Open-Loop Nash Equilibria in the Non-cooperative Infinite-planning Horizon LQ Game
Engwerda, J.C.

Publication date:
2012

Link to publication

Citation for published version (APA):
OPEN-LOOP NASH EQUILIBRIA IN THE NON-COOPERATIVE INFINITE-PLANNING HORIZON LQ GAME

By

Jacob Engwerda

June 26, 2012

ISSN 0924-7815
Open-Loop Nash Equilibria in the Non-cooperative Infinite-planning Horizon LQ Game*

Jacob Engwerda, Tilburg University, The Netherlands

March 15, 2012

Abstract

In this note we reconsider Nash equilibria for the linear quadratic differential game for an infinite planning horizon. We consider an open-loop information structure. In the standard literature this problem is solved under the assumption that every player can stabilize the system on his own. In this note we relax this assumption and provide both necessary and sufficient conditions for existence of Nash equilibria for this game under the assumption that the system as a whole is stabilizable.

Keywords: linear-quadratic differential games, open-loop Nash equilibrium, solvability conditions, Riccati equations.

JEL-codes: C61, C72, C73.

1 Introduction

In this note we reconsider the linear quadratic differential game to minimize

$$\lim_{T \to \infty} J_i(x_0, u_1, u_2, T)$$

where

$$J_i = \int_0^T \{x^T(t)Q_ix(t) + u_i^T(t)R_iu_i(t)\}dt,$$

subject to the dynamic state equation

$$\dot{x}(t) = Ax(t) + B_1u_1(t) + B_2u_2(t), \ x(0) = x_0, \text{ where } (u_1, u_2) \in \mathcal{U}_s.$$

Here $x(t) \in \mathbb{R}^n$, $u_i \in \mathbb{R}^{m_i}$, matrix R_i is positive definite and Q_i are symmetric, $i = 1, 2$.

We assume that the players have an open-loop information structure about the game. That is, at time $t = t_0$ they have all information about the game, determine their actions, which are then enforced as binding agreements for the whole planning horizon. Moreover, we assume that players

*This paper will appear in the proceedings of the CAO’12 conference, September 13-16, Rimini, Italy.
will play a Nash strategy, i.e., they look for actions that have the property that a unilateral deviation from these actions makes them worse off.

This problem has been considered by many authors in the past (see e.g. [2] for references). This problem has been solved under the assumption that every player is capable to stabilize the system by his own, i.e. the pairs \((A, B_i), \ i = 1, 2,\) are stabilizable. In this note we will relax this assumption. We will provide both necessary and sufficient conditions for existence of Nash equilibria for this game under the assumption that the matrix pair \((A, [B_1 B_2])\) is stabilizable.

Assuming that the set of control functions considered by the players consists of the following set

\[
U_i(x_0) = \left\{ u \in L_{2,loc} \mid J_i(x_0, u) \text{ exists in } IR \cup \{-\infty, \infty\}, \lim_{t \to \infty} x(t) = 0 \right\},
\]

where \(L_{2,loc}\) is the set of locally square-integrable functions, i.e.,

\[
L_{2,loc} = \{ u[0, \infty) \mid \forall T > 0, \int_0^T u^T(s)u(s)ds < \infty \},
\]

we show in the Appendix the next Theorem 1.1.

To that purpose we first introduce some notation. Throughout we will use 0 to denote a zero matrix that has dimensions that follow from the context where it is used (in particular, in some cases, it may happen that in fact it does not appear (i.e. it reduces to the empty matrix)). Let \(T_i\) be nonsingular transformation matrices which transform \((A, B_i)\) into its controllable canonical form, \(i = 1, 2,\) (see Lemma 3.1, with \(n_i\) the dimension of the controllability subspace). Let

\[
A_i := [I_{n_i}, 0]T_iAT_i^{-1} \begin{bmatrix} I_{n_i} \\ 0 \end{bmatrix}; \quad \tilde{S}_i := B_iR_i^{-1}B_i^TT_i \begin{bmatrix} I_{n_i} \\ 0 \end{bmatrix}; \quad \tilde{Q}_i := [I_{n_i}, 0]T_i^{-T}Q_i.
\]

Theorem 1.1 Consider the linear quadratic differential game \((1,2)\). Assume that \((A, [B_1 B_2])\) is stabilizable. Consider matrix

\[
M = \begin{bmatrix} A & -\tilde{S}_1 & -\tilde{S}_2 \\ -\tilde{Q}_1 & -A_1^T & 0 \\ -\tilde{Q}_2 & 0 & -A_2^T \end{bmatrix} \quad (3)
\]

If the linear quadratic differential game \((1,2)\) has an open-loop Nash equilibrium for every initial state, then

1. \(M\) has at least \(n\) stable eigenvalues (counted with algebraic multiplicities). More in particular, there exists a \(p\)-dimensional stable \(M\)-invariant subspace \(S,\) with \(p \geq n,\) such that

\[
\text{Im} \begin{bmatrix} I_n \\ V_1 \\ V_2 \end{bmatrix} \subset S,
\]

for some \(V_i \in IR^{n_i \times n}.\)

2. With \(Q_{11i} := [I_{n_i}, 0]T_i^{-1}Q_iT_i^{-1} \begin{bmatrix} I_{n_i} \\ 0 \end{bmatrix},\) and \(S_i := [I_{n_i}, 0]T_iB_iR_i^{-1}B_i^TT_i \begin{bmatrix} I_{n_i} \\ 0 \end{bmatrix},\) the two algebraic Riccati equations,

\[
A_i^TK_i + K_iA_i - K_iS_iK_i + Q_{11i} = 0,
\]

have a symmetric solution \(K_i(\cdot)\) such that \(A_i - S_iK_i\) is stable, \(i = 1, 2.\)
Conversely, if the two algebraic Riccati equations (4) have a stabilizing solution and
\(v^T(t) =: [x^T(t), \psi_1^T(t), \psi_2^T(t)] \) is an asymptotically stable solution of
\[
\dot{v}(t) = Mv(t), \ x(0) = x_0,
\]
then,
\[
u_i^* := -R_i^{-1}B_i^TT_i \left[I_{n_i} \right] \psi_i(t), \ i = 1, 2,
\]
provides an open-loop Nash equilibrium for the linear quadratic differential game (1,2).

Notice that the matrices \(\tilde{S}_i \) and \(\tilde{Q}_i \) that appear in \(M \) are, in general, not symmetric and the dimensions of matrices \(A_i \) may differ. This is a clear distinction with the standard case considered in literature (see e.g. [2]).

Now, let \(\tilde{A}_2 := \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \); \(B := [B_1 \ B_2]; \tilde{S} := [\tilde{S}_1 \ \tilde{S}_2]; \) and \(\tilde{Q} := \begin{bmatrix} \tilde{Q}_1 \\ \tilde{Q}_2 \end{bmatrix} \).

Consider the set of (coupled) algebraic Riccati equations
\[
0 = \tilde{A}_2^T P + PA - P\tilde{S}P + \tilde{Q}.
\]

Definition 1.2 A solution \(P^T := [P_1^T, P_2^T] \), with \(P_i \in \mathbb{R}^{n_i \times n} \), of the set of algebraic Riccati equations (6) is called

a. **stabilizing**, if \(\sigma(A - \tilde{S}P) \subset \mathbb{C}^-; \)

b. **left-right stabilizing** (LRS) if
 i. it is a stabilizing solution, and
 ii. \(\sigma(-\tilde{A}_2^T + P\tilde{S}) \subset \mathbb{C}_0^+; \)

Similar to, e.g., [2] it can be shown that the next relationship between certain invariant subspaces of matrix \(M \) and solutions of the Riccati equation (6) applies. This property can be used to calculate the (left-right) stabilizing solutions of (6).

Lemma 1.3 Let \(V \subset \mathbb{R}^{n+n_1+n_2} \) be an \(n \)-dimensional invariant subspace of \(M \), and let \(X_i \in \mathbb{R}^{n_i \times n} \), \(i = 0, 1, 2 \), (with \(n_0 = n \)) be three real matrices such that
\[
V = \text{im} \left[X_0^T, X_1^T, X_2^T \right]^T.
\]
If \(X_0 \) is invertible, then \(P_i := X_iX_0^{-1}, \ i = 1, 2, \) solves (6) and \(\sigma(A - \tilde{S}P) = \sigma(M|_V) \). Furthermore, \((P_1, P_2) \) is independent of the specific choice of basis of \(V \).

\footnote{\(\sigma(H) \) denotes the spectrum of matrix \(H; \mathbb{C}^- = \{ \lambda \in \mathbb{C} | \text{Re}(\lambda) < 0 \}; \mathbb{C}_0^+ = \{ \lambda \in \mathbb{C} | \text{Re}(\lambda) \geq 0 \}. \)

\footnote{In [2] such a solution is called strongly stabilizing.}
Lemma 1.4

1. The set of algebraic Riccati equations (6) has a LRS solution \(P^T = [P_1^T \ P_2^T] \) if and only if matrix \(M \) has an \(n \)-dimensional stable graph subspace and \(M \) has \(n_1 + n_2 \) eigenvalues (counting algebraic multiplicities) in \(\mathbf{C}_0^+ \).

2. If the set of algebraic Riccati equations (6) has a LRS solution, then it is unique.

Proof.

1. Assume that (6) has a LRS solution \(P \). Then with \(T := \begin{bmatrix} I_n & 0 \\ -P & I_{n_1 + n_2} \end{bmatrix}, \)

\[
T MT^{-1} = \begin{bmatrix} A - \tilde{S}P & -\tilde{S} \\ 0 & -A^T_2 + P\tilde{S} \end{bmatrix}.
\]

Since \(P \) is a LRS solution, by Definition 1.2, matrix \(M \) has exact \(n \) stable eigenvalues and \(n_1 + n_2 \) eigenvalues (counted with algebraic multiplicities) in \(\mathbf{C}_0^+ \). Furthermore, obviously, the stable subspace is a graph subspace.

The converse statement is obtained similarly using the result of Lemma 1.3.

2. See, e.g., Kremer [4, Section 3.2]. \(\square \)

Similar to [2] it can be shown that the next two important corollaries hold.

Corollary 1.5 The infinite-planning horizon two-player linear quadratic differential game (1, 2) has for every initial state an open-loop Nash set of equilibrium actions \((u^*_1, u^*_2)\) which permit a feedback synthesis if and only if

1. there exist \(P_1 \) and \(P_2 \) that are solutions of the set of coupled algebraic Riccati equations (6) satisfying the additional constraint that the eigenvalues of \(A_{cl} := A - S_1 P_1 - S_2 P_2 \) are all situated in the left half complex plane, and

2. the two algebraic Riccati equations (4) have a symmetric solution \(K_i(\cdot) \) such that \(A_i - S_i K_i \) is stable, \(i = 1, 2 \).

If \((P_1, P_2)\) is a set of stabilizing solutions of the coupled algebraic Riccati equations (6), the actions

\[
u^*_i(t) = -R_i^{-1}B^T_i T_i \begin{bmatrix} I_{n_i} \\ 0 \end{bmatrix} P_i \Phi(t, 0)x_0, \ i = 1, 2,
\]

where \(\Phi(t, 0) \) satisfies the transition equation \(\dot{\Phi}(t, 0) = A_{cl} \Phi(t, 0); \ \Phi(0, 0) = I \), yield an open-loop Nash equilibrium.

The costs, by using these actions, for the players are

\[
x^T_0 M_i x_0, \ i = 1, 2,
\]

where \(M_i \) is the unique solution of the Lyapunov equation

\[
A^T_{cl} M_i + M_i A_{cl} + Q_i + P_i^T[I_{n_i} \ 0]T_i S_i T_i^T[I_{n_i} \ 0]^T P_i = 0.
\]

\(\square \)
Corollary 1.6 The linear quadratic differential game (1,2) has a unique open-loop Nash equilibrium for every initial state if and only if

1. The set of coupled algebraic Riccati equations (6) has a strongly stabilizing solution, and
2. the two algebraic Riccati equations (4) have a stabilizing solution.

Moreover, the unique equilibrium actions are given by (7). □

Remark 1.7 1. In case \((A, B_i)\) is controllable, matrix \(T_i = I_n\) and \(n_i = n\). In that case the above results coincide with the results presented, e.g., in [2][Chapter 7.4].

2. In case \((A, B_i)\) is stabilizable but not controllable, the above results might be used to find the open-loop Nash equilibria more efficiently from a numerical point of view. For instance, matrix \(M\) in (3) has size \((n + n_1 + n_2) \times (n + N - 1 + n_2)\), whereas according the current literature, see e.g. [2][Theorem 7.11], one has to analyze a \(3n \times 3n\) matrix to obtain the equilibria.

3. It can be straightforwardly verified that \(\psi_i(t)\) in Theorem 1.1 coincides with the costate variable associated with the minimization of \(J_i\) (see, e.g., (14)) subject to the state equation (see, e.g., (15)). In case (6) has a set of stabilizing solutions it follows that \(\psi_i(t) = P_i x(t)\), where \(x(t)\) solves \(\dot{x}(t) = (A - \tilde{S}_1 P_1 - \tilde{S}_2 P_2)x(t), x(0) = x_0\), solves (5). From (8) it follows that \(\frac{\partial J_i}{\partial x_0} = 2M_i x_0\) which usually (see (9)) differs from \(\psi_i(0) = P_i x_0\). This implies that the correct shadow price interpretation of \(x(t)\) is provided by \(2M_i x(t)\) instead of \(\psi_i(t)\). See, e.g., [1] for more details on this issue.

4. The results can be straightforwardly generalized for the \(N\)-player case. All results concerning matrix \(M\) should then be substituted by

\[
M = \begin{bmatrix}
A & -\tilde{S} \\
-\tilde{Q} & -\tilde{A}_2^T
\end{bmatrix},
\]

where \(\tilde{S} = [\tilde{S}_1 \cdots \tilde{S}_N], \tilde{Q} = [\tilde{Q}_1^T \cdots \tilde{Q}_N^T]\) and \(\tilde{A}_2 = diag(A_i)\). In the next section we will illustrate this in a 3-player game. □

2 Example

Consider the problem to find the open-loop Nash equilibria for the next three player game. The game might be interpreted as a debt stabilization problem within a two country setting which engaged in a monetary union. Within that setting the variables \(x_i(t)\) can be interpreted as the government debt, scaled to the level of national output, of country \(i\). \(u_i\) as the primary fiscal deficit, also scaled to output, whereas the monetary financing undertaken by the central bank, measured as a fraction of aggregate output, is denoted by \(u_E\). All parameters are assumed to be positive. The welfare loss-function of country \(i\), \(i = 1, 2,\) and central bank, respectively, is given by

\[
\begin{align*}
J_1(u_1(.)) &= \frac{1}{2} \int_0^\infty u_1^2(t) + \beta_1 x_1^2(t) dt \\
J_2(u_2(.)) &= \frac{1}{2} \int_0^\infty u_2^2(t) + \beta_2 x_2^2(t) dt \\
J_E(u_3(.)) &= \frac{1}{2} \int_0^\infty u_E^2(t) + \beta_E (\omega x_1(t) + (1 - \omega) x_2(t))^2 dt.
\end{align*}
\]
The evolution of debt in both countries over time is assumed to be described by the differential equations

\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t)
\end{bmatrix} =
\begin{bmatrix}
\alpha_1 & 0 \\
0 & \alpha_2
\end{bmatrix}
\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} +
\begin{bmatrix}
1 \\
0
\end{bmatrix} u_1(t) +
\begin{bmatrix}
0 \\
1
\end{bmatrix} u_2(t) +
\begin{bmatrix}
-\gamma_1 \\
-\gamma_2
\end{bmatrix} u_E(t). \tag{13}
\]

Let

\[
A := \begin{bmatrix}
\alpha_1 & 0 \\
0 & \alpha_2
\end{bmatrix}; \quad B_1 := \begin{bmatrix}
1 \\
0
\end{bmatrix}; \quad B_2 := \begin{bmatrix}
0 \\
1
\end{bmatrix}; \quad B_E := -\begin{bmatrix}
\gamma_1 \\
\gamma_2
\end{bmatrix}; \quad B := [B_1 \; B_2 \; B_E];
\]

\[
Q_i := \begin{bmatrix}
\beta_1 & 0 \\
0 & \beta_2
\end{bmatrix}; \quad Q_2 := \begin{bmatrix}
0 & 0 \\
0 & \beta_2
\end{bmatrix}; \quad Q_E := \beta_E \begin{bmatrix}
\omega^2 & \omega(1 - \omega) \\
\omega(1 - \omega) & (1 - \omega)^2
\end{bmatrix}; \quad \text{and} \quad S_i := B_i B_i^T, \ i = 1, 2, E.
\]

Obviously, the pairs \((A, B_i), \ i = 1, 2\) are not stabilizable. Consequently we cannot directly use the standard theory on linear quadratic differential games to find the open-loop Nash equilibria (see e.g. [2]). However, notice that the pair \((A, B)\) is stabilizable. With \(T_1 = I, \ T_2 = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}, \ T_E = I, \ n_1 = n_2 = 1\ and \ n_E = 2\ in\ Theorem\ 1.1\ we\ have\ that\ matrix\ \(M\)\ equals

\[
M = \begin{bmatrix}
\alpha_1 & 0 & -1 & 0 & -\gamma_1^2 & -\gamma_1 \gamma_2 \\
0 & \alpha_2 & 0 & -1 & -\gamma_1 \gamma_2 & -\gamma_2^2 \\
-\beta_1 & 0 & -\alpha_1 & 0 & 0 & 0 \\
0 & -\beta_2 & 0 & -\alpha_2 & 0 & 0 \\
-\beta_E \omega^2 & -\beta_E \omega (1 - \omega) & 0 & 0 & -\alpha_1 & 0 \\
-\beta_E \omega (1 - \omega) & -\beta_E (1 - \omega)^2 & 0 & 0 & 0 & -\alpha_2
\end{bmatrix}.
\]

By straightforward calculating one can verify that the determinant of \(M - \lambda I\) equals

\[
det := \lambda^6 + \eta_5 s^5 - \eta_4 s^4 - \eta_3 s^3 + \rho_2 s^2 + \eta_1 s + \eta_0, \ \text{where} \ \eta_i > 0.
\]

So, independent of the sign of \(\rho_2\), this sixth order polynomial has 2 sign changes (if one orders it by descending variable exponent). So according Descartes’ rule of signs matrix \(M\) has either two or no positive real roots. Furthermore, with \(\lambda\) replaced by \(-\lambda\) the corresponding polynomial has 4 sign changes. By Descartes’ rule \(M\) therefore has either 4, 2 or no negative real roots. So, in case \(det\) has six real roots, 2 of them will be positive and 4 of them negative. So, generically, in that case the game will have an infinite number of open-loop Nash equilibria and \(\binom{4}{2}\) equilibria for which the corresponding equilibrium strategies permit a feedback synthesis.

This is confirmed in case we chose, e.g., \(x_1(0) = 0.7, \ x_2(0) = 1.5, \ \alpha_1 = 0.03, \ \alpha_2 = 0.08, \ \gamma_1 = 1, \ \gamma_2 = 0.5, \ \beta_1 = 0.04, \ \beta_2 = 0.08, \ \beta_E = 0.04\ and \ \omega = 0.3.\ In\ that\ case\ matrix\ \(M\)\ has\ the\ eigenvalues\ \{0.7002, 0.2426, -0.0421, -0.0594, -0.2522, -0.6992\},\ and\ it\ is\ easily\ verified\ that\ there\ are\ 6\ different\ strategies\ that\ permit\ a\ feedback\ synthesis.

By including a discount factor into the cost the number of equilibria reduces. In this example it turns out that if the discount factor is larger than 12% there will be a unique equilibrium. We calculated the resulting equilibrium strategies if a discount factor of 14% is used. Then, \(P_1 = [0.1028 - 0.0951], \ P_2 = [-0.0494 0.2133]\ and \ P_E = \begin{bmatrix}
0.1316 & 0.2666 \\
0.3343 & 0.6574
\end{bmatrix}.\ So, \ u_1(t) = -P_1 x(t), \ u_2(t) = -P_2 x(t)\ and
Figure 1: Fiscal debt stabilization using a discount factor of 14%.

\[u_E(t) = [1 \ 1 2 \ P_E x(t) = [0.2987 \ 0.5953] x(t), \text{where } x(t) = (A - B_1 P_1 - B_2 P_2 + B_E [1 \ 1 2] P_E) x(t), \ x(0) = x_0. \]

In this specific case we observe that the central bank responds approximately with a three times higher monetary policy as the corresponding fiscal authorities to stabilize debt in their country. Furthermore we see that fiscal authorities negatively respond on a debt that has occurred in the other country. We plotted both the evolution of debt and control instruments in Figure 1. From this figure we see that the initially strong monetary policy pursued by the central bank implies that the country with the initially smallest debt runs into a surplus. Furthermore, after five years the expansionary monetary financing policy of the central bank is replaced by a small contracting monetary financing.

3 Concluding remarks

In this paper we reconsidered the infinite planning horizon open-loop linear quadratic differential game. We derived under less stringent conditions than in current literature both necessary and sufficient conditions under which this game has an open-loop Nash equilibrium. Based on the controllable canonical form of the system we showed along the lines of the proof of [2] that one can derive Nash equilibria for stabilizable systems similar to the standard case considered in literature. By determining for each individual player its controllable canonical form, one can derive matrix \(M\) that has a similar structure as in the standard case. Since the size of this square matrix is usually smaller than \(3n\) it may be advantageous from a computational point of view, also in the standard case, to use this reduced form to calculate the Nash equilibria. We illustrated the theory in a small example.

Appendix

First we recall the next well-known controllable state-space decomposition lemma (see e.g. [6, Theorem 3.6]).

Lemma 3.1 Consider the linear system \(\dot{x}(t) = Ax(t) + Bu(t) \), with \(x(t) \in \mathbb{R}^n \) and \(u(t) \in \mathbb{R}^m \). Assume the controllability matrix \(C := [B \ AB \ CD \ CD \ CD \ CD \ AB] \) has rank \(n_1 \) (or stated differently the con-
Proof of Theorem 1.1 \(\Rightarrow \) part. Let \(v_i, i = 1, \ldots, n_1 \) be \(n_1 \) linearly independent columns of \(C \) and \(v_{n_1+1}, \ldots, v_n \) be such that \(V := [v_1 \cdots v_n] \) is invertible. Then, with \(T := V^{-1} \), \(\tilde{x}(t) = T x(t) \) satisfies \(\tilde{x}(t) = A \tilde{x}(t) + B u(t) \), and \((A, \tilde{B})\) have the next properties:

\[
\tilde{A} = T A T^{-1} = \begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ 0 & \tilde{A}_{22} \end{bmatrix}; \quad \tilde{B} = TB = \begin{bmatrix} \tilde{B}_1 \\ 0 \end{bmatrix},
\]

where \(\tilde{A}_{11} \in \mathbb{R}^{n_1 \times n_1}, \tilde{B}_1 \in \mathbb{R}^{n_1 \times m} \) and \((\tilde{A}_{11}, \tilde{B}_1)\) is controllable.

Proof of Theorem 1.1 \(\Rightarrow \) part Suppose that \(u_1^*, u_2^* \) are a Nash solution. That is,

\[
J_1(u_1, u_2^*) \geq J_1(u_1^*, u_2^*) \text{ and } J_2(u_1^*, u_2) \geq J_2(u_1^*, u_2^*).
\]

From the first inequality we see that for every \(x_0 \in \mathbb{R}^n \) the (nonhomogeneous) linear quadratic control problem to minimize

\[
J_1 = \int_0^\infty \{ x^T(t)Q_1 x(t) + u_1^T(t)R_1 u_1(t) \} dt,
\]

subject to the (nonhomogeneous) state equation

\[
\dot{x}(t) = A x(t) + B_1 u_1(t) + B_2 u_2^*(t), \quad x(0) = x_0,
\]

has a solution. Notice that by assumption \(x(t) \to 0 \). So, since this problem has a minimum and \(R_1 > 0 \) it follows that \(u_1(t) \to 0 \) too.

From Lemma 3.1 we have that there exists then a state-space transformation \(\tilde{x}(t) = T_1 x(t) \) such that the above minimization problem can be rewritten as the (nonhomogeneous) linear quadratic control problem to minimize

\[
J_1 = \int_0^\infty \{ \tilde{x}_{11}^T(t)Q_{111} \tilde{x}_{11}(t) + 2 \tilde{x}_{12}^T(t)Q_{121}^T \tilde{x}_{11}(t) + \tilde{x}_{22}^T(t)Q_{221}^T \tilde{x}_{22}(t) + u_1^T(t)R_1 u_1(t) \} dt,
\]

subject to the (nonhomogeneous) state equation

\[
\begin{bmatrix} \dot{\tilde{x}}_1(t) \\ \dot{\tilde{x}}_2(t) \end{bmatrix} = \begin{bmatrix} A_1 & \tilde{A}_{12} \\ 0 & \tilde{A}_{22} \end{bmatrix} \begin{bmatrix} \tilde{x}_1(t) \\ \tilde{x}_2(t) \end{bmatrix} + \begin{bmatrix} \tilde{B}_1 \\ \tilde{B}_{21} \tilde{B}_{22} \end{bmatrix} u_1(t) + \begin{bmatrix} \tilde{B}_{21} \\ \tilde{B}_{22} \end{bmatrix} u_2^*(t), \quad \tilde{x}(0) = T_1 x_0,
\]

where \((A_1, \tilde{B}_1)\) is controllable and \(\begin{bmatrix} Q_{111} & Q_{121} \\ Q_{121}^T & Q_{221} \end{bmatrix} := T_1^{-1} Q_1 T_1^{-1} \). By assumption this minimization problem has a solution for every initial state. This implies, see [3, Theorem A.1], that the algebraic Riccati equation

\[
A_1^T K_1 + K_1 A_1 - K_1 S_1 K_1 + Q_{111} = 0, \quad \text{with } S_1 := \tilde{B}_1 R_1^{-1} \tilde{B}_1^T = [I_{n_1} \ 0] T_1 B_1 R_1^{-1} B_1^T T_1^T \begin{bmatrix} I_{n_1} \\ 0 \end{bmatrix},
\]

has a stabilizing solution \(K_1 \). Moreover the unique minimum is attained by

\[
u_1(t) = -R_1^{-1} \tilde{B}_1^T (K_1 \tilde{x}_1(t) + \tilde{m}_1(t)). \tag{16} \]
Here \(\hat{m}_1(t) \) is given by

\[
\hat{m}_1(t) = \int_t^\infty e^{-(A_1 - S_1 K_1)^T(t-s)} \left[K_1 \hat{B}_{21} u_2^*(s) + \hat{A}_{12} \hat{x}_2(s) \right] ds. \tag{17}
\]

By straightforward differentiation of (17) we obtain

\[
\dot{\hat{m}}_1(t) = - (A_1 - S_1 K_1)^T \hat{m}_1(t) - K_1 \hat{B}_{21} u_2^*(t) - \hat{A}_{12} \hat{x}_2(t) - Q_{121} \hat{x}_2(t). \tag{18}
\]

Next, introduce

\[
\psi_1(t) := K_1 \hat{x}_1(t) + \hat{m}_1(t). \tag{19}
\]

Using (18) we get

\[
\begin{align*}
\dot{\psi}_1(t) &= K_1 \hat{x}_1(t) + \dot{\hat{m}}_1(t) \\
&= K_1 (A_1 - S_1 K_1) \hat{x}_1(t) - K_1 S_1 \hat{m}_1(t) + K_1 \hat{A}_{12} \hat{x}_2(t) + K_1 \hat{B}_{21} u_2^*(t) - (A_1 - S_1 K_1)^T \hat{m}_1(t) \\
&\quad - K_1 (\hat{B}_{21} u_2^*(t) + \hat{A}_{12} \hat{x}_2(t)) - Q_{121} \hat{x}_2(t) \\
&= (-Q_{111} - A_1^T K_1) \hat{x}_1(t) - K_1 S_1 \hat{m}_1(t) - (A_1 - S_1 K_1)^T \hat{m}_1(t) - Q_{121} \hat{x}_2(t) \\
&= -Q_{111} \hat{x}_1(t) - A_1^T (K_1 \hat{x}_1(t) + \hat{m}_1(t)) - Q_{121} \hat{x}_2(t) \\
&= -[Q_{111} Q_{121}] \hat{x}(t) - A_1^T \psi_1(t). \tag{20}
\end{align*}
\]

In a similar way it follows that there exists a state transformation \(\hat{x}(t) = T_2 x(t) \) such that the minimization of \(J_2 \) can be rewritten as

\[
J_2 = \int_0^\infty \{ \hat{x}_1^T(t) Q_{112} \hat{x}_1(t) + 2 \hat{x}_2^T(t) Q_{212} \hat{x}_2(t) + \hat{x}_2^T(t) Q_{222} \hat{x}_2(t) + u_2^T(t) R_2 u_2(t) \} dt,
\]

subject to the (nonhomogeneous) state equation

\[
\begin{bmatrix} \dot{\hat{x}}_1(t) \\ \dot{\hat{x}}_2(t) \end{bmatrix} = \begin{bmatrix} A_2 & \hat{A}_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} \hat{x}_1(t) \\ \hat{x}_2(t) \end{bmatrix} + \begin{bmatrix} \hat{B}_{11} \\ \hat{B}_{12} \end{bmatrix} u_1(t) + \begin{bmatrix} \hat{B}_2 \\ 0 \end{bmatrix} u_2^*(t), \quad \hat{x}(0) = T_2 x_0,
\]

where \((A_2, \hat{B}_2) \) is controllable and \(\begin{bmatrix} Q_{112} & Q_{122} \\ Q_{212} & Q_{222} \end{bmatrix} := T_2^{-1} \tilde{T}_2 T_2^{-1} \). The solution of this problem is

\[
u_2(t) = -R_2^{-1} \hat{B}_2^T K_2 \hat{x}_1(t) + \hat{m}_1(t). \tag{21}
\]

Here \(\hat{m}_1(t) \) is given by

\[
\hat{m}_1(t) = \int_t^\infty e^{-(A_2 - S_2 K_2)^T(t-s)} \left[K_1 (\hat{B}_{11} u_1^*(s) + \hat{A}_{12} \hat{x}_2(s)) + Q_{122} \hat{x}_2(s) \right] ds, \tag{22}
\]

where \(K_2 \) is the stabilizing solution of the algebraic Riccati equation

\[
A_2^T K_2 + K_2 A_2 - K_2 S_2 K_2 + Q_{112} = 0, \quad \text{where} \quad S_2 := [I_{n_2} \ 0] T_2 B_2 R_2^{-1} B_2^T T_2^T \left[I_{n_2} \\ 0 \right].
\]

Introducing

\[
\psi_2(t) := K_2 \hat{x}_1(t) + \hat{m}_1(t), \tag{23}
\]
we obtain then similarly as above that \(\dot{\psi}_2(t) = -[Q_{112} \; Q_{122}] \dot{x}(t) - A_2^T \psi_1(t) \). Consequently, with \(M \) as in (3) and \(v(t) := [x^T(t), \; \psi_1^T(t), \; \psi_2^T(t)] \), \(v(t) \) satisfies
\[
\dot{v}(t) = M v(t), \quad \text{with} \; v(0) := [I_n \; 0 \; 0] v(0) = x_0.
\]
Since by assumption, for arbitrary \(x_0, \; v_1(t) \) converges to zero it follows from e.g. [2, Lemma 7.36] that matrix \(M \) must have at least \(n \) stable eigenvalues (counting algebraic multiplicities). Moreover, the other statement follows from the second part of this lemma. Which completes this part of the proof.

\(\Rightarrow \text{ part} \) Let \(u_2^* \) be as claimed in the theorem, that is
\[
u_2^*(t) = -R_2^{-1} B_2^T T_2^T \left[I_{n_2} \right] \psi_2(t) \tag{24}.\]

We next show that then necessarily \(u_1^* \) solves the optimization problem
\[
\min_{u_1} \int_0^\infty \{ \bar{x}^T(t) Q_1 \bar{x}(t) + u_1^T R_1 u_1(t) \} dt,
\]
subject to
\[
\dot{x}(t) = A \bar{x}(t) + B_1 u_1(t) + B_2 u_1^*(t), \; \bar{x}(0) = x_0.
\]

Using the state transformation \(\bar{x} = T_1 \dot{x} \) and notation of the proof of the first part of this theorem the above problem can then be rewritten as the minimization of (14) subject to the system (15).

Since, by assumption, the algebraic Riccati equation (4) has a stabilizing solution, according [2, Theorem 5.16], the above minimization problem has a solution. This solution has the same structure as the solution advertised in (16,17). The only difference is that \(u_2^*(t) \) satisfies in this case (24). For that reason we will use the notation \(m_1(t) \) instead of \(\bar{m}_1(t) \) in (16,17).

Introducing
\[
\tilde{\psi}_1(t) := K_1 \bar{x}(t) + m_1(t),
\]
we have that \(u_1(t) = -R_1^{-1} B_1^T \tilde{\psi}_1 \) and similar to (20) we get that
\[
\dot{\tilde{\psi}}_1 = -[Q_{111} \; Q_{121}] \bar{x}(t) - A_1^T \tilde{\psi}_1.
\]

Consequently, \(x_d(t) := T_1 x(t) - \bar{x}(t) \) and \(\psi_d(t) := \psi_1(t) - \tilde{\psi}_1(t) \) satisfy
\[
\dot{x}_d(t) = T_1 (A T_1^{-1} T_1 x(t) - B_1 R_1^{-1} B_1^T \bar{T}_2^T \left[I_{n_2} \right] \psi_1(t) - B_2 R_2^{-1} B_2^T \bar{T}_2^T \left[I_{n_2} \right] \psi_2(t)) - \\
(T_1 A T_1^{-1} \bar{x}(t) - T_1 B_1 R_1^{-1} B_1^T \tilde{\psi}_1 - T_1 B_2 R_2^{-1} B_2^T \bar{T}_2^T \left[I_{n_2} \right] \psi_2(t))
\]

and
\[
\dot{\psi}_d(t) = -Q_{111} T_1^{-1} T_1 x(t) - A_1^T \psi_1(t) - (-[Q_{111} \; Q_{121}] \bar{x}(t) - A_1^T \tilde{\psi}_1(t)),
\]

respectively. Or, stated differently,
\[
\begin{bmatrix}
\dot{x}_d(t) \\
\dot{\psi}_d(t)
\end{bmatrix} =
\begin{bmatrix}
A_1 & \hat{A}_{12} & -S_1 \\
0 & A_{22} & 0 \\
-Q_{111} & -Q_{121} & -A_1^T
\end{bmatrix}
\begin{bmatrix}
x_d(t) \\
\psi_d(t)
\end{bmatrix},
\begin{bmatrix}
x_d(0) \\
\psi_d(0)
\end{bmatrix} =
\begin{bmatrix}
0 \\
p
\end{bmatrix},
\text{for some} \; p \in \mathbb{R}^{n_1}.
\]
Notice that matrix $\begin{bmatrix} A_1 & -S_1 \\ -Q_{111} & -A^T_1 \end{bmatrix}$ is the Hamiltonian matrix associated with the algebraic Riccati equation (4). Recall that the spectrum of this matrix is symmetric w.r.t. the imaginary axis. Since by assumption the Riccati equation (4) has a stabilizing solution, we know that its stable invariant subspace is given by $\text{Span}[I K_1]^T$. Therefore, with E^u representing a basis for the unstable subspace, we can write

$$\begin{bmatrix} 0 \\ p \end{bmatrix} = \begin{bmatrix} I \\ K_1 \end{bmatrix} v_1 + E^u v_2,$$

for some vectors v_i, $i = 1, 2$. However, it is easily verified that due to our asymptotic stability assumption both $x_d(t)$ and $\psi_d(t)$ converge to zero if $t \to \infty$. So, v_2 must be zero. From this it follows now directly that $p = 0$. Since the solution of the differential equation is uniquely determined, and $[x_d(t) \; \psi_d(t)] = [0 \; 0]$ solve it, we conclude that $\dot{x}(t) = T_1 x(t)$ and $\dot{\psi}_1(t) = \psi_1(t)$. Or stated differently, u^*_1 solves the minimization problem.

In a similar way it is shown that for u_1 given by u^*_1, player two his optimal control is given by u^*_2. Which proves the claim. □

References

