Screening for Patent Quality
Schankerman, Mark; Schütt, Florian

Document version:
Early version, also known as pre-print

Publication date:
2016

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.
SCREENING FOR PATENT QUALITY: EXAMINATION, FEES, AND THE COURTS

by
Mark Schankerman
Florian Schuett

December 14, 2016

TILEC Discussion Paper No. 2016-036
CentER Discussion Paper No. 2016-046

ISSN 2213-9532
ISSN 2213-9419
http://ssrn.com/abstract=2885197
Screening for Patent Quality: Examination, Fees, and the Courts

Mark Schankerman† Florian Schuett‡

November 2016

Abstract

We develop an integrated framework to study how governments can improve the quality of patent screening. We focus on four key policy instruments: patent office examination, pre- and post-grant fees, and challenges in the courts. We show that there are important complementarities among these instruments, and identify conditions under which they can be used to achieve either partial or complete screening. We simulate the model to study the welfare effects of different policy reforms. We show that intensifying patent office examination, frontloading patent fees and capping litigation costs all generate welfare gains, while replacing examination with a pure registration system reduces welfare.

Keywords: innovation, patents, screening, litigation, courts, patent fees

JEL classification: D82, K41, L24, O31, O34, O38

1 Introduction

The patent system is one of the key instruments governments use to provide innovation incentives. However, there is growing concern among academic scholars and policymakers that patent rights are becoming an impediment, rather than an incentive, to innovation. Critics claim that the proliferation of patents, and the fragmentation of ownership among firms, raise the transaction costs of doing R&D, and expose firms to hold-up through patent litigation (Heller and Eisenberg, 1998; Lemley and Shapiro, 2005; Bessen and Maskin, 2009). These dangers have been prominently voiced in public debates on patent policy and leading Supreme Court decisions in the United States (Federal Trade Commission, 2011; eBay Inc. v. MercExchange, 547 U.S. 338, 2006).

*We are grateful to Klenio Barbosa, Özlem Bedre, Jay Pil Choi, Vincenzo Denicolò, Rafael Ferraz, John Golden, Eirik Kristiansen, Patrick Logros, Matt Mitchell, Pierre Régibeau, Dave Rietzke, Monika Schnitzer, and participants at the MaCCI Workshop in Bad Homburg, TILEC Conference in Amsterdam, IO Workshop in Lancaster, Munich Summer Institute, EARIE Conference in Lisbon, and seminars at universities in Tilburg, Bolzano, Florence, the Norwegian School of Economics and Telecom ParisTech. We especially want to recognize William Matcham for outstanding research assistance. The simulation analysis in Section 6 was done with his collaboration. All errors are our own.

†London School of Economics and Centre for Economic Policy Research, E-mail: m.schankerman@lse.ac.uk

‡TILEC & CentER, Tilburg University. E-mail: f.schuett@uvt.nl
Critics claim that these problems arise, in large part, from ineffective patent office screening, granting property rights to obvious inventions that do not represent a substantial inventive step, especially but not only in new areas such as business methods and software. In the presence of costly and probabilistic review by courts, weak patents – obvious ones that should not be granted – may end up being strong (Farrell and Shapiro, 2008). This can create greater opportunity for rent-extraction by owners of weak patents.

There is widespread criticism about low patentability standards and the need to make screening more effective. But how best to achieve this goal? The economic theory literature has focused more on the design of patent rights, such as optimal length and breadth (Klemperer, 1990; Scotchmer, 1999; Cornelli and Schankerman, 1999; Hopenhayn and Mitchell, 2000), but recently economists have begun to study the impact of patent screening. Schuetz (2013a, 2013b) studies how patent examination intensity, examiner incentives, and application fees affect ex ante choice of research projects by inventors, while Kou, Rey and Wang (2013) study the impact of the non-obviousness threshold for patenting on project selection.¹

Legal scholars have written extensively on ways to improve patent screening, including the use of external peer review (Noveck, 2006), the appropriate standard and application of the non-obviousness criterion (Eisenberg, 2004; Dreyfuss, 2008), and weakening the presumption of validity and evidentiary standards for invalidation in the courts (Lichtman and Lemley, 2007). At the other extreme, some scholars have suggested moving to a registration system for patents (with no examination for quality) and shifting the burden of screening to the courts (Lemley, 2001; 2013). However, the ideas developed by legal scholars have not been subjected to formal economic analysis, embedding them in an equilibrium framework in which policy instruments affect optimal strategies of inventors and competitors.

In this paper we study how policy-makers can most effectively use the instruments at their disposal to improve patent screening. We focus on four key policy instruments: the intensity of patent office examination, pre-grant (application) fees paid before patent examination, post-grant (issuance/renewal) fees paid by inventions that have passed examination, and review by the courts for patents challenged by a competitor. For most of the analysis, we assume that courts invalidate patents on obvious inventions with certainty (we relax this later and study how results change with the characterization of courts). To our knowledge, we are the first to provide a theoretical analysis of this full set of policy instruments, and to study how these instruments interact.

We develop a model in which an inventor faces a competitor. The inventor is

¹Other related studies include Caillaud and Duchene (2011) and Atal and Bar (2014).
endowed with an idea for an invention which can be either *obvious* (‘low type’) or *non-obvious* (‘high type’). The invention type is private information to the inventor. An obvious invention is profitable to develop in the absence of a patent, whereas a non-obvious one requires patent protection to be profitable. Since patent protection increases the profit for both types, however, owners of obvious inventions also have a private incentive to seek a patent. There is a net social cost (benefit) of granting patents for obvious (non-obvious) inventions, so effective screening is important for welfare. The inventor chooses whether to pay a pre-grant fee and, if subsequently approved (screening by the patent office is imperfect), whether to pay a post-grant fee to activate the patent. If the patent is activated, the inventor may choose to license the invention to the competitor, and the competitor chooses whether to challenge the validity of the patent in court. The baseline model has a perfect court that always invalidates an obvious patent and upholds a non-obvious one. In an appendix and in simulations, we also analyze a second version that allows both the patent office and the court to make two-sided errors – granting/upholding an obvious patent and rejecting/invalidating a non-obvious one. Formally, our model is a signaling game in which each decision by the inventor can reveal information about the invention type, and the competitor Bayesian updates.

The key results are as follows. First, provided challenges are credible, the equilibrium is in mixed strategies, with low types either randomizing between offering low and high license fees, or between applying and not applying for patents. The decision they randomize over depends on the level of pre- and post-grant fees, as well as on the examination intensity and the cost of going to court. This highlights the fact that the policy instruments interact in shaping the equilibrium.

Second, we show that if the patent office makes no examination effort (a pure registration system), or if the pre-grant fee is zero and examination is imperfect, complete screening (where only the high type applies) cannot be achieved. This is important because it emphasizes that fees cannot completely screen in a pure registration system, and that pre-grant fees and examination are complements, not substitutes. Complete screening can be achieved by a combination of a pre-grant fee and an examination that is sufficiently rigorous (even if imperfect). Moreover, post-grant fees make screening more difficult. We also show that, despite our assumption that courts are mistake-free, they cannot eliminate all bad patents that are issued. This is because in equilibrium not all low-type patents are challenged by the competitor. This result raises serious

2To our knowledge, Meurer (1989) was the first to analyze a signalling game of patent licensing negotiation in the shadow of litigation, but his focus was not on patent screening. Our model incorporates a licensing subgame but in a broader framework with multiple policy instruments. For other examples of patent litigation models, but without private information, see Choi (1998) and Crampes and Langinier (2002).
doubts about over-reliance on the court system to weed out obvious patents.

Third, we study the optimal structure of fees and show that, when examination is not sufficiently rigorous to achieve complete screening, a social planner would always \textit{frontload} fees, i.e., rely on pre-grant rather than post-grant fees. The intuition for frontloading of fees is that the low type prefers post-grant fees to pre-grant fees more strongly than the high type because the low type has a smaller chance of passing examination. This result calls into question the current structure of fees at the major patent offices around the world. Patent offices often backload a substantial part of their fees through post-grant charges for issuance and renewal. At the USPTO, for example, a typical patent application (three independent claims or less) involves a total of $1,740 in pre-grant fees. If the application is granted and the patent is renewed to full term, total post-grant fees amount to $13,560 (non-discounted).\footnote{Of course, the applicant also incurs the legal cost of preparing the patent application, which typically is in the range of 10-20 thousand dollars.} However, there may be reasons outside our model for backloading fees. As Scotchmer (1999) and Cornelli and Schankerman (1999) showed, renewal fees can be used to ensure that more valuable inventions receive longer protection, which can increase welfare. In addition, capital market imperfections, especially for young, small firms, may be another argument against frontloading. Our analysis shows that any such benefits of backloading fees must be traded off against the costs of impairing the effectiveness of screening.

Fourth, we show that the private incentives to challenge a patent can be either too high or too low relative to the socially optimal level. This is noteworthy because the conventional wisdom suggests that the private incentives to challenge are inadequate due to the public-good nature of challenges (Farrell and Merges, 2004; Farrell and Shapiro, 2008). While this point is valid, it is also incomplete. We show that there are other factors that can either reinforce or counteract this effect. Private and social incentives generally diverge both on the cost and benefit sides. First, a challenger takes his own, but not the patentee’s, litigation cost into account. Second, the private gains from a successful challenge, given by the challenger’s incremental profit from invalidation, can be either larger or smaller than the social gains, given by the deadweight loss that is eliminated.

Finally, we simulate the model, using parameters calibrated on data for the U.S., to study the impact of policy experiments on welfare and the distribution of gains between profits and consumer surplus. The reforms include frontloading fees, intensifying patent office examination, introducing a cap on litigation costs, and replacing examination with a pure registration system. We quantify the effects of these reforms both in the model with a perfect and an imperfect court. In both settings, the results show
that the first three reforms significantly increase welfare, while a registration system reduces it. The simulations also indicate that about 80 percent of patent applications are made on inventions that would be developed even without patent rights, and that the patent office screens these applications out with a probability of about 30 percent. These simulation findings thus highlight the crisis in patent screening, and the need to develop effective policies to address it.

Throughout the paper, we take the existence of a patent system as given. It is not a priori clear whether a patent system is the optimal mechanism in the environment we consider. However, since abolishing the patent system is not on the table in the foreseeable future, we believe that exploring how to improve the functioning of the existing system is a worthwhile endeavor in its own right. One of the advantages of the game-theoretic approach we adopt, as compared to the mechanism design alternative, is that it allows us to use the model to assess the performance of the current patent screening institutions and to assess the welfare effects from counterfactual policy reforms. It is also worth noting that a patent system with the patentability requirement we analyze places lower informational requirements on the government than an alternative incentive mechanism such as a prize system. A prize system requires the government to know the gap between R&D costs and profits in the absence of patent protection, whereas the patent system we model only requires knowledge of the sign of the gap.

The paper is organized as follows. Section 2 presents a simple model of patent screening without courts. Section 3 introduces court challenges, derives the equilibrium, and presents comparative statics results. Section 4 provides conditions for full screening and develops the welfare analysis. Section 5 discusses some of the key assumptions in the model and how the results extend to alternative settings, including allowing for courts to be imperfect. Section 6 then presents simulations of the baseline model that illustrate welfare gains from policy reforms both for the model with perfect courts and imperfect courts. We conclude with a brief summary and directions for further research.

2 A Simple Model

There is a unit mass of inventors. Each inventor is endowed with an idea $\theta \in \{L, H\}$ for an invention. Developing an idea into an invention requires an R&D investment κ_θ. Ideas with $\theta = H$ correspond to inventions with high R&D cost κ_H and occur with probability λ, while ideas with $\theta = L$ correspond to inventions with low R&D cost κ_L and occur with probability $1 - \lambda$. The idea θ (and thus the R&D cost, κ_θ) is the inventor’s private information. Once an invention has been developed, the inventor can
apply for a patent.\footnote{We assume that patent applications can only be submitted on inventions, not ideas. While the legal treatment is more complicated, the basic patent-ineligibility of abstract ideas was recently affirmed by the U.S. Supreme Court in the Bilski case (Bilski v. Kappos, 561 U.S. 593, 2010).

\footnote{For the inventor to benefit from the invention even absent patent protection (\(\pi > 0\)), competition must not be too fierce, or there must be an alternative appropriation mechanism such as lead time.}

\footnote{In principle, \(D\) can also capture other costs associated with patents such as patent congestion (thickets) and royalty stacking that can raise transaction costs for inventors to license inputs necessary to conduct R&D (Heller and Eisenberg, 1998; Shapiro, 2001). We do not explicitly model those costs, however.}

\footnote{For example, in the landmark case of Graham v. John Deere (383 U.S. 1 (1965)) the U.S. Supreme Court stated: “The inherent problem was to develop some means of weeding out those inventions which would not be disclosed or devised but for the inducement of a patent.” Of course, while this theoretical patentability criterion makes economic sense, the courts have struggled with the practical aspects of how to implement it. The various judicial standards for non-obviousness, novelty etc. reflect an attempt by the courts to do this, the basic presumption being that if an invention is obvious to those skilled in the relevant scientific arts then it is probably cheap to develop, and one does not need a patent to induce it.}

Profits and welfare prior to invention are normalized to zero. If the invention is developed, profits and welfare depend on whether the inventor obtains a patent. In the absence of a patent, the inventor earns \(\pi \geq 0\) and total welfare is \(w \geq \pi\) (both are gross of R&D costs). Thus, \(\pi\) is a measure of the profits the inventor can appropriate without a patent.\footnote{We assume that patent applications can only be submitted on inventions, not ideas. While the legal treatment is more complicated, the basic patent-ineligibility of abstract ideas was recently affirmed by the U.S. Supreme Court in the Bilski case (Bilski v. Kappos, 561 U.S. 593, 2010).} With a patent, the inventor earns \(\pi + \Delta\), and welfare is \(w - D\), where \(\Delta > 0\) denotes the patent premium and \(D \geq 0\) is the deadweight loss from monopoly pricing.\footnote{For the inventor to benefit from the invention even absent patent protection (\(\pi > 0\)), competition must not be too fierce, or there must be an alternative appropriation mechanism such as lead time.} This captures in the simplest possible way the classic tradeoff whereby patents increase the incentives to innovate but at the same time cause deadweight loss. We assume that \(w - D \geq \pi + \Delta\). This assumption says that the social returns exceed the private returns to R&D, which is consistent with the evidence in Bloom, Schankerman and Van Reenen (2013).

An important modeling choice concerns the requirements for an invention to be patentable. In what follows, we impose the patentability requirement \(\kappa > \pi\), i.e., R&D costs must exceed the profits the inventor can appropriate without a patent. This corresponds to the notion that patents should be given only to those inventions that require the patent incentive to be developed, and not to those that society would have benefited from even absent a patent. This perspective is in line with the rationale courts and legal scholars typically give for the non-obviousness requirement in patent law (Eisenberg, 2004).\footnote{In principle, \(D\) can also capture other costs associated with patents such as patent congestion (thickets) and royalty stacking that can raise transaction costs for inventors to license inputs necessary to conduct R&D (Heller and Eisenberg, 1998; Shapiro, 2001). We do not explicitly model those costs, however.}

In our setup, where ideas arrive exogenously and are scarce, this is also the patentability requirement that a social planner would choose. To see this, consider the planner’s decision which types of inventors to give patents to. The planner is worried about deadweight loss, but also realizes that some socially valuable inventions will not be developed without the promise of a patent. Ideas with \(\pi \geq \kappa\), however, are developed even without a patent, so giving them a patent can never be optimal. A second concern
for the planner would be that giving patents to some ideas with \(\pi < \kappa \leq \pi + \Delta \) leads to development of these ideas even though they are not socially valuable, i.e., \(\kappa > w - D \). Our assumption that \(w - D \geq \pi + \Delta \) rules this out, however, as it implies that ideas that are not socially valuable are not privately valuable either.\(^8\)

To make the problem interesting, we assume that \(\kappa_H = k > \pi \geq \kappa_L = 0 \). Setting \(\kappa_L = 0 \) is without loss of generality as type-\(L \) inventions are developed regardless of whether or not a patent is expected to be obtained.\(^9\) In order to ensure that patent protection can provide sufficient incentive for type-\(H \) inventors to develop their ideas, we assume \(\Delta \geq k - \pi \). Note that this implies \(w - D \geq k \), so that investment by type-\(H \) inventors is socially valuable even if it comes at the expense of deadweight loss.

Under these assumptions, type-\(H \) inventors should be given patents while type-\(L \) inventors should not. The problem, of course, is that the type \(\theta \) of an invention is privately observed by the inventor. Since type \(L \) also benefits from patent protection, society must put in place a screening mechanism. We start by considering the patent office; in Section 3 we introduce the courts as a second “line of defense.”

To obtain a patent, the inventor must submit an application to the patent office and pay a pre-grant fee \(\phi_A \geq 0 \). The patent office then examines the application. We assume that type-\(H \) inventions always pass the examination, while type-\(L \) inventions pass the examination only with probability \(1 - e \), where \(e \in [0, 1] \) represents the patent office’s examination intensity; with probability \(e \) type-\(L \) inventions are detected and refused patent protection. (We relax the assumption that there are no erroneous rejections in Appendix B.) Inventions that pass the examination must pay a post-grant fee \(\phi_P \geq 0 \) in order to be issued a patent.\(^10\) This payment thus occurs after the patent office has decided whether to allow or reject the application, and has to be paid only in case of allowance. We will refer to payment of \(\phi_P \) as the inventor activating the patent.\(^11\) If the inventor does not apply, does not pass the examination, or does not pay \(\phi_P \), the invention falls into the public domain.

Suppose for the moment that challenging the validity of a patent in court is not possible. Then an inventor of type \(H \) invests in R&D, applies for a patent, and activates it if and only if

\[
\Delta - (k - \pi) - \phi_P - \phi_A \geq 0. \tag{1}
\]

\(^8\)For more discussion on our patentability requirement, see Section 5.2.

\(^9\)Note that for the simulations in Section 6 we do not impose \(\kappa_L = 0 \). The simulations actually generate an estimate of \(\kappa \) for both type-\(L \) and \(H \) inventions.

\(^10\)As we will show, our results suggest that negative post-grant fees might be optimal. In principle this could be implemented by imposing a penalty on failed patent applications or a reward to successful applicants. Of course, this might introduce excessive incentives for the patent office to “reject” applications.

\(^11\)One can think of the post-grant fee \(\phi_P \) as a renewal fee paid in lump sum, whereby the inventor chooses to maintain his patent for some duration in exchange for payment of \(\phi_P \).
An inventor of type L always invests as $\kappa_L = 0 < \pi$. He applies for a patent and activates (conditional on passing the examination) if and only if

$$(1 - e)(\Delta - \phi_P) - \phi_A \geq 0. \tag{2}$$

Although derived from a highly stylized model, this pair of inequalities leads to two key observations which, as we will show, apply much more generally:

Observation 1. In the absence of sufficiently rigorous patent examination, it is impossible to deter type L without also deterring type H.

Observation 2. Pre-grant fees screen better than post-grant fees.

Observation 1 is related to the fact that holding a patent is worth the same to both types (namely, Δ), but type H needs to cover an additional $k - \pi$ to make (investing and) applying worthwhile. This implies that if $e = 0$, type L’s payoff from applying strictly exceeds type H’s for any (ϕ_A, ϕ_P), so setting fees high enough to deter type L will also deter type H. Achieving full screening – i.e., deterring applications from type L without discouraging investment by type H – requires

$$(1 - e)\Delta \leq \Delta - (k - \pi), \tag{3}$$
i.e., a minimum examination intensity $\bar{e} \equiv (k - \pi)/\Delta > 0$. If $e < \bar{e}$, there is no combination of fees that can achieve full screening.

The sense in which Observation 2 applies is that type L prefers fees to be backloaded more strongly than type H. Keeping the sum of pre-grant and post-grant fees constant at $\phi_A + \phi_P = \Phi$, type H is indifferent over all combinations of fees: ϕ_A and ϕ_P are perfect substitutes for him. By contrast, type L strictly prefers post-grant fees to pre-grant fees. Again keeping the sum of fees constant, type L’s expected total fee payment is $\phi_A + (1 - e)\phi_P = \phi_A + (1 - e)(\Phi - \phi_A)$, which is increasing in ϕ_A. The reason why type L prefers fees to be backloaded is that pre-grant fees must be paid whether or not he passes examination, whereas post-grant fees are only paid conditional on passing examination.

One implication of Observation 2 is that we cannot rely exclusively on post-grant fees if we want to achieve full screening. If $\phi_A = 0$, then (unless $e = 1$) the only way to deter type L is to set $\phi_P \geq \Delta$, but then type H’s payoff from investing in R&D is negative. Hence, full screening requires strictly positive pre-grant fees, $\phi_A > 0$.

3 Court Challenges

We now extend the model from Section 2 by introducing court challenges. We model courts as differing from the patent office in two ways. First, while the patent office
examines all applications, the courts only review patents whose validity is challenged (in practice, usually by a competitor or other potential licensee). We thus consider an explicit licensing game between the inventor and a competitor active in the same industry. Second, in assessing validity the courts make fewer mistakes than the patent office. To begin, we adopt the simplifying assumption that the courts do not make any mistakes: they always uphold valid patents (type H) and revoke invalid ones (type L). In Section 5.1 and Appendix B, we examine a more general screening technology in which both the patent office and courts can make type I and type II errors.

Suppose the invention is a cost-reducing technology and each inventor has a single competitor. Once developed the invention can immediately be freely copied unless protected by a patent. Thus, in the absence of a patent, both the inventor and competitor benefit from the cost reduction and obtain profit π each.\(^{13}\) Denoting consumer surplus by \(S \geq 0\), total welfare is \(w = 2\pi + S\). An inventor holding a patent can enter into a license agreement with his competitor. We assume that the inventor makes a take-it-or-leave-it offer to the competitor to license the invention at a royalty rate that generates license revenue \(F\) (for brevity, we hereafter refer to \(F\) as the license fee). The competitor decides whether to accept or reject; if she rejects, she further decides whether to challenge the patent in court.

If the firms fail to agree on a license contract and the courts do not revoke the patent, only the inventor can use the new cost-reducing technology while the competitor has to use the backstop technology.\(^{14}\) Under this asymmetric competition, the inventor earns \(\pi + \Delta I\) and the competitor \(\pi - \Delta C\), where \(\Delta I > 0\) and \(\Delta C > 0\). That is, the patent benefits the inventor and hurts the competitor. The competitor’s profits in this case \((\pi - \Delta C)\) constitute her outside option in the licensing negotiations.

If the firms reach agreement, the competitor pays the license fee to the inventor and both firms can use the invention in production. With a license agreement in place, the firms are able to (jointly) exercise market power, for example by using royalties to soften competition. We capture this in reduced form by assuming that the inventor earns \(\pi + m + F\) and the competitor \(\pi - F\), where \(m \geq 0\) is the extra profit due to market power.\(^{15}\) Thus, total industry profit becomes \(2\pi + m\). We assume that \(m + \Delta C \geq \Delta I\),

\(^{12}\)Court cases have more time to gather evidence and hear arguments than the typical time patent examiners allot to screening, and also have the patent office’s prior art search as input. Thus there is reason to believe that courts (especially bench trials) may be better at screening.

\(^{13}\)Symmetry in profits is not important; what matters is that the inventor earns some profit from the invention even without patent protection and that the competitor is made worse off by the inventor owning a patent.

\(^{14}\)We are assuming that infringement is not at issue. If the competitor infringed the patent without challenging its validity, the inventor could sue for infringement and would be sure to prevail.

\(^{15}\)The parameter \(m\) can be interpreted as a measure of how lenient or restrictive antitrust policy is towards license agreements. Because the inventor has all the bargaining power, it does not matter how the extra profit \(m\) is distributed between inventor and competitor.
which will ensure that the inventor prefers to license his invention rather than exclude
the competitor and compete with asymmetric costs. Accordingly, in what follows we
let $\Delta \equiv m + \Delta_C$.\(^{16}\)

If the competitor rejects the license contract, she has the option of challenging
the patent in court at litigation cost l_C to herself and l_I to the inventor. We assume
$l_C < \Delta_C$, since otherwise the competitor never has any incentive to challenge. The
court then determines the validity of the patent. We assume that during litigation the
court learns the invention’s true type θ. If $\theta = L$, the court invalidates the patent and
both firms can freely use the invention. If $\theta = H$, the court upholds the patent and the
inventor can offer a new license contract to the competitor.

This is a signaling game where the inventor’s decisions to apply for and activate a
patent, as well as which license fee to propose, potentially convey information about
his type to the competitor. We now analyze the Perfect Bayesian Equilibrium of this
game.

3.1 Equilibrium

Let $\tilde{\lambda}(F)$ denote the competitor’s belief that she is facing a type-H inventor when
offered a license at fee F. Suppose type H invests and applies. Suppose too that if he
is successful in obtaining a patent, he activates it and charges a license fee $F^H = \Delta_C$ (we
later show under what conditions this is an equilibrium). Let α denote the probability
that a type-L inventor applies for a patent. Similarly, let ρ denote the probability that
a type-L inventor activates the patent in case he passes examination, and y be the
probability that he offers a license at fee F^H. The competitor’s belief that an activated
patent is valid when offered a license at fee F^H is

$$\hat{\lambda} \equiv \tilde{\lambda}(F^H) = \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)\alpha\rho y}.$$ \hspace{1cm} (4)

The competitor prefers challenging to not challenging if and only if $(1 - \hat{\lambda})\Delta_C \geq l_C$. The
left-hand side is the expected benefit from a challenge, given by the probability
that the court invalidates the patent times the increase in the competitor’s profits if the
patent is invalidated; the right-hand side is the cost of litigation. The lower bound on $\hat{\lambda}$ occurs if the type-L inventor pools with the type-H inventor, i.e., if $\alpha = \rho = y = 1$, and is given by

$$\underline{\lambda} \equiv \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)}.$$

\(^{16}\)Letting $S - \Delta_S$ denote consumer surplus after innovation when there is a patent, we have $D \equiv \Delta_S - m$. The assumption that deadweight loss is positive amounts to $\Delta_S \geq m$.

10
Because this is the lowest value that $\hat{\lambda}$ can take, we will say that a validity challenge is credible if and only if
\[(1 - \hat{\lambda}) \Delta_C \geq l_C.\] (5)

When challenges are not credible, the competitor never challenges and accepts any license fee $F \leq \Delta_C$. Hence, both types of inventors propose $F = \Delta_C$, and holding a patent is worth the same to both of them, namely $\Delta = m + \Delta_C$. The outcome is thus exactly the same as in the simple model of Section 2.

When challenges are credible, holding a patent is generally not worth the same to both types of inventors. Because type L is less likely to survive a challenge than type H, the patent is worth less to type L for any given probability of being challenged. One might thus expect post-grant fees to be effective at screening out type-L inventors: it should suffice to set ϕ_P at (or slightly above) the expected value of a patent to type L. Since the decision to challenge is endogenous, however, this argument does not work. To see this, suppose only type-L inventors pay the post-grant fee to activate their patents (a separating equilibrium). Then the competitor correctly infers that all activated patents are valid and never challenges. But then, the patent is again worth the same to both types of inventors, and the low type would want to activate as well. As this argument suggests, and Proposition 1 establishes formally, the equilibrium generally involves mixed strategies.

Proposition 1. If $\phi_P > \Delta - \phi_A/(1 - e)$, the type-$L$ inventor does not apply and the competitor does not challenge. If challenges are credible and $\phi_P \leq \Delta - \phi_A/(1 - e)$, there is a semi-separating equilibrium in which:

(i) the type-H inventor invests, applies, activates, and proposes $F^H = \Delta_C$;

(ii) the type-L inventor always randomizes over either

(a) the decision whether to apply or not (probabilities α and $1 - \alpha$), or

(b) the license fee to propose, $F^L \in \{\Delta_C, l_C\}$ (probabilities y and $1 - y$),

such that $(1 - \hat{\lambda}) \Delta_C = l_C$; he always activates ($\rho = 1$);

(iii) the competitor randomizes over the decision whether to challenge or not (probabilities x and $1 - x$) if offered $F = \Delta_C$ and never challenges if offered $F = l_C$, with

\[
x = \begin{cases}
\tilde{x} \equiv \frac{\Delta_C - l_C}{\Delta + l_I} & \text{for } \phi_P < l_C + m - \frac{\phi_A}{1 - e} \\
\hat{x} \equiv \frac{\Delta - \phi_P - \phi_A/(1 - e)}{\Delta + l_I} & \text{for } l_C + m - \frac{\phi_A}{1 - e} \leq \phi_P \leq \Delta - \frac{\phi_A}{1 - e};
\end{cases}
\]
This semi-separating equilibrium requires that the high type make nonnegative profit,
\[\Delta - (k - \pi) - x l_I - \phi_A - \phi_P \geq 0. \]

Proof. See Appendix A.

In the equilibrium described in Proposition 1, the type-L inventor applies with probability \(\alpha \) and charges a high license fee \(\Delta_C \), mimicking the type-H inventor, with probability \(y \).\(^{17} \) With probability \(1 - y \), type L charges a low license fee \(l_C \), which prevents the competitor from challenging.\(^{18} \) The competitor challenges with probability \(x \) whenever the inventor proposes a license fee of \(\Delta_C \).

When the rate of challenges is \(x \), the type-L inventor’s payoff from investing, applying, activating and proposing \(F^H \) is \(\Pi^H = \Delta - (k - \pi) - x l_I - \phi_P - \phi_A \): if a challenge occurs, the type-L inventor is sure to win but nevertheless bears the litigation cost \(l_I \). Because the rate of challenges depends endogenously on the patent office fees, the type-L inventor’s payoff is affected by \(\phi_A \) and \(\phi_P \) both directly and indirectly through their effect on \(x \).

Let \(\tilde{\alpha} \) (resp. \(\tilde{y} \)) denote the value of \(\alpha \) (resp. \(y \)) that solves \((1 - \bar{x}) \Delta_C = l_C \) when \(y = 1 \) (resp. \(\alpha = 1 \)) and \(\rho = 1 \). From (4) it follows that \(\tilde{\alpha} = \tilde{y} \). Figure 1 depicts how the equilibrium that arises when challenges are credible depends on \(\phi_A \) and \(\phi_P \). In region 1, where \(\phi_P < l_C + m - \phi_A / (1 - e) \), fees are sufficiently low for the type-L inventor to always find it worthwhile to apply and activate (\(\alpha = \rho = 1 \)), while randomizing over the license fee to offer with \(y = \tilde{y} \). The rate of challenges is given by \(\tilde{x} \). Moving toward the north-east into region 2, type L can no longer break even by proposing the low fee \(F = l_C \); he now randomizes over the application decision, applying with probability \(\alpha = \tilde{\alpha} \) while activating and offering the high license fee \(F^H \) with certainty (\(\rho = y = 1 \)). The rate of challenges is given by \(\tilde{x} \). As fees increase further and we reach region 3, the type-L inventor no longer applies (\(\alpha = 0 \)) and the rate of challenges drops to zero (\(x = 0 \)). The figure also shows the condition under which type \(H \) finds it profitable to invest, as represented by the \(\Pi^H = 0 \) locus.\(^{19} \)

\(^{17} \) The equilibrium is not unique. There exists a continuum of semi-separating equilibria with \(\Delta_C - l_I \leq F^H \leq \Delta_C \) and (depending on parameters) also pooling equilibria in which both types charge \(F^* \leq l_C + \lambda \Delta_C \) and the competitor refrains from challenging. However, the semi-separating equilibrium with \(F^H = \Delta_C \) is the only one that survives application of the D1 criterion. Details are available from the authors upon request.

\(^{18} \) This outcome, where the owner of the low quality patent charges a royalty that preempts a challenge, could be interpreted as behavior by a patent assertion entity. For recent analysis of this issue, see FTC (2016).

\(^{19} \) Note that for certain parameters, this locus may be upward sloping, as shown in the figure. This implies that the type-L inventor’s expected profit is increasing in \(\phi_A \) over some range. The reason this can happen is that an increase in fees raises the perceived quality of patents, to the benefit of patent holders. While this argument is made in a reduced-form way in Atal and Bar (2014), here we endogenize the source of the benefits from higher perceived patent quality, namely, the fact that higher fees lead to fewer challenges and thus lower litigation costs. Under some conditions, this indirect effect of higher fees can dominate their direct effect on the high type’s profit.
3.2 Comparative statics

Patent office fees and examination intensity affect the equilibrium application rate of type-\(L\) inventors, the rate of challenges, and the license fees proposed. The next proposition characterizes these comparative statics.

Proposition 2. Suppose the type-\(L\) inventor invests, i.e., \(\Pi_H \geq 0\), and challenges are credible. Then:

(i) An increase in \(A\) or \(P\) weakly decreases applications by type \(L\), weakly decreases the rate of challenges (\(x\)), and weakly increases the probability that type \(L\) charges the high license fee (\(y\)).

(ii) An increase in \(e\) has ambiguous effects on applications by type \(L\), weakly decreases the rate of challenges (\(x\)), and weakly increases the probability that type \(L\) charges the high license fee (\(y\)).

Proof. See Appendix A.

Proposition 2 shows that an increase in fees unambiguously decreases bad applications and challenges (in a weak sense). It also leads type \(L\) to charge the high license fee more often. As fees increase and we move from region 1 to 2, type-\(L\) inventors switch from randomizing over the license fee to randomizing over the application decision, and charge the high license fee with certainty. Perhaps more surprisingly, an increase in the examination intensity has ambiguous effects on applications by type-\(L\) inventors.
While increasing the examination intensity directly discourages type-L inventors from applying, over some range, the application rate of type-L inventors actually increases with e. The intuition is that more rigorous examination makes it more likely that a granted patent is valid, other things equal. That is, higher e raises the competitor’s posterior belief $\hat{\lambda}$. But in equilibrium, the competitor must be indifferent between challenging and not, which requires that $\hat{\lambda}$ be held constant. Therefore, in region 2, type L responds to an increase in e by adjusting the probability of applying (α) upward. Finally, an increase in e lowers the rate of challenges: as type L’s payoff from applying declines, the rate of challenges needed to make him indifferent between applying and not is reduced.\footnote{More stringent patent examination can reduce the incidence of litigation, but does not necessarily do so. Although a sufficiently large increase in the examination intensity (to the point where the challenge credibility constraint (5) no longer holds) always leads to a drop in litigation, the same is not true for marginal increases in e. To see this, note that the rate of challenges x in the model does not coincide with the observed rate of litigation. Letting LR denote the rate at which patents are litigated, in region 1 for example we have

$$LR = \frac{x(\lambda + (1-\lambda)(1-e)y)}{\lambda + (1-\lambda)(1-e)}.$$}

That is, the litigation rate is equal to x multiplied by the percentage of patentees charging high royalties. Although raising e weakly reduces the rate of challenges, it may increase the litigation rate. This is the case in region 1, where x is constant but y increases with e; see Figure 3.

Figure 2: α, x, and y as a function of ϕ_A for $\bar{e} < e < 1$ and $\phi_P < \Delta - (k - \pi)/e$

Figure 3: α, x, and y as a function of e for $\phi_A + \phi_P < l_C + m$ and $\phi_A > 0$
Figures 2 and 3 illustrate these results. Figure 2 shows how the equilibrium values of α, x, and y vary with ϕ_A, holding ϕ_P and e constant. It is drawn for parameter values such that $\bar{e} < e < 1$ and $\phi_P < \Delta - (k - \pi)/e$, which ensures that for $\phi_A = 0$ the equilibrium is in region 1, while for ϕ_A sufficiently large the equilibrium is in region 3. The cutoffs ϕ_A^{12} and ϕ_A^{23} are defined as the threshold values of ϕ_A above which the equilibrium moves from region 1 to region 2 and from region 2 to region 3, respectively. Figure 3 shows how α, x and y vary with e, holding constant ϕ_A and ϕ_P. It is drawn for parameter values such that $\phi_A + \phi_P < l_C + m$ and $\phi_A > 0$, which ensures that for $e = 0$ the equilibrium is in region 1, while for e sufficiently close to 1 the equilibrium is in region 3. The cutoffs e^{12} and e^{23} are defined similarly as above.

4 Screening and Welfare

In this section we revisit the conditions for full screening. We show that when court challenges are possible, full screening again requires a minimum examination intensity, and that its level is the same as in the absence of courts. We then set up the welfare function and study the optimal fee structure and the private and social incentives for court challenges.

4.1 Conditions for full screening

The following proposition examines when and how it is possible to deter type-L inventors without discouraging type H.

Proposition 3. There exists a combination of fees (ϕ_A, ϕ_P) inducing full screening if and only if $e \geq \bar{e}$. For a given $e \geq \bar{e}$, any combination of fees satisfying

$$ (1 - e)(\Delta - \phi_P) \leq \phi_A \leq \Delta - (k - \pi) - \phi_P \tag{6} $$

achieves full screening.

Proof. By Proposition 1, deterrence of type L ($\alpha = 0$) requires $\phi_A \geq (1 - e)(\Delta - \phi_P)$. Investment by type H when type L is deterred (and thus, in equilibrium, $x = 0$) requires $\Delta - (k - \pi) - \phi_P \geq \phi_A$. A pre-grant fee ϕ_A satisfying both inequalities exists if and only if $\Delta - (k - \pi) - \phi_P \geq (1 - e)(\Delta - \phi_P)$, or

$$ e \geq \frac{k - \pi}{\Delta - \phi_P}. \tag{7} $$

Since the right-hand side increases with ϕ_P, the minimum level of e required to achieve full screening is obtained by evaluating (7) at $\phi_P = 0$, yielding $e \geq (k - \pi)/\Delta = \bar{e}$. \hfill \Box

Both figures are drawn under the implicit assumption that $\Pi^H \geq 0$ and that e is low enough for the challenge credibility constraint (5) to be satisfied.
Proposition 3 extends Observation 1 from the simple model of Section 2 by showing that full screening of inventors requires a minimum examination intensity, $\bar{e} > 0$. This happens despite the fact that we have assumed that courts are perfect at discriminating between valid and invalid patents. The presence of courts does not even change the level of rigor required to achieve full screening, which remains \bar{e}. This is because, although the courts are perfect, challenges must be initiated by the competitor, who is not. The competitor is Bayesian and updates her beliefs based on the inventor’s equilibrium strategy. If there were an equilibrium in which only type H applies, the competitor would rationally expect any applicant to be of type H, and therefore refrain from challenging. But then, in the absence of patent examination, type L would also find it worthwhile to apply, hence such an outcome cannot be an equilibrium. Instead the equilibrium will be in mixed strategies, implying that at least some type-L inventors apply.

This result underlines the importance of the patent office. A key distinctive feature of patent office review is that all applications are examined. By contrast, court review only occurs if the competitor challenges, and that depends on the type-L inventor’s equilibrium strategy. This is the fundamental drawback of a pure registration system, relying entirely on the courts for screening.\footnote{Note that we are implicitly assuming that the patent office can commit to examining all patent applications, even if in equilibrium no type-L inventor applies (region 3). This assumption can be justified in two ways. First, patent examiner compensation usually contains few performance-dependent elements, so that there is little incentive for examiners to adjust their examination intensity according to their beliefs about the proportion of good and bad applications. Second, even though it is outside our current model, in a richer setting where inventions differ in their commercial value, there will always be high-value inventors who apply even though their inventions do not satisfy the patentability criteria; the patent office’s examination intensity merely determines the threshold on value below which no type-L applications are submitted. Under the plausible assumption that the patent office does not observe the value of an invention, from the examiner’s perspective there will thus always be a strictly positive probability of the application being a low type. Provided the competitor observes the value, as we assume, our results on private challenges are unaffected.}

Proposition 3 also characterizes the fee structure that is necessary to achieve full screening. Because $\phi_P \leq \Delta - (k - \pi) < \Delta$ is needed in order for type H to invest, (6) implies that for any $e < 1$, the pre-grant fee ϕ_A must be strictly positive if type L is to be deterred. The intuition is that, if applications are costless ($\phi_A = 0$) and examination is less than perfect ($e < 1$), type-L inventors have nothing to lose from applying. Because of the mixed-strategy nature of the equilibrium, at least a fraction of type-L inventors will activate the patent for any $\phi_P < \Delta$. Completely deterring type L through the post-grant fee is possible only by setting $\phi_P \geq \Delta$, which also deters type H. In addition, satisfying (6) requires that ϕ_P be set sufficiently low, which is a variant of Observation 2 from the simple model of Section 2.

A further result of our analysis is that, despite the fact the courts are mistake-free,
they cannot eliminate all bad patents that are issued. Eliminating all bad patents would require that $x = 1$ whenever $\alpha > 0$, i.e., all issued patents would need to be challenged. Alternatively, type-L inventors would have to reveal themselves so that they could be targeted by challenges. But neither of these is an equilibrium outcome. There is no equilibrium with $\alpha > 0$ and $x = 1$. There is also no equilibrium in which type-L inventors reveal themselves and then get challenged. Although for $\phi_P < l_C + m - \phi_A/(1 - e)$, type L sometimes reveals himself by offering $F = l_C$, the competitor optimally responds to this by not challenging.

4.2 Welfare

We now derive expected welfare as a function of the equilibrium variables α, x, and y. Assume that the cost of examining an application with intensity e is $\gamma(e)$. Denoting expected welfare by W, we have

$$W(\alpha, x, y) = 2\pi + S + \lambda(-D - x(l_C + l_I) - k - \gamma(e)) + (1 - \lambda)\alpha((1 - e)(y(1 - x) + 1 - y)(-D) - xy(l_C + l_I)) - \gamma(e)).$$

With probability λ, the invention is non-obvious, in which case the inventor always applies and society incurs the deadweight loss D, the cost of investment k and the cost of examination $\gamma(e)$ with certainty, while it incurs the cost of challenges ($l_C + l_I$) with probability x. With probability $1 - \lambda$, the invention is obvious, in which case the inventor applies with probability α. Conditional on application, society incurs the deadweight loss with probability $(1 - e)(y(1 - x) + 1 - y)$, the cost of challenges with probability $(1 - e)xy$, and the cost of examination with certainty.

Optimal fee structure Let $\varepsilon \equiv [k - \pi - \Delta(\Delta_C - l_C)/(\Delta + l_I)]/(l_C + m)$. If $e < \varepsilon$ only region 1 is attainable, and in region 1 welfare is unaffected by ϕ_A and ϕ_P because $\alpha = 1$, $x = \bar{x}$, and $y = \bar{y}$, none of which depend on fees. If $e \geq \bar{e}$, region 3 is attainable, and any combination of fees within region 3 maximizes welfare. This is immediately clear from inspection of (8): holding e constant, welfare is maximum for $\alpha = 0$ and $x = 0$.

To make the problem interesting, assume in what follows that $\varepsilon < e < \bar{e}$ (that is, $(1 - e)\Delta > \Delta - (k - \pi)$ and $\Delta - (k - \pi) - \bar{x}l_I > (1 - e)(l_C + m)$), so that both region 1 and region 2 are attainable but region 3 is not (i.e., full screening cannot be achieved).

Geometrically, region 3 in Figure 1 disappears as the $\phi_P = \Delta - \phi_A/(1 - e)$ line now shifts above the $\Pi^H = 0$ locus.

The social planner’s problem is to choose ϕ_A and ϕ_P to maximize welfare subject
to type H investing, taking e as given:

$$\max_{\phi_A, \phi_P} W(\alpha, x, y) \ \text{subject to } \Pi^H \geq 0.$$

Although welfare does not depend directly on ϕ_A and ϕ_P, it depends on them indirectly through their effect on the equilibrium values of α, x, and y. The following proposition characterizes the welfare-maximizing mix of fees.

Proposition 4. Suppose $\bar{e} < e < \bar{e}$. Welfare maximization always entails fees such that $\phi_A \geq (1 - e)(l_C + m - \phi_P)$ (region 2). If $\Delta_C > (l_C/(l_C + l_I))D$, welfare is maximized by setting $\phi_P = 0$ and ϕ_A such that $\Pi^H = 0$, thus minimizing challenges. If $\Delta_C < (l_C/(l_C + l_I))D$, welfare is maximized by setting $\phi_A = (1 - e)(l_C + m - \phi_P)$ and $0 \leq \phi_P \leq \min\{l_C + m, [\Delta - (k - \pi) - \tilde{x}l_I - (1 - e)(l_C + m)]/e\}$, thus maximizing challenges.

Proof. See Appendix A. \qed

Proposition 4 establishes two important results. First, it is always optimal to raise fees high enough to push the equilibrium into region 2. To understand this result, note that the welfare loss from type-L inventors in (8) can be written as

$$\alpha[(1 - e)D + \gamma(e)] - (1 - e)\alpha y(D - (l_C + l_I)).$$

The first term represents the social cost that low types applying for patents would cause if there were no court challenges. The second term represents the deadweight loss that is eliminated by court challenges net of litigation costs. Recall that in region 2 type L randomizes over the application decision ($\alpha = \tilde{\alpha}$, $y = 1$), whereas in region 1 he randomizes over the license fee to propose ($\alpha = 1$, $y = \tilde{y}$). Since $\tilde{\alpha} = \tilde{y}$, it follows that αy is the same in regions 1 and 2. This reflects the fact that in both regions αy is such that the competitor is indifferent between challenging and not. Thus holding x constant the second term in the expression above is also the same in both regions. Raising fees thus affects welfare only through the first term and through the rate of challenges x. Recall that x equals \tilde{x} in region 1 (which is constant in fees) and \hat{x} in region 2 (decreasing in fees). The proof shows that \hat{x} tends to \tilde{x} as fees approach the border between regions 1 and 2 (with equality for $\phi_A = (1 - e)(l_C + m - \phi_P)$). Thus, we can achieve the same rate of challenges in region 2 as in region 1. Because the first term is increasing in α, and α is lower in region 2, the welfare loss is also lower in region 2.

Second, it is optimal to set fees to either maximize or minimize challenges, depending on parameters. The welfare effect of challenges is *a priori* ambiguous. Differentiating W with respect to x, we have

$$\frac{\partial W}{\partial x} = -\lambda(l_C + l_I) + (1 - \lambda)(1 - e)\alpha y(D - (l_C + l_I)).$$
On the one hand, challenges help society get rid of invalid patents, which raises welfare provided deadweight loss exceeds litigation costs, $D > l_C + l_I$. On the other hand, challenges also create wasteful litigation of valid patents. Rewriting (9) using the definition of $\hat{\lambda}$ yields

$$\frac{\partial W}{\partial x} = (\lambda + (1 - \lambda)(1 - e^{\alpha y}) \left[(1 - \hat{\lambda})D - (l_C + l_I) \right].$$

(10)

The term in square brackets represents the social incentive to challenge a patent whose probability of being valid is $\hat{\lambda}$. It equals the posterior probability of the inventor being of type L (so that the courts will invalidate) times the deadweight loss that is saved if the patent is invalidated, minus the social cost of a challenge.

Now consider the private incentive to challenge. In equilibrium (be it in region 1 or region 2), we have $(1 - \hat{\lambda})\Delta C = l_C$: the competitor must be indifferent between challenging and not when the inventor charges the high license fee $F = \Delta C$. Evaluating (10) at $1 - \hat{\lambda} = l_C / \Delta C$, we see that welfare is decreasing in x if and only if

$$\Delta C \geq D \left(\frac{l_C}{l_C + l_I} \right).$$

(11)

The social and private incentives to challenge generally diverge: if (11) holds (with strict inequality), the equilibrium rate of challenges is socially excessive; if (11) does not hold, the rate of challenges is socially insufficient. In either case, the private challenge decision is inefficient.

When equilibrium challenges are socially excessive, a social planner wants to minimize challenges. Proposition 4 shows that to achieve this, the planner should frontload fees, setting post-grant fees to zero while relying exclusively on pre-grant fees, and set pre-grant fees at the highest level compatible with investment by type H, so that the constraint $\Pi^H \geq 0$ is binding. The reason for this is that the rate of challenges goes hand in hand with type L’s payoff: fewer challenges are necessary to make type L indifferent between applying and not when his payoff from applying is small. Minimizing challenges subject to investment by type H requires minimizing type L’s payoff while holding type H’s payoff constant. Because type L prefers fees to be backloaded more strongly than type H, this is accomplished through a mix of fees that emphasizes pre-grant over post-grant fees.

Two points should be noted. First, there is another reason outside our model that leads to insufficient incentives to challenge patents. In particular, when there are multiple licensees, a patent challenge has the nature of a public good (Farrell and Merges, 2004; Farrell and Shapiro, 2008). Second, for completeness, we want to point out that there is also a second inefficiency associated with the competitor’s challenge decision which cuts in the opposite direction: when $F = l_C$, the inventor is revealed as being of type L, so a challenge is socially desirable but does not occur. The planner cannot address this second inefficiency through patent office fees, however, because the fees have no effect on the rate of challenges when $F = l_C$ (it is always zero).
Conversely, when challenges are socially insufficient, the planner wants to maximize challenges. To this end, the planner should set fees as low as possible within region 2. Any mix of fees located on the boundary between regions 1 and 2 (where $\phi_A = (1 - e)(l_C + m - \phi_P)$ and for which $\Pi_H \geq 0$ (which requires $\phi_P \leq \Delta - (k - \pi) - \tilde{x}l_I - (1 - e)(l_C + m)/e$) leads to $x = \tilde{x}$, which is the maximum rate of challenges that can be sustained. The optimal mix of fees is no longer uniquely determined. In general, the constraint $\Pi_H \geq 0$ does not bind at the optimum. Notice, however, that $\phi_P = 0$ continues to be in the solution set. Thus, insufficient incentives to challenge do not provide an argument against frontloading of fees.\footnote{Among all solutions, $\phi_P = 0$ is the one that maximizes the high type’s payoff.}

Are the incentives to challenge likely to be excessive or insufficient? In a homogeneous-good Cournot model with linear demand and constant marginal cost (which is what we use for the simulations in Section 6), we have $\Delta_C > D$, i.e., the competitive disadvantage that the patent inflicts on the competitor is greater than the deadweight loss it causes. This alone is enough to imply (11) and thus excessive challenges. We conjecture that the condition holds much more generally, though, because there is a second force that also works in the direction of excessive challenges: the competitor does not take into account the litigation cost l_I it imposes on the inventor (and society) by challenging. If litigation costs for both parties are identical ($l_C = l_I$), for example, (11) only requires $\Delta_C > D/2$.

That challenges are undesirable does not mean that the threat of challenges is undesirable. The presence of courts induces randomization by the type-L inventor and thus leads to lower license fees (region 1) or fewer bad applications (region 2). Our results do suggest, however, that the value of courts stems not so much from invalidating bad patents – when incentives to challenge are excessive, the expected reduction in deadweight loss is outweighed by litigation costs in equilibrium – but from deterring bad applications and keeping a lid on license fees.

Fee structure and examination intensity when the patent office is budget constrained Proposition 4 calls for an increase in patent office fees at least to the point where $\phi_P + \phi_A/(1 - e) = l_C + m$ (region 2). Given that litigation costs can easily run a million dollars or more (AIPLA, 2011), such a steep hike may not be politically feasible. In a richer model, it might also adversely affect innovation incentives. But if patent policy is limited to operating within region 1, where patent office fees have no effect on any of the equilibrium variables, is there still an argument for frontloading? We now argue that there is, because frontloading raises fee revenue.

Suppose the patent office is constrained in the examination intensity it can set by
the revenue it collects from fees, and that this constraint is binding. As a result the
patent office operates at some e below the socially optimal level, so that an increase in
e would raise welfare. Now consider a shift in the fee structure that leaves the sum of
fees constant but shifts fees from post-grant to pre-grant. Because $\phi_A + \phi_P$ is constant
and x remains at \tilde{x}, the profits of the type-L inventor are unaffected. The change in
the fee structure, however, leads to more revenue being collected from type-L inventors
who are refused patent protection and thus do not pay the post-grant fee but do pay
the pre-grant fee. This relaxes the patent office’s budget constraint and allows it to
implement a welfare-improving tightening of examination. We pursue this idea further
in Section 6, where we consider a policy experiment along these lines.

5 Extensions

5.1 A more general screening technology

Many observers argue that patents are “probabilistic” in nature, with court decisions
subject to a considerable degree of randomness (Lemley and Shapiro, 2005). We have
assumed that courts do not make mistakes in assessing validity. In Appendix B we
analyze a more general screening technology where both the patent office and courts
sometimes make mistakes. This technology encompasses as special cases both the basic
model (with perfect courts) and completely random courts (where the probability a
patent is upheld is independent of the invention type, θ). The appendix shows that the
basic insights from the baseline model are robust to this generalization, provided that
court screening is sufficiently accurate for the competitor to challenge when certain of
facing a type-L inventor and not to challenge when certain of facing a type-H inventor.

In the simulation analysis later, in addition to the baseline model with perfect
courts, we will use a special case of the more general screening technology that allows
for imperfect courts. In particular, we will allow the court to screen out invalid patents
with a probability that lies between one (perfect court) and the probability in the
patent office. In addition, we allow the court and patent office to apply different rules
in the event the evidence is weak. We assume that the patent office only rejects if
it finds strong evidence that the invention is type L. By contrast, the courts apply a
“presumption of validity” that depends on the updated posterior on the invention type,
which in turn depends on the intensity of patent office examination. Other things equal,
when patent office screening is more intensive, the court applies a stronger presumption
that the patent is valid, in the absence of strong evidence against it.

In Section 6.2 we will present simulation results using this more general screening
technology. For that reason, we provide here a brief summary of the main elements of
that technology; for details see Appendix C.5. The patent office and court each receives
an independent draw of a signal that reveals the true invention type with probabilities e_1 and $e_2 = \beta + (1 - \beta)e_1$, respectively, where $\beta \in [0, 1]$ and $\beta = 1$ corresponds to the baseline model of perfect courts. If the patent office does not learn the invention is of type L, it always accepts the patent, whereas in that event the court upholds it with probability $\hat{\lambda}$ and invalidates it with probability $1 - \hat{\lambda}$, where $\hat{\lambda}$ is the posterior probability that the invention is of type H. Comparing the simulation results for the perfect and imperfect courts will allow us to check how our assessment of patent screening institutions, and of the welfare effects of different patent reforms, varies with the characterization of court behavior.

5.2 Endogenous inventions

One possible objection to our patentability requirement is that it appears to encourage high-cost inventions. This concern does not apply to our model in which the population of obvious (low cost) and non-obvious (high cost) inventions is given exogenously. The objection more naturally arises in a different environment where the mix of inventions is endogenous. However, even in such an environment, our patentability requirement can be justified.

To see this, suppose ideas differ along two dimensions: value, indexed by $v \in \{v_L, v_H\}$, and R&D cost $\kappa \in \{\kappa_L, \kappa_H\}$. That is, as in the baseline model there are two levels of R&D cost, but now there are also two levels of value, with associated profits $\pi(v_L)$ and $\pi(v_H) > \pi(v_L)$. Translated to this environment, our patentability requirement becomes $\kappa > \pi(v)$. Suppose the inventor can choose between different ideas but when deciding whether to invest only observes κ and not v. Assume, however, that κ is a signal of value: that is, letting $p_\kappa \equiv \Pr(v = v_H|\kappa)$, $p_{\kappa_H} > p_{\kappa_L}$. Then expected welfare can be written $E(w(v)|\kappa) = p_\kappa w(v_H) + (1 - p_\kappa)w(v_L)$, where $w(v)$ denotes welfare when the invention has value v. If $E(w(v)|\kappa_H) - \kappa_H > E(w(v)|\kappa_L) - \kappa_L$, or equivalently

$$(p_{\kappa_H} - p_{\kappa_L})(w(v_H) - w(v_L)) > \kappa_H - \kappa_L,$$

the planner wants to encourage the inventor to go for ideas with $\kappa = \kappa_H$, even though they have a high R&D cost. That is, the planner would like to promote “ambitious” research if it generates a sufficiently high payoff in a probabilistic sense.

6 Simulation Analysis

6.1 Baseline simulations: perfect courts

The model generates predictions on the grant rate, litigation rate and patent validation rate in court as functions of underlying parameters. In this section we use the observed
values of these outcomes to calibrate the model’s parameters, and then simulate the model to quantify the welfare effects of different policy reforms. We first summarize the simulation procedure and present the parameters from the baseline model (for more details, see Appendix C). We then describe the policy experiments and present the results. The observed patent fees and litigation costs are such that we are in region 1 (Figure 1, Section 3), hence $\alpha = 1$. For the simulations we set litigation cost to be the same for the inventor and competitor, $l_I = l_C = l$.

The simulations exploit equilibrium relationships from the theoretical model, together with Cournot competition between the incumbent innovator and a single competitor. It is a noteworthy feature of our model that, when assuming Cournot competition, the grant rate, litigation rate and validation rate uniquely pin down the parameters λ and e (without needing any other information). The main elements of the simulation structure are summarized below:

1. **Computed litigation rate**: To compute the litigation rate, we use the observed litigation rate for all patents and adjust it upward using the distribution of the value of patent rights estimated by Schankerman and Pakes (1986). The adjustment is made to account for the fact that only a subset of patents is worth litigating (i.e., they satisfy the challenge credibility constraint in the theoretical model).

2. **Equilibrium grant rate, GR**: The grant rate depends on the fraction of type-L patents, λ, and the examination intensity, e. This gives an equation $e = e(\lambda; GR)$.

3. **Equilibrium litigation rate, LR**: In the model this depends on λ, GR and validation rate VR. Thus we can compute λ from the implied relationship $\lambda = \lambda(LR, GR, VR)$. From Step 2, we thus get e. Using the observed examination cost per patent, we can derive the implied marginal cost of e, MCE.

4. **Cournot model of competition**: An incumbent innovator faces a single competitor and a linear market demand. The incumbent can use his cost-reducing invention and also license it to the competitor. He either sets a high royalty rate, which generates income $F = \Delta C$ or a low royalty rate with income $F = l_C$. In this model, the elasticity of demand in equilibrium, η, depends on the demand scale parameter a, initial unit cost c, and percentage cost reduction from the innovation, s. This implies $a = a(c; \eta, s)$.

5. **Equilibrium patent validation rate in court, VR**: In the model, the patent validation rate depends on (a, c, l). This gives an equation $c = c(a, l; VR)$.

25We assume that examination costs are linear in examination intensity. We could easily allow for convex costs, given an assumption about the cost elasticity.
6. **R&D equation**: We assume that expected profit from innovations is equal to observed R&D expenditures per patent, R, adjusted upward for a private rate of return. This implies a relationship $R = R(l, a, c; \lambda, s, \eta, VR, GR)$, where λ is obtained from Step 3. We thus have three (non-linear) equations – R&D equation, $a = a(c; \eta, s)$ from Step 4, and $c = c(a, l; VR)$ from Step 5. We solve these equations to obtain (unique) values of (a, c, l).

7. Finally, to compute development costs for type-L and H inventions, we use the inequalities that ensure that expected profit for the type-L inventor without patent protection is above κ_L, profit for the type-H inventor is below κ_H, and profit for the type-H inventor with the patent exceeds κ_H. This yields a set of feasible (κ_H, κ_L) pairs.

To summarize, the main inputs to the simulations are: fees, ϕ_A and ϕ_P; demand elasticity, η; cost saving from innovation, s; patent validation rate, VR; grant rate, GR; patent litigation rate, LR; and R&D per patent, R. The main outputs of the simulations are the fraction of non-obvious inventions, λ; examination intensity, e; demand and cost parameters, (a, c); and development costs, (κ_H, κ_L). These parameters allow us to compute all components of the welfare function.

6.1.1 Simulation Results

Table 1 presents the baseline results and robustness checks. The two most striking results are that only 14 percent of patent applications are ‘non-obvious’ in the sense that they would not be developed in the absence of patent protection ($\lambda = 0.14$), and the patent office appears relatively ineffective at screening out ‘obvious’ patents, as they do so with a probability $e = 0.29$. The simulated litigation cost for each party is 1.26 million (2015 dollars), which is consistent with the available survey evidence.\(^{26}\) Using the simulated parameters, we find that patent rights account for 11 percent of the total returns to an invention (column ‘Ratio’). This is very similar to the estimates generated by patent renewal models, which are typically in the range of 5-15 percent depending on the technology field (Schankerman, 1998).

The implied investment costs for type-L and H inventions are 1.52 and 4.43 million, respectively. The implied cost per patent application of a percentage point of e, denoted by $MCE – e.g.,$ the cost of moving from $e = 0.29$ to $e = 0.30 – is $126. The probability that a type-L inventor mimics a type-H inventor by charging the high
royalty rate is \(y = 0.15 \). This is striking because it means that 85 percent of obvious inventions are never challenged because the low royalty rate is set at the competitor’s litigation cost. For those type L inventors who charge the high royalty, the probability that a competitor challenges is \(x = 0.45 \).

Table 1. Simulation Results: Perfect Courts

<table>
<thead>
<tr>
<th>Perturbation</th>
<th>(\lambda)</th>
<th>(e)</th>
<th>(l \times 10^6)</th>
<th>(y)</th>
<th>(x)</th>
<th>Ratio</th>
<th>(\kappa_L \times 10^6)</th>
<th>(\kappa_H \times 10^6)</th>
<th>MCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R = $2 \times 10^6)</td>
<td>0.14</td>
<td>0.29</td>
<td>1.26</td>
<td>0.15</td>
<td>0.45</td>
<td>0.11</td>
<td>1.52</td>
<td>4.43</td>
<td>126</td>
</tr>
<tr>
<td>(R = $3 \times 10^6)</td>
<td>0.14</td>
<td>0.29</td>
<td>1.27</td>
<td>0.15</td>
<td>0.45</td>
<td>0.11</td>
<td>1.52</td>
<td>4.40</td>
<td>126</td>
</tr>
<tr>
<td>(s = 0.01)</td>
<td>0.14</td>
<td>0.29</td>
<td>1.25</td>
<td>0.15</td>
<td>0.45</td>
<td>0.11</td>
<td>1.52</td>
<td>4.41</td>
<td>126</td>
</tr>
<tr>
<td>(s = 0.05)</td>
<td>0.14</td>
<td>0.29</td>
<td>1.25</td>
<td>0.15</td>
<td>0.45</td>
<td>0.11</td>
<td>1.52</td>
<td>4.41</td>
<td>126</td>
</tr>
<tr>
<td>(\eta = 1)</td>
<td>0.14</td>
<td>0.29</td>
<td>1.25</td>
<td>0.15</td>
<td>0.45</td>
<td>0.11</td>
<td>1.52</td>
<td>4.41</td>
<td>126</td>
</tr>
<tr>
<td>(\eta = 3)</td>
<td>0.14</td>
<td>0.29</td>
<td>1.25</td>
<td>0.15</td>
<td>0.45</td>
<td>0.11</td>
<td>1.52</td>
<td>4.41</td>
<td>126</td>
</tr>
</tbody>
</table>

Notes: Baseline parameters: \(s = 0.025 \), \(\eta = 2 \), \(R = \$2.4 \times 10^6 \), \(l_{\text{min}} = \$350 \times 10^3 \).

The column labeled ‘Ratio’ denotes the simulated value of \(\frac{\Delta}{\pi I(0)} \) where \(\Delta \) is the gain to the inventor from having a patent and \(\pi I(0) \) is the inventor’s profit from an unpatented invention.

The simulation results are very robust to changes in the assumed parameters. In each row of Panel B we vary the one parameter indicated, relative to the baseline specification. Reducing the assumed R&D cost per patent to \$2 million, or increasing it to \$3 million, affects only the implied litigation cost \(l \) and development costs \(\kappa_L, \kappa_H \).

The baseline cost reduction for the invention is 2.5 percent (calibrated at roughly the economy-wide rate of total factor productivity growth). The main effect of changing it to 1 percent or 5 percent is to alter the simulated demand and cost parameters (not reported) and thus the gains from the patent relative to the total returns to R&D: this ratio varies from 5 to 19 percent. The results are similar when we vary the assumed elasticity of demand, down to \(\eta = 1 \) or up to \(\eta = 3 \).
6.1.2 Policy Experiments

Table 2 summarizes the simulations of five counterfactual policy reforms. We analyze the change in the welfare gains from innovation caused by these policy reforms. The pre-reform welfare gain from innovation is defined as welfare in the baseline patent regime (pre-reform) minus welfare without innovation. The post-reform welfare gain from innovation is defined analogously. For simplicity, we will refer to these changes in welfare gains from innovation as ‘welfare changes’.

First, we frontload post-grant fees in a revenue neutral way. Frontloading raises additional revenue, because all type-\(L\) applicants pay the pre-grant fees, whereas only successful type-\(L\) applicants pay the post-grant fees. We use this revenue to increase the examination intensity.\(^{27}\)

This frontloading reform generates enough extra revenue to double the examination intensity. The direct effect of the increase in \(e\) is that the patent office detects and denies patent rights to more type-\(L\) patents that apply, which increases welfare. There is also an indirect effect. The increase in \(e\) raises the probability that a type-\(L\) inventor charges the high royalty (and thus average royalties in the economy) because there is a stronger presumption by the competitor that a high royalty signals a type-\(L\) invention. This indirect effect reduces welfare, but it is dominated by direct effect, so that the reform increases welfare by 1.90 percent, with consumers gaining at the expense of firms (inventor and competitor).

The second experiment is to cap litigation costs at half the level given by the baseline simulation. This reform has a very large and positive impact on welfare, 4.92 percent, and both inventors and consumers gain. The reason is that litigation costs are high and reducing them saves inventors money when challenged. At the same time, type-\(L\) inventors are less likely to charge the high royalty rate (i.e., \(y\) declines from 0.15 to 0.06) because challenges are more attractive given the lower litigation costs. This experiment highlights the potential importance of tort reform in the patent arena.

In the third experiment we ‘turn off’ court challenges entirely (e.g., as would occur if litigation costs were high enough to violate the challenge credibility constraint). This reform has a surprisingly small (negative) effect on welfare, which reflects the savings on the very substantial litigation costs when challenges are feasible. While inventors benefit – especially those with obvious inventions because they can now charge the high royalty without fear of being challenged – consumers lose heavily from the consequently higher output prices. The presence of courts as a second screening device appears much

\(^{27}\)In these simulations, the parameters are such that we remain in region 1 (Figure 1 in Section 3), so that the application rate of type-\(L\) inventions does not change (\(\alpha = 1\)). Raising patent fees so high that region 2 would become relevant is not politically feasible, and would require us to incorporate the potential effects of these fees on the supply of innovation.
less significant for welfare than one might have thought, even with perfect courts as here – essentially because litigation costs are so high.

The fourth experiment replaces the patent system with a pure registration system in which \(e = 0 \), but retains the option of challenging the registered right in court. In this case, we set both pre- and post-grant fees to zero, but the cost of preparing the application for registration is maintained (as this would be needed as the basis for any court challenge). This reform reduces welfare by substantially, -3.1 percent, coming at the expense of consumers while benefitting firms.

Lastly, we increase the examination intensity from the baseline value to 0.5 and 0.7, and cover the incremental cost by increasing pre-grant fees. This increases welfare, with consumers gaining at the expense of firms. Of course, we have assumed a constant marginal cost of \(e \), and if costs are convex at higher ranges of \(e \), the welfare gains would be smaller.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(e)</th>
<th>(y)</th>
<th>(x)</th>
<th>(%\Delta W)</th>
<th>(%\Delta \pi)</th>
<th>(%\Delta CS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status quo</td>
<td>0.29</td>
<td>0.15</td>
<td>0.45</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Frontloading</td>
<td>0.56</td>
<td>0.24</td>
<td>0.45</td>
<td>1.90</td>
<td>-5.88</td>
<td>5.72</td>
</tr>
<tr>
<td>Halving litigation costs</td>
<td>0.29</td>
<td>0.06</td>
<td>0.69</td>
<td>4.92</td>
<td>0.78</td>
<td>8.24</td>
</tr>
<tr>
<td>Shutting down courts</td>
<td>0.29</td>
<td>1.0</td>
<td>0</td>
<td>-0.74</td>
<td>42.0</td>
<td>-22.3</td>
</tr>
<tr>
<td>Registration system</td>
<td>0</td>
<td>0.14</td>
<td>0.45</td>
<td>-3.10</td>
<td>4.76</td>
<td>-6.50</td>
</tr>
<tr>
<td>More stringent examination I</td>
<td>0.50</td>
<td>0.21</td>
<td>0.45</td>
<td>1.49</td>
<td>-4.42</td>
<td>4.49</td>
</tr>
<tr>
<td>More stringent examination II</td>
<td>0.70</td>
<td>0.36</td>
<td>0.45</td>
<td>2.91</td>
<td>-8.63</td>
<td>8.76</td>
</tr>
</tbody>
</table>

Note: Changes in welfare, profit and consumer surplus are measured net of the no-invention levels.

In the baseline model, we assume that perfect courts always uphold type-\(L \) inventions and completely invalidate type-\(L \) inventions, i.e., all claims in the type-\(L \) patent are revoked. However, in practice the courts typically invalidate only a fraction of claims. To account for this, we formulated a modified version of the baseline model with perfect courts to allow for partial invalidation. In this model we treat patent claims as independent of each other, so that if a fraction \(f \) of claims is invalidated, the cost reduction equal to \(fs \) is now available to the competitor and the royalty that the incumbent can extract is only on the remaining proprietary cost reduction of \((1 - f)s \). In this model we treat patent claims as independent of each other, so that if a fraction \(f \) of claims is invalidated, the cost reduction equal to \(fs \) is now available to the competitor and the royalty that the incumbent can extract is only on the remaining proprietary cost reduction of \((1 - f)s \). Independence of claims seems a natural assumption for this analysis. A firm has no incentive to include claims that are substitutes for each other. At the other extreme, if all claims are perfect complements, the original model applies since loss of any one claim is equivalent to the loss of the entire patent.

Details are available on request. We are grateful to John Golden for pointing this out and suggesting a robustness check with this more realistic specification of the courts. Using information on cases at the Court of Appeals for the Federal Circuit (Galasso and Schankerman, 2015), the fraction of claims revoked in cases of patent invalidation is about 75 percent, and we use this figure to calibrate this model.
We simulated this alternative model to check robustness of the findings in Table 1 and 2 (results not reported for brevity). Allowing for partial invalidation changes the simulated parameters in three main ways. First, the fraction of non-obvious inventions rises from $\lambda = 0.15$ to $\lambda = 0.28$, and the effectiveness of patent office screening increases from $e = 0.29$ to $e = 0.35$. Second, the implied cost of litigation declines from $\$1.26$ to $\$0.79$ million. Third, the probability that a type-L inventor mimics the type-L inventor by charging the high royalty rate increases sharply from $y = 0.15$ to $y = 0.40$.

In the policy experiments, we again find that frontloading fees, capping litigation costs and raising examination intensity all increase welfare, and introducing a registration system reduces it. However, with partial invalidation, shutting off court challenges actually increases welfare (rather than modestly reducing it as with full invalidation). The reason is that we are now making court screening imperfect and, with substantial legal costs, they are no longer worthwhile.

6.2 Simulations: imperfect courts

Table 3 presents the simulated parameters for the model with imperfect courts, as described in Section 5.1 (details in Appendix C.5). The court’s probability of identifying the true inventor’s type is a weighted average between the patent office and perfect screening: $e_2 = \beta + (1 - \beta)e_1$. We present results for two different scenarios: low quality courts ($\beta = 1/3$) and high quality courts ($\beta = 2/3$).

With high quality but imperfect courts, the simulated parameters are very similar to the case of perfect courts (compare Tables 1 and Panel A, Table 3). The imperfect court model gives a slightly higher proportion of non-obvious patent applications (λ). In addition, the probability that a type-L inventor charges the high royalty (y) is somewhat higher (implying that there is a smaller probability he preempt a challenge). This is because the imperfect court may actually uphold the type-L patent, making it more attractive to take the risk of charging the high royalty. The other parameters are very similar to the earlier results.

<table>
<thead>
<tr>
<th>Panel A. High Quality Courts</th>
<th>Panel B. Low Quality Courts</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>e</td>
</tr>
<tr>
<td>0.17</td>
<td>0.30</td>
</tr>
<tr>
<td>λ</td>
<td>e</td>
</tr>
<tr>
<td>0.26</td>
<td>0.34</td>
</tr>
</tbody>
</table>
It is reassuring that we observe similarly robust results even with a low quality court (Panel B, Table 3). The main differences with the perfect court results is that the proportion of non-obvious inventions nearly doubles, from 0.14 with perfect courts to 0.26 and, not surprisingly, the probability that a type-\(L\) inventor charges the high royalty rate increases sharply from 0.15 to 0.35.

Table 4 presents the simulation results for the policy experiments with both low and high quality (imperfect) courts. Comparing these results to the model with perfect courts (Table 2), we observe the same overall pattern emerging. Frontloading fees, capping litigation costs and increasing examination intensity all generate welfare gains, while moving to a registration system reduces welfare. The only difference is that, while shutting down the courts modestly reduced welfare in the case of perfect courts, the policy actually improves welfare when courts are imperfect, especially when they are low quality. It is also worth noting that frontloading fees (using the extra revenue to fund higher examination intensity) generates significantly larger welfare gains when courts are imperfect (compare Experiment 1 in Tables 2 and 4).

Table 4. Policy Experiments with Imperfect Courts

Panel A. High Quality Courts

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(e)</th>
<th>(y)</th>
<th>(x)</th>
<th>(% \Delta W)</th>
<th>(% \Delta \pi)</th>
<th>(% \Delta CS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status quo</td>
<td>0.30</td>
<td>0.20</td>
<td>0.39</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Frontloading</td>
<td>0.58</td>
<td>0.33</td>
<td>0.39</td>
<td>2.82</td>
<td>-9.14</td>
<td>8.23</td>
</tr>
<tr>
<td>Halving litigation costs</td>
<td>0.30</td>
<td>0.08</td>
<td>0.63</td>
<td>5.41</td>
<td>3.13</td>
<td>6.52</td>
</tr>
<tr>
<td>Shutting down courts</td>
<td>0.30</td>
<td>1.0</td>
<td>0</td>
<td>1.94</td>
<td>43.66</td>
<td>-17.36</td>
</tr>
<tr>
<td>Registration system</td>
<td>0</td>
<td>0.14</td>
<td>0.39</td>
<td>-3.06</td>
<td>10.93</td>
<td>-8.93</td>
</tr>
<tr>
<td>More stringent examination I</td>
<td>0.50</td>
<td>0.28</td>
<td>0.39</td>
<td>2.00</td>
<td>-6.26</td>
<td>5.84</td>
</tr>
<tr>
<td>More stringent examination II</td>
<td>0.70</td>
<td>0.35</td>
<td>0.39</td>
<td>3.01</td>
<td>-9.43</td>
<td>8.80</td>
</tr>
</tbody>
</table>

Panel B. Low Quality Courts

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(e)</th>
<th>(y)</th>
<th>(x)</th>
<th>(% \Delta W)</th>
<th>(% \Delta \pi)</th>
<th>(% \Delta CS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status quo</td>
<td>0.34</td>
<td>0.35</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Frontloading</td>
<td>0.65</td>
<td>0.66</td>
<td>0.32</td>
<td>3.89</td>
<td>-13.82</td>
<td>10.88</td>
</tr>
<tr>
<td>Halving litigation costs</td>
<td>0.34</td>
<td>0.13</td>
<td>0.55</td>
<td>5.45</td>
<td>7.55</td>
<td>4.67</td>
</tr>
<tr>
<td>Shutting down courts</td>
<td>0.34</td>
<td>1.0</td>
<td>0</td>
<td>6.61</td>
<td>52.23</td>
<td>-11.64</td>
</tr>
<tr>
<td>Registration system</td>
<td>0</td>
<td>0.23</td>
<td>0.32</td>
<td>-4.22</td>
<td>16.38</td>
<td>-11.80</td>
</tr>
<tr>
<td>More stringent examination I</td>
<td>0.50</td>
<td>0.46</td>
<td>0.32</td>
<td>2.04</td>
<td>-7.02</td>
<td>5.70</td>
</tr>
<tr>
<td>More stringent examination II</td>
<td>0.70</td>
<td>0.77</td>
<td>0.32</td>
<td>4.54</td>
<td>-15.64</td>
<td>12.69</td>
</tr>
</tbody>
</table>

7 Concluding remarks

This paper develops an integrated framework to examine how governments can improve the quality of patent screening. We focus on four key policy instruments: patent
office examination, pre- and post-grant fees, and challenges in the courts. We want to highlight three key theoretical results. First, if the patent office makes no examination effort (a pure registration system), or if the pre-grant fee is zero and examination is imperfect, complete screening (where only the high quality invention applies) cannot be achieved. Thus pre-grant fees and examination are complements, not substitutes. Complete screening can be achieved by a combination of a pre-grant fee and an examination that is sufficiently rigorous (even if imperfect). Second, even if courts are mistake-free, they cannot eliminate all bad patents that are issued. This is because in equilibrium not all low type patents are challenged by the competitor. This result raises serious doubts about over-reliance on the court system to weed out obvious patents. Third, when examination is not sufficiently rigorous to achieve complete screening, we show that a social planner would always **frontload fees** (i.e., rely on pre-grant rather than post-grant fees).

We simulate the model, calibrated on U.S. data, to identify key parameters and study the welfare effects of different policy reforms. The simulations indicate that about 80 percent of patent applications are low quality in the sense that they are made on inventions that would be developed even without patent rights. At the same time, the probability that the patent office screens out these low quality applications is about 30 percent. These findings highlight the crisis in patent screening, and the need to develop effective policies to address it. The simulations of policy reforms show that intensifying patent office examination, frontloading patent fees and capping litigation costs all generate welfare gains, while replacing examination with a pure registration system causes welfare losses.

There are two main directions for future research. The first is to extend the model to include heterogeneity in the private value of inventions, and multiple competitors (thus free riding in patent challenges). This would introduce greater realism, especially in the simulations, and highlight the different nature of patent office and court screening. Patent office screening is independent of value (apart from a minimal ‘usefulness’ criterion), whereas it plays an important role in the self-selection into courts (Lanjouw and Schankerman, 2001). Second, we believe the framework developed in this paper can be used to study the welfare impacts of patent litigation insurance. Such insurance is available (though expensive) in the private market, and there have been proposals to introduce mandated government insurance in the European Union. Our model can provide a useful analytical platform for studying this, and other, patent reforms.
Appendix A Proofs

Proof of Proposition 1. We first derive the equilibrium behavior of type-L inventor and competitor assuming that the type-H inventor invests, applies, activates, and proposes $F^H = \Delta_C$ in Lemma 1. We then show under what conditions type H indeed finds this behavior optimal in Lemma 2.

Lemma 1. Suppose (5) holds and the type-L inventor invests, applies, activates, and proposes F^H. Then, the equilibrium behavior of the type-L inventor and the competitor can be characterized as follows:

(i) If $\phi_P \geq \Delta - \phi_A/(1-e)$ [Region 3], the type-L inventor does not apply ($\alpha = 0$), and the competitor does not challenge ($x = 0$). If granted a patent the type-L inventor would always propose F^H ($y = 1$).

(ii) If $\phi_P < \Delta - \phi_A/(1-e)$, the type-L inventor applies with strictly positive probability ($\alpha > 0$) and randomizes such that

$$\left(1 - \frac{\lambda}{\lambda + (1-\lambda)(1-e)\alpha y}\right)\Delta_C = l_C.$$ \hfill (12)

The competitor always accepts when offered $F = l_C$ ($x = 0$); she always challenges the patent when offered $F \notin \{l_C, F^H\}$ ($x = 1$). When offered $F = F^H$ she randomizes between accepting and challenging. Specifically:

(a) for $\phi_P < l_C + m - \phi_A/(1 - e)$ [Region 1], the type-L inventor chooses $\alpha = \rho = 1$ and $y \in (0, 1)$ solving (12). The competitor challenges with probability x such that

$$(1-x)\Delta - xl_1 = l_C + m;$$ \hfill (13)

(b) for $\phi_A > 0$ and $l_C + m - \phi_A/(1 - e) < \phi_P < \Delta - \phi_A/(1-e)$ [Region 2], the type-L inventor chooses $\rho = y = 1$ and $\alpha \in (0, 1)$ solving (12). The competitor challenges with probability x such that

$$(1-e)[(1-x)\Delta - xl_1 - \phi_P] = \phi_A;$$ \hfill (14)

(c) for $\phi_A = 0$ and $l_C + m < \phi_P < \Delta$, the type-L inventor chooses $y = 1$ and $(\alpha, \rho) \in [0, 1]^2$ solving (12). The competitor challenges with probability x such that

$$(1-x)\Delta - xl_1 = \phi_P.$$ \hfill (15)
Proof of Lemma 1. For $\phi_P \geq \Delta - \phi_A / (1 - e)$, type L’s payoff from applying is weakly less than his payoff from not applying even if there are no challenges, so $(\alpha = 0, x = 0)$ is an equilibrium, establishing (i). (This equilibrium is unique for $\phi_P > \Delta - \phi_A / (1 - e)$.)

In what follows, we first show that for $\phi_P < \Delta - \phi_A / (1 - e)$, there is no equilibrium in which $\alpha = 0$, $\rho = 0$, or $y = 0$, that there is none in which $\alpha = \rho = y = 1$, and that there is also none in which $x = 0$ or $x = 1$, implying that the equilibrium must be in mixed strategies. We then prove the more specific claims made in (ii.a)-(ii.c).

Suppose first there were an equilibrium with $\alpha = 0$, $\rho = 0$, or $y = 0$ when $\phi_P < \Delta - \phi_A / (1 - e)$. Then the competitor’s belief when observing $F^H = \Delta_C$ would be $\hat{\lambda} = 1$, and hence she would not challenge. But this means that the type-L inventor could secure a strictly positive expected payoff of $(1 - e)(\Delta - \phi_P - \phi_A) > 0$ by applying, activating and offering F^H, contradicting the optimality of $\alpha = 0$ or $\rho = 0$. Moreover, by offering $F = \Delta_C$ type L obtains a higher payoff than by offering $F = l_C$ (because $\Delta_C > l_C$), contradicting the optimality of $y = 0$. Hence, under the assumed condition on ϕ_P, in any equilibrium we must have $\alpha > 0$, $\rho > 0$, and $y > 0$. Next, suppose there were an equilibrium with $\alpha = \rho = y = 1$. Then $\hat{\lambda} = \Delta e$, and by (5), the challenger would always challenge. But then type L would be better off deviating in some dimension. (If $\phi_P > 0$, type L would be better off not activating or not applying. If $\phi_P = 0 < l_C + m$, type L would be better off offering $0 < F \leq l_C$.)

Now consider the competitor’s decision to challenge. If there were an equilibrium in which she never challenges ($x = 0$), then all type-L inventors would apply, activate and offer F^H ($\alpha = \rho = y = 1$). But in that case, (5) implies that the competitor would strictly prefer to challenge. If there were an equilibrium in which she always challenges ($x = 1$), then type L would prefer not to apply, in which case the competitor would be better off not challenging.

Hence, the equilibrium must be in mixed strategies. For the competitor to be indifferent between challenging or not, his beliefs about the type of inventor he faces must be such that the payoff from challenging is the same as the payoff from not challenging, i.e., $(1 - \hat{\lambda})\Delta_C = l_C$. Using the definition of $\hat{\lambda}$ yields (12). The conditions for the type-L inventor to be indifferent depend on parameters and are specified below.

Claim (ii.a) [$\phi_P < l_C + m - \phi_A / (1 - e)$]: Because the competitor always accepts the offer $F = l_C$, the type-L inventor can guarantee himself a payoff of $l_C + m$ following activation. Hence, if $\phi_P < l_C + m$, type L strictly prefers activating to not activating, implying $\rho = 1$. By the same argument, $\phi_P < l_C + m - \phi_A / (1 - e)$ implies that type L strictly prefers applying to not applying, so $\alpha = 1$. The only randomization variable that remains is y. For the type-L inventor to be indifferent between offering $F = l_C$ and $F = \Delta_C$, both must procure him the same payoff. This requires $\pi + l_C + m = \pi + \Delta_C = \pi + l_C + m = \pi + l_C + m$. }
\[\pi + (1 - x)\Delta - xI,\] or (13).

Claim (ii.b) \([\phi_A > 0 \text{ and } l_C + m - \phi_A/(1 - e) < \phi_P < \Delta - \phi_A/(1 - e)]\): Because \(l_C + m - \phi_A/(1 - e) < \phi_P\), the type-L inventor cannot break even offering \(F = l_C\); hence, \(y = 1\). To see that type \(L\) will necessarily randomize over the application decision rather than the activation decision, suppose to the contrary \(\rho < 1\). This would require \((1 - x)\Delta - xI = \phi_P\). But in that case, type \(L\)'s payoff from applying would be zero, and given \(\phi_A > 0\) he would prefer not to apply. Hence, \(\rho = 1\). The only randomization variable that remains is \(\alpha\). For type \(L\) to be indifferent between applying and not, it must be that \(\pi = \pi + (1 - e)(1 - x)\Delta - xI - \phi_P\), or (14).

Claim (ii.c) \([\phi_A = 0 \text{ and } l_C + m < \phi_P < \Delta]\): Because \(\phi_P > l_C + m\), the inventor will never offer \(F = l_C\), as he would be sure to make a loss then. Hence, \(y = 1\). In any equilibrium in which the type-L inventor is indifferent between activating and not, which requires \(\pi = \pi + (1 - e)(1 - x)\Delta - xI - \phi_P\), or (15), his payoff from applying for a patent will be zero. Because \(\phi_A = 0\), he will also be indifferent between applying and not. Hence, any combination of \(\alpha\) and \(\rho\) which (given \(y = 1\)) solves (12) constitutes an equilibrium. □

Note: For the case \(\phi_A = (1 - e)(\Delta - \phi_P)\), type \(L\) is indifferent between applying and not. Thus in principle there is also an equilibrium in which type \(L\) applies with strictly positive probability \(\alpha > 0\) satisfying (12) and the competitor never challenges \((x = 0)\). We ignore this equilibrium as it seems uninteresting and concerns a knife-edge case.

For the purposes of the next lemma, let
\[
\hat{\phi} \equiv \left(\frac{1 - e}{e}\right) \left[k - \pi \right] - \frac{(\Delta_C - l_C)\Delta}{\Delta + l_I},
\]
\[
\bar{\phi} \equiv \left(\frac{1 - e}{e}\right) [k - \pi] .
\]

Lemma 2. Suppose (5) holds. The type \(H\) inventor invests, applies, activates, and proposes \(F^H = \Delta_C\) if \(\phi_P \leq h(\phi_A)\), where
\[
h(\phi_A) = \begin{cases}
\Delta - (k - \pi) - \frac{(\Delta_C - l_C)l_I}{\Delta + l_I} - \phi_A & \text{for } \phi_A \leq \hat{\phi} \\
\Delta - \left(1 + \frac{l_I}{\Delta}\right)(k - \pi) - \left(1 - \frac{el_I}{(1 - e)\Delta}\right)\phi_A & \text{for } \phi < \phi_A \leq \bar{\phi} \\
\Delta - (k - \pi) - \phi_A & \text{for } \phi_A > \bar{\phi} ,
\end{cases}
\]
and does not invest otherwise.

Proof of Lemma 2. The type-\(H\) inventor’s payoff from investing, applying, activating
and proposing \(F^H = \Delta_C \) is
\[
\Pi^H = \Delta - (k - \pi) - x l_I - \phi_P - \phi_A.
\]
Consider first the case where \(\phi_P < l_C + m - \phi_A / (1 - e) \), so that \(x = \bar{x} \). Then \(\Pi^H \geq 0 \) if and only if
\[
\phi_P \leq \Delta - (k - \pi) - \frac{(\Delta_C - l_C) l_I}{\Delta + l_I} - \phi_A.
\] (17)
Next, consider the case where \(\phi_P > \Delta - \phi_A / (1 - e) \), so that \(x = 0 \). Then, \(\Pi^H \geq 0 \) if and only if
\[
\phi_P \leq \Delta - (k - \pi) - \phi_A.
\] (18)
Finally, consider the intermediate case where \(l_C + m - \phi_A / (1 - e) < \phi_P < \Delta - \phi_A / (1 - e) \), so that \(x = \hat{x} \). Then \(\Pi^H \geq 0 \) if and only if
\[
\phi_P \leq \Delta - (k - \pi) - \frac{l_I (\Delta - \phi_P - \phi_A / (1 - e))}{\Delta + l_I} - \phi_A.
\]
\[
\iff \phi_P \leq \Delta - \left(1 + \frac{l_I}{\Delta}\right) (k - \pi) - \left(1 - \frac{e l_I}{(1 - e) \Delta}\right) \phi_A.
\] (19)
The threshold \(\phi \) is obtained by equalizing the right-hand sides of \(\phi_P < l_C + m - \phi_A / (1 - e) \) and (17):
\[
l_C + m - \phi_A / (1 - e) = \Delta - (k - \pi) - \frac{(\Delta_C - l_C) l_I}{\Delta + l_I} - \phi_A.
\]
Solving for \(\phi_A \) yields \(\bar{\phi} \). The threshold \(\overline{\phi} \) is obtained by equalizing the right-hand sides of \(\phi_P < \Delta - \phi_A / (1 - e) \) and (18):
\[
\Delta - \phi_A / (1 - e) = \Delta - (k - \pi) - \phi_A.
\]
Solving for \(\phi_A \) yields \(\overline{\phi} \).

What remains to be shown is that type \(H \) finds it optimal to propose \(F^H = \Delta_C \), knowing that this results in a challenge with probability \(x \). His best deviation is to \(F = l_C \), which is the highest license fee that would avoid a challenge; all other license fee offers are either rejected or lead to a challenge with probability one. To see that deviating to \(F = l_C \) is unprofitable for type \(H \), note that in any equilibrium with \(x > 0 \), type \(L \) is either indifferent between \(\Delta_C \) and \(l_C \) or strictly prefers \(\Delta_C \). Because type \(H \) knows that he will win in court while type \(L \) knows he will lose, it follows that type \(H \) must strictly prefer \(\Delta_C \) over \(l_C \).

This completes the proof.
Proof of Proposition 2. Claim (i): Within each of the three regions shown in Figure 1, \(\alpha \) and \(y \) are constant with respect to \(\phi_A \) and \(\phi_P \) (\(\tilde{\alpha} \) and \(\tilde{y} \) do not depend on the fees). An increase in \(\phi_A \) or \(\phi_P \) can move the equilibrium from region 1 to region 2, in which case \(\alpha \) decreases from \(\alpha = 1 \) to \(\alpha = \tilde{\alpha} < 1 \) and \(y \) increases from \(y = \tilde{y} \) to \(y = 1 \), or from region 2 to region 3, in which case \(\alpha \) decreases from \(\alpha = \tilde{\alpha} \) to \(\alpha = 0 \) and \(y \) remains constant.

The rate of challenges \(x \) is constant with respect to \(\phi_A \) and \(\phi_P \) within region 1 (\(\hat{x} \) does not depend on the fees). Within region 2, \(x \) is decreasing in \(\phi_A \) and \(\phi_P \) (differentiating \(\hat{x}(\phi_A, \phi_P) \) yields \(\partial \hat{x}/\partial \phi_A = -1/[(1 - e) (\Delta + l_f)] \leq 0 \) and \(\partial \hat{x}/\partial \phi_P = -1/(\Delta + l_f) < 0 \). What remains to be shown is that \(\hat{x} \geq \hat{x}(\phi_A, \phi_P) \) for any combination of fees in region 2, i.e., \((\phi_A, \phi_P) \) such that \(l_C + m - \phi_A/(1 - e) \leq \phi_P \leq \Delta - \phi_A/(1 - e) \). Since \(\hat{x} \) is decreasing in \(\phi_A \) and \(\phi_P \), its maximum is attained for some combination of fees such that \(l_C + m - \phi_A/(1 - e) = \phi_P \). For any \((\phi_A, \phi_P) \) satisfying this equality we have

\[
\hat{x}(\phi_A, \phi_P) = \frac{\Delta C - l_C}{\Delta + l_f} = \hat{x}.
\]

Hence, \(\hat{x}(\phi_A, \phi_P) \leq \hat{x} \) for \(l_C + m - \phi_A/(1 - e) \leq \phi_P \).

Claim (ii): Within region 1, \(\alpha \) and \(x \) are constant with respect to \(e \) (\(\alpha = 1 \) and \(x = \hat{x} \), neither of which depends on \(e \)), while \(y \) increases with \(e \): differentiating \(\tilde{y} \) with respect to \(e \) yields

\[
\frac{\partial \tilde{y}}{\partial e} = \frac{\lambda I_C}{(1 - \lambda)(\Delta C - I C)(1 - e)^2} > 0.
\]

An increase in \(e \) can move the equilibrium from region 1 to region 2, in which case \(\alpha \) decreases from \(\alpha = 1 \) to \(\alpha = \tilde{\alpha} < 1 \), \(x \) decreases from \(x = \hat{x} \) to \(x = \tilde{x} \leq \hat{x} \) (the inequality having been established in the proof of Claim (i)), and \(y \) increases from \(y = \tilde{y} \) to \(y = 1 \).

Within region 2, \(\alpha \) is increasing and \(x \) is decreasing in \(e \): differentiating \(\tilde{\alpha} \) and \(\hat{x} \) with respect to \(e \) yields

\[
\frac{\partial \tilde{\alpha}}{\partial e} = \frac{\lambda I_C}{(1 - \lambda)(\Delta C - I C)(1 - e)^2} > 0,
\]

\[
\frac{\partial \hat{x}}{\partial e} = \frac{-\phi_A}{(1 - e)^2(\Delta + l_f)} \leq 0;
\]

\(y \) is constant in \(e \) \((y = 1) \). An increase in \(e \) can move the equilibrium from region 2 to region 3, in which case \(\alpha \) decreases from \(\alpha = \tilde{\alpha} \) to \(\alpha = 0 \) and \(x \) from \(x = \tilde{x} \) to \(x = 0 \), while \(y \) remains constant at \(y = 1 \). \(\square \)

Proof of Proposition 4. Notice that within region 1, welfare does not depend on either \(\phi_A \) or \(\phi_P \), as \(\alpha = 1 \), \(x = \hat{x} \), and \(y = \tilde{y} \) are all constant in \(\phi_A \) and \(\phi_P \). Similarly, within region 2, welfare depends on \(\phi_A \) and \(\phi_P \) only through \(x = \hat{x}(\phi_A, \phi_P) \) (which we make explicit by including the fees as arguments) and not through \(\alpha = \tilde{\alpha} \) or \(y = 1 \). Thus the welfare maximization problem is reduced to a choice between \(W^*_1 \equiv W(1, \hat{x}, \tilde{y}) \) and
implies that \(W_2^* \equiv \max_{\tilde{x}(\phi_A, \phi_P), P} W(\tilde{x}(\phi_A, \phi_P), 1) \) subject to \(l_C + m - \phi_A/ (1 - e) \leq \phi_P \leq h(\phi_A) \), where \(h(\phi_A) \) was defined in the proof of Lemma 2 (recall that \(\phi_P \leq h(\phi_A) \Leftrightarrow \Pi^H \geq 0 \)).

Notice also that \(\alpha y \) is the same in regions 1 and 2, as \(\alpha y = \tilde{y} \) in region 1, \(\alpha y = \tilde{\alpha} \) in region 2, and \(\tilde{\alpha} = \tilde{y} \).

The proof proceeds as follows. We first show that, keeping \(\alpha y \) fixed, welfare is decreasing in \(\alpha \). Together with the fact that \(x \equiv x(\phi_A, \phi_P) \) for any \((\phi_A, \phi_P) \) in region 2, with equality for \(\phi_A = (1 - e)(l_C + m - \phi_P) \) (see the proof of Proposition 2), this implies that \(W_2^* > W_1^* \), so that the welfare-maximizing combination of fees lies in region 2. Second, we show that fixing \(\alpha y \) (and thus \(\tilde{\lambda} \)) at its equilibrium value in regions 1 and 2, welfare is decreasing in \(x \) if and only if \(\Delta_C > (l_C/(l_C + l_I))D \). Third, we show that \(h'(\phi_A) < 0 \) in region 2 for \(e < e < e \), which is a useful property for what follows.

We then maximize welfare over all combinations of fees lying within region 2.

Claim 1: For any \((\alpha, y) \in (0,1]^2 \) and \((\alpha', y') \in (0,1]^2 \) such that \(\alpha y = \alpha' y' \), \(W(\alpha, x, y) \geq W(\alpha', x, y') \) if and only if \(\alpha \leq \alpha' \). Rewriting \(W \) we have

\[
W(\alpha, x, y) = 2 \pi + S - \lambda(D + x(l_C + l_I)) + k + \gamma(e))
\]

\[+ (1 - \lambda)(1 - e)\alpha y x(D - (l_C + l_I)) - \alpha(1 - e)D + \gamma(e)). \quad (20)
\]

For \(\alpha y = \alpha' y' \), we have \(W(\alpha, x, y) - W(\alpha', x, y') = (1 - \lambda)(\alpha' - \alpha)[(1 - e)D + \gamma(e)] \geq 0 \) if and only if \(\alpha \leq \alpha' \).

Claim 2: \(\partial W(\alpha, x, y)_{\alpha y = \tilde{\alpha}} < 0 \) if and only if \(\Delta_C > (l_C/(l_C + l_I))D \). We have

\[
\frac{\partial W}{\partial x} = -\lambda(l_C + l_I) + (1 - \lambda)(1 - e)\alpha y D - (l_C + l_I)]
\]

\[= (1 - \lambda)(1 - e)\alpha y D - [\lambda + (1 - \lambda)(1 - e)\alpha y](l_C + l_I). \]

Using the definition of \(\tilde{\lambda} \) in (4), we can rewrite this as

\[
\frac{\partial W}{\partial x} = [\lambda + (1 - \lambda)(1 - e)\alpha y](1 - \lambda)D - (l_C + l_I)).
\]

By Proposition 1, in the equilibrium in regions 1 and 2 we have \(1 - \tilde{\lambda} = l_C / \Delta_C \). Hence,

\[
\frac{\partial W}{\partial x} < 0 \iff \frac{l_C}{\Delta_C}D - (l_C + l_I) < 0 \iff \Delta_C > \left(\frac{l_C}{l_C + l_I}\right)D.
\]

Claim 3: \(h'(\phi_A) < 0 \) for \(l_C + m - \phi_A/(1 - e) \leq \phi_P \leq h(\phi_A) \leq \Delta - \phi_A/(1 - e) \) and \(e < e < e \).

From (16) we have that, in region 2,

\[
h'(\phi_A) = -\frac{(1 - e)\Delta - el_I}{\Delta}, \quad (21)
\]

which is negative if and only if \((1 - e)\Delta > el_I \). To establish that this condition holds, we first show that \(e > e \) implies that \(h(\phi) > 0 \). By definition of \(\phi \),

\[
h(\phi) = \Delta - \tilde{x}l_I - (k - \pi) - \phi
\]

\[= l_C + m - \frac{\phi}{1 - e}. \quad (23)
\]
Replacing ϕ in (23) we have that

\[
h(\phi) = l_C + m - \frac{1}{e} [l_C + m - \Delta + x I + k - \pi] > 0
\]

\[\Leftrightarrow (1-e)(l_C + m) < \Delta - x I - (k - \pi)
\]

\[\Leftrightarrow e > \bar{e}.
\]

Next, replacing ϕ in (22) yields

\[
h(\phi) = \Delta - (k - \pi) - x I - \frac{1-e}{e} [k - \pi - \Delta]
\]

\[= \Delta - \frac{k - \pi}{e} + \frac{x}{e} [(1-e)\Delta - e I].
\]

Since $\Delta - (k - \pi)/e < 0$ by the assumption that $e < \bar{e}$ and we have just established that $h(\phi) > 0$ when $e > \underline{e}$, it must be that $(1-e)\Delta > e I$, and hence that $h'(\phi_A) < 0$ when $\underline{e} < e < \bar{e}$.

Having established these claims, we now solve for the welfare-maximizing fees. The planner’s problem can be written as

\[
\max_{\phi_A \geq 0, \phi_P \geq 0} W(\hat{\alpha}, \hat{x}(\phi_A, \phi_P), 1)
\]

subject to

\[
\begin{align*}
\phi_A &\geq (1-e)(l_C + m - \phi_P) & [\mu_1] \\
\phi_P &\leq h(\phi_A) & [\mu_2]
\end{align*}
\]

where μ_1 and μ_2 are the multipliers associated with the constraints. The first-order conditions are

\[
\begin{align*}
\frac{\partial W}{\partial x} \frac{\partial \hat{x}}{\partial \phi_A} + \mu_1 + \mu_2 h'(\phi_A) &= 0 \quad (24) \\
\frac{\partial W}{\partial x} \frac{\partial \hat{x}}{\partial \phi_P} + \mu_1 (1-e) - \mu_2 &= 0. \quad (25)
\end{align*}
\]

We have to distinguish two cases: $\partial W/\partial x < 0$ and $\partial W/\partial x > 0$.

Case 1: $\partial W/\partial x < 0$. Combining $h'(\phi_A) < 0$ with the fact that $\partial W/\partial x < 0$ and $\partial \hat{x}/\partial \phi_A < 0$, (24) implies $\mu_2 > 0$, so the constraint $\phi_P \leq h(\phi_A)$ must be binding at the optimum. Using (24) to replace μ_1, (25) becomes

\[
\begin{align*}
\frac{\partial W}{\partial x} \frac{\partial \hat{x}}{\partial \phi_P} - (1-e) \left(\frac{\partial W}{\partial x} \frac{\partial \hat{x}}{\partial \phi_A} + \mu_2 h'(\phi_A) \right) - \mu_2 &= \frac{\partial W}{\partial x} \left(\frac{\partial \hat{x}}{\partial \phi_P} - (1-e) \frac{\partial \hat{x}}{\partial \phi_A} \right) \\
&\quad - \mu_2 \left((1-e)h'(\phi_A) + 1 \right).
\end{align*}
\]

Noting that $\partial \hat{x}/\partial \phi_P = (1-e)\partial \hat{x}/\partial \phi_A$ and substituting for $h'(\phi_A)$ from (21), this expression simplifies to

\[-\mu_2 \left[1 - \frac{(1-e)\Delta - e I}{\Delta} \right] = -\mu_2 \frac{e(\Delta + l I)}{\Delta} < 0.
\]

37
Hence, when evaluated at the binding constraint \(\phi_P \leq h(\phi_A) \), the objective is decreasing in \(\phi_P \). It follows that the optimal solution is such that \(\phi_P = 0 \) and \(h(\phi_A) = \phi_P = 0 \) (which is equivalent to \(\Pi^H = 0 \)) as claimed.

Case 2: \(\partial W/\partial x > 0 \). Combining \(h'(\phi_A) < 0 \) with the fact that \(\partial W/\partial x > 0 \) and \(\partial \hat{x}/\partial \phi_A < 0 \), (24) implies \(\mu_1 > 0 \), so the constraint \(\phi_A \geq (1 - e)(lC + m - \phi_P) \) must be binding at the optimum. We have

\[
W(\hat{a}, \hat{x}(\phi_A, \phi_P), 1)|_{\phi_A = (1-e)(lC+m-\phi_P)} = W(\hat{a}, \hat{x}, 1),
\]

which is constant in \((\phi_A, \phi_P) \). Hence, any combination of fees such that \(\phi_A = (1 - e)(lC + m - \phi_P) \), \(\phi_A \geq 0 \), \(\phi_P \geq 0 \), and \(\phi_P \leq h(\phi_A) \) is a solution. Combining the three inequalities and noting that \(lC + m - \phi_A/(1 - e) \) and \(h(\phi_A) \) intersect at \(\bar{\phi} \) yields

\[
0 \leq \phi_P \leq \min\{lC + m, h(\bar{\phi})\} = \min\{lC + m, [\Delta - (k - \pi) - \tilde{x} lI - (1 - e)(lC + m)]/e\}. \]

\(\square \)
Appendix B A more general screening technology

In this appendix, we introduce a more general screening technology that allows for both type-I and type-II errors at both the level of the patent office and the courts, and we examine how our results extend to that case. Suppose the patent office and the courts review applications with intensity e_1 and e_2, respectively. The intensity of review equals the probability that they find out the inventor’s true type. With probability $1 - e_i$, $i = 1, 2$, they find no strong evidence either way, in which case the patent office allows the application with probability q_1 while the courts uphold the patent with probability q_2. This leads to stage-\textit{i} probabilities of acceptance and rejection for each type of inventor given in Table 1, with $i = 1, 2$, stage 1 corresponding to patent office review and stage 2 corresponding to court review. Our basic model is a special case of this setup with $e_1 = e_2$, $q_1 = 1$, and $e_2 = 1$ (q_2 is indeterminate). Assume $(1 - e_2)(1 - q_2)\Delta_C < l_C < (e_2 + (1 - e_2)(1 - q_2))\Delta_C$; otherwise the competitor either would not want to challenge even when being sure of facing a type-L inventor or would want to challenge even when being sure of facing a type-H inventor.

<table>
<thead>
<tr>
<th></th>
<th>Acceptance</th>
<th>Rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type H</td>
<td>$e_i + (1 - e_i)q_i$</td>
<td>$(1 - e_i)(1 - q_i)$</td>
</tr>
<tr>
<td>Type L</td>
<td>$(1 - e_i)q_i$</td>
<td>$e_i + (1 - e_i)(1 - q_i)$</td>
</tr>
</tbody>
</table>

B.1 No challenges

Consider first the case where challenges are not possible. Then the two types of inventors have the following expected payoff from investing and applying:

$$
\Pi^H = (e_1 + (1 - e_1)q_1)(\pi + \Delta - \phi_P) + (1 - e_1)(1 - q_1)\pi - k - \phi_A
$$

$$
\Pi^L = (1 - e_1)q_1(\pi + \Delta - \phi_P) + (e_1 + (1 - e_1)(1 - q_1))\pi - \phi_A.
$$

Fixing the sum of fees, $\phi_A + \phi_P$, both types now prefer post-grant to pre-grant fees. However, type L has a stronger preference for post-grant fees than type H. To see this, we can compute the slope of the iso-profit lines:

$$
\frac{\partial \Pi^H}{\partial \phi_A} = \frac{1}{e_1 + (1 - e_1)q_1}
$$

$$
\frac{\partial \Pi^L}{\partial \phi_A} = \frac{1}{(1 - e_1)q_1}.
$$

For any $e_1 > 0$, type L’s iso-profit lines are steeper than type H’s. To obtain a one dollar reduction in ϕ_A, the type-L inventor is willing to accept a $1/[(1 - e_1)q_1]$ dollar
increase in ϕ_P, while the type-L inventor is willing to accept only a smaller increase of $1/[e_1 + (1 - e_1)q_1]$ dollars.

The type-L inventor invests if and only $\Pi^H \geq 0$. The type-L inventor always invests; he applies for a patent if $\Pi^L \geq \pi$. Thus the condition for full screening is $\Pi^H \geq 0 \geq \Pi^L - \pi$, or

$$(e_1 + (1 - e_1)q_1)(\Delta - \phi_P) - (k - \pi) \geq \phi_A \geq (1 - e_1)q_1(\Delta - \phi_P).$$

A necessary condition is

$$e_1 \geq \frac{k - \pi}{\Delta}.$$

That is, the minimum examination intensity required to achieve full screening in the absence of court challenges is the same as in the basic model.

B.2 Challenges

Now consider the possibility of court challenges. Suppose type H invests and applies; moreover, suppose that if he is successful in obtaining a patent, he activates it and charges a license fee F_H. Type H’s expected payoff then is

$$\Pi^H = (e_1 + (1 - e_1)q_1)\left[x[(e_2 + (1 - e_2)q_2)(\pi + \Delta) + (1 - e_2)(1 - q_2)\pi - l_I] + (1 - x)(\pi + m + F^H - \phi_P)\right] + (1 - e_1)(1 - q_1)\pi - k - \phi_A, \quad (26)$$

where x is the rate of challenges given F^H. The competitor’s belief that an activated patent is valid when a license is offered at fee F^H is

$$\hat{\lambda} = \frac{\lambda(e_1 + (1 - e_1)q_1)}{\lambda(e_1 + (1 - e_1)q_1) + (1 - \lambda)(1 - e_1)q_1\alpha\rho y}. \quad (27)$$

The lower bound of $\hat{\lambda}$ is attained at $\alpha\rho y = 1$ and given by

$$\underline{\lambda} = \frac{\lambda(e_1 + (1 - e_1)q_1)}{\lambda(e_1 + (1 - e_1)q_1) + (1 - \lambda)(1 - e_1)q_1}. \quad (28)$$

Challenges are credible if and only if

$$\pi - \Delta_C \leq \underline{\lambda}[(e_2 + (1 - e_2)q_2)(\pi - \Delta_C) + (1 - e_2)(1 - q_2)\pi] + (1 - \underline{\lambda})[(1 - e_2)q_2(\pi - \Delta_C) + (e_2 + (1 - e_2)(1 - q_2))\pi] - l_C \quad (28)$$

or

$$[1 - (1 - e_2)q_2 - e_2\underline{\lambda}]\Delta_C \geq l_C. \quad (29)$$

When challenges are not credible, the outcome is the same as in the absence of challenges (see the previous subsection). The equilibrium when challenges are credible is characterized in the following proposition.
Proposition 5. Consider the generalized screening technology specified in Table 1. If challenges are credible and \(\phi_P \leq \Delta - \phi_A/(1 - e_1)q_1 \), there is a semi-separating equilibrium in which:

(i) the type-\(H \) inventor invests, applies, activates, and proposes \(F^H = \Delta_C \);

(ii) the type-\(L \) inventor always randomizes over either

 (a) the decision whether to apply or not (probabilities \(\alpha \) and \(1 - \alpha \)), or

 (b) the license fee to propose, \(F^L \in \{\Delta_C, l_C + (1 - e_2)q_2\Delta_C\} \) (probabilities \(y \) and \(1 - y \)),

such that \([\hat{\lambda}(1 - e_2)(1 - q_2) + (1 - \hat{\lambda})(e_2 + (1 - e_2)(1 - q_2))]\Delta_C = l_C; \) he always activates \((\rho = 1) \);

(iii) the competitor randomizes over the decision whether to challenge or not (probabilities \(x \) and \(1 - x \)) if offered \(F = \Delta_C \) and never challenges if offered \(F = l_C + (1 - e_2)q_2\Delta_C \), with

\[
x = \begin{cases}
\hat{x} & \text{for } \phi_P \leq l_C + m + (1 - e_2)q_2\Delta_C - \frac{\phi_A}{(1 - e_1)q_1} < \phi_P \leq \Delta - \frac{\phi_A}{(1 - e_1)q_1}; \\
\hat{x} & \text{for } l_C + m + (1 - e_2)q_2\Delta_C - \frac{\phi_A}{(1 - e_1)q_1} < \phi_P \leq \Delta - \frac{\phi_A}{(1 - e_1)q_1}; \\
\tilde{x} & \text{for } \phi_P \leq \Delta - \phi_A/(1 - e_1)q_1,
\end{cases}
\]

where

\[
\hat{x} = \frac{(e_2 + (1 - e_2)(1 - q_2))\Delta_C - l_C}{(e_2 + (1 - e_2)(1 - q_2))\Delta + l_i},
\]

\[
\tilde{x} = \frac{\Delta - \phi_P - \phi_A/[1 - e_1]q_1}{(e_2 + (1 - e_2)(1 - q_2))\Delta + l_i},
\]

provided \((e_1 + (1 - e_1)q_1)[(1 - x(1 - e_2)(1 - q_2)\Delta - xl_i - \phi_P] - (k - \pi) - \phi_A \geq 0. \) If \(\phi_P > \Delta - \phi_A/(1 - e_1)q_1 \), the type-\(L \) inventor does not apply and the competitor does not challenge.

Proof. The proof is similar to that of Proposition 1; we therefore focus on the key points here. Suppose type \(H \) invests, applies, activates and charges \(F^H = \Delta_C \). Consider the behavior of type \(L \) in the case where challenges are credible, i.e., (29) holds, and fees are sufficiently low as to make applying and activating profitable (i.e., \(\alpha = \rho = 1 \)). Let us look for an equilibrium in which type \(L \) randomizes over the license fee \(F_L \) as follows:

\[
F_L = \begin{cases}
\Delta_C & \text{with probability } y \\
\tilde{F} & \text{with probability } 1 - y,
\end{cases}
\]

where \(\tilde{F} \) is chosen such that the competitor does not find it worthwhile to challenge.
The competitor’s beliefs on the equilibrium path are $\tilde{\lambda}(F^H) = \tilde{\lambda}$ and $\tilde{\lambda}(F) = 0$. The out-of-equilibrium belief most likely to support the equilibrium is $\tilde{\lambda}(F) = 0$ for $F \neq F^H, \tilde{F}$. For the competitor to refrain from challenging when observing $F \neq F^H$ despite assigning probability 1 to the patent being invalid, it must be that

$$(1 - e_2)q_2(\pi - \Delta_C) + (e_2 + (1 - e_2)(1 - q_2))\pi - l_C \leq \pi - F.$$

The highest fee that satisfies this inequality is

$$F = l_C + (1 - e_2)q_2\Delta_C.$$

Let $s(F) \in [0, 1]$ denote the competitor’s probability of challenging the patent when observing a license fee offer F. Sequential rationality requires $s(F) = 0$ for $F \leq F^*$ and $s(F) = 1$ for $F > F^*$, $F \neq F^H$. Thus, $\tilde{F} = \bar{F}$. We also have $s(F^H) = x$, which depends on $\hat{\lambda}$. For the type-L inventor to be indifferent between offering F^H and \bar{F}, it must be that

$$\pi + m + \bar{F} = x[(1 - e_2)q_2(\pi + \Delta) + (e_2 + (1 - e_2)(1 - q_2))\pi - l_1] + (1 - x)(\pi + m + F^H).$$

Replacing \bar{F} and F^H yields

$$x = \frac{(e_2 + (1 - e_2)(1 - q_2))\Delta_C - l_C}{(e_2 + (1 - e_2)(1 - q_2))\Delta + l_1} = \bar{x}.$$

For the competitor to be willing to randomize between challenging and not, it must be that (28) holds with equality when replacing λ by $\tilde{\lambda}$, i.e.,

$$(1 - (1 - e_2)q_2 - e_2\hat{\lambda})\Delta_C = l_C. \quad (30)$$

Finally, we need to check that the type-H inventor has no incentive to deviate. The best deviation would be to $F = \tilde{F}$. But since x is chosen so as to make the type-L inventor indifferent between F^H and \bar{F}, and type H has a higher probability of winning in court than type L, type H must strictly prefer F^H to \bar{F}.

The above equilibrium was derived under the assumption that fees are sufficiently low for the type-L inventor to find it profitable to apply. Since the type-L inventor’s payoff in this equilibrium is equal to his payoff when offering \bar{F}, this requires

$$\phi_P \leq l_C + m + (1 - e_2)q_2\Delta_C - \phi_A/[(1 - e_1)q_1]. \quad (31)$$

Suppose instead (31) does not hold. Then, the above strategy profile cannot be part of an equilibrium. However, if the type-L inventor’s payoff from applying is positive when there are no challenges, i.e.,

$$\phi_P \leq \Delta - \phi_A/[(1 - e_1)q_1], \quad (32)$$
then type L will randomize over the decision to apply, and do so such that (30) holds.

The competitor chooses x to make the type-L inventor indifferent between applying and not:

$$
\pi = (1 - e_1)q_1 \left[x[(1 - e_2)q_2(\pi + \Delta) + (e_2 + (1 - e_2)(1 - q_2))\pi - l] + (1 - x)(\pi + m + \Delta_C) \right] + (e_1 + (1 - e_1)(1 - q_1))\pi - \phi_A.
$$

Solving for x yields

$$
x = \frac{\Delta - \phi_P - \phi_A/[1 - e_1]q_1}{(e_2 + (1 - e_2)(1 - q_2))\Delta + l} = \hat{x}.
$$

If (32) is not satisfied, type L does not apply.

To conclude the proof, let us check whether type H finds it profitable to invest in R&D. Using $F^H = \Delta_C$, the expression for Π_H in (26) can be rewritten as

$$
\Pi^H = (e_1 + (1 - e_1)q_1)\left[(1 - x(1 - e_2)(1 - q_2))\Delta - xl - \phi_P \right] - (k - \pi) - \phi_A.
$$

Letting $h(\phi_A) \equiv \Pi^H / (e_1 + (1 - e_1)q_1 + \phi_P)$, we have that $\Pi^H \geq 0$ if and only if $h(\phi_A) \geq \phi_P$. Substituting the equilibrium values of x in the different regions, we obtain

$$
h(\phi_A) = \begin{cases}
 h_1(\phi_A) & \text{for } \phi_A \leq \phi \\
 h_2(\phi_A) & \text{for } \phi < \phi_A \leq \overline{\phi} \\
 h_3(\phi_A) & \text{for } \phi_A > \overline{\phi},
\end{cases}
$$

where

$$
h_1(\phi_A) = \Delta - \frac{k - \pi + \phi_A}{e_1 + (1 - e_1)q_1} \\
- \frac{(e_2 + (1 - e_2)(1 - q_2))\Delta - lC}{(e_2 + (1 - e_2)(1 - q_2))\Delta + l} \left[(1 - e_2)(1 - q_2)\Delta + l \right]
$$

$$
h_2(\phi_A) = \Delta - \frac{(e_2 + (1 - e_2)(1 - q_2))\Delta + l}{(e_1 + (1 - e_1)q_1)e_2\Delta} \left(k - \pi \right)
- \frac{[e_2(1 - e_1)q_1 - e_1(1 - e_2)(1 - q_2)]\Delta - e_1l}{(e_1 + (1 - e_1)q_1)e_2\Delta} \phi_A
$$

$$
h_3(\phi_A) = \Delta - \frac{k - \pi + \phi_A}{e_1 + (1 - e_1)q_1},
$$

and

$$
\phi = \frac{(1 - e_1)q_1}{e_1} \left[k - \pi + (e_1 + (1 - e_1)q_1)[lC + m + (1 - e_2)q_2\Delta_C \\
- (1 - \hat{x}(1 - e_2)(1 - q_2))\Delta + \hat{x}l] \right]
$$

$$
\overline{\phi} = \frac{(1 - e_1)q_1}{e_1}[k - \pi + (e_1 + (1 - e_1)q_1)\hat{x}e_2\Delta_C]
$$

$$
\overline{\phi} = \frac{(1 - e_1)q_1}{e_1}(k - \pi).
$$
We again have three regions in \((\phi_A, \phi_P)\) space. For low fees (region 1), type \(L\) always applies while randomizing over the license fee to charge; for intermediate fees (region 2), type \(L\) always charges the high fee while randomizing over the application decision. In both cases, type \(L\)'s randomization is done such that the competitor is indifferent between challenging and not. The competitor herself randomizes over the challenge decision so as to make type \(L\) indifferent. For large fees (region 3), type \(L\) does not apply and the competitor does not challenge. The main difference with the baseline model is that the license fee charged by the low type to avoid a challenge is now higher, namely, \(F = l_C + m + (1 - e_2)q_2\Delta_C\), reflecting the fact that a challenge is not guaranteed to be successful even when the competitor is sure of facing a low type. Similarly, the high type’s profit is now lower than in the baseline because his patent application can be rejected by the patent office and, if granted, can be invalidated by the court.

The comparative statics results from the basic model with respect to fees extend in a straightforward way: an increase in fees leads to (weakly) fewer bad applications \((\alpha)\), (weakly) higher licence fees \((y)\), and (weakly) fewer challenges \((x)\). With respect to examination intensity \((e_1)\), we continue to have an ambiguous result on bad applications: as \(e_1\) increases, we first move from region 1, where \(\alpha = 1\), to region 2, where

\[
\alpha = \tilde{\alpha} = \left(\frac{\lambda}{1 - \lambda} \right) \left(\left(\frac{e_1 + (1 - e_1)q_1}{1 - e_1} \right) \frac{l_C - (1 - e_2)(1 - q_2)\Delta_C}{(e_2 + (1 - e_2)(1 - q_2)\Delta_C - l_C)} \right) < 1.
\]

Within region 2, however, an increase in \(e_1\) leads to more bad applications, \(\partial \tilde{\alpha} / \partial e_1 > 0\). Finally, as \(e_1\) continues to increase, \(\alpha\) drops to zero in region 3. A similar ambiguous result holds for \(y\). As for the rate of challenges, an increase in \(e_1\) (weakly) reduces \(x\).

With the generalized technology, we can also consider the effects of a change in the quality of the courts, as captured by \(e_2\). As \(e_2\) increases, the equilibrium moves from region 1 to region 2 but no further: changes in \(e_2\) can never move the equilibrium to region 3 (this is a manifestation of our results on full screening; see Proposition 6 below). Within region 1, \(e_2\) has no effect on \(\alpha\) while it decreases \(x = \hat{x}\); the effect on \(y\) is ambiguous. Within region 2, \(e_2\) has no effect on \(y\) while it continuous to reduce \(x = \hat{x}\); the effect on \(\alpha\) is ambiguous. The ambiguous effect on \(\alpha = \tilde{\alpha}\) in region 2 (and similarly \(y = \tilde{y} = \tilde{\alpha}\) in region 1) can be further analyzed as follows. We have

\[
\frac{\partial \tilde{\alpha}}{\partial e_2} = \left(\frac{\lambda}{1 - \lambda} \right) \left(\left(\frac{e_1 + (1 - e_1)q_1}{1 - e_1} \right) \frac{\Delta_C((1 - q_2)\Delta_C - l_C)}{((e_2 + (1 - e_2)(1 - q_2))\Delta_C - l_C)^2} \right) \leq 0
\]

\[
\Leftrightarrow q_2 \geq 1 - \frac{l_C}{\Delta_C}.
\]

Thus, an increase in the quality of the courts leads to fewer bad applications if and only if \(q_2\) is sufficiently large. This result is interesting, as \(q_2\) could be interpreted as a measure of the presumption of validity that the courts apply.
The proof proceeds through a series of claims.

Proposition 7. There exists a combination of fees \((\phi_A, \phi_P)\) inducing full screening if and only if \(e_1 \geq \bar{e}\). For a given \(e_1 \geq \bar{e}\), any combination of fees satisfying

\[
(e_1 + (1 - e_1)q_1)(\Delta - \phi_P) - (k - \pi) \geq \phi_A \geq (1 - e_1)q_1(\Delta - \phi_P). \tag{33}
\]

achieves full screening.

Proof. By Proposition 5, deterrence of type \(L\) (\(\alpha = 0\)) requires \(\phi_A \geq ((1 - e_1)q_1)(\Delta - \phi_P)\). Investment by type \(H\) when type \(L\) is deterred (and thus, in equilibrium, \(x = 0\)) requires \((e_1 + (1 - e_1)q_1)(\Delta - \phi_P) - (k - \pi) \geq \phi_A\). A pre-grant fee \(\phi_A\) satisfying both inequalities exists if and only if \((e_1 + (1 - e_1)q_1)(\Delta - \phi_P) - (k - \pi) \geq ((1 - e_1)q_1)(\Delta - \phi_P)\), or

\[
e_1 \geq \frac{k - \pi}{\Delta - \phi_P}. \tag{34}
\]

Since the right-hand side increases with \(\phi_P\), the minimum level of \(e_1\) required to achieve full screening is obtained by evaluating (34) at \(\phi_P = 0\), yielding \(e_1 \geq (k - \pi)/\Delta = \bar{e}\). □

Next, we revisit the result on the welfare-maximizing fee structure when full screening is not possible \((e_1 < \bar{e})\) from Proposition 4. With the generalized screening technology, the welfare function is

\[
W(\alpha, x, y) = 2\pi + S - \lambda [(e_1 + (1 - e_1)q_1)[(1 - x(1 - e_2)(1 - q_2))D + x(l_C + l_I)] + k + \gamma(e_1)]
- (1 - \lambda)\alpha \left[(1 - e_1)q_1 \left(y((1 - x) + x(1 - e_2)q_2) + 1 - y[D + xy(l_C + l_I)] + \gamma(e_1) \right) \right]. \tag{35}
\]

The threshold \(c_e\), which is such that region 2 is attainable for \(e_1 > c_e\) is now defined by

\[
(1 - e)q_1[l_C + m + (1 - e_2)q_2 \Delta_C]
= (\bar{c} + (1 - \bar{c})q_1)[(1 - \bar{x}(1 - e_2)(1 - q_2))\Delta - \bar{x}l_I] - (k - \pi). \tag{36}
\]

Proposition 7. If \(\bar{c} < e_1 < \bar{e}\) and \(\Delta_C > (l_C/(l_C + l_I))D\), welfare is maximized by setting \(\phi_P = 0\) and \(\phi_A\) such that \(\Pi^H = 0\).

Proof. The proof proceeds through a series of claims.

Claim 1: \(W(\alpha, y, x) \geq W(\alpha', y', x)\) for \(\alpha y = \alpha' y'\) if and only if \(\alpha \leq \alpha'\). Rewriting (35) as

\[
W(\alpha, x, y) = 2\pi + S - \lambda [(e_1 + (1 - e_1)q_1)[(1 - x(1 - e_2)(1 - q_2))D + x(l_C + l_I)] + k + \gamma(e_1)]
- (1 - \lambda)\alpha \left[\alpha y(1 - e_1)q_1(l_C + l_I - D) + \alpha(1 - e_1)q_1(1 + x(1 - e_2)q_2)D + \gamma(e_1) \right],
\]

45
we have, for \(\alpha y = \alpha' y' \),

\[
W(\alpha, x, y) - W(\alpha', x, y') = (1 - \lambda)(\alpha' - \alpha)[(1 - e_1)q_1(1 + x(1 - e_2)q_2)D + \gamma(e_1)] \geq 0
\]

if and only if \(\alpha \leq \alpha' \).

Claim 2: \((\partial / \partial x)W(\alpha, x, y)_{\alpha y = \hat{\alpha}} < 0 \) if and only if \(\Delta_C > (l_C / (l_C + l_I))D \). We have

\[
\frac{\partial W}{\partial x} = \lambda(\hat{e}_1(1 - e_1)q_1)[(1 - e_2)(1 - q_2)D - (l_C + l_I)]
+ (1 - \lambda)(1 - e_1)q_1 \alpha y[(1 - (1 - e_2)q_2)D - (l_C + l_I)]
\]

\[
= [\lambda(\hat{e}_1(1 - e_1)q_1)(1 - e_2)(1 - q_2) + (1 - \lambda)(1 - e_1)q_1 \alpha y(1 - (1 - e_2)q_2)]D
- [\lambda(\hat{e}_1(1 - e_1)q_1) + (1 - \lambda)(1 - e_1)q_1 \alpha y](l_C + l_I).
\]

Using the definition of \(\hat{\lambda} \) in (27), we can rewrite this as

\[
\frac{\partial W}{\partial x} = \left[\lambda(\hat{e}_1(1 - e_1)q_1) + (1 - \lambda)(1 - e_1)q_1 \alpha y \left(\frac{\hat{\lambda}(1 - e_2)q_2}{(1 - \hat{\lambda}(e_2 - (1 - e_2)q_2))D - (l_C + l_I)}\right)\right].
\]

By Proposition 5, in the equilibrium in regions 1 and 2 (i.e., for \(\alpha y = \hat{\alpha} \)) we have

\[
\hat{\lambda}(1 - e_2)(1 - q_2)
+ (1 - \hat{\lambda})(e_2 - (1 - e_2)(1 - q_2)) = l_C / \Delta_C.
\]

Hence,

\[
\frac{\partial W}{\partial x} < 0 \iff \frac{l_C}{\Delta_C}D - (l_C + l_I) < 0 \iff \Delta_C > \left(\frac{l_C}{l_C + l_I}\right)D.
\]

Claim 3: \(\hat{x} \geq \hat{x}(\phi_A, \phi_P) \) for any \(\phi_A, \phi_P \) such that \(l_C + m + (1 - e_2)q_2 \Delta_C - \phi_A / ((1 - e_1)q_1) \leq \phi_P \). Since \(\hat{x} \) is decreasing in \(\phi_A \) and \(\phi_P \), its maximum \(\hat{x}_{\text{max}} \) is attained for

\[
\hat{x}_{\text{max}} = \frac{\Delta_C + m - (l_C + m + (1 - e_2)q_2 \Delta_C)}{(e_2 + (1 - e_2)q_2)\Delta + l_I} = \left(\frac{e_2 + (1 - e_2)(1 - q_2)\Delta - l_C}{e_2 + (1 - e_2)(1 - q_2)\Delta + l_I}\right).
\]

Hence, \(\hat{x}(\phi_A, \phi_P) \leq \hat{x} \) for \(l_C + m + (1 - e_2)q_2 \Delta_C - \phi_A / ((1 - e_1)q_1) \leq \phi_P \).

Combining these three claims with the assumption that \(\Delta_C > (l_C / (l_C + l_I))D \), it follows that the welfare-maximizing combination of fees solves the following optimization problem:

\[
\min_{\phi_A, \phi_P} \hat{x}(\phi_A, \phi_P)
\]

subject to

\[
\begin{aligned}
\phi_P &\geq 0 \\
\phi_A &\geq ((1 - e_1)q_1)[l_C + m + (1 - e_2)q_2 \Delta_C - \phi_P] \\
\phi_P &\leq h(\phi_A)
\end{aligned}
\]

where \(\mu_1, \mu_2, \) and \(\mu_3 \) are the multipliers associated with the constraints and \(h(\phi_A) \) was defined in the proof of Proposition 5 (recall that \(\phi_P \leq h(\phi_A) \iff \Pi^H \geq 0 \)). The
first-order conditions with respect to \(\phi_A \) and \(\phi_P \) are

\[
\frac{\partial \hat{x}}{\partial \phi_A} = \mu_2 + \mu_3 h'(\phi_A) \\
\frac{\partial \hat{x}}{\partial \phi_P} = \mu_1 + \mu_2 (1 - e_1) q_1 - \mu_3. \tag{37}
\]

We now show that at the optimum \(\mu_1 > 0 \) and \(\mu_3 > 0 \) while \(\mu_2 = 0 \), implying \(\phi_P = 0 \) and \(h(\phi_A) = 0 \) (which is equivalent to \(\Pi^H = 0 \)) as claimed.

We start by establishing that \(h'(\phi_A) < 0 \) in region 2 when \(e < e_1 < \bar{e} \) (which holds by assumption). Note first that

\[
h(\phi_A) = h_2(\phi_A) \text{ in region } 2, \text{ and hence that}
\]

\[
h'(\phi_A) = h'_2(\phi_A) = -\frac{[e_2(1 - e_1)q_1 - e_1(1 - e_2)(1 - q_2)]\Delta - e_1 l_f}{(e_1 + (1 - e_1)q_1)e_2\Delta}, \tag{39}
\]

which is negative if and only if \([e_2(1 - e_1)q_1 - e_1(1 - e_2)(1 - q_2)]\Delta > e_1 l_f\). Next, note that \(e_1 > \bar{e} \) implies that \(h(\phi) > 0 \): by definition of \(\phi_\cdot \).

\[
h_1(\phi) = (1 - \hat{x}(1 - e_2)(1 - q_2))\Delta - \hat{x} l_f - \frac{k - \pi + \phi}{e_1 + (1 - e_1)q_1}
\]

\[
= l_C + m + (1 - e_2)q_2\Delta C - \frac{\phi}{(1 - e_1)q_1}.
\]

Replacing \(\phi \) on the right-hand side we have that

\[
h(\phi) = h_1(\phi) = l_C + m + (1 - e_2)q_2\Delta C - \frac{e_1 + (1 - e_1)q_1}{e_1} [l_C + m + (1 - e_2)q_2\Delta C
\]

\[
- (1 - \hat{x}(1 - e_2)(1 - q_2))\Delta + \hat{x} l_f + \frac{k - \pi}{e_1 + (1 - e_1)q_1}] > 0,
\]

or

\[
(1 - e_1)q_1[l_C + m + (1 - e_2)q_2\Delta C] < (e_1 + (1 - e_1)q_1)[(1 - \hat{x}(1 - e_2)(1 - q_2))\Delta - \hat{x} l_f] - (k - \pi)
\]

\[
\Leftrightarrow \quad e_1 > \bar{e}.
\]

Next, replacing \(\phi \) in \(h_1(\phi) \) yields

\[
h_1(\phi) = \Delta - \frac{k - \pi}{e_1 + (1 - e_1)q_1} - \hat{x}[(1 - e_2)(1 - q_2)\Delta + l_f]
\]

\[
- \frac{(1 - e_1)q_1}{e_1(e_1 + (1 - e_1)q_1)}[(k - \pi - (e_1 + (1 - e_1)q_1)\hat{x}e_2\Delta]
\]

\[
= \Delta - \frac{k - \pi}{e_1} + \frac{\hat{x}}{e_1}[(e_2(1 - e_1)q_1 - e_1(1 - e_2)(1 - q_2))\Delta - e_1 l_f].
\]

Since \(\Delta - (k - \pi)/e_1 < 0 \) by the assumption that \(e_1 < \bar{e} \) and we have just established that \(h_1(\phi) > 0 \) when \(e_1 > \bar{e} \), it must be that \((e_2(1 - e_1)q_1 - e_1(1 - e_2)(1 - q_2))\Delta > e_1 l_f\), and hence that \(h'(\phi_A) < 0 \).
Combining $h'(\phi_A) < 0$ with the fact that $\partial \hat{x}/\partial \phi_A < 0$, (37) implies $\mu_3 > 0$. Using (37) to replace μ_2 in (38), we have

$$\mu_1 = \frac{\partial \hat{x}}{\partial \phi_P} - (1 - e_1)q_1 \left(\frac{\partial \hat{x}}{\partial \phi_A} - \mu_3 h'(\phi_A) \right).$$

Noting that $\partial \hat{x}/\partial \phi_P = (1 - e_1)q_1 \partial \hat{x}/\partial \phi_A$ and substituting for $h'(\phi_A)$ from (39), we obtain

$$\mu_1 = \mu_3 \left[1 - \frac{(e_2(1 - e_1)q_1 - e_1(1 - e_2)(1 - q_2))\Delta - e_1 l_I}{(e_1 + (1 - e_1)q_1) e_2 \Delta} \right]
= \mu_3 \frac{e_1[(e_2 + (1 - e_2)(1 - q_2))\Delta + l_I]}{(e_1 + (1 - e_1)q_1) e_2 \Delta} > 0.$$

We conclude that $\phi_P = 0$ and $h(\phi_A) = \phi_P = 0$ at the optimum. □

As Proposition 7 shows, our results on the welfare-maximizing structure of fees are robust to the introduction of patent office and court errors.
Appendix C Simulations

C.1 Homogeneous-good Cournot model with two-sided litigation costs

We assume a linear inverse demand: \(P(Q) = a - Q \) where \(Q = q_I + q_C \). The invention reduces unit production cost from \(c \) to \(c' = (1 - s)c \) where \(s \in (0, 1) \).

Let \(q(c_i, c_j) \) denote the Cournot equilibrium output when firm \(i \)’s cost is \(c_i \) and its rival’s cost is \(c_j \). We have

\[
q(c_i, c_j) = \frac{a - 2c_i + c_j}{3}.
\]

Let \(\pi_I(r) \) and \(\pi_C(r) \) denote the inventor’s and competitor’s equilibrium profits, respectively, when the competitor accepts a royalty rate of \(r \). We have

\[
\pi_I(r) = \pi_I(0) + 5\delta(r),
\]

\[
\pi_C(r) = \pi_C(0) - 4\delta(r),
\]

where

\[
\delta(r) \equiv \frac{1}{9} r (a - (1 - s)c - r).
\]

Notice that this implies

\[
4[\pi_I(r) - \pi_I(0)] = 5[\pi_C(0) - \pi_C(r)]. \tag{40}
\]

In region 1, the type-\(L \) inventor proposes a royalty \(r_H \) with probability \(y \) and a royalty \(r_L \) with probability \(1 - y \), while the competitor challenges with probability \(x \) when being offered the high royalty rate \(r_H \). Let us first determine \(r_H \) and \(r_L \). \(r_H \) is the royalty charged by the type-\(H \) inventor, namely \(r_H = sc \) (Fauli-Oller and Sandonis, 2002). We then have

\[
\pi_I(r_H) - \pi_I(0) = \frac{5}{9} (a - c)sc = \Delta.
\]

\(r_L \) must be such that the competitor is indifferent between challenging and not, given that the inventor is sure to be bad. That is, \(r_L \) solves

\[
\pi_C(0) - l_C = \pi_C(r_L).
\]

Then, (40) implies

\[
\pi_I(r_L) - \pi_I(0) = \frac{5}{4} [\pi_C(0) - \pi_C(r_L)] = \frac{5}{4} l_C.
\]
Solving explicitly for \(r_L \) yields

\[
r_L = \frac{1}{2} \left[a - (1 - s)c - \sqrt{(a - (1 - s)c)^2 - 9l_C^2} \right].
\]

With these expressions, we can compute the cost of the patent to the competitor, \(\Delta_C = \pi_C(0) - \pi_C(r_H) = \frac{4}{9}(a - c)sc \), and the incremental profit from monopoly power via royalty licensing, which (in the Cournot model) depends on whether the high or low royalty is charged. With a slight abuse of notation, we denote by \(m(\Delta_C) \) the incremental profit when \(r_H \) is charged and by \(m(l_C) \) the incremental profit when \(r_L \) is charged. We have

\[
m(\Delta_C) = \Delta - \Delta_C = \pi_I(r_H) - \pi_I(0) - (\pi_C(0) - \pi_C(r_H)) = \frac{1}{9}(a - c)sc = \frac{1}{4}\Delta_C,
\]

\[
m(l_C) = \pi_I(r_L) - \pi_I(0) - (\pi_C(0) - \pi_C(r_L)) = \frac{1}{4}l_C.
\]

Thus, for \(z \in \{\Delta_C, l_C\} \), \(m(z) = \frac{1}{4}z \).

Also note that the price elasticity, evaluated at the equilibrium with \(r_H \) is given by

\[
\eta = -\frac{a + (2 - s)c}{2a - (2 - s)c}.
\]

C.2 Embedding the theoretical model into a Cournot setting

We next determine \(x \). The competitor chooses \(x \) so as to make the type-L inventor indifferent between \(r_H \) and \(r_L \). Note that, in the event of a challenge, the \(L \) type’s patent will be invalidated; hence the royalty rate will be \(r = 0 \) and his profit \(\pi_I(0) \).

Thus \(x \) solves

\[
\pi_I(r_L) = x[\pi_I(0) - l_I] + (1 - x)\pi_I(r_H).
\]

Solving for \(x \) and plugging in the values computed above we obtain

\[
x = \frac{\Delta_C + m(\Delta_C) - (l_C + m(l_C))}{\Delta_C + m(\Delta_C) + l_I} = \frac{(5/4)[\Delta_C - l_C]}{\Delta_C + l_I} = \frac{4(a - c)sc - 9l_C}{4(a - c)sc + (36/5)l_I}.
\]

Finally, we determine \(y \). The low type inventor chooses \(y \) so as to make the competitor indifferent between challenging and not when observing \(r_H \):

\[
\hat{\lambda}\pi_C(r_H) + (1 - \hat{\lambda})\pi_C(0) - l_C = \pi_C(r_H),
\]

which yields

\[
(1 - \hat{\lambda})[\pi_C(0) - \pi_C(r_H)] = l_C
\]

where

\[
\hat{\lambda} = \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)y},
\]

is the competitor’s posterior probability that the patent is of type \(H \). Note that because the competitor’s belief is correct in equilibrium, \(\hat{\lambda} \) is also the probability that
A challenged patent is upheld by courts, and thus equals the patentee win rate \((VR)\). Since \(\Delta C = \pi_C(0) - \pi_C(r_H)\) we can write

\[
\hat{\lambda} = \frac{\Delta C - l_C}{\Delta C} = VR.
\]

We thus have

\[
\hat{\lambda} = 1 - \frac{9l_C}{4(a - c)sc}.
\]

Using the two equations for \(\hat{\lambda}\) and solving for \(y\) yields

\[
y = \frac{\lambda}{1 - \lambda} \frac{9l_C}{(1 - e)(4(a - c)sc - 9l_C)}.
\]

With these results, we can express the challenge credibility constraint as

\[
\left(1 - \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)}\right) \frac{4}{9}(a - c)sc \geq l_C.
\]

For each simulation run, we confirm that the output \((a, c, l_C, \lambda, e)\) satisfies this constraint.

The grant rate is

\[
GR = \lambda + (1 - \lambda)(1 - e)
\]

and the observed litigation rate is

\[
LR = \frac{x[\lambda + (1 - \lambda)(1 - e)y]}{\lambda + (1 - \lambda)(1 - e)} = \frac{x\lambda}{GR \lambda}.
\]

Assuming identical litigation costs, \(l_I = l_C\), and using the fact that, in equilibrium, \(l_C = (1 - \hat{\lambda})\Delta C\), we can simplify the expression for \(x\) as

\[
x = \frac{5\hat{\lambda}}{9 - 4\hat{\lambda}}.
\]

Plugging this into \(LR\), using \(\hat{\lambda} = VR\), and solving for \(\lambda\) yields

\[
\lambda = \frac{LR \cdot GR(9 - 4VR)}{5}.
\]

Finally, from the grant rate equation we then obtain \(e\) as

\[
e = 1 - \frac{GR - \lambda}{1 - \lambda} = \frac{5(1 - GR)}{5 - LR \cdot GR(9 - 4VR)}.
\]

R&D Equation

Expected returns to innovation relative to no invention for types \(L\) and \(H\) are:

\[
\Pi_H = \pi_I(r_H) - xl_H - \phi_A - \phi_P - \pi_I^{NI}
\]
\[\Pi_L = e \pi_I(0) + (1 - e) \left[y(x \pi_I(0) + (1 - x) \pi_I(r_H)) + (1 - y) \pi_I(r_L) - xyI - \phi_p \right] - \phi_A - \pi_I^{NI}. \]

Setting observed R&D expenditures, \(R \) (including a rate of return) equal to expected returns to innovation:

\[(1 + \tau)R = \lambda \Pi_H + (1 - \lambda) \Pi_L,\]

where \(\tau \) is the private rate of return to R&D, estimated by Bloom, Schankerman and Van Reenen (2013) at 0.25.

Given the earlier analysis, the right hand side of this equation can be expressed as a function of \((l, a, c, \lambda, s, \eta, VR, GR)\).

C.3 Computing investment costs, R&D and welfare

Note that \(K = \lambda \kappa_H + (1 - \lambda) \kappa_L \), where \(K \) denotes observed investment expenditure per patent. In the model we normalize \(\kappa_L = 0 \) but for the simulations we need estimates of both \(\kappa_L \) and \(\kappa_H \). To obtain these, we exploit the following relationships:

\[\kappa_H = \frac{K - (1 - \lambda) \kappa_L}{\lambda} \]

and

\[\kappa_L \leq \pi_I(0) - \pi_I^{NI} \leq \kappa_H \leq \pi_I(r_H) - xlI - \phi_A - \phi_P - \pi_I^{NI} \]

where \(\pi_I(0) \) is Cournot profit for the innovator if there is no patent (zero royalty), \(\pi_I(r_H) \) is innovator profit at the high royalty and \(\pi_I^{NI} \) is profit if there is no cost-reducing invention (the outside option payoff). The first equation defines a locus of \((\kappa_L, \kappa_H)\) consistent with observed total development cost. The first two inequalities in the second equation say that low type inventions would be developed without patent protection but high types would not. The last inequality ensures that there is sufficient incentive with a patent to develop the high type. Among all \((\kappa_L, \kappa_H)\) on the locus that satisfy the inequalities, we use the average. Nothing of substance changes if we use other feasible values.

Finally, to compute welfare, note that industry output in equilibrium is

\[Q(c_i, c_j) = q(c_i, c_j) + q(c_j, c_i) = \frac{2(a - c') - r}{3}. \]

Hence, consumer surplus, as a function of the royalty rate \(r \), is

\[CS(r) = \frac{1}{2} \left(\frac{2(a - c') - r}{3} \right)^2. \]
Let \(w(r) = \pi_I(r) + \pi_C(r) + CS(r) \). Then, expected total welfare is
\[
W = \lambda \left[w(r_H) - x(l_C + l_I) - \gamma(e) - \kappa_H \right] + (1 - \lambda) \left[\alpha \left[ew(0) + (1 - e) \left(y(xw(0) + (1 - x)w(r_H)) + (1 - y)w(r_L) - xy(l_C + l_I) \right) - \gamma(e) \right] + (1 - \alpha)w(0) - \kappa_L \right]
\]

C.4 Calibration

Examination cost per patent application, \(\gamma(e) \)
We assume constant returns to scale in examination intensity per application, \(e : \gamma(e) = \psi e \). Given the simulated value of \(e \), say \(\hat{e} \), we compute the unit cost \(\psi \) using the examination/search cost per patent reported by the USPTO as $3,660. Hence \(\psi = \frac{3660}{\hat{e}} \), and in percentage-point terms, \(MCE = \psi/100 \). For each policy experiment, we use the new simulated examination intensity, \(e^* \), and then compute the counterfactual cost of processing an application as \(\gamma(e^*) = \psi e^* \).

Pre-grant (application) fees, \(\phi_A \)
Patent office pre-grant fees include filing, search, examination and processing fees. This yields \(\phi_A = $1,740 \) (www.uspto.gov/learning-and-resources/fees-and-payment/uspto-fee-schedule). We exclude filing fees for excess independent claims (above three) and total claims (above 20) because the average numbers of claims fall below these thresholds (Dennis Crouch, “The Rising Size and Complexity of the Patent Document,” University of Missouri School of Law, http://dx.doi.org/10.2139/ssrn.1095810). We also include the the cost of preparing the patent application. External estimates (www.ipwatchdog.com/2015/the-cost-of-obtaining-a-patent-in-the-us) fall in the range $10,000–$20,000. We use $15,000 as the baseline, but results are very similar for other values in the range.

Post-grant (activation) fees, \(\phi_P \)
To compute post-grant fees, we include the issuance fee and (large entity) maintenance fees at ages 4, 8 and 12 (www.uspto.gov/learning-and-resources/fees-and-payment/uspto-fee-schedule). Assuming maintenance to full term, the computed post-grant fees (ignoring discounting) are \(\phi_P = $13,560 \). We do not include fees for ex parte re-examination, supplemental examination or various appeals.

R&D per patent, \(R \)
The worldwide R&D expense per patent application in 2008 is reported as $2.4 million (InfoBrief NSF13-207, National Center for Science and Engineering Statistics, U.S. National Science Foundation). We use this figure as the baseline, but simulation results are similar using $2, 3 and 4 million.
Investment cost, K

We obtain the fraction of private R&D costs accounted for by development expenditures, taken from annual U.S. National Science Foundation surveys (www.nsf.gov/statistics/2016/nsf16301/pdf/tab17.pdf). We take the average value of this ratio for the period 1995-2000, which is 0.80, and multiply it by the R&D per patent as described above.

Litigation rate

The litigation rate is set at 0.015, computed as the ratio of patent suits to the total number of patent grants (Lemley, 2001). However, studies of renewal data show that most patents have very little value, and thus are unlikely to satisfy the challenge credibility constraint in the model. Thus we adjust the overall litigation rate to correspond to those patents that satisfy this constraint in order to compute \(LR \) used in the simulations. To do this, we compute the minimum value that satisfies the constraint, denoted by \(\Delta^*_C \), given an assumption on the minimum litigation costs \(l_{\text{min}} \). That is, \(\Delta^*_C \) solves:

\[
\left(1 - \frac{\lambda}{\lambda + (1 - \lambda)(1 - e)} \right) \Delta^*_C = l_{\text{min}}.
\]

Substituting for \(\lambda \) and \(e \) derived in Appendix C.2, we can express \(\Delta^*_C \) as

\[
\Delta^*_C(p) = \frac{5l_{\text{min}}}{4 \left(1 - \frac{0.015(9 - 4VR)}{0.015(9 - 4VR)} \right)}
\]

where \(p \) is the percentile of the lognormal distribution of the value of patent rights that corresponds to \(\Delta^*_C \). We can therefore solve for \(p \).\(^{30}\) Then we compute the relevant litigation rate for patents that satisfy the challenge credibility constraint in the model as \(LR = \frac{0.015}{p} \). In the baseline simulations with perfect courts, we find \(p = 0.107 \) and thus \(LR = 0.14 \). For the simulations with imperfect courts it is very similar.

We set \(l_{\text{min}} = $350,000 \), which is the minimum litigation cost to the end of discovery for cases where the value at stake is less than $1 million, as reported by the American Intellectual Property Law Association (2011).

Validation rate

We use the fraction of patent challenge cases in which the validity of the patent is upheld by the court, taken from Allison, Lemley and Schwartz (2014). Using all cases filed in U.S. district courts for 2008-09 (decided 2009-13), they compute that the

\(^{30}\)To solve for \(p \), we use the estimated parameters of the lognormal distribution of the value of patent rights for Germany (Schankerman and Pakes, 1986), rescaled for inflation and relative values of GDP of the U.S. and Germany for 2014 (in this we assume that the value of patent rights is proportional to GDP, which is roughly consistent with the findings in their paper). Details are available on request.
challenger wins in about 43% of the invalidity suits. As an approximation, we set the validation rate at 0.60.

Grant rate

The patent grant rate is measured by the number of patent grants divided by the number of applications (including continuation and divisional filings). Carley, Hegde and Marco (2015) compute this grant rate over the period 1996-2005, which they refer to as the ‘family allowance rate’. We set the grant rate at 0.75, which is roughly the average over the period 1991-2000.

C.5 Imperfect courts

In this section we extend the Cournot model to a setting with imperfect courts. We consider a special case of the generalized screening technology introduced in Appendix B where \(q_1 = 1 \) and \(q_2 = \hat{\lambda} \). That is, while the patent office accepts all applications for which it does not find evidence either way, the courts apply a presumption of validity that depends on what happens at the previous stages: if no evidence is found by the court, patents are held valid with probability \(\hat{\lambda} \), which corresponds to the Bayesian posterior that the inventor is of type \(H \). In region 1, we have

\[
\hat{\lambda} = \frac{\lambda}{\lambda + (1 - \lambda)(1 - e_1)y}.
\]

Thus (in region 1) \(q_2 \) depends endogenously on \(e_1, \lambda \) and \(y \).

The high royalty rate charged by the type-\(H \) inventor continues to be \(r_H = sc \).

The low royalty rate \(r_L \), which must be such that the competitor is indifferent between challenging and not given that the inventor is sure to be bad, now solves

\[
(1 - e_2)\hat{\lambda}\pi_C(r_H) + (e_2 + (1 - e_2)(1 - \hat{\lambda}))\pi_C(0) - l_C = \pi_C(r_L).
\]

Subtracting \(\pi_C(0) \) from both sides and rearranging, we obtain

\[
\pi_C(0) - \pi_C(r_L) = l_C + (1 - e_2)\hat{\lambda}[\pi_C(0) - \pi_C(r_H)] = l_C + 4(1 - e_2)\hat{\lambda}\delta(r_H) = l_C + \frac{4}{9}(1 - e_2)\hat{\lambda}(a - c)sc.
\]

Then, (40) implies

\[
\pi_I(r_L) - \pi_I(0) = \frac{5}{4} [\pi_C(0) - \pi_C(r_L)] = \frac{5}{4} l_C + \frac{5}{9}(1 - e_2)\hat{\lambda}(a - c)sc.
\]

One can solve explicitly for \(r_L \), yielding

\[
r_L = \frac{1}{2} \left[a - (1 - s)c - \sqrt{(a - (1 - s)c)^2 - 4(1 - e_2)\hat{\lambda}(a - c)sc - 9l_C} \right].
\]
Thus, for any \(e_2 < 1 \), \(r_L \) is higher than in the baseline model, where \(e_2 = 1 \). Intuitively, the low type can ask for a higher royalty because the competitor is not sure to win in court even when she is sure of facing a low type.

Now let us determine \(x \). The competitor chooses \(x \) so as to make the bad type of inventor indifferent between \(r_H \) and \(r_L \). Note that, in the event of a challenge, the low type’s patent is upheld with probability \((1 - e_2)\hat{\lambda}\) and invalidated with probability \((e_2 + (1 - e_2)(1 - \hat{\lambda}))\), while the high type’s patent is upheld with probability \((e_2 + (1 - e_2)\hat{\lambda})\) and invalidated with probability \((1 - e_2)(1 - \hat{\lambda})\). Thus \(x \) solves

\[
\pi_I(r_L) = x[(1 - e_2)\hat{\lambda}\pi_I(r_H) + (e_2 + (1 - e_2)(1 - \hat{\lambda}))\pi_I(0) - l_I] + (1 - x)\pi_I(r_H).
\]

Subtracting \(\pi_I(0) \) from both sides yields

\[
\pi_I(r_L) - \pi_I(0) = x[(1 - e_2)\hat{\lambda}[\pi_I(r_H) - \pi_I(0)] - l_I] + (1 - x)[\pi_I(r_H) - \pi_I(0)].
\]

Solving for \(x \) and plugging in the values computed above we obtain

\[
x = \frac{\pi_I(r_H) - \pi_I(0) - [\pi_I(r_L) - \pi_I(0)]}{(1 - (1 - e_2)\hat{\lambda})(\pi_I(r_H) - \pi_I(0)) + l_I} = \frac{\frac{5}{9}(1 - (1 - e_2)\hat{\lambda})(a - c)\epsilon - \frac{5}{9}l_C}{\frac{2}{9}(1 - (1 - e_2)\hat{\lambda})(a - c)\epsilon + l_I}.
\]

Finally, let us determine \(y \). The low type of inventor chooses \(y \) so as to make the competitor indifferent between challenging and not when observing \(r_H \). That is, \(y \) solves

\[
\hat{\lambda}[(e_2 + (1 - e_2)\hat{\lambda})\pi_C(r_H) + (1 - e_2)(1 - \hat{\lambda})\pi_C(0)]
+ (1 - \hat{\lambda})[(1 - e_2)\hat{\lambda}\pi_C(r_H) + (e_2 + (1 - e_2)(1 - \hat{\lambda}))\pi_C(0)] - l_C = \pi_C(r_H)
\]

\[
\Leftrightarrow [(1 - e_2)(1 - \hat{\lambda}) + e_2(1 - \hat{\lambda})][\pi_C(0) - \pi_C(r_H)] = (1 - \hat{\lambda})[\pi_C(0) - \pi_C(r_H)] = l_C,
\]

which is the same expression as in the baseline model. We have

\[
\pi_C(0) - \pi_C(r_H) = \frac{4}{9}(a - c)\epsilon.
\]

Thus, in equilibrium

\[
\hat{\lambda} = 1 - \frac{9l_C}{4(a - c)\epsilon}.
\]

Using (41) to solve for \(y \) yields

\[
y = \frac{\lambda}{1 - \lambda} \left(1 - e_1\right) \frac{9l_C}{(4(a - c)\epsilon - 9l_C)}.
\]

The challenge credibility constraint becomes

\[
\hat{\lambda}[(e_2 + (1 - e_2)\hat{\lambda})\pi_C(r_H) + (1 - e_2)(1 - \hat{\lambda})\pi_C(0)]
+ (1 - \hat{\lambda})[(1 - e_2)\hat{\lambda}\pi_C(r_H) + (e_2 + (1 - e_2)(1 - \hat{\lambda}))\pi_C(0)] - l_C \geq \pi_C(r_H)
\]

56
\[(1 - \lambda) \frac{4}{9} (a - c) sc \geq l_C, \]

where

\[\lambda = \frac{\lambda}{\lambda + (1 - \lambda)(1 - e_1)}. \]

Inferring \(\lambda \) and \(e \) from \(VR \), \(GR \), and \(LR \).

The win rate is

\[VR = \lambda [e_2 + (1 - e_2) \hat{\lambda}] + (1 - \lambda)(1 - e_2) \hat{\lambda} = \hat{\lambda}. \]

The grant rate is

\[GR = \lambda + (1 - \lambda)(1 - e_1). \]

The litigation rate is

\[LR = \frac{x[\lambda + (1 - \lambda)(1 - e_1) y]}{\lambda + (1 - \lambda)(1 - e_1)} = \frac{x \lambda}{GR \cdot \hat{\lambda}}. \]

Using (42), \(e_1 = e_2 = e \), \(l_C = l_I = l \), and \(VR = \hat{\lambda} \), we can write

\[x = \frac{\frac{5}{9}(1 - (1 - e)VR)(a - c) sc - \frac{5}{9}(1 - VR)(a - c) sc}{\frac{5}{9}(1 - (1 - e)VR)(a - c) sc + \frac{5}{9}(1 - VR)(a - c) sc} \]

\[= \frac{5e VR}{9 - VR(9 - 5e)}. \]

Substituting for \(x \) and \(\lambda \) in the litigation rate equation yields

\[LR = \frac{5e \lambda}{GR[9 - (9 - 5e)]}. \]

Together with the grant rate equation (replacing \(e_1 = e \)), this can be used to determine \(e \) and \(\lambda \).
References

