and background variables. We assess to what
extent the two sets of probabilities yield similar associations between the hazard of death and socio-economic covariates when analyzed jointly.

This paper fits in with the large literature on subjective expectations in general and survival expectations in particular (see Hurd, 2009, for an overview of research on subjective longevity). A rich body of literature has established the covariates and predictive validity of survival expectations at the level of the individual (Hurd and McGarry, 1995, 2002; Smith et al., 2001; Bissonnette et al., 2011; Kutlu and Kalwij, 2012). To date, plausible associations between subjective survival and background variables are the most important support for the validity of this type of data. However, the way questions are framed does affect reported expectations: a “die by” frame yields lower life expectancy than does a “live to” frame (Payne et al., 2013; Teppa et al., 2015).

Our analysis contributes to the literature in at least five ways. Firstly, we assess the validity of subjective survival in a nationally representative panel, while earlier studies have tended to focus on older cohorts (the HRS and SHARE only sample the 50-plus population). Secondly, test-retest analysis has been applied to survey data of various types, such as well-being (Krueger and Skade, 2008). Hence, it allows one to compare the reliability of elicited beliefs to that of other, more commonly used types of data. Thirdly, we analyze reliability at different levels of aggregation. The fact that we observe multiple probabilities for each individual-year allows us to investigate whether discrepancies between reported probabilities cancel out when probabilities are combined to fit survival curves. Fourthly, we exploit the panel data nature of our sample in which we do not only observe multiple probabilities reported by an individual in a survey, but also repeated observations for the same individual. These two levels of clustering allow us to disentangle the reliability of variation in beliefs for a given individual over time (within-variation) from the reliability of variation across individuals (between-variation). Finally, we take into account the specific measurement error that comes from rounding, either survey-induced or not, in a comprehensive way.
We find that reported probabilities are reliable overall, but less so for older respondents above the age of 65. Our analysis of individual probabilities shows that test-retest correlations are between 0.5 and 0.7, which is comparable to the reliability of subjective well-being documented by Krueger and Skade (2008). Correlations are lower and the differences between the average reported probabilities are larger for the older target ages of 85 and 90, because those items were presented to older respondents. While only around 20% of reported probabilities are exactly equal, 25-37% are consistent when we account for the different resolutions of response scales. Rounding further increases the rate of consistent responses to 32-46% if we assume all probabilities reported by a given respondent are rounded similarly and 61-77% if we allow for the maximum degree of rounding for each reported probability. Models in which all reported probabilities are analyzed jointly show that the associations between the hazard of death and most socio-demographic covariates are similar for both datasets. However, substantially different associations are found for the covariate birth cohort, especially for older cohorts. Individual effects account for 90% of variation that cannot be explained by demographic covariates and are strongly correlated between surveys (correlation coefficients 0.8-0.9). The correlation between survey-effects that account for the remaining 10% is much lower, suggesting that the variation in beliefs across individuals is more reliable than longitudinal variation for a given individual. Accounting for rounding improves model fit, but does not change the main results regarding the reliability of subjective expectations.

The rest of the paper is structured as follows. Section 2 describes our data in detail and section 3 evaluates the reliability of the reported probabilities one by one. Section 4 presents the model used to analyze all probabilities jointly, after which section 5 presents estimation results. We evaluate the economic significance of differences between the two datasets by means of simulated life-cycle models in section 6, after which section 7 concludes.
Survival questions in the Pension Barometer and in the DNB Household Survey

Both the PB and the DHS were administered to the CentERpanel. The CentERpanel is a household panel that is representative for the Dutch population and that is managed by CentERdata at Tilburg University. In both surveys respondents are offered multiple survival questions asking for the likelihood of surviving to different target ages based on their current age. Figure 1 shows graphically which ages are eligible for each question in both questionnaires. As can be seen in that figure, the PB elicits expectations for five equally spaced target ages between 70 and 90, while the DHS asks questions about age 65 and six ages between 75 and 100. Hence, we can directly compare probabilities corresponding to the target ages 75, 80, 85 and 90. The PB offers survival questions to respondents of age 25 and older who are at least 2 years younger than the target age for which expectations are elicited. Hence, the potential sample for the PB is larger for questions referring to older ages and respondents of age 68 and younger are offered all five survival questions included in the survey. The DHS, on the other hand, asks one or two questions according to the age of the respondent.
Other than the response format, questions are phrased similarly in the PB and the DHS. The PB asks:

“Please indicate on a scale from 0 to 100 how likely you think it is that you

[If age < 69] will live to age 70.”

etc.

The items in the DHS are phrased as follows:

“Please indicate your answer on a scale of 0 thru 10, where 0 means ‘no chance
at all’ and 10 means ‘absolutely certain’.

How likely is it that you will attain (at least) the age of 65?”

etc.

In the PB the questions are preceded only by a single item on subjective health, asking respondents to rate their health on a 5-point scale from ‘excellent’ to ‘poor’. The DHS questionnaire contains 14 questions before the survival questions, which are the final questions to be asked in the health-section of the survey. In addition to a question on subjective health that is identical to that in the PB, the DHS also includes questions on height, weight, consumption of alcohol and cigarettes, doctor visits and absenteeism due to health problems.

3 Reliability of reported probabilities

3.1 Descriptives

Before setting up a formal model, we investigate the extent to which the reported probabilities are consistent with each other for the same individuals and target ages. For most individuals both surveys were conducted in June of 2011 and 2012. The notion that both questionnaires aim to measure the same expectations is plausible, since the period between questionnaires is
Table 1: Descriptive statistics of the reported survival probabilities and life table (LT) probabilities

<table>
<thead>
<tr>
<th></th>
<th>PB</th>
<th>DHS</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Current age</td>
<td>Mean LT</td>
<td>Mean S. D.</td>
<td>Mean LT</td>
<td>Mean S. D.</td>
</tr>
<tr>
<td>a. Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 75</td>
<td>823</td>
<td>25-63</td>
<td>75.2</td>
<td>26.0</td>
<td>68.0</td>
<td>19.2</td>
</tr>
<tr>
<td>Age 80</td>
<td>1000</td>
<td>25-68</td>
<td>60.6</td>
<td>24.9</td>
<td>55.7</td>
<td>22.7</td>
</tr>
<tr>
<td>Age 85</td>
<td>294</td>
<td>65-73</td>
<td>45.7</td>
<td>25.8</td>
<td>52.5</td>
<td>22.9</td>
</tr>
<tr>
<td>Age 90</td>
<td>188</td>
<td>70-78</td>
<td>25.1</td>
<td>24.6</td>
<td>38.5</td>
<td>24.6</td>
</tr>
<tr>
<td>b. Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 75</td>
<td>690</td>
<td>25-63</td>
<td>83.6</td>
<td>22.5</td>
<td>67.5</td>
<td>19.0</td>
</tr>
<tr>
<td>Age 80</td>
<td>796</td>
<td>25-68</td>
<td>73.7</td>
<td>24.7</td>
<td>57.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Age 85</td>
<td>168</td>
<td>65-73</td>
<td>61.7</td>
<td>26.0</td>
<td>54.0</td>
<td>23.0</td>
</tr>
<tr>
<td>Age 90</td>
<td>103</td>
<td>70-78</td>
<td>40.0</td>
<td>25.0</td>
<td>39.5</td>
<td>24.3</td>
</tr>
</tbody>
</table>

short. In 2,187 matched individual-year records the average time between surveys is 3.3 weeks with a median of 1 week and no more than 4 weeks between questionnaires for over three quarters of observations. Both surveys took place in the same week for 6% of person-year observations. Rates of non-response and logically consistent answers are similar across the two surveys. 95% of age-eligible respondents answer all relevant PB survival questions compared with 91% for the DHS. Moreover, 98% of the responses to the PB questions and 99% of responses to DHS questions decrease weakly with age and are thus logically consistent. Out of 2,988 potential observations for the PB, we are left with 2,781 complete and consistent person/year observations. Similarly, 3,584 observations for the DHS yield 3,246 useful observations. In the remainder of this section we limit ourselves to the 2,187 observations for which we observe complete and monotonic response to both the PB and the DHS. Due to different age-eligibility rules for the various target ages in the questionnaires, we have 2,087 observations for which we observe at least one reported probability for the same target age.

1In the paper we report results using all records that could be matched, regardless of the time between surveys. Robustness checks indicate that none of our findings change when we limit the sample to cases for which the two surveys were taken within a 4-week period.
Table 1 shows descriptives of reported subjective probabilities and corresponding probabilities from the 2010 life tables published by Statistics Netherlands. Summary statistics are presented by target age and for each target age we limit the sample to those respondent-years that reported a probability in both surveys. Looking first at the means of the probabilities reported in the PB and in the DHS, we observe that the means are close together for the target ages of 75 and 80 (differences are less than 3 percentage points). However, for the older target ages the average probability in the DHS is around 10 percentage points higher than that in the PB. As a result the average DHS probability is higher than the life-table forecast for ages 85 and 90 for men. Women report probabilities that are substantially below actuarial predictions for all ages, so for them the DHS yields expectations that are more in line with official forecasts. The (rank) correlations between PB and DHS probabilities are between 0.53 and 0.68, which is similar to that found for subjective well-being (Krueger and Skade, 2008). Hence, based on the correlations between reported probabilities the reliability of subjective survival expectations is comparable to that of another widely researched type of subjective data, even though the levels are different for older target ages. Note, however, that while a given aspect of well-being is usually measured by a single item in a questionnaire, there is scope to combine the various reported probabilities and construct survival functions.

Figure 2 shows the medians and inter-quartile ranges of the distributions of PB probabilities conditional on a certain response to the DHS items by target age. The figures confirm that both sets of probabilities are closely related for the target ages 75 and 80: medians are mostly close to the diagonal and IQRs are relatively narrow (around 20 %-points). For the target ages of 85 and 90 the correspondence between the two is less tight, especially among those respondents who indicate a relatively large chance of 40% or higher of surviving past those ages in the DHS. The medians of the distributions of PB probabilities are 10-30 per-

2 The life-tables are matched based on gender and age at the time of the survey, so differences between the age distribution of the Dutch population and that of the subsample that answers a particular question do not affect the comparison.
percentage points below the diagonal and even the third quartile is often below the diagonal, indicating that more than 75% of respondents who are relatively certain to survive past 85 or 90 according to the DHS report less certainty in the PB.

3.2 One-by-one reliability

The most intuitive way to compare PB and DHS probabilities may be to look at the distribution of the differences between the two. However, the possibility of rounding implies that the (absolute) difference between reported probabilities is not a good measure of the extent to which the data are compatible. For instance, reported probabilities of 100% in the DHS and 55% in the PB are consistent if the former is rounded to a multiple of 100 (so that the true probability lies in $[100, 50]$). On the other hand, probabilities of 65% and 55% would be incompatible, since both are only consistent with rounding to multiples of 1 or 5 and thus the intervals for the true probability do not overlap.

Therefore, our approach is to determine the extent of rounding based on three different rounding schemes and to check whether the probabilities reported in the PB and the
Table 2: Rates of consistent responses to PB and DHS survival questions

<table>
<thead>
<tr>
<th>Age</th>
<th>N</th>
<th>Exactly equal</th>
<th>Minimal rounding</th>
<th>Common rounding</th>
<th>General rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 75</td>
<td>1513</td>
<td>0.22</td>
<td>0.37</td>
<td>0.46</td>
<td>0.77</td>
</tr>
<tr>
<td>Age 80</td>
<td>1796</td>
<td>0.22</td>
<td>0.31</td>
<td>0.40</td>
<td>0.75</td>
</tr>
<tr>
<td>Age 85</td>
<td>462</td>
<td>0.18</td>
<td>0.26</td>
<td>0.34</td>
<td>0.68</td>
</tr>
<tr>
<td>Age 90</td>
<td>291</td>
<td>0.16</td>
<td>0.24</td>
<td>0.32</td>
<td>0.61</td>
</tr>
<tr>
<td>All combineda</td>
<td>2,087</td>
<td>0.09</td>
<td>0.18</td>
<td>0.27</td>
<td>0.63</td>
</tr>
</tbody>
</table>

a The sample size is 2,087 individual-years rather than 2,187 as mentioned above, since we exclude observations for which we have monotonic and complete probabilities for both the PB and the DHS, but for which the two questionnaires have no target ages in common.

DHS can reflect the same underlying true probability under each of those rules. The first scheme assumes that each probability is reported as precisely as allowed by each survey: all probabilities in the PB are rounded to multiples of 1 and all probabilities in the DHS to multiples of 10. Hence, under this minimal rounding rule any two probabilities are compatible if $P_{PB} \in [P_{DHS} - 5, P_{DHS} + 5]$.3 The second, common, scheme allows for more rounding, but maintains that all survival probabilities reported by the same individual are rounded similarly. We distinguish between the levels of rounding proposed by Manski and Molinari (2010) and refer the reader to that paper for more information. Finally, the third general rounding rule allows each reported probability to be rounded to the maximum extent (see Bissonnette and de Bresser, 2014, for more information on this scheme). Table A1 in Appendix A shows the distribution of rounding in the sample according to both rounding rules. Under common rounding we find that rounding to multiples of 5 is the most prevalent type for the PB, while rounding to multiples of 10 is most prevalent for the DHS (58% of individual-year observations of the PB are rounded to multiples of 5, while 95% of DHS observations are rounded to multiples of 10). For general rounding at the level of the individual probability, rounding to multiples of 10 is the most frequent category (52% of PB probabilities and 76% of DHS probabilities are rounded to multiples of 10).

$^3P_{PB} = 15$ is consistent with $P_{DHS} = 10$ and $P_{DHS} = 20$, since the true PB probability may be anywhere in $[14.5, 15.5)$.

10
Figure 3: Fraction of probabilities that are consistent across PB and DHS while allowing for reporting noise

The rates of compatible responses to PB and DHS questions by target age and for the different rounding rules are given in Table 2. Around one fifth of reported probabilities are equal across surveys. If we assume that all probabilities are rounded to the minimal extent allowed by each survey we find a rate of consistent response that declines more steeply for older target ages from 37% for target age 75 to 24% for age 90. Allowing for common rounding increases the rate of consistent probabilities to 32-46%. Under the most conservative general rounding scheme 61-78% of responses are compatible with at least one underlying true probability. Regardless of the rounding rule, we find that the fraction of consistent responses is higher for younger target ages. These differences are mostly related to the current age of the respondents, rather than the target age to which questions refer. The rate of consistent answers to the two sets of questions is flat up to age 68 and declines sharply afterwards. Interestingly, the rate of consistent probabilities is the same when we restrict the sample to those observations that report the same level of subjective health in both survey waves or to surveys taken within a four week period. Hence, differences probably reflect measurement error rather than changes in the actual expectations held by respondents.
The upshot of the comparison so far is that while the two sets of probabilities are fairly strongly correlated, it takes considerable rounding error for a majority of the cases in order to make the PB and DHS responses compatible with at least one underlying true probability. Figure 3 illustrates this point in a slightly different way, showing how the fraction of reported probabilities that is consistent between the PB and the DHS increases with the size of a symmetric reporting error added to both probabilities. It takes a reporting error of 5 percentage points around the reported PB and DHS probability to make more than 40% of the pairs of probabilities compatible, while it takes an error of 10 percentage points to make 70-80% compatible. Note that even for an error of 20 percentage points over 15% of reported probabilities for the target ages 85 and 90 are irreconcilable.

These differences between the two sets of probabilities when analyzed one by one raise the question whether an analysis of all probabilities jointly would yield different results when based on the PB versus the DHS. In the next section we set up two models to answer that question.

4 Reliability of survival curves

4.1 Model without focal answers and rounding

The model we use in this paper is closely related to that proposed by Kleinjans and Van Soest (2014) for expectations regarding binary outcomes and extended to continuous outcomes in De Bresser and Van Soest (2013). We refer the reader to those papers for more elaborate descriptions.

Expectations follow a Gompertz distribution with the baseline hazard shifted proportionally by demographic variables. We model expectations over complete lifespans and take into account truncation at the current age of the respondent. This parameterization of expectations implies that true probabilities of surviving to target age t_{ak} conditional on having
survived to current age a_{it} are given by:

$$S_q^{itk} \mid a_{it} = \Pr(t \geq t_{ak} \mid t \geq a_{it}) = \frac{\Pr(t \geq t_{ak} \& t \geq a_{it})}{\Pr(t \geq a_{it})} = \frac{\Pr(t \geq a_{it} \mid t \geq t_{ak}) \times \Pr(t \geq t_{ak})}{\Pr(t \geq a_{it})}$$

$$= \frac{1 \times \Pr(t \geq t_{ak})}{\Pr(t \geq a_{it})} = \frac{\exp\left(-\frac{\gamma_q^{it}}{\alpha_q^{it}} (\exp(\alpha_q^{it} (t_{ak}/100)) - 1)\right)}{\exp\left(-\frac{\gamma_q^{it}}{\alpha_q^{it}} (\exp(\alpha_q^{it} (a_{it}/100)) - 1)\right)} \times 100$$

where q indexes questionnaires ($q \in \{PB, DHS\}$); $\gamma_q^{it} = \exp(\mathbf{x}_{it}^\prime \mathbf{\beta}_1 + \xi_q^{it} + \eta_q^{it})$ depends on the demographics of respondent i in survey-year t; α_q^{it} determines the shape of the baseline hazard; t_{ak} is a target age in the questionnaire and a_{it} is the age of i in year t. We distinguish two types of unobserved heterogeneity: individual effects ξ_q^{it} and question sequence effects η_q^{it}. Distributional assumptions for these error components are given later. In the absence of unobserved heterogeneity the null hypothesis of interest is that $\mathbf{\beta}_1^{PB} = \mathbf{\beta}_1^{DHS}$ and $\alpha^{PB} = \alpha^{DHS}$, which implies that the two surveys yield the same associations between covariates and survival. We divide both the target age and the current age by 100 to facilitate estimation of α_q^{it} (which determines the shape of the baseline hazard).

However, we do not observe S_q^{itk} directly. Instead, the reported probabilities are perturbed by recall error:

$$P_{itk}^{q} = S_{itk}^{q} + \varepsilon_{itk}^{q}$$

where $\varepsilon_{itk}^{q} \sim \mathcal{N}(0, \sigma_{it}^2)$, independent of all covariates and across thresholds, surveys, years and individuals. We model the variance of recall errors as $\ln(\sigma_{it}^2) = \mathbf{x}_{it}^\prime \mathbf{\beta}_2$. In the baseline model we do not allow for rounding in the reported probabilities, but we do take into account censoring between zero and the lowest probability reported previously in the sequence. Hence,
the density for a reported probability P_{itk}^q conditional on covariates is given by

$$f(P_{itk}^q | x_{it}) = \begin{cases}
1 - \Phi \left(\frac{P_{it,k-1}^q - S_{itk}^q}{\sigma_{it}} \right) & \text{if } P_{itk}^q = P_{it,k-1}^q \text{ (censored from above)} \\
\phi \left(\frac{P_{it,k}^q - S_{itk}^q}{\sigma_{it}} \right) & \text{if } 0 < P_{itk}^q < P_{it,k-1}^q \text{ (uncensored)} \\
\Phi \left(\frac{P_{it,k}^q - S_{itk}^q}{\sigma_{it}} \right) & \text{if } P_{itk}^q = 0 \text{ (censored from below)}
\end{cases}$$

where $\phi(.)$ and $\Phi(.)$ respectively denote the standard normal density and CDF and for the first threshold $k = 1$ we set $P_{it0}^q = 100$ (when estimating the model we also condition on individual and survey effects, but we omit them here for ease of exposition).

The model is completed by distributions of the individual effects ξ_i^q and survey effects η_{it}^q. We assume that both are bivariate normal with covariance matrices Σ_ξ and Σ_η and that they are independent of covariates and each other. We estimate the elements of the covariance matrices of unobserved heterogeneity, the baseline hazards α^{PB} and α^{DHS} and the vectors β_1^{PB}, β_2^{PB}, β_1^{DHS} and β_2^{DHS} by maximum simulated likelihood where we integrate numerically over the distributions of individual and question sequence effects.

4.2 Model with rounding

The basic setup is the same as for the baseline model, but now P_{itk}^q is not only censored but also rounded prior to being reported. We allow for rounding to multiples of 100, 50, 25, 10, 5 and 1 for the pensionbarometer and to multiples of 100, 50 and 10 for the DHS. Our rounding model is ordinal:

$$R_{itk}^q = r \iff \mu_{r-1}^q \leq y_{it}^q = x_{it}' \beta_3 + \xi_i^q + \eta_{it}^q + \varepsilon_{itk}^r < \mu_r^q$$

where $r \in \{1, 2, ..., 6\}$ for the PB and $r \in \{1, 2, 3\}$ for the DHS, with 1 being the least amount of rounding allowed by the survey. The rounding equation includes individual and question
sequence effects, allowing rounding to be correlated across repeated observations for a given individual and to be more strongly correlated within than between survey waves. Moreover, both types of unobserved heterogeneity may be correlated across surveys (PB and DHS) and with their respective counterparts in the equation that shifts survival curves \((\xi_{PB}^i, \xi_{DHS}^i, \xi_{r,PB}^i, \xi_{r,DHS}^i)\) follow a four dimensional normal distribution and so do the survey effects \(\eta_{it}\). We assume that the idiosyncratic rounding shocks \(\varepsilon_{itk}^r\) follow a standard normal distribution and are independent from covariates and all other errors, so the conditional probabilities of each category of rounding \(\Pr \left(R_{itk}^q = r | x_{it}, \xi_{it}, \eta_{it} \right) \) take the shape of an ordered probit.

A reported probability in combination with a particular level of rounding implies an interval for the perturbed probability \(P_{itk}^q \in [LB_{itk}^r, UB_{itk}^r]\). For instance, a reported probability of 25\% that is rounded to a multiple of 5 yields the interval \(P_{itk}^q \in [22.5, 27.5]\). The probability of that event is easy to calculate, since \(P_{itk}^q \sim N \left(S_{itk}^q, \sigma_{it}^2 \right)\). As a given reported probability may result from different degrees of rounding, rounding is a latent construct and we average across the different degrees of rounding to obtain the likelihood contribution. In particular, define for each reported probability the set \(\Omega_{itk}\) that consists of all types of rounding that are consistent with that probability. We obtain the conditional density as (omitting unobserved heterogeneity to ease notation):

\[
f \left(P_{itk}^q | x_{it} \right) = \sum_{r \in \Omega_{itk}} \Pr \left(R_{itk}^q = r | x_{it} \right) \times \Pr \left(LB_{itk}^r \leq P_{itk}^q < UB_{itk}^r | x_{it} \right)
\]

where \(\Pr \left(LB_{itk}^r \leq P_{itk}^q < UB_{itk}^r | x_{it} \right)\) is given by

\[
\Pr \left(LB_{itk}^r \leq P_{itk}^q < UB_{itk}^r | x_{it} \right) =
\begin{cases}
\Pr \left(LB_{itk}^r \leq P_{itk}^q | x_{it} \right) & \text{if } P_{itk}^q \geq P_{it,k-1}^q - 0.5r \\
\Pr \left(LB_{itk}^r \leq P_{itk}^q < UB_{itk}^r | x_{it} \right) & \text{if } 0.5r \leq P_{itk}^q < P_{it,k-1}^q - 0.5r \\
\Pr \left(P_{itk}^q < UB_{itk}^r | x_{it} \right) & \text{if } P_{itk}^q < 0.5r
\end{cases}
\]
All probabilities in the equation above are calculated from univariate normal distributions and are therefore easy to obtain. Note that whether a probability is censored or not depends on the degree of rounding and on the preceding probability.

5 Results

This section presents estimation results for the two models of subjective life expectancy explained above. The difference between the models is that the first one does not account for rounding, while the second model does. Descriptive statistics for all covariates used are given in Table B1 of Appendix B. In the main text we only report estimates for the equations that govern expectations. Estimates of the recall error and rounding processes can be found in Table C1 of Appendix C. The sample from which the estimates presented in the main text are obtained limits the data to complete and consistent responses for both sets of probabilities. Moreover, we only use the probabilities corresponding to those target ages for which both a PB and a DHS probability are available. Estimates based on all complete and consistent responses for either one of the datasets, regardless of whether the target age is included in both questionnaires, corroborate the findings from the main text and can be found in Appendix D.

5.1 Model without rounding of reported probabilities

Estimation results of the model without rounding are presented in the left panel of Table 3 (see section 4.1 for a detailed description of this model). The first two columns on the left present the effects of covariates on the baseline hazard as hazard ratios and the third column contains the differences between these hazard ratios across the two surveys. The estimated effects of most covariates are both qualitatively and quantitatively very similar for the PB and the DHS, with the exception of the cohort dummies. The baseline cohort 1942-1951
has a relatively low hazard of death according to the DHS: the hazard rates for the cohorts between 1952 and 1981 are between 15 and 30 percent higher than the baseline. However, according to the PB only the cohort 1952-1961 has a significantly higher hazard than the baseline and the difference is only 12 percent. These large differences between cohorts in the DHS and smaller and mostly insignificant differences in the PB lead us to reject the null hypotheses of equal cohort effects for all cohorts.

We do not find evidence to suggest that the two surveys generate different results for the other covariates. The dummy for the year 2012 is insignificant for both surveys. Women report a lower hazard of death compared to men, the hazard ratio is 93% according to the PB and 95% in the DHS. We find some disagreement between the PB and the DHS for the income dummy corresponding to a net household income of 1151-1800 euro per month. Based on the PB individuals in this group have a 18% higher hazard of death than the baseline of individuals in households that earn more than 2600 euro per month. However, in the DHS this difference does not exist. Such disagreement is not there for the other income groups, for which we cannot reject the null of equal coefficients. The education dummies show similar patterns for the PB and the DHS: respondents in the middle education category have a 14-16% lower hazard of death than their less educated peers. Though the PB shows a statistically significant difference of 9% for the high education category, this difference is only 2% and not significant for the DHS. However, the coefficient does not differ significantly between the surveys. As for self-reported health, respondents who rate their current health more positively report substantially lower hazards of death regardless of the set of probabilities used. The average hazard of respondents who rate their health as “not good” or “poor” is 86-94% higher than that of respondents who rate their health as “excellent”. None of the coefficients for the health variables differs significantly between the two surveys.

The overall picture that merges from the model that does not allow for rounding is that most correlations between covariates and expectations are similar in both datasets. However,
Table 3: Gompertz models of subjective survival

<table>
<thead>
<tr>
<th>Coh. 1932-41</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB</td>
<td>DHS</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.128</td>
<td>0.975</td>
<td>0.153**</td>
</tr>
<tr>
<td>(0.0833)</td>
<td>(0.0646)</td>
<td>(0.0673)</td>
</tr>
</tbody>
</table>

| Coh. 1952-61 | 1.118** | 1.276*** | -0.158*** | 1.055 | 1.160*** | -0.105*** |
| (0.0574) | (0.0607) | (0.0520) | (0.0534) | (0.0364) | (0.0389) |

| Coh. 1962-71 | 0.930* | 1.147*** | -0.217*** | 1.020 | 1.278*** | -0.258*** |
| (0.0373) | (0.0559) | (0.0489) | (0.0360) | (0.0364) | (0.0452) |

| Coh. 1972-81 | 0.956 | 1.298*** | -0.342*** | 1.120** | 1.316*** | -0.195*** |
| (0.0567) | (0.0831) | (0.0886) | (0.0501) | (0.0520) | (0.0558) |

| Coh. 1982-87 | 0.813 | 0.981 | -0.168* | 0.895 | 0.954 | -0.0590 |
| (0.115) | (0.125) | (0.0931) | (0.104) | (0.0670) | (0.0737) |

| Wave 2012 | 1.009 | 0.993 | 0.0165 | 0.997 | 1.003 | -0.00603 |
| (0.0236) | (0.0177) | (0.0272) | (0.0196) | (0.0151) | (0.0223) |

| Female | 0.927** | 0.948* | -0.0207 | 0.839*** | 0.904*** | -0.0741*** |
| (0.0293) | (0.0290) | (0.0295) | (0.0225) | (0.0220) | (0.0244) |

| Net HH. Inc. ≤ €1150 | 0.980 | 0.928 | 0.0524 | 1.220*** | 1.094 | 0.126 |
| (0.0748) | (0.0752) | (0.0730) | (0.0891) | (0.0737) | (0.0830) |

| Net HH. Inc. €1151-1800 | 1.181*** | 0.994 | 0.188*** | 1.274*** | 1.046 | 0.228*** |
| (0.0522) | (0.0516) | (0.0521) | (0.0567) | (0.0537) | (0.0540) |

| Net HH. Inc. €1801-2600 | 0.933* | 0.925** | 0.00850 | 0.924*** | 0.938*** | -0.0138 |
| (0.0332) | (0.0093) | (0.0336) | (0.0270) | (0.0299) | (0.0290) |

| Educ. middle | 0.858*** | 0.838*** | 0.0202 | 1.025 | 0.958 | 0.068* |
| (0.0344) | (0.0334) | (0.0353) | (0.0363) | (0.0299) | (0.0360) |

| Educ. high | 1.091*** | 1.024 | 0.0672 | 1.151*** | 1.057** | 0.0936*** |
| (0.0369) | (0.0419) | (0.0413) | (0.0323) | (0.0327) | (0.0373) |

| Health: good | 1.263*** | 1.346*** | -0.0825 | 1.437** | 1.303*** | 0.134*** |
| (0.0416) | (0.0554) | (0.0599) | (0.0407) | (0.0401) | (0.0512) |

| Health: fair | 1.725*** | 1.710*** | 0.0156 | 2.153*** | 1.717*** | 0.436*** |
| (0.0755) | (0.0838) | (0.0923) | (0.0953) | (0.0691) | (0.0976) |

| Health: not good/poor | 1.859*** | 1.887*** | -0.0782 | 2.199*** | 2.011*** | 0.198 |
| (0.139) | (0.143) | (0.157) | (0.117) | (0.0977) | (0.133) |

| Constant | 0.00650*** | 0.00526 | 0.00124 | 0.00531*** | 0.00436*** | 0.00950* |
| (0.000335) | (0) | (0.000335) | (0.000310) | (0.000430) | (0.000499) |

Chi2 test joint equality (16df) | 86.90 | 154.25 |
(0 = p < 0.0001) | (p < 0.0001) |

Baseline hazard (t/100) | 8.119*** | 8.084*** | 0.0342 | 8.104*** | 8.357*** | -0.282*** |
(0.0765) | (0.0775) | (0.0992) | (0.0696) | (0.121) | (0.140) |

Variance ind. effects | 0.771*** | 0.481*** | 0.635*** | 0.431*** |
(0.0400) | (0.0265) | (0.0696) | (0.0185) |

Corr. ind. effects | 0.870*** |
(0.0163) |

Variance seq. effects | 0.0813*** | 0.0610*** | 0.112*** | 0.0200*** |
(0.0153) | (0.0114) | (0.0076) | (0.00489) |

Corr. seq. effects | 0.0324 |
(0.0774) |

Fraction var. ind. effects | 0.904*** | 0.888*** | 0.851*** | 0.935*** |
(0.0175) | (0.0213) | (0.0107) |

No. individuals | 1,470 | 1,470 |

No. probabilities | 4,034 | 4,034 |

Log-likelihood | -30,530.175 | -16,048.925 |

* Estimates reported as hazard ratios.
Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1
differences between birth cohorts are much larger in the DHS than in the PB. Moreover, we reject equality of coefficients for one income group. The Chi-squared tests for joint equality of coefficients across the PB and DHS reported in Table 3 reflect these observations: we reject the null of joint equality and much more strongly so if we take the cohort dummies into account.

The bottom of Table 3 reports other estimates. The baseline hazard is significant and positive for both datasets, which means that the hazard of death increases with age. Moreover, the estimated coefficients are very close, around 8.1 for both datasets, and the difference is not statistically significant. The estimated variances of the individual effects indicate that expectations are persistent at the level of the individual for both datasets: around 90% of the variance in expectations that cannot be explained by covariates is due to permanent unobserved heterogeneity. Furthermore, the individual effects are strongly positively correlated with a correlation coefficient of 0.87.

Table C1 in Appendix C presents estimates of the coefficients that capture heteroskedasticity of the recall error, capturing variation in the extent to which reported probabilities fit the Gompertz distribution. In addition to some differences between cohorts, the only factor that affects recall error similarly in both sets of probabilities is education. The middle and high education categories report probabilities that are significantly less noisy compared to respondents who have not finished vocational training.

Table D1 in Appendix D contains estimates of the exact same model, estimated on the larger sample of complete and consistent responses to either set of survival questions, using all available probabilities (also those target ages that are not included in one of the questionnaires). The same general picture emerges, but the differences between estimated cohort effects are smaller. Furthermore, we reject equality of coefficients for one additional income dummy (for an income between 1801 and 2600 euro per month).
5.2 Model with rounding of reported probabilities

Estimates for the model that accounts for rounding, described in section 4.2, are reported in the right panel of Table 3. As was the case without rounding, the model with rounding shows that the significant relationships between the hazard of death and covariates that emerge for the PB and the DHS have the same sign in almost all cases. The only exception is the oldest cohort, which has a 24% higher hazard than the baseline according to the PB but a 11% lower hazard based on the DHS. Moreover, the size of many correlations remains comparable between the surveys. However, incorporating rounding does not reduce the differences between the estimates from the two datasets and actually leads to more frequent rejections of equality. In addition to the dummy for household income between 1151 and 1800 euro per month, we also reject equality for the variables capturing gender and education and for two out of three indicators for health. Note that the finding that disparities between datasets are larger once we account for rounding can only occur in a model that point identifies beliefs. In the partial identification framework of section 3 rounding can only mitigate differences between imperfectly observed data.

The baseline hazard is similar across the PB and the DHS, and with a values of 8.1 and 8.4 duration dependence is similar to the values found in the model without rounding. For unobserved heterogeneity too the model with rounding corroborates the findings from that without rounding. Expectations are persistent at the level of the individual for both sets of probabilities. Question sequence effects are also significant, but much smaller in magnitude. Finally, Table 5 shows that the correlation between the individual effects for the PB and DHS questionnaires is 0.86, which is similar to that found in the baseline model.

The right panel in Table C1 contains the remaining estimates. The third and fourth column in Table C1 show the estimates for the heteroskedasticity of recall errors in the PB and DHS respectively. The variance of the errors is significantly lower among higher education groups, as was the case in the model without rounding. Compared to the left panel there is
Table 4: Model-implied average rounding probabilities

<table>
<thead>
<tr>
<th>Multiples of...</th>
<th>Pension Barometer (%)</th>
<th>DNB Household Survey (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...100</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>...50</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>...25</td>
<td>11</td>
<td>–</td>
</tr>
<tr>
<td>...10</td>
<td>47</td>
<td>95</td>
</tr>
<tr>
<td>...5</td>
<td>33</td>
<td>–</td>
</tr>
<tr>
<td>...1</td>
<td>4</td>
<td>–</td>
</tr>
</tbody>
</table>

one additional column, which shows the estimated coefficients of the rounding equation for the PB. The estimates for the rounding equation in the DHS are not reported, because the thresholds for the rounding rule became arbitrarily large and standard errors could not be computed due to flatness of the simulated log-likelihood function. In other words: estimation strongly indicates that almost all probabilities in DHS are rounded to multiples of 10. The coefficients of the rounding equation for the PB, shown in the final column, also come with large standard errors. However, we do estimate the thresholds between different levels of rounding precisely. None of the 95 percent confidence intervals overlap, which indicates that we successfully identify the fractions of individuals that use different rounding rules. The sample average rounding probabilities are reported in Table 4, which shows that half of the reported probabilities are rounded to multiples of 10 and a third is rounded to multiples of 5. As suggested by the numerical issues associated with estimating the rounding equation for the DHS, 95 percent of probabilities reported in the DHS are rounded to multiples of 10.

5.3 Model fit

The results in the previous two subsections show that our conclusions regarding the reliability of subjective longevity are similar regardless of whether we account for rounding in our model of expectations. However, accounting for rounding does improve model fit. Figure 4 shows six histograms of reported probabilities in the data and of simulated probabilities from the models with and without rounding, pooling together all target ages. Even though the
PB allows respondents to report any probability between zero and one hundred, panel a. shows that resulting answers are bunched at multiples of 10. In fact, the lower part of the distribution, up to and including 50 percent, is similar to that of the DHS shown in panel d. The model without rounding cannot mimic such bunching, see panels b. and e., but the model that accounts for rounding does fit the data relatively closely (panels c. and f.). Hence, censoring at 0, 100 or the previous probability by itself does not produce the heaping at multiples of 10 that we observe in the data.

While the histograms in Figure 4 illustrate the importance of rounding, we may prefer to look at estimated densities in order to evaluate model fit. It is particularly difficult to compare the fit of the model with rounding and that without rounding, since the former is discrete while that latter is mostly continuous (except for the censoring). As a consequence, the model without rounding necessarily smooths the data more. Figure 5 displays estimated densities for the data and for simulated probabilities from both models. We find that the
density of the model without rounding fits the data much better than might be expected from the histograms: it provides a reasonable smoothed approximation of the bumpy density fitted on the data. This illustrates that even without rounding the model is fairly successful in distributing probability mass over the interval between 0 and 100, even if it does not place the mass at the limited set of probabilities that we observe in the data. The model that accounts for rounding does an even better job.

Comparing the log-likelihoods of the specifications in Table 3 with those of constant-only models reported in Appendix E, we find that covariates do not play an important role. The pseudo R-squared is around 0.006 for the model without rounding. Though many covariates correlate significantly with the hazard of death, most of the variation in expectations is explained by individual effects.

6 Subjective longevity in lifecycle models

– TO BE ADDED –
Conclusion

A growing body of research recognizes the potential of data that directly elicits expectations of survey respondents, so-called subjective expectations, especially in the context of inter-temporal models. However, many economists remain sceptical of the validity and informativeness of such data. This paper investigates the validity of reported expectations by evaluating the test-retest reliability of the type of expectations that has received most attention from researchers: survival expectations.

Using two surveys that were administered to the same respondents within the same month, we compare the answers of those respondents to items that ask for the likelihood of survival to various target ages. The questionnaires are the Pensioenbarometer (PB) and the DNB Household Survey (DHS), both of which were fielded to the CentERpanel, a household panel that is representative for the Dutch population. We take into account that the PB allows respondents to report any integer probability between 0 and 100 while the DHS limits responses to an 11-point scale between 0 and 10. We first analyze reliability at the level of the reported probability by checking whether reported probabilities are consistent with each other one-by-one. We check whether the rounded probabilities from both datasets are consistent with at least one underlying true probability under different degrees of rounding. We then analyze reported probabilities jointly in order to test whether the two surveys yield similar associations between expectations and background characteristics. This allows us to evaluate to what extent noise in the probabilities cancels out when those probabilities are combined in an aggregate model.

We find the reliability of subjective survival expectations to be satisfactory overall. Test-retest correlations are in the 0.5-0.7 range, which is similar to the reliability of subjective well-being found by Krueger and Skade (2008). Especially for men we find lower correlations for older target ages of 85 and 90, and for both men and women the average reported probability is around 10 %-points lower in the PB than in the DHS for those target ages.
Further analysis reveals that this is due to the effect of the current age of respondents: older respondents report less reliable probabilities. While around 20% of reported probabilities are equal in the PB and DHS, the fraction of consistent responses is much higher once we allow for rounding. Depending on the target age, 24-37% of reported probabilities are consistent if we assume that all PB probabilities are rounded to multiples of 1 and all DHS probabilities are rounded to multiples of 10. Common rounding as in Manski and Molinari (2010) raises the fraction of consistent probabilities to 32-46% and the most conservative degree of rounding for each reported probability increases it further to 61-77%.

Joint models of all reported probabilities show that both datasets yield quantitatively and qualitatively similar associations between socio-demographic covariates and the hazard of death. The largest differences between the estimates occur for cohort dummies. Other variables such as gender, income, education and self-assessed health enter the model in similar ways for both datasets, showing that reported expectations are reliable when probabilities are modelled jointly. We find that unobserved heterogeneity at the level of the individual is important and that this heterogeneity is strongly positively correlated across questionnaires. Furthermore, incorporating rounding in the model does not reduce differences between the estimates from both datasets.

Taking all results together we conclude that the quality of subjective survival expectations is comparable to that of other types of subjective data that are frequently analyzed by economists, such as subjective well-being. Within-individual variation is both quantitatively less important and less reliable than variation between individuals, so applied researchers are advised not to focus exclusively on the former. When aggregated into survival curves, these data can be used to enrich inter-temporal models in which survival plays a role.
References

Appendix A Incidence of rounding

Table A1a: Common rounding

<table>
<thead>
<tr>
<th></th>
<th>PB (%)</th>
<th>DHS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All 0 or 100</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>All 0, 50 or 100</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>All multiples of 10</td>
<td>23</td>
<td>95</td>
</tr>
<tr>
<td>All multiples of 5</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Some in [1, 4] or [96, 100]</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

N = 2,187 individual-year observations

Table A1b: General rounding

<table>
<thead>
<tr>
<th>Multiples of...</th>
<th>PB (%)</th>
<th>DHS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...100</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>...50</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>...25</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>...10</td>
<td>52</td>
<td>76</td>
</tr>
<tr>
<td>...5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>...1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

N = 4,062 probabilities
Appendix B Descriptive statistics of covariates

Table B1: Descriptive statistics

<table>
<thead>
<tr>
<th></th>
<th>Probs. from PB and DHS</th>
<th>Probs. from PB or DHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. dev.</td>
</tr>
<tr>
<td>Coh. 1922-1931</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Coh. 1932-1941</td>
<td>0.13</td>
<td>0.34</td>
</tr>
<tr>
<td>Coh. 1942-1951</td>
<td>0.28</td>
<td>0.45</td>
</tr>
<tr>
<td>Coh. 1952-1961</td>
<td>0.24</td>
<td>0.43</td>
</tr>
<tr>
<td>Coh. 1962-1971</td>
<td>0.21</td>
<td>0.41</td>
</tr>
<tr>
<td>Coh. 1972-1981</td>
<td>0.11</td>
<td>0.32</td>
</tr>
<tr>
<td>Coh. 1982-1987</td>
<td>0.02</td>
<td>0.14</td>
</tr>
<tr>
<td>Wave 2012</td>
<td>0.48</td>
<td>0.50</td>
</tr>
<tr>
<td>Female</td>
<td>0.43</td>
<td>0.50</td>
</tr>
<tr>
<td>Net HH. inc. ≤ €1150</td>
<td>0.06</td>
<td>0.24</td>
</tr>
<tr>
<td>Net HH. inc. €1151-1800</td>
<td>0.16</td>
<td>0.36</td>
</tr>
<tr>
<td>Net HH. inc. €1801-2600</td>
<td>0.28</td>
<td>0.45</td>
</tr>
<tr>
<td>Net HH. inc. ≥ €2601</td>
<td>0.51</td>
<td>0.50</td>
</tr>
<tr>
<td>Educ. low</td>
<td>0.29</td>
<td>0.45</td>
</tr>
<tr>
<td>Educ. middle</td>
<td>0.30</td>
<td>0.46</td>
</tr>
<tr>
<td>Educ. high</td>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>Health: excellent</td>
<td>0.14</td>
<td>0.34</td>
</tr>
<tr>
<td>Health: good</td>
<td>0.63</td>
<td>0.48</td>
</tr>
<tr>
<td>Health: fair</td>
<td>0.17</td>
<td>0.37</td>
</tr>
<tr>
<td>Health: not good/poor</td>
<td>0.07</td>
<td>0.26</td>
</tr>
<tr>
<td>N (individuals)</td>
<td>1,470</td>
<td></td>
</tr>
<tr>
<td>N (individual-years)</td>
<td>2,073</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C Estimates of recall error and rounding equations

Table C1: Recall error and rounding estimates of Gompertz models of subjective survival

<table>
<thead>
<tr>
<th></th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Error</td>
<td>DHS</td>
</tr>
<tr>
<td>Coh. 1932-41</td>
<td>0.216***</td>
<td>0.198***</td>
</tr>
<tr>
<td></td>
<td>(0.0677)</td>
<td>(0.0619)</td>
</tr>
<tr>
<td>Coh. 1952-61</td>
<td>0.0863</td>
<td>-0.611</td>
</tr>
<tr>
<td></td>
<td>(0.0543)</td>
<td>(0.0482)</td>
</tr>
<tr>
<td>Coh. 1962-71</td>
<td>0.0211</td>
<td>-0.142***</td>
</tr>
<tr>
<td></td>
<td>(0.0533)</td>
<td>(0.0525)</td>
</tr>
<tr>
<td>Coh. 1972-81</td>
<td>0.201***</td>
<td>0.102*</td>
</tr>
<tr>
<td></td>
<td>(0.0661)</td>
<td>(0.0613)</td>
</tr>
<tr>
<td>Coh. 1982-87</td>
<td>0.155</td>
<td>-0.194</td>
</tr>
<tr>
<td></td>
<td>(0.130)</td>
<td>(0.129)</td>
</tr>
<tr>
<td>Wave 2012</td>
<td>-0.0281</td>
<td>0.000787</td>
</tr>
<tr>
<td></td>
<td>(0.0468)</td>
<td>(0.0395)</td>
</tr>
<tr>
<td>Female</td>
<td>-0.0765**</td>
<td>0.0226</td>
</tr>
<tr>
<td></td>
<td>(0.0375)</td>
<td>(0.0444)</td>
</tr>
<tr>
<td>Net HH. Inc. ≤ £1150</td>
<td>-0.0227</td>
<td>0.292***</td>
</tr>
<tr>
<td></td>
<td>(0.0791)</td>
<td>(0.0847)</td>
</tr>
<tr>
<td>Net HH. Inc. £1151-1800</td>
<td>0.0289</td>
<td>0.00558</td>
</tr>
<tr>
<td></td>
<td>(0.0528)</td>
<td>(0.0515)</td>
</tr>
<tr>
<td>Net HH. Inc. £1801-2600</td>
<td>0.0596</td>
<td>-0.0724*</td>
</tr>
<tr>
<td></td>
<td>(0.0444)</td>
<td>(0.0411)</td>
</tr>
<tr>
<td>Educ. middle</td>
<td>-0.123**</td>
<td>-0.180***</td>
</tr>
<tr>
<td></td>
<td>(0.0541)</td>
<td>(0.0465)</td>
</tr>
<tr>
<td>Educ. high</td>
<td>-0.247***</td>
<td>-0.152***</td>
</tr>
<tr>
<td></td>
<td>(0.0503)</td>
<td>(0.0451)</td>
</tr>
<tr>
<td>Health: good</td>
<td>0.0830</td>
<td>-0.0962</td>
</tr>
<tr>
<td></td>
<td>(0.0853)</td>
<td>(0.0863)</td>
</tr>
<tr>
<td>Health: fair</td>
<td>0.174*</td>
<td>0.00757</td>
</tr>
<tr>
<td></td>
<td>(0.0990)</td>
<td>(0.0748)</td>
</tr>
<tr>
<td>Health: not good/poor</td>
<td>0.0333</td>
<td>0.314***</td>
</tr>
<tr>
<td></td>
<td>(0.121)</td>
<td>(0.100)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.363***</td>
<td>2.586***</td>
</tr>
<tr>
<td></td>
<td>(0.118)</td>
<td>(0.0795)</td>
</tr>
</tbody>
</table>

\[\mu_1 = -2.491*** \]
\[\mu_2 = -0.584*** \]
\[\mu_3 = 1.154*** \]
\[\mu_4 = 1.973*** \]
\[\mu_5 = 3.088*** \]

Variance ind. effects 0.693***
Variance seq. effects 0.0284*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. individuals</td>
<td>1,470</td>
</tr>
<tr>
<td>No. probabilities</td>
<td>4,034</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-30,530.175</td>
</tr>
</tbody>
</table>

Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1
Appendix D Estimates based on all valid probabilities

Table D1: Gompertz model of subjective survival – estimates based on all valid probabilities

<table>
<thead>
<tr>
<th>Coh. 1922-31</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.145*</td>
<td>1.171*</td>
<td>-0.0265</td>
</tr>
<tr>
<td>(0.0932)</td>
<td>(0.0999)</td>
<td>(0.014)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coh. 1932-41</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.953</td>
<td>1.136**</td>
<td>-0.817**</td>
</tr>
<tr>
<td>(0.0612)</td>
<td>(0.0634)</td>
<td>(0.0518)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coh. 1952-61</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.936</td>
<td>1.072**</td>
<td>-0.8635</td>
</tr>
<tr>
<td>(0.0326)</td>
<td>(0.0360)</td>
<td>(0.0378)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coh. 1962-71</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>0.946**</td>
<td>0.997</td>
<td>-0.0506</td>
</tr>
<tr>
<td>(0.0322)</td>
<td>(0.0363)</td>
<td>(0.0340)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coh. 1972-81</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>0.777***</td>
<td>0.869**</td>
<td>-0.0920**</td>
</tr>
<tr>
<td>(0.0561)</td>
<td>(0.0531)</td>
<td>(0.0531)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coh. 1982-87</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.011</td>
<td>1.088</td>
<td>-0.076</td>
</tr>
<tr>
<td>(0.0186)</td>
<td>(0.0161)</td>
<td>(0.0122)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wave 2012</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.013</td>
<td>1.028</td>
<td>-0.0152</td>
</tr>
<tr>
<td>(0.0267)</td>
<td>(0.0253)</td>
<td>(0.0273)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Female</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.013</td>
<td>1.028</td>
<td>-0.0152</td>
</tr>
<tr>
<td>(0.0267)</td>
<td>(0.0253)</td>
<td>(0.0273)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net HH. Inc. ≤ ₦1150</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.108</td>
<td>1.031</td>
<td>-0.077</td>
</tr>
<tr>
<td>(0.0766)</td>
<td>(0.0657)</td>
<td>(0.0737)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net HH. Inc. ₦1151-1800</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.046</td>
<td>0.940*</td>
<td>-0.107**</td>
</tr>
<tr>
<td>(0.0410)</td>
<td>(0.0333)</td>
<td>(0.0384)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net HH. Inc. ₦1801-2600</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.039</td>
<td>0.966</td>
<td>0.0736**</td>
</tr>
<tr>
<td>(0.0273)</td>
<td>(0.0265)</td>
<td>(0.0295)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Educ. middle</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>0.852***</td>
<td>0.824***</td>
<td>0.0286</td>
</tr>
<tr>
<td>(0.0536)</td>
<td>(0.0521)</td>
<td>(0.0528)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Educ. high</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>0.995</td>
<td>1.017</td>
<td>-0.0219</td>
</tr>
<tr>
<td>(0.0312)</td>
<td>(0.0318)</td>
<td>(0.0301)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health: good</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.214***</td>
<td>1.210***</td>
<td>0.0045</td>
</tr>
<tr>
<td>(0.0387)</td>
<td>(0.0397)</td>
<td>(0.0357)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health: fair</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>1.719***</td>
<td>1.618***</td>
<td>0.101</td>
</tr>
<tr>
<td>(0.0680)</td>
<td>(0.0657)</td>
<td>(0.0655)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health: not good/poor</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>2.044***</td>
<td>1.858***</td>
<td>0.186</td>
</tr>
<tr>
<td>(0.116)</td>
<td>(0.105)</td>
<td>(0.114)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constant</th>
<th>Model 1 – No rounding</th>
<th>Model 2 – Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB*</td>
<td>DHS*</td>
<td>Diff. PB - DHS</td>
</tr>
<tr>
<td>0.00310***</td>
<td>0.0222**</td>
<td>-0.0191***</td>
</tr>
<tr>
<td>(0.00101)</td>
<td>(0.00157)</td>
<td>(0.00160)</td>
</tr>
</tbody>
</table>

Chi2 test joint equality (17df) 203.25 (p < 0.0001) 577.95 (p < 0.0001)
Chi2 test joint equality no cohorts (11df) 161.24 (p < 0.0001) 411.33 (p < 0.0001)
Baseline hazard ($) $1000 9.091*** 6.211*** 2.880*** 9.123*** 6.480*** 2.643***
Variance ind. effects 0.809*** 0.505*** 0.859*** 0.437***
Corr. ind. effects 0.834*** 0.781***
Variance seq. effects 0.106*** 0.0359*** 0.104*** 0.0234***
Corr. seq. effects 0.442*** 0.604***
Fraction var. ind. effects 0.884*** 0.935*** 0.891*** 0.949***

No. individuals 2,323 2,323
No. probabilities 16,540 16,540
Log-likelihood -74,126.826 -40,588.262

* Estimates reported as hazard ratios.
Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1
<table>
<thead>
<tr>
<th>Coh. 1922-31</th>
<th>-0.105</th>
<th>0.348***</th>
<th>-0.166*</th>
<th>0.368***</th>
<th>0.108</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.0740)</td>
<td>(0.0825)</td>
<td>(0.0853)</td>
<td>(0.0853)</td>
<td>(0.151)</td>
</tr>
<tr>
<td>Coh. 1932-41</td>
<td>-0.0216</td>
<td>0.251***</td>
<td>-0.0265</td>
<td>0.311***</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td>(0.0291)</td>
<td>(0.0519)</td>
<td>(0.0356)</td>
<td>(0.0484)</td>
<td>(0.0707)</td>
</tr>
<tr>
<td>Coh. 1952-61</td>
<td>0.0594***</td>
<td>-0.0159</td>
<td>0.0212</td>
<td>-0.0638</td>
<td>0.0162</td>
</tr>
<tr>
<td></td>
<td>(0.0225)</td>
<td>(0.0412)</td>
<td>(0.0268)</td>
<td>(0.0390)</td>
<td>(0.0550)</td>
</tr>
<tr>
<td>Coh. 1962-71</td>
<td>-0.0260</td>
<td>-0.0391</td>
<td>-0.0280</td>
<td>-0.0604</td>
<td>-0.0232</td>
</tr>
<tr>
<td></td>
<td>(0.0240)</td>
<td>(0.0414)</td>
<td>(0.0297)</td>
<td>(0.0402)</td>
<td>(0.0590)</td>
</tr>
<tr>
<td>Coh. 1972-81</td>
<td>0.0931***</td>
<td>0.0509</td>
<td>0.0589</td>
<td>-0.161***</td>
<td>0.0407</td>
</tr>
<tr>
<td></td>
<td>(0.0294)</td>
<td>(0.0411)</td>
<td>(0.0360)</td>
<td>(0.0414)</td>
<td>(0.0690)</td>
</tr>
<tr>
<td>Coh. 1982-87</td>
<td>0.0260</td>
<td>-0.139</td>
<td>-0.266***</td>
<td>-0.455***</td>
<td>0.0630</td>
</tr>
<tr>
<td></td>
<td>(0.0593)</td>
<td>(0.0903)</td>
<td>(0.0758)</td>
<td>(0.0926)</td>
<td>(0.126)</td>
</tr>
<tr>
<td>Wave 2012</td>
<td>-0.0221</td>
<td>0.484*</td>
<td>-0.0514**</td>
<td>9.60e-05</td>
<td>-0.0330</td>
</tr>
<tr>
<td></td>
<td>(0.0184)</td>
<td>(0.0257)</td>
<td>(0.0232)</td>
<td>(0.0293)</td>
<td>(0.0334)</td>
</tr>
<tr>
<td>Female</td>
<td>0.0512***</td>
<td>-0.00434</td>
<td>0.0316</td>
<td>0.0325</td>
<td>0.0563</td>
</tr>
<tr>
<td></td>
<td>(0.0169)</td>
<td>(0.0236)</td>
<td>(0.0207)</td>
<td>(0.0256)</td>
<td>(0.0404)</td>
</tr>
<tr>
<td>Net HH. Inc. €1150</td>
<td>0.148***</td>
<td>0.294***</td>
<td>0.179***</td>
<td>0.140***</td>
<td>0.0804</td>
</tr>
<tr>
<td></td>
<td>(0.0358)</td>
<td>(0.0488)</td>
<td>(0.0469)</td>
<td>(0.0538)</td>
<td>(0.0877)</td>
</tr>
<tr>
<td>Net HH. Inc. €1151-1800</td>
<td>0.0896***</td>
<td>0.105***</td>
<td>0.168***</td>
<td>0.0291</td>
<td>-0.117***</td>
</tr>
<tr>
<td></td>
<td>(0.0251)</td>
<td>(0.0361)</td>
<td>(0.0303)</td>
<td>(0.0391)</td>
<td>(0.0586)</td>
</tr>
<tr>
<td>Net HH. Inc. €1801-2600</td>
<td>0.0350*</td>
<td>0.0124</td>
<td>0.0854***</td>
<td>-0.0569*</td>
<td>-0.0733</td>
</tr>
<tr>
<td></td>
<td>(0.0198)</td>
<td>(0.0288)</td>
<td>(0.0248)</td>
<td>(0.0319)</td>
<td>(0.0473)</td>
</tr>
<tr>
<td>Educ. middle</td>
<td>-0.0410*</td>
<td>-0.0833**</td>
<td>-0.0999**</td>
<td>-0.117***</td>
<td>0.0967</td>
</tr>
<tr>
<td></td>
<td>(0.0223)</td>
<td>(0.0352)</td>
<td>(0.0279)</td>
<td>(0.0340)</td>
<td>(0.0547)</td>
</tr>
<tr>
<td>Educ. high</td>
<td>-0.192***</td>
<td>-0.154***</td>
<td>-0.224***</td>
<td>-0.126***</td>
<td>0.0110</td>
</tr>
<tr>
<td></td>
<td>(0.0208)</td>
<td>(0.0338)</td>
<td>(0.0263)</td>
<td>(0.0317)</td>
<td>(0.0532)</td>
</tr>
<tr>
<td>Health: good</td>
<td>0.00435</td>
<td>0.00544</td>
<td>0.0157</td>
<td>0.0328</td>
<td>0.0277</td>
</tr>
<tr>
<td></td>
<td>(0.0261)</td>
<td>(0.0488)</td>
<td>(0.0313)</td>
<td>(0.0387)</td>
<td>(0.0582)</td>
</tr>
<tr>
<td>Health: fair</td>
<td>0.0297</td>
<td>0.148***</td>
<td>0.0930**</td>
<td>0.272***</td>
<td>-0.128*</td>
</tr>
<tr>
<td></td>
<td>(0.0316)</td>
<td>(0.0564)</td>
<td>(0.0384)</td>
<td>(0.0469)</td>
<td>(0.0721)</td>
</tr>
<tr>
<td>Health: not good/poor</td>
<td>0.0230</td>
<td>0.250***</td>
<td>0.0413</td>
<td>0.335***</td>
<td>-0.0670</td>
</tr>
<tr>
<td></td>
<td>(0.0413)</td>
<td>(0.0734)</td>
<td>(0.0522)</td>
<td>(0.0702)</td>
<td>(0.0974)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.550***</td>
<td>2.479***</td>
<td>2.404***</td>
<td>2.311***</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>(0.0331)</td>
<td>(0.0767)</td>
<td>(0.0408)</td>
<td>(0.0523)</td>
<td>32</td>
</tr>
</tbody>
</table>

μ1
-1.985***
(0.0854)

μ2
-0.374***
(0.0855)

μ3
1.271***
(0.0914)

μ4
1.981***
(0.101)

μ5
3.124***
(0.134)

Variance ind. effects
0.440***
(0.0476)

Variance seq. effects
0.0253***
(0.00813)

No. individuals
2,323
2,323

No. probabilities
16,540
16,540

Log-likelihood
-74,126.826
-40,588.262

Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1
Appendix E Estimates from constant-only models

Table E1: Gompertz model of subjective survival – estimates of constant-only models

a. Common probabilities that are in complete and logically consistent sequences for both surveys

<table>
<thead>
<tr>
<th></th>
<th>Model 1 – no rounding</th>
<th></th>
<th>Model 2 – rounding</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PB</td>
<td>DHS</td>
<td>Diff.</td>
<td>PB</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.00378***</td>
<td>0.0124***</td>
<td>-0.00858***</td>
<td>(0.000228)</td>
</tr>
<tr>
<td>Alpha</td>
<td>9.225***</td>
<td>7.367***</td>
<td>1.858***</td>
<td>(0.0818)</td>
</tr>
<tr>
<td>Log SD errors</td>
<td>2.356***</td>
<td>2.451***</td>
<td></td>
<td>(0.0169)</td>
</tr>
<tr>
<td>Variance ind. effects</td>
<td>0.773***</td>
<td>0.560***</td>
<td></td>
<td>(0.0331)</td>
</tr>
<tr>
<td>Corr. ind. effects</td>
<td>0.852***</td>
<td></td>
<td></td>
<td>(0.0129)</td>
</tr>
<tr>
<td>Variance seq. effects</td>
<td>0.0971***</td>
<td>0.0340***</td>
<td></td>
<td>(0.00718)</td>
</tr>
<tr>
<td>Corr. seq. effects</td>
<td>0.0550</td>
<td></td>
<td></td>
<td>(0.0781)</td>
</tr>
<tr>
<td>Fraction var. ind. effects</td>
<td>0.888***</td>
<td>0.943***</td>
<td></td>
<td>(0.00840)</td>
</tr>
</tbody>
</table>

No. individuals: 1,470; 1,470
No. probabilities: 4,034; 4,034
Log-likelihood: -30,711.080

b. All probabilities that are in complete and logically consistent sequences in either survey

<table>
<thead>
<tr>
<th></th>
<th>Model 1 – no rounding</th>
<th></th>
<th>Model 2 – rounding</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PB</td>
<td>DHS</td>
<td>Diff.</td>
<td>PB</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.00414***</td>
<td>0.0218***</td>
<td>-0.0177***</td>
<td>(0.000139)</td>
</tr>
<tr>
<td>Alpha</td>
<td>9.120***</td>
<td>6.570***</td>
<td>2.550***</td>
<td>(0.0441)</td>
</tr>
<tr>
<td>Log SD errors</td>
<td>2.541***</td>
<td>2.522***</td>
<td></td>
<td>(0.00806)</td>
</tr>
<tr>
<td>Variance ind. effects</td>
<td>0.994***</td>
<td>0.602***</td>
<td></td>
<td>(0.0304)</td>
</tr>
<tr>
<td>Corr. ind. effects</td>
<td>0.829***</td>
<td></td>
<td></td>
<td>(0.0197)</td>
</tr>
<tr>
<td>Variance seq. effects</td>
<td>0.0929***</td>
<td>0.0296***</td>
<td></td>
<td>(0.00493)</td>
</tr>
<tr>
<td>Corr. seq. effects</td>
<td>0.323***</td>
<td></td>
<td></td>
<td>(0.0925)</td>
</tr>
<tr>
<td>Fraction var. ind. effects</td>
<td>0.915***</td>
<td>0.933***</td>
<td></td>
<td>(0.00491)</td>
</tr>
</tbody>
</table>

No. individuals: 2,323; 2,323
No. probabilities: 4,034; 4,034
Log-likelihood: -74,530.708

* Estimates reported as hazard ratios.
Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1
Appendix F Estimates of models of remaining lifetime

In the main text we model total subjective lifetimes, from birth to death, and condition on the current age of the respondent. Alternatively, we may also specify Gompertz distributions over the remaining lifespan from the current age of the respondent onwards. The latter approach is similar to that of fitting individual survival functions to the probabilities reported by survey respondents. This approach has been followed by several previous researchers, such as Perozek (2008). However, they estimate both parameters, α and γ, for each individual, while we estimate a proportional hazard model with α fixed and proportional effects of covariates on the baseline hazard. In our proportional hazard framework we prefer to model total rather than remaining lifetime, because the latter implies implausible features of the baseline hazard. In particular, it implies that the ratio of the hazards of surviving another five years to the hazard of surviving ten more years is the same for respondents with the same levels of covariates. This is not plausible given that we group birth cohorts in intervals of 10 years. Nonetheless, we report the estimates of an analogous analysis to that in the main text conducted on remaining rather than total lifetime to allow the reader to assess the robustness of our findings. In the model of remaining lifetime, true survival probabilities on a scale from 0 to 100 are given by:

$$S_{qitk} = \exp\left(-\frac{\gamma_{qit}^q}{\alpha_{qit}^q} (\exp (\alpha_{qit}^q (t_{ak} - a_{it})) - 1)\right) \times 100$$

where q indexes questionnaires ($q \in \{PB, DHS\}$); $\gamma_{qit}^q = \exp (x_{itq}^q \theta_{i}^q + \xi_{i}^q + \eta_{qit}^q)$ depends on the demographics of respondent i in survey-year t; α^q determines the shape of the baseline hazard; t_{ak} is a target age in the questionnaire and a_{it} is the age of i in year t. All other parts of the model are the same as for the specification for total lifetime explained in the text.
Table F1: Gompertz model of remaining subjective survival without rounding – model estimated on probabilities that were reported in both surveys

<table>
<thead>
<tr>
<th>Coh. 1932-41</th>
<th>PB*</th>
<th>DHS*</th>
<th>Diff. PB - DHS</th>
<th>Error PB</th>
<th>Error DHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.471***</td>
<td>2.138***</td>
<td>0.333**</td>
<td>0.174*</td>
<td>0.207***</td>
</tr>
<tr>
<td></td>
<td>(0.155)</td>
<td>(0.134)</td>
<td>(0.137)</td>
<td>(0.0959)</td>
<td>(0.0719)</td>
</tr>
<tr>
<td>Coh. 1952-61</td>
<td>0.512***</td>
<td>0.572***</td>
<td>-0.0599**</td>
<td>0.131**</td>
<td>-0.0726</td>
</tr>
<tr>
<td></td>
<td>(0.0270)</td>
<td>(0.0297)</td>
<td>(0.0243)</td>
<td>(0.0658)</td>
<td>(0.0517)</td>
</tr>
<tr>
<td>Coh. 1962-71</td>
<td>0.203***</td>
<td>0.231***</td>
<td>-0.0283**</td>
<td>0.0272</td>
<td>-0.128**</td>
</tr>
<tr>
<td></td>
<td>(0.0106)</td>
<td>(0.0122)</td>
<td>(0.0112)</td>
<td>(0.0708)</td>
<td>(0.0588)</td>
</tr>
<tr>
<td>Coh. 1972-81</td>
<td>0.119***</td>
<td>0.135***</td>
<td>-0.0163*</td>
<td>0.250***</td>
<td>0.0556</td>
</tr>
<tr>
<td></td>
<td>(0.00905)</td>
<td>(0.00939)</td>
<td>(0.00934)</td>
<td>(0.0791)</td>
<td>(0.0659)</td>
</tr>
<tr>
<td>Coh. 1982-87</td>
<td>0.0473***</td>
<td>0.0513***</td>
<td>-0.00399</td>
<td>0.157</td>
<td>-0.217*</td>
</tr>
<tr>
<td></td>
<td>(0.0105)</td>
<td>(0.00868)</td>
<td>(0.00702)</td>
<td>(0.150)</td>
<td>(0.125)</td>
</tr>
<tr>
<td>Wave 2012</td>
<td>1.074***</td>
<td>1.061***</td>
<td>0.0133</td>
<td>-0.0402</td>
<td>0.00733</td>
</tr>
<tr>
<td></td>
<td>(0.0264)</td>
<td>(0.0193)</td>
<td>(0.0288)</td>
<td>(0.0574)</td>
<td>(0.0414)</td>
</tr>
<tr>
<td>Female</td>
<td>0.911***</td>
<td>0.980</td>
<td>-0.0691**</td>
<td>0.00392</td>
<td>-0.0155</td>
</tr>
<tr>
<td></td>
<td>(0.0329)</td>
<td>(0.0320)</td>
<td>(0.0293)</td>
<td>(0.0366)</td>
<td>(0.0356)</td>
</tr>
<tr>
<td>Net HH. inc. ≤ €1150</td>
<td>0.951</td>
<td>0.863*</td>
<td>0.0873</td>
<td>-0.178**</td>
<td>0.327***</td>
</tr>
<tr>
<td></td>
<td>(0.0714)</td>
<td>(0.0689)</td>
<td>(0.0636)</td>
<td>(0.0798)</td>
<td>(0.0859)</td>
</tr>
<tr>
<td>Net HH. inc. €1151-1800</td>
<td>1.115***</td>
<td>0.981</td>
<td>0.134***</td>
<td>-0.117*</td>
<td>0.0184</td>
</tr>
<tr>
<td></td>
<td>(0.0466)</td>
<td>(0.0405)</td>
<td>(0.0427)</td>
<td>(0.0674)</td>
<td>(0.0509)</td>
</tr>
<tr>
<td>Net HH. inc. €1801-2600</td>
<td>0.987</td>
<td>0.954</td>
<td>0.0335</td>
<td>-0.0108</td>
<td>-0.0557</td>
</tr>
<tr>
<td></td>
<td>(0.0383)</td>
<td>(0.0379)</td>
<td>(0.0339)</td>
<td>(0.0655)</td>
<td>(0.0433)</td>
</tr>
<tr>
<td>Educ. middle</td>
<td>0.883***</td>
<td>0.855***</td>
<td>0.0276</td>
<td>-0.0817</td>
<td>-0.212***</td>
</tr>
<tr>
<td></td>
<td>(0.0384)</td>
<td>(0.0367)</td>
<td>(0.0349)</td>
<td>(0.0735)</td>
<td>(0.0501)</td>
</tr>
<tr>
<td>Educ. high</td>
<td>0.865***</td>
<td>0.889***</td>
<td>-0.0242</td>
<td>-0.243***</td>
<td>-0.150***</td>
</tr>
<tr>
<td></td>
<td>(0.0326)</td>
<td>(0.0381)</td>
<td>(0.0342)</td>
<td>(0.0832)</td>
<td>(0.0493)</td>
</tr>
<tr>
<td>Health: good</td>
<td>1.229***</td>
<td>1.241***</td>
<td>-0.0117</td>
<td>0.0873</td>
<td>-0.0823</td>
</tr>
<tr>
<td></td>
<td>(0.0411)</td>
<td>(0.0627)</td>
<td>(0.0534)</td>
<td>(0.242)</td>
<td>(0.109)</td>
</tr>
<tr>
<td>Health: fair</td>
<td>1.593***</td>
<td>1.530***</td>
<td>0.0631</td>
<td>0.227</td>
<td>-0.0188</td>
</tr>
<tr>
<td></td>
<td>(0.0709)</td>
<td>(0.0831)</td>
<td>(0.0826)</td>
<td>(0.245)</td>
<td>(0.113)</td>
</tr>
<tr>
<td>Health: not good/poor</td>
<td>1.654***</td>
<td>1.731***</td>
<td>-0.0785</td>
<td>0.0696</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td>(0.144)</td>
<td>(0.129)</td>
<td>(0.245)</td>
<td>(0.136)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0139***</td>
<td>0.0105***</td>
<td>0.00335***</td>
<td>2.337***</td>
<td>2.586***</td>
</tr>
<tr>
<td></td>
<td>(0.000507)</td>
<td>(0.000803)</td>
<td>(0.000807)</td>
<td>(0.353)</td>
<td>(0.136)</td>
</tr>
</tbody>
</table>

Chi2 test joint equality (16df) 131.65*** (p < 0.0001)
Chi2 test joint equality no cohorts (11df) 51.45*** (p < 0.0001)
Baseline hazard 0.0746*** 0.0793***
(0.00286) (0.00238)
Variance ind. effects 0.888*** 0.553***
(0.0603) (0.0367)
Corr. ind. effects 0.877***
(0.0151)
Variance seq. effects 0.0831*** 0.0712***
(0.00815) (0.0120)
Corr. seq. effects 0.192***
(0.0631)

No. individuals 1,470
No. probabilities 4,034
Log-likelihood -30,577.676

* Estimates reported as hazard ratios.
Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1
Table F2: Gompertz model of remaining subjective survival without rounding – model estimated on all valid probabilities

<table>
<thead>
<tr>
<th>Coh. 1922-31</th>
<th>PB***</th>
<th>DHS***</th>
<th>Diff. PB - DHS</th>
<th>Error PB</th>
<th>Error DHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.409***</td>
<td>3.474***</td>
<td>1.935***</td>
<td>-0.0853</td>
<td>0.354***</td>
</tr>
<tr>
<td></td>
<td>(0.647)</td>
<td>(0.354)</td>
<td>(0.508)</td>
<td>(0.0745)</td>
<td>(0.0809)</td>
</tr>
<tr>
<td>Coh. 1932-41</td>
<td>3.010***</td>
<td>2.248***</td>
<td>0.762***</td>
<td>-0.0247</td>
<td>0.252***</td>
</tr>
<tr>
<td></td>
<td>(0.198)</td>
<td>(0.119)</td>
<td>(0.152)</td>
<td>(0.0294)</td>
<td>(0.0471)</td>
</tr>
<tr>
<td>Coh. 1952-61</td>
<td>0.417***</td>
<td>0.584***</td>
<td>-0.167***</td>
<td>0.0671***</td>
<td>-0.0323</td>
</tr>
<tr>
<td></td>
<td>(0.0167)</td>
<td>(0.0211)</td>
<td>(0.0190)</td>
<td>(0.0222)</td>
<td>(0.0380)</td>
</tr>
<tr>
<td>Coh. 1962-71</td>
<td>0.137***</td>
<td>0.269***</td>
<td>-0.132***</td>
<td>-0.0278</td>
<td>-0.0350</td>
</tr>
<tr>
<td></td>
<td>(0.00455)</td>
<td>(0.00106)</td>
<td>(0.00662)</td>
<td>(0.0237)</td>
<td>(0.0382)</td>
</tr>
<tr>
<td>Coh. 1972-81</td>
<td>0.0548***</td>
<td>0.138***</td>
<td>-0.0829***</td>
<td>0.104***</td>
<td>0.0533</td>
</tr>
<tr>
<td></td>
<td>(0.00367)</td>
<td>(0.00719)</td>
<td>(0.00607)</td>
<td>(0.0293)</td>
<td>(0.0407)</td>
</tr>
<tr>
<td>Coh. 1982-87</td>
<td>0.0279***</td>
<td>0.0711***</td>
<td>-0.0432***</td>
<td>-0.00413</td>
<td>-0.0918</td>
</tr>
<tr>
<td></td>
<td>(0.00377)</td>
<td>(0.00747)</td>
<td>(0.00583)</td>
<td>(0.0574)</td>
<td>(0.0797)</td>
</tr>
<tr>
<td>Wave 2012</td>
<td>1.068***</td>
<td>1.061***</td>
<td>0.00743</td>
<td>-0.0192</td>
<td>0.0378</td>
</tr>
<tr>
<td></td>
<td>(0.0188)</td>
<td>(0.0145)</td>
<td>(0.0224)</td>
<td>(0.0185)</td>
<td>(0.0249)</td>
</tr>
<tr>
<td>Female</td>
<td>0.850***</td>
<td>0.908***</td>
<td>-0.0588***</td>
<td>0.0500***</td>
<td>0.00374</td>
</tr>
<tr>
<td></td>
<td>(0.0252)</td>
<td>(0.0244)</td>
<td>(0.0244)</td>
<td>(0.0168)</td>
<td>(0.0229)</td>
</tr>
<tr>
<td>Net HH. inc. ≤ €1150</td>
<td>0.960</td>
<td>0.961</td>
<td>-0.00123</td>
<td>0.148***</td>
<td>0.214***</td>
</tr>
<tr>
<td></td>
<td>(0.0496)</td>
<td>(0.0439)</td>
<td>(0.0587)</td>
<td>(0.0534)</td>
<td>(0.0481)</td>
</tr>
<tr>
<td>Net HH. inc. €1151-1800</td>
<td>0.968</td>
<td>0.969***</td>
<td>0.0694*</td>
<td>0.0782***</td>
<td>0.107***</td>
</tr>
<tr>
<td></td>
<td>(0.0349)</td>
<td>(0.0313)</td>
<td>(0.0371)</td>
<td>(0.0248)</td>
<td>(0.0356)</td>
</tr>
<tr>
<td>Net HH. inc. €1801-2600</td>
<td>1.024</td>
<td>0.944***</td>
<td>0.0800***</td>
<td>0.0313</td>
<td>-0.00122</td>
</tr>
<tr>
<td></td>
<td>(0.0264)</td>
<td>(0.0236)</td>
<td>(0.0287)</td>
<td>(0.0198)</td>
<td>(0.0285)</td>
</tr>
<tr>
<td>Educ. middle</td>
<td>0.899***</td>
<td>0.872***</td>
<td>0.0271</td>
<td>-0.0619***</td>
<td>-0.0775***</td>
</tr>
<tr>
<td></td>
<td>(0.0209)</td>
<td>(0.0296)</td>
<td>(0.0298)</td>
<td>(0.0224)</td>
<td>(0.0330)</td>
</tr>
<tr>
<td>Educ. high</td>
<td>0.989</td>
<td>1.000</td>
<td>-0.0109</td>
<td>-0.215***</td>
<td>-0.147***</td>
</tr>
<tr>
<td></td>
<td>(0.0250)</td>
<td>(0.0203)</td>
<td>(0.0312)</td>
<td>(0.0212)</td>
<td>(0.0307)</td>
</tr>
<tr>
<td>Health: good</td>
<td>1.241***</td>
<td>1.206***</td>
<td>0.0346</td>
<td>0.08310</td>
<td>-0.000129</td>
</tr>
<tr>
<td></td>
<td>(0.0227)</td>
<td>(0.0232)</td>
<td>(0.0274)</td>
<td>(0.0261)</td>
<td>(0.0420)</td>
</tr>
<tr>
<td>Health: fair</td>
<td>1.648***</td>
<td>1.544***</td>
<td>0.104</td>
<td>0.0352</td>
<td>0.136***</td>
</tr>
<tr>
<td></td>
<td>(0.0596)</td>
<td>(0.0555)</td>
<td>(0.0670)</td>
<td>(0.0319)</td>
<td>(0.0482)</td>
</tr>
<tr>
<td>Health: not good/poor</td>
<td>1.829***</td>
<td>1.702***</td>
<td>0.118</td>
<td>0.0258</td>
<td>0.231***</td>
</tr>
<tr>
<td></td>
<td>(0.0966)</td>
<td>(0.0889)</td>
<td>(0.104)</td>
<td>(0.0415)</td>
<td>(0.0657)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0123***</td>
<td>0.0132***</td>
<td>-0.000932</td>
<td>2.564***</td>
<td>2.488***</td>
</tr>
<tr>
<td></td>
<td>(0.000361)</td>
<td>(0.000518)</td>
<td>(0.000591)</td>
<td>(0.0328)</td>
<td>(0.0546)</td>
</tr>
</tbody>
</table>

Chi2 equality (17df) | 382.37*** | (p < 0.0001) |
Chi2 equality no cohorts (11df) | 20.03** | (p = 0.0449) |

Baseline hazard | 0.0901*** | 0.0629*** |
| | (0.000832) | (0.00139) |

Variance ind. effects | 0.940*** | 0.572*** |
| | (0.0302) | (0.0218) |

Corr. ind. effects | 0.844*** |
| | (0.0110) |

Variance seq. effects | 0.0971*** | 0.0277*** |
| | (0.00524) | (0.00767) |

Corr. seq. effects | 0.321*** |
| | (0.0902) |

No. individuals | 2,323 |
No. probabilities | 16,540 |
Log-likelihood | -74,241.347 |

* Estimates reported as hazard ratios.
Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1
Table F3: Gompertz model of remaining subjective survival with rounding – model estimated on probabilities that were reported in both surveys

<table>
<thead>
<tr>
<th>Coh. 1932-41</th>
<th>PB*</th>
<th>DHS*</th>
<th>Diff. PB - DHS</th>
<th>Error PB</th>
<th>Error DHS</th>
<th>Rounding PB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.225***</td>
<td>1.864***</td>
<td>0.361***</td>
<td>0.251***</td>
<td>0.374***</td>
<td>-0.0987</td>
</tr>
<tr>
<td></td>
<td>(0.166)</td>
<td>(0.109)</td>
<td>(0.122)</td>
<td>(0.0771)</td>
<td>(0.0621)</td>
<td>(0.139)</td>
</tr>
<tr>
<td>Coh. 1952-61</td>
<td>0.453***</td>
<td>0.535***</td>
<td>-0.0829***</td>
<td>0.0852</td>
<td>-0.0755</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>(0.0155)</td>
<td>(0.0149)</td>
<td>(0.0169)</td>
<td>(0.0542)</td>
<td>(0.0508)</td>
<td>(0.0956)</td>
</tr>
<tr>
<td>Coh. 1962-71</td>
<td>0.176***</td>
<td>0.190***</td>
<td>-0.0137*</td>
<td>0.0848</td>
<td>-0.109**</td>
<td>-0.0979</td>
</tr>
<tr>
<td></td>
<td>(0.00681)</td>
<td>(0.00628)</td>
<td>(0.00710)</td>
<td>(0.0592)</td>
<td>(0.0541)</td>
<td>(0.101)</td>
</tr>
<tr>
<td>Coh. 1972-81</td>
<td>0.0986***</td>
<td>0.108***</td>
<td>-0.00918</td>
<td>0.0463</td>
<td>-0.0498</td>
<td>0.0206</td>
</tr>
<tr>
<td></td>
<td>(0.00475)</td>
<td>(0.00497)</td>
<td>(0.00651)</td>
<td>(0.0794)</td>
<td>(0.0642)</td>
<td>(0.117)</td>
</tr>
<tr>
<td>Coh. 1982-87</td>
<td>0.0554***</td>
<td>0.0435***</td>
<td>0.0120***</td>
<td>-0.458***</td>
<td>-0.603***</td>
<td>0.261</td>
</tr>
<tr>
<td></td>
<td>(0.00257)</td>
<td>(0.00302)</td>
<td>(0.00342)</td>
<td>(0.169)</td>
<td>(0.172)</td>
<td>(0.204)</td>
</tr>
<tr>
<td>Wave 2012</td>
<td>1.071***</td>
<td>1.094***</td>
<td>-0.0223</td>
<td>-0.124**</td>
<td>-0.00967</td>
<td>-0.00374</td>
</tr>
<tr>
<td></td>
<td>(0.0193)</td>
<td>(0.0164)</td>
<td>(0.0237)</td>
<td>(0.0525)</td>
<td>(0.0459)</td>
<td>(0.0614)</td>
</tr>
<tr>
<td>Female</td>
<td>0.745***</td>
<td>0.830***</td>
<td>0.0853***</td>
<td>0.0254</td>
<td>0.0625*</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>(0.0203)</td>
<td>(0.0196)</td>
<td>(0.0213)</td>
<td>(0.0430)</td>
<td>(0.0378)</td>
<td>(0.0720)</td>
</tr>
<tr>
<td>Net HH. Inc. ≤ €1150</td>
<td>1.021</td>
<td>1.005</td>
<td>0.0162</td>
<td>-0.0233</td>
<td>0.354***</td>
<td>-0.204</td>
</tr>
<tr>
<td></td>
<td>(0.0501)</td>
<td>(0.0557)</td>
<td>(0.0641)</td>
<td>(0.0895)</td>
<td>(0.0824)</td>
<td>(0.155)</td>
</tr>
<tr>
<td>Net HH. Inc. €1151-1800</td>
<td>1.157***</td>
<td>1.00</td>
<td>0.157***</td>
<td>0.214***</td>
<td>0.0658</td>
<td>-0.140</td>
</tr>
<tr>
<td></td>
<td>(0.0505)</td>
<td>(0.0388)</td>
<td>(0.0464)</td>
<td>(0.0630)</td>
<td>(0.0598)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>Net HH. Inc. €1801-2600</td>
<td>0.935***</td>
<td>0.869***</td>
<td>0.0656***</td>
<td>0.197***</td>
<td>-0.00238</td>
<td>-0.0363</td>
</tr>
<tr>
<td></td>
<td>(0.0306)</td>
<td>(0.0218)</td>
<td>(0.0294)</td>
<td>(0.0509)</td>
<td>(0.0472)</td>
<td>(0.0825)</td>
</tr>
<tr>
<td>Educ. middle</td>
<td>0.826***</td>
<td>0.821***</td>
<td>0.00582</td>
<td>-0.138**</td>
<td>-0.224***</td>
<td>0.181*</td>
</tr>
<tr>
<td></td>
<td>(0.0287)</td>
<td>(0.0231)</td>
<td>(0.0294)</td>
<td>(0.0557)</td>
<td>(0.0498)</td>
<td>(0.0985)</td>
</tr>
<tr>
<td>Educ. high</td>
<td>1.043</td>
<td>1.011</td>
<td>0.0321</td>
<td>-0.246***</td>
<td>-0.113**</td>
<td>-0.0379</td>
</tr>
<tr>
<td></td>
<td>(0.0301)</td>
<td>(0.0268)</td>
<td>(0.0327)</td>
<td>(0.0508)</td>
<td>(0.0439)</td>
<td>(0.0928)</td>
</tr>
<tr>
<td>Health: good</td>
<td>1.323***</td>
<td>1.270***</td>
<td>0.0528</td>
<td>0.117**</td>
<td>0.0520</td>
<td>0.0285</td>
</tr>
<tr>
<td></td>
<td>(0.0380)</td>
<td>(0.0350)</td>
<td>(0.0442)</td>
<td>(0.0660)</td>
<td>(0.0634)</td>
<td>(0.110)</td>
</tr>
<tr>
<td>Health: fair</td>
<td>1.720***</td>
<td>1.561***</td>
<td>0.159**</td>
<td>0.0918</td>
<td>0.129*</td>
<td>-0.176</td>
</tr>
<tr>
<td></td>
<td>(0.0677)</td>
<td>(0.0568)</td>
<td>(0.0734)</td>
<td>(0.0785)</td>
<td>(0.0761)</td>
<td>(0.134)</td>
</tr>
<tr>
<td>Health: not good/poor</td>
<td>1.991***</td>
<td>1.956***</td>
<td>0.0346</td>
<td>0.0285</td>
<td>0.311***</td>
<td>-0.144</td>
</tr>
<tr>
<td></td>
<td>(0.116)</td>
<td>(0.113)</td>
<td>(0.132)</td>
<td>(0.113)</td>
<td>(0.0998)</td>
<td>(0.175)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0138***</td>
<td>0.0113***</td>
<td>0.00254***</td>
<td>2.111***</td>
<td>2.342***</td>
<td>0.0285</td>
</tr>
<tr>
<td></td>
<td>(0.000533)</td>
<td>(0.000501)</td>
<td>(0.000617)</td>
<td>(0.0865)</td>
<td>(0.0738)</td>
<td></td>
</tr>
</tbody>
</table>

µ1	-2.280***
µ2	-0.391**
µ3	1.344***
µ4	2.154***
µ5	3.412***

Chi2 test joint equality (16df) 163.36*** (p < 0.0001)
Chi2 test joint equality no cohorts (11df) 87.37*** (p < 0.0001)

Baseline hazard 0.0763*** 0.0834***
(0.00131) (0.00154)

Variance ind. effects 0.798*** 0.497***
(0.0284) (0.0176)

Variance seq. effects 0.0915*** 0.0330***
(0.00673) (0.00501)

No. individuals 1,470
No. probabilities 4,034
Log-likelihood -16,155.967

* Estimates reported as hazard ratios.
Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1
<table>
<thead>
<tr>
<th>Coh.</th>
<th>PB***</th>
<th>DHS***</th>
<th>Diff. PB - DHS</th>
<th>Error PB</th>
<th>Error DHS</th>
<th>Rounding PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1922-31</td>
<td>5.906</td>
<td>3.689</td>
<td>2.218***</td>
<td>-0.133</td>
<td>0.438***</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>(0.590)</td>
<td>(0.348)</td>
<td>(0.494)</td>
<td>(0.0835)</td>
<td>(0.0867)</td>
<td>(0.146)</td>
</tr>
<tr>
<td>1932-41</td>
<td>3.278</td>
<td>2.497</td>
<td>0.781***</td>
<td>-0.0310</td>
<td>0.346***</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>(1.74)</td>
<td>(1.08)</td>
<td>(1.16)</td>
<td>(0.0354)</td>
<td>(0.0483)</td>
<td>(0.0691)</td>
</tr>
<tr>
<td>1952-61</td>
<td>0.435</td>
<td>0.640</td>
<td>-0.205***</td>
<td>0.0285</td>
<td>-0.0534</td>
<td>0.0499</td>
</tr>
<tr>
<td></td>
<td>(0.00942)</td>
<td>(0.0150)</td>
<td>(0.0150)</td>
<td>(0.0205)</td>
<td>(0.0305)</td>
<td>(0.0528)</td>
</tr>
<tr>
<td>1962-71</td>
<td>0.210</td>
<td>0.349</td>
<td>-0.139***</td>
<td>-0.0405</td>
<td>0.0359</td>
<td>0.0416</td>
</tr>
<tr>
<td></td>
<td>(0.00589)</td>
<td>(0.0104)</td>
<td>(0.00943)</td>
<td>(0.0287)</td>
<td>(0.0391)</td>
<td>(0.0568)</td>
</tr>
<tr>
<td>1972-81</td>
<td>0.074</td>
<td>0.156</td>
<td>-0.0816***</td>
<td>0.0657*</td>
<td>-0.122***</td>
<td>0.0411</td>
</tr>
<tr>
<td></td>
<td>(0.00234)</td>
<td>(0.00460)</td>
<td>(0.00443)</td>
<td>(0.0355)</td>
<td>(0.0435)</td>
<td>(0.0675)</td>
</tr>
<tr>
<td>1982-87</td>
<td>0.026</td>
<td>0.067</td>
<td>-0.0411***</td>
<td>-0.240***</td>
<td>-0.364***</td>
<td>0.173</td>
</tr>
<tr>
<td></td>
<td>(0.00280)</td>
<td>(0.00512)</td>
<td>(0.00381)</td>
<td>(0.0761)</td>
<td>(0.0931)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>Wave 2012</td>
<td>1.115</td>
<td>1.066</td>
<td>0.0489***</td>
<td>-0.0853***</td>
<td>0.0843***</td>
<td>-0.0346</td>
</tr>
<tr>
<td></td>
<td>(0.0153)</td>
<td>(0.0123)</td>
<td>(0.0186)</td>
<td>(0.0231)</td>
<td>(0.0299)</td>
<td>(0.0326)</td>
</tr>
<tr>
<td>Female</td>
<td>0.911</td>
<td>0.930</td>
<td>-0.0193</td>
<td>0.0414**</td>
<td>0.0377</td>
<td>0.0550</td>
</tr>
<tr>
<td></td>
<td>(0.0390)</td>
<td>(0.0381)</td>
<td>(0.0201)</td>
<td>(0.0204)</td>
<td>(0.0257)</td>
<td>(0.0390)</td>
</tr>
<tr>
<td>Net HH. Inc. ≤ €1150</td>
<td>1.154</td>
<td>1.084</td>
<td>0.0697</td>
<td>0.142***</td>
<td>0.151***</td>
<td>-0.00355</td>
</tr>
<tr>
<td></td>
<td>(0.0663)</td>
<td>(0.0428)</td>
<td>(0.0625)</td>
<td>(0.0450)</td>
<td>(0.0521)</td>
<td>(0.0794)</td>
</tr>
<tr>
<td>Net HH. Inc. €1151-1800</td>
<td>0.903</td>
<td>0.883</td>
<td>0.0196</td>
<td>0.169***</td>
<td>0.0795***</td>
<td>-0.0498</td>
</tr>
<tr>
<td></td>
<td>(0.0292)</td>
<td>(0.0250)</td>
<td>(0.0312)</td>
<td>(0.0307)</td>
<td>(0.0396)</td>
<td>(0.0562)</td>
</tr>
<tr>
<td>Net HH. Inc. €1801-2600</td>
<td>0.978</td>
<td>0.966</td>
<td>0.0118</td>
<td>0.0946***</td>
<td>0.00389</td>
<td>-0.0397</td>
</tr>
<tr>
<td></td>
<td>(0.0229)</td>
<td>(0.0197)</td>
<td>(0.0255)</td>
<td>(0.0242)</td>
<td>(0.0315)</td>
<td>(0.0454)</td>
</tr>
<tr>
<td>Educ. middle</td>
<td>0.819</td>
<td>0.800</td>
<td>-0.0172***</td>
<td>-0.076***</td>
<td>-0.143***</td>
<td>0.0989*</td>
</tr>
<tr>
<td></td>
<td>(0.0202)</td>
<td>(0.0212)</td>
<td>(0.0243)</td>
<td>(0.0270)</td>
<td>(0.0346)</td>
<td>(0.0516)</td>
</tr>
<tr>
<td>Educ. high</td>
<td>0.984</td>
<td>0.977</td>
<td>0.00742</td>
<td>-0.238***</td>
<td>-0.132***</td>
<td>-0.0210</td>
</tr>
<tr>
<td></td>
<td>(0.0207)</td>
<td>(0.0210)</td>
<td>(0.0257)</td>
<td>(0.0257)</td>
<td>(0.0320)</td>
<td>(0.0498)</td>
</tr>
<tr>
<td>Health: good</td>
<td>1.225</td>
<td>1.188</td>
<td>0.0371</td>
<td>-0.0117</td>
<td>0.0634</td>
<td>-0.0276</td>
</tr>
<tr>
<td></td>
<td>(0.0228)</td>
<td>(0.0229)</td>
<td>(0.0250)</td>
<td>(0.0297)</td>
<td>(0.0392)</td>
<td>(0.0578)</td>
</tr>
<tr>
<td>Health: fair</td>
<td>1.812</td>
<td>1.549</td>
<td>0.264***</td>
<td>0.0465</td>
<td>0.263***</td>
<td>-0.170**</td>
</tr>
<tr>
<td></td>
<td>(0.0541)</td>
<td>(0.0448)</td>
<td>(0.0596)</td>
<td>(0.0306)</td>
<td>(0.0501)</td>
<td>(0.0706)</td>
</tr>
<tr>
<td>Health: not good/poor</td>
<td>2.135</td>
<td>1.860</td>
<td>0.276***</td>
<td>0.215</td>
<td>0.305***</td>
<td>-0.151*</td>
</tr>
<tr>
<td></td>
<td>(0.0956)</td>
<td>(0.0815)</td>
<td>(0.0897)</td>
<td>(0.0501)</td>
<td>(0.0679)</td>
<td>(0.0918)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0310</td>
<td>0.0119</td>
<td>-0.00176***</td>
<td>2.157***</td>
<td>2.193***</td>
<td>-0.3846</td>
</tr>
<tr>
<td></td>
<td>(0.000287)</td>
<td>(0.000325)</td>
<td>(0.000394)</td>
<td>(0.0393)</td>
<td>(0.0532)</td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{align*}
\mu_1 &= -1.968*** \\
\mu_2 &= -0.396*** \\
\mu_3 &= 1.205*** \\
\mu_4 &= 1.919*** \\
\mu_5 &= 2.977*** \\
\end{align*} \]

Chi2 test joint equality (17df) \[691.92 \ (p < 0.0001) \]
Chi2 test joint equality no cohorts (11df) \[60.86*** \ (p < 0.0001) \]
Baseline hazard \[0.0903*** \ (0.000660) \]
Variance ind. effects \[0.846*** \ (0.0223) \]
Variance seq. effects \[0.112*** \ (0.00502) \]

No. individuals: 2,323
No. probabilities: 16,540
Log-likelihood: -40,715.570

* Estimates reported as hazard ratios.
Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1
Table F5: Correlation matrices of individual and question sequence effects for models of *remaining* lifetime

<table>
<thead>
<tr>
<th></th>
<th>Probabilities elicited in both surveys</th>
<th>All valid probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PB</td>
<td>DHS</td>
</tr>
<tr>
<td>a. Individual effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DHS</td>
<td>0.858***</td>
<td>1</td>
</tr>
<tr>
<td>Round PB</td>
<td>-0.0771</td>
<td>-0.0660</td>
</tr>
<tr>
<td>b. Sequence effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DHS</td>
<td>0.0460</td>
<td>1</td>
</tr>
<tr>
<td>Round PB</td>
<td>0.159</td>
<td>0.734</td>
</tr>
</tbody>
</table>

***p < 0.01, **p < 0.05, *p < 0.1