FRICTIONS, PERSISTENCE, AND CENTRAL BANK POLICY IN AN EXPERIMENTAL DYNAMIC STOCHASTIC GENERAL EQUILIBRIUM ECONOMY

By Charles N. Noussair, Damjan Pfajfar, Janos Zsiros

March 6, 2011

European Banking Center Discussion Paper No. 2011-006

This is also a CentER Discussion Paper No. 2011-030

ISSN 0924-7815
Frictions, persistence, and central bank policy in an experimental dynamic stochastic general equilibrium economy*

Charles N. Noussair¹
University of Tilburg

Damjan Pfajfar†
University of Tilburg

Janos Zsiros§
Cornell University

March 6, 2011

Abstract. New Keynesian dynamic stochastic general equilibrium models are the principal paradigm currently employed for central bank policymaking. In this paper, we construct experimental economies, populated with human subjects, with the structure of a New Keynesian DSGE model. We give individuals monetary incentives to maximize the objective functions in the model, but allow scope for agents’ boundedly rational behavior and expectations to influence outcomes. Subjects participate in the roles of consumer/workers, producers, or central bankers. Our objective is twofold. The first objective is general, and is to create an experimental environment for the analysis of macroeconomic policy questions. The second objective is more focused and is to consider several specific research questions relating to the persistence of shocks, the behavior of human central bankers, and the pricing behavior of firms, using our methodology. We find that the presence of menu costs is not necessary to generate persistence of output shocks, but rather that monopolistic competition in the output market is sufficient. Interest rate policies of human discretionary central bankers are characterized by persistence in interest rate shocks, the use of the Taylor principle, and lower output and welfare than under an automated instrumental rule. Patterns in price changes conform closely to stylized empirical facts.

JEL: C91; C92; E31; E32

Keywords: Experimental Economics, DSGE economy, Monetary Policy, Menu costs.

*We would like to thank John Duffy, Shyam Sunder, Steffan Ball, Ricardo Nunes, Michiel De Pooter and participants at the Federal Reserve Board, the University of Innsbruck, 1st the LeeX International Conference on Theoretical and Experimental Macroeconomics (Barcelona), the 2010 North American ESA meetings (Tucson), the WISE International Workshop on Experimental Economics and Finance (Xiamen), the 5th Nordic Conference on Behavioral and Experimental Economics (Helsinki), and the 2010 International ESA meetings (Copenhagen) for their comments. We are grateful to Blaž Žakelj for his help with programming. Damjan Pfajfar gratefully acknowledges funding from a Marie Curie project EXPMAC (grant N° FP7-2009-254956).

¹CentER, Department of Economics, Faculty of Economics and Business Administration, P.O. Box 90153, NL-5000 LE Tilburg, Netherlands. E-mail: C.N.Noussair@uvt.nl. Web: http://center.uvt.nl/staff/noussair/.

²EBC, Centre for Economics, Faculty of Economics and Business Administration, P.O. Box 90153, NL-5000 LE Tilburg, Netherlands. E-mail: D.Pfajfar@uvt.nl. Web: https://sites.google.com/site/dpfajfar/.

³Department of Economics, Cornell University, 404 Uris Hall, Ithaca, N.Y. 14853, USA. E-mail: zsiros@gmail.com.
Introduction

New Keynesian dynamic stochastic general equilibrium (DSGE) models (see Clarida, Gali, and Gertler, 1999) are the principal paradigm currently employed for central bank policymaking. The popularity of these models lies in the rich and plausible dynamics they are able to generate, and their ability to allow policymakers to study the consequences of shocks, whether exogenous and policy-induced. Inclusion of wage or price stickiness generates short-term real effects (see, e.g., Christiano et al., 1999, 2004, 2005, and Chari, Kehoe, and McGrattan, 2000), and thus a meaningful and potentially beneficial role for central bank policy. With the appropriate specification of price frictions, important stylized empirical facts can be replicated (see e.g., Rotemberg and Woodford, 1997; Clarida, Gali, and Gertler, 1999; Christiano, Eichenbaum, and Evans, 2005; Smets and Wouters, 2007). A common method of introducing a price friction is to assume a menu cost (Calvo, 1983; Rotemberg, 1982, Barro, 1972, Mankiw, 1985 and Ball and Mankiw, 1995), a cost that a firm must pay to change its price, in conjunction with monopolistic competition in the output market. The monopolistic competition ensures that firms earn profits, and thus that they have some discretion in the timing and magnitude of changes in the prices they set. These assumptions allow the DSGE model to conform to empirical data, while maintaining the classical assumptions of representative households and firms who optimize and have rational expectations.

In this paper, we construct experimental economies, populated with human subjects, with the structure of a New Keynesian DSGE model. The experimental economies conform closely to the structure of the nonlinear version of the model, but make no assumptions on agents’ behavior. Instead, we give individuals monetary incentives to maximize the objective functions of the model, but allow scope for agents’ boundedly rational behavior and expectations to influence outcomes. Our objective in this research is twofold: the first objective is general: it is to create an experimental environment in which macroeconomic policy questions can be studied, to serve as a complementary tool to the methods currently employed. The second, more focused, objective of this study is to consider some specific research questions within our environment.

Stylized facts from empirical studies motivate the specific questions we consider. A first set of issues considers how two types of frictions influence the persistence of shocks (Chari, Kehoe, and McGrattan, 2000; Jeanne, 1998). The frictions are (1) the presence of monopolistic rather than perfect competition, and (2) the existence of menu costs, in the output market. Specifically, we study whether a number of empirical stylized facts can be replicated in our experimental economies. Empirical vector autoregression (VAR) studies show that policy innovations typically generate an inertial response in inflation and a persistent, hump-shaped response in output after a policy shock (see, e.g., Christiano, Eichenbaum, and Evans, 1997; Leeper, Sims, Zha, Hall, and Bernanke, 1996). Moreover, hump-shaped responses in consumption, employment, profits, and productivity, as well as a limited response in the real wage, are robust findings. To match the empirical (conditional) moments of the data, as derived by structural VAR, nominal and real rigidities must be introduced. One way this has been done is through monopolistic
Frictions, persistence, and central bank policy in an experimental DSGE

competition and menu costs in the output market. Three of our experimental treatments isolate these specific rigidities in our economy. Our \textit{Baseline} treatment differs from another treatment, \textit{Menu Cost}, only in that in the latter, menu costs are present. Thus we can isolate the effect of menu costs on shock persistence, while holding all else equal. The Baseline and the \textit{Low Friction} treatments differ from each other only in that the output market is monopolistically competitive under Baseline and perfectly competitive under Low Friction. This allows us to study the effect of monopolistic competition, holding all else equal. Our treatments allow us to consider, within our setting, whether both frictions produce more persistence than an identical economy in which the menu cost is absent, and than an economy in which both menu costs and monopolistic competition are absent. The experiment permits an additional potential source of friction and inefficiency, bounded rationality. The possibility exists that behavioral factors alone may cause slow market adjustment, and may be sufficient on their own to generate shock persistence and produce the stylized facts mentioned above.

A second set of issues considers the decision rules that human discretionary central bankers employ. The Taylor principle (Bullard and Mitra, 2002; Woodford, 2003c), a coefficient of responsiveness of interest rates to inflation of greater than one, has been widely advocated (Taylor, 1993, Rotemberg and Woodford, 1997, Schmitt-Grohe and Uribe, 2005). In the three treatments mentioned previously, the interest rate policy in the economy is exogenously imposed by the experimenter, following an instrumental inflation-targeting rule obeying the Taylor principle. However, in a fourth treatment, \textit{Human Central Banker}, experimental subjects are placed in the role of central bankers. They are given incentives to target inflation but are free to set the interest rate in each period. While the Taylor principle is effective in targeting inflation when economic agents are fully rational, it is unknown whether it would have the same effect in our economy. In our experiment, we consider two issues. The first is whether the interest rate policy of our subjects actually satisfies the Taylor principle. It may fail to do so for a number of reasons: because such a rule is not optimal in our economy, because it is not transparent to subjects, or because subjects prefer to apply another rule. The second issue is whether human central bankers are able to match or exceed the levels of GDP, welfare and employment, or to achieve more stability in inflation, than a simple, plausible, but suboptimal instrumental Taylor rule.

The third set of issues we investigate concerns the patterns in pricing behavior of firms. We consider how well the experimental data conform to a number of accepted empirical stylized facts. We compare pricing patterns in our data to those described in Nakamura and Steinsson (2008), Bils and Klenow (2004), and Klenow and Malin (2010) appear in our economies. We measure the average frequency and magnitude of price changes and how they correlate with overall inflation. We evaluate whether positive changes are more frequent than negative ones and by what percentage. We check whether the frequency of price increases covaries strongly with inflation, whereas the frequency and size of price decreases, as well as the size of price increases, do not. We consider whether the hazard rate of price changes is increasing over time, or decreasing, as has been often observed in empirical data. We estimate the markup that producers charge, and check whether it decreases over time as in other experimental studies.
We also consider whether these patterns differ between treatments, and thus whether they are dependent on the presence of monopolistic competition or menu costs.

The experimental design, which is described in section two, employs many techniques developed and used in previous experiments that other authors have conducted. Our subjects interact in both double auction markets (Smith, 1962) and posted offer markets (Plott and Smith, 1978; Ketcham, Smith, and Williams, 1984). Simultaneous input and output markets are operating, as in Goodfellow and Plott (1990), Noussair et al. (1995, 2007), Lian and Plott (1998), and Riedl and van Winden (2001). Saving possibilities create interdependencies between one period and the next, in a manner similar to Lei and Noussair (2002, 2007) and Capra, Tanaka, Camerer, Feiler, Sovero, and Noussair (2009). The incentives of our discretionary central bankers are similar to those studied by Engle-Warnick and Turdaliev (2010) and Roos and Luhan (2010). We implement menu costs in a manner similar to Wilson (1998). However, since we are guided by the structure of the New Keynesian DSGE model, we have added, when necessary, a number of new features to the economy. The structure of the economies is described in section one.

Our findings are presented in section three. We find that monopolistic competition generates persistence of output shocks, whether or not menu costs are present. The presence of monopolistic competition, however, is critical; there is no persistence of output shocks under perfect competition. Humans in the role of central banker generate considerably greater persistence, lower output, and lower welfare than a simple automated instrumental Taylor rule. Overall, pricing patterns conform to empirical stylized facts. Most price changes are positive, inflation is correlated with average magnitude of both price increases and decreases, and with the number of positive, but not negative, price changes. Menu costs reduce the variability of inflation. We do find, however, that the hazard function for price changes is upward-sloping, in contrast to most empirical studies.

We view the use of experiments as complementary to other empirical methods used in macroeconomics. Experimental economics allow researchers create real, though synthetic, economies expressly designed to answer specific research questions. The structure of the economy is allowed to interact with the boundedly rational decisions of human agents to produce macroeconomic activity. However, many of the advantages of calibration exercises are preserved. Parameters such as production and cost functions, the timing and variance of shocks, and the number of producers and consumers, can be manipulated exogenously. Thus the structure of the economy can conform to the model under investigation, causality can be imposed to distinguish between competing explanations for events or empirical patterns, and variables otherwise unobservable can be observed and precisely measured. Replication of an experiment is possible with multiple groups of randomly assigned subjects. Thus one can create many economies with the same underlying structure. This allows multiple observations to be gathered to enable proper statistical tests, and to allow the potential variability of outcomes to be studied. Furthermore, because subjects from the same population can be assigned to different experimental treatments, and the environment can be controlled, an experiment can be designed so that one or more institutional or environmental elements can be varied, ceteris paribus.
1. Experimental Design

This section is organized as follows. Subsection 1.1 presents the structure of the DSGE model that provides the basis for the experimental design, while subsection 1.2 describes the version implemented in the laboratory. Subsections 1.3 and 1.4 describe the differences between treatments and key aspects of the operational procedures, respectively.

1.1. The DSGE model. The dynamic stochastic general equilibrium (DSGE) model is the workhorse of modern macroeconomic research and policy. In the model, there are three types of agent: households, firms, and a central bank, who interact over an infinite horizon. Households choose labor supply, consumption, and savings, to maximize the discounted present value of the utility of consumption and leisure. Firms choose the quantity of labor to employ, and output to produce, to maximize the discounted present value of profits. The central bank sets the nominal interest rate to maximize a specific function of inflation and output.

Specifically, in each period, the representative consumer works, consumes, and decides on a saving level at each time \(t \) in order to maximize her expected discounted value of utility of consumption and leisure \(u(C_t, (1 - L_t)) \) over an infinite horizon. The consumer solves:

\[
\max E_t \sum_{i=0}^{\infty} \beta^i \left\{ \frac{C_{t+i}^{1-\sigma} - L_{t+i}^{1+\eta}}{1 - \sigma} \right\},
\]

subject to the following budget constraint

\[
P_tC_t + B_t = W_tL_t + (1 + \lambda t-1)B_{t-1} + P_t\Pi_t,
\]

where

\[
C_t = \left(\int_0^1 c_{jt}^{\varphi-1} \, dj \right)^{\varphi^{-1}}, \quad \varphi > 1.
\]

\(\varphi \) is the Dixit-Stiglitz aggregator, \(P_t \) is the corresponding price index, \(C_t \) is consumption, \(L_t \) is labor supplied, \(B_t \) denotes savings, \(W_t \) is the market wage, \(\beta \) is the intertemporal discount factor, and \(\Pi_t \) is the total profit of firms at \(t \).

Firms have a stochastic production technology \(g_{jt}(N_{jt}) = Z_tN_{jt} \), with \(E(Z_t) = 1 \). The firms’ objective is to minimize their expenditure for a certain level of production:

\[
\min \frac{W_t}{P_t} N_{jt},
\]

subject to:

\[
c_{jt} = Z_tN_{jt},
\]

where \(N_{jt} \) is the labor hired by the firm \(j \), and \(c_{jt} \) is the firm’s level of production of the good that it produces.\(^2\)

\(^1\)For a detailed discussion of the model, see the books by Walsh (2003) and Woodford (2003a)

\(^2\)This optimization problem could be reformulated in terms of profit maximization, where the objective of the firm is to maximize profit in each period.
There is perfect competition in the labor market, and monopolistic competition (Dixit and Stiglitz, 1977) on the output market. The market power for producers in the output market is represented in the Dixit-Stiglitz aggregator and denoted by θ in equation (3).

The nominal interest rate in the economy (see, for example, Woodford, 2003a) is set to minimize the following loss function

$$\min L = (\pi_t - \pi^*)^2 + \lambda (x_t - x_t^*)^2;$$

where π_t is actual inflation, π^* is the inflation target, $x_t - x^*$ is the output gap, and λ is a parameter that indicates the relative weight of inflation and output in policy determination.

1.2. Experimental Implementation. The actual model implemented in the laboratory was a modification of the DSGE model described above. The changes we made were guided exclusively by concerns about what was feasible given the cognitive demands that could be imposed on the subjects and the resources we had available. The experiment was computerized and used the Z-Tree platform Fischbacher (2007). We describe here the Baseline treatment. In subsection 1.3, we indicate the differences between the Baseline and the other three treatments.

Consumers. There were $I = 3$ consumers and $J = 3$ firms indexed by i and j respectively. In the experiment each consumer was endowed with an induced valuation (Smith, 1982) for the following objective function:

$$u_{it}(c_{i1t}, c_{i2t}, c_{i3t}, (1 - L_{it}^t)) = \beta^t \left\{ \sum_{j=1}^{3} \left(H_{ijt} \frac{c_{ijt}^{1-\theta}}{1-\theta} \right) - a \frac{L_{it}^{1+\epsilon}}{1+\epsilon} \right\},$$

where c_{ijt} is the consumption of the ith consumer of good j and L_{it} is the labor i supplies at time t. H_{ij} denotes the preference (taste) shock, which is specific to each consumer and good in each period, and follows the process:

$$H_{ijt} = \mu_{ij} + \tau H_{ijt-1} + \varepsilon_{jt}.$$

Here, ε_{1t}, ε_{2t}, ε_{3t} are independent white noise processes, and $\varepsilon_{jt} \sim N(0, \zeta)$. As is standard in the DSGE literature, the preference shocks follow an $AR(1)$ process.

Consumers faced the budget constraint

$$\sum_{j=1}^{3} c_{ijt} p_{jt} + B_{it} = w_{it} L_{it} + (1 + i_{t-1}) B_{it-1} + \frac{1}{1-\beta} \Pi_{t-1},$$

The standard DSGE model has no explicit timing within each period. However the implementation in the laboratory requires that some decisions be taken before others.

Subjects were all undergraduate students at Tilburg University. Four sessions were conducted under each treatment. Six subjects participated in each session, with the exception of sessions of the Human Central Banker treatment, in which there were 9 participants. Average final earnings to participants were 43.99 euros. No subject participated in more than one session. Only one treatment was in effect in any session.

Discounting was implemented by reducing the induced value of consumption of each of the output goods, as well the utility cost of labor supply, by $1 - \beta = 1\%$ in each period.
where \(c_{ijt} \) is the consumption of subject \(i \) of good \(j \) at time \(t \), \(p_{jt} \) is the price of good \(j \) at time \(t \), \(w_{it} \) is the wage of subject \(i \) at time \(t \), \(B_{it} \) is the saving of subject \(i \) at period \(t \), \(\Pi_{t-1} \) is the total profit of firms in period \(t - 1 \) and \(I = 3 \) indicates the number of consumers in the economy. \(\Pi_{t-1} \) appears in the budget constraint, in accordance with the DSGE model assumption that the households own the firms. Therefore, at the end of each period in the experiment, the total profits of firms are transferred to and divided equally among the three consumers.

Producers. In each period \(t \), the payoff of firm \(j \) was given by:

\[
\Pi_{jt} = \left(p_{jt} y_{jt} - w_{jt} L_{jt} \right) \frac{P_0}{P_t},
\]

where \(p_{jt} \) is the price, \(y_{jt} \) is the number of goods sold, \(w_{jt} \) is the wage paid, and \(L_{jt} \) the labor applied by firm \(j \) in period \(t \). \(P_t \) is the price level in period \(t \), while \(P_0 \) is the price level in the initial period. Therefore, \(\frac{P_0}{P_t} \) is a deflator that translates nominal profits into real terms. Firms were given incentives to maximize real profits.

All firms were endowed with the same production technology, given by:

\[
f_{jt}(L_{jt}) = A_t L_{jt},
\]

where \(A_t \) is a technology shock, which was common to all firms. It had the functional form

\[
A_t = A + \nu A_{t-1} + \zeta_t,
\]

where \(\zeta_t \) is independent white noise \(\zeta_t \sim N(0, \delta) \). \(A_t \) follows an AR(1) process as is standard in the DSGE literature. In each period, each firm \(j \) chose how much labor to employ, \(L_{jt} \), and its product price \(p_{jt} \).

Labor market. The standard DSGE model assumes perfect competition on the labor market. This was implemented with a continuous double auction trading mechanism (Smith, 1962; Plott and Gray, 1990), where consumers and producers can exchange labor. The market was open for a fixed period of time, during which agents could submit offers to purchase and sell units. Offers were posted publicly. At any time, any trader could accept a quote submitted by an individual on the other side of the market. Trade in both the labor and the output markets took place in terms of experimental currency, called ECU.

Output market. On the product market, the three different goods were imperfect substitutes due to the product specific \(H_{ijt} \) taste shocks of consumers. This ensured that each firm had some monopoly power in the market, as in the monopolistic competition assumed in the DSGE model. The market was organized as a posted offer market. Each producer sold her product in a separate market, and the three markets operated simultaneously. Producers set prices before observing the prices of their competitors. After prices were set, consumers could purchase the products on a first-come first-served basis. Products were consumed immediately upon purchase. Producers were required to bring their entire production to market. Unsold
units could not be carried over to the next period.

Monetary policy. The nominal interest rate was exogenously set according to the Taylor rule,

\[i_t = \pi^* + \kappa(\pi_{t-1} - \pi^*), \tag{12} \]

where the parameters were set to \(\kappa = 1.5 \) and \(\pi^* = 3\% \).

Parameters. Table 1 contains a summary of parameter values used in the experiment. The parameters of the model are taken from empirical estimates when possible, with each period \(t \) corresponding to one quarter in the field. Exactly the same parameters were in effect in all treatments, except for the preference shock process in the low friction treatment (see Appendix A1).

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(\theta)</th>
<th>(\epsilon)</th>
<th>(\tau)</th>
<th>(\nu)</th>
<th>(\lambda)</th>
<th>(\delta)</th>
<th>(\zeta)</th>
<th>(\pi^*)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99</td>
<td>0.5</td>
<td>2</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>0.2</td>
<td>1</td>
<td>0.03</td>
<td>95</td>
</tr>
<tr>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td></td>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td></td>
<td></td>
<td>37.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Parameters

Each consumer was endowed with 1500 ECU of cash at the beginning of period 1 that could be used for purchases. In each period, each consumer was endowed with 10 units of labor. Producers had no initial endowment of labor or cash. However, they could borrow at the beginning of a period (interest free) in order to purchase labor, and thus were not cash-constrained. Unsold products were disposed of after the end of each period.

Timing within a period. The experiment was divided into a sequence of periods. Each period corresponded to a time period \(t \) in the DSGE model. At the beginning of each period, producers observed the realization of their own productivity shock for the period. The labor market was then opened and operated for 2 minutes.\(^6\) After the market was closed, production occurred automatically, transforming all of the labor that producers purchased in the period into output. Producers received a summary of their purchases, total cost, average cost per unit and production level. Consumers received ECU equal to their total revenue from the sales of labor. This was added to their current cash balance, which also reflected any currency carried over from prior periods.

While the labor market was open, the cost of supplying labor was known only privately to consumers, while information on current productivity was private information for producers. For consumers, the history of the wages they received, the average wage in the economy, the quantity of labor they sold, the inflation rate, the interest rate, and the output gap were displayed while the market was in operation. For producers, the history of the wages they paid, the wages in the economy, the quantity of units of labor hired, and the same macroeconomic variables as shown to consumers, were displayed.

\(^6\)This was shortened to 1.5 minutes and then to 1 minute in later periods.
After the labor market closed for the period, the product market opened. Producers simultaneously posted their prices. Subsequently, consumers received the posted prices and information on their current budget level, the interest rate, their valuations of each good and the ratio of their valuations and the corresponding prices. Before setting their prices, producers observed the actual labor they hired, the quantity of output that the labor produced, the total and average cost of production, and the interest rate. When posting prices, producers had access to the history of sales, own price, labor expense, profit and a number of macroeconomic variables. After the consumers finished their purchases, the period ended. At the end of each period consumers received information about their current earnings and the budget they would have available for the next period. Producers were informed of their profits, production, and sales.

Timing of sessions and incentives. Each session took between 3 3/4 and 4 3/4 hours. A session consisted of instruction and two sequences of periods. After the instructions were read to subjects, which lasted approximately 45 minutes, the first sequence began. The first sequence consisted of 5 practice periods, and did not count toward the subjects’ final payment. The next sequence, which constituted the experimental data retained for analysis, consisted of 50 – 70 periods, and determined the final payment of the subjects. A random ending rule was used to end the session, with the final period drawn randomly from a uniform distribution. Subjects did not know the process used to end the session, but were told it would end randomly after period 50. The random ending rule ensured that a fully rational agent, with the payoff function given in equation (6) would maximize the objective function given in equation (1).

Participants in the role of consumers received a monetary payment in proportion to the sum of the values of (6) they attained over all periods. Valuations for output and costs of labor supply are expressed in terms of 100ths of a euro cent on subjects’ screens. It is important to keep in mind that, in contrast to most other studies of experimental markets, the currency used for transactions, ECU, did not translate directly into the earnings that participants in the role of consumers received (see Lian and Plott (1998) for a similar structure to ours). There were, however, strong indirect incentives for consumers to maximize currency holdings, since currency was required to purchase the products that did yield value for them. ECU earned interest at rate i_t between periods t and $t + 1$.

The savings that consumers held at the end of the session were converted from ECU to euros (1 euro = 1.38 US dollars at the time of this writing) in the following manner. We assumed that the experiment would continue forever, with the valuations and costs continuing the downward trend they followed during the session. We calculated how much a consumer would have earned if she made the best possible savings, labor sale, and product purchase decisions possible, given the savings she had at the end of the session. The average prices for labor and products of the session were used for the calculation. The resulting amount of euro earnings was awarded to the participant.\(^7\)

Participants in the role of producers received a monetary payment in proportion to the sum

\(^7\)For consumers, payoffs equalled the sum of the values of equation (6) attained over the life of the economy, plus the payout based on final savings. For producers, the conversion rate from ECU payoff to euro was 100 ECU to 1 Euro.
of the values of (9) they realized over all periods. Although the currency itself was removed from the firm’s balance and added to the currency balance of the consumers, the profits were awarded to the participant on paper and translated into real monetary payments to the human participant in the role of the firm. This was required to create the same incentives and structure as in the theoretical model.

1.3. Treatments. Table 2 gives a summary of the differences between treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Monopolistic competition</th>
<th>Human central banker</th>
<th>Menu cost for price change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Menu cost</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Human CB</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Low friction</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 2: Summary of treatments

The Human Central Banker treatment. Section 1.2 described the Baseline treatment. The Human Central Banker treatment was identical to the Baseline treatment, except that three additional human subjects were placed in the role of central banker. Their task was to set the interest rate. Each of the central bankers submitted a proposed nominal interest rate simultaneously at the beginning of each period. The median choice was adopted as the interest rate for the current period. Central bankers were given incentives to attain an inflation rate as close as possible to 3% in each period. They were incentivized with the following loss function:

$$Central 	ext{ Banker’s Payoff}_{it} = \max \left\{ a - b(\pi_t - \pi^*)^2, 0 \right\}, \tag{13}$$

where $a = 100$, $b = 1$ and $\pi^* = 3\%$. The conversion rate from payoffs to euro earnings was 1 to 100. Therefore, if inflation rate was 3% in a given period, then each central banker earned $100 \cdot \frac{1}{100} = 1$ euro in that period. This payoff function gives incentives to central bankers to minimize the loss function in equation (5) with $\lambda = 0$, and thus to engage in inflation targeting. At the time they made their choice, they had the history of interest rates, inflation, and the output gap available on their screens.

The Menu Cost treatment. This treatment differed from Baseline only in that if a producer set a price in period t, which was different than the one he set in period $t - 1$, he had to pay a menu cost equal to

$$M_{jt} = \omega p_{jt} y_{j(t-1)}, \tag{14}$$

where

$$\omega = 0.025. \tag{15}$$

p_{jt} is the price that producer j chose in period t and $y_{j(t-1)}$ is the quantity of sales of producer j in the previous period. The calibration of the menu cost is based on Nakamura and Steinsson
Producers who do not change their prices are not required to pay the cost. The menu cost is subtracted from the producers’ nominal profit (in ECU) at the end of each period.

The Low Friction treatment. The Low Friction treatment was identical to the Baseline treatment, except for the specification of the utility function and the preference shock process for consumers. The payoffs for consumers in period \(t \) were given by

\[
u_t(c_{1t}, c_{2t}, c_{3t}, (1 - L_{it})) = \beta^t \left(H_t - \frac{\left(\sum_{j=1}^{3} c_{jt} \right)^{1-\theta}}{1 - \theta} - \alpha L_{it}^{1+\epsilon} \right),
\]

with the following identical preference shocks for all consumers:

\[
H_t = \mu + \tau H_{t-1} + \varepsilon_t,
\]

where \(\mu = 120, \varepsilon_t \) is an independent white noise process, and \(\varepsilon_t \sim N(0, \zeta) \). The specification of the shocks ensures that consumers valued all three goods as perfect substitutes.

The parameters of the economy are calibrated so that welfare for consumers in the Low Friction and Baseline treatments are approximately identical, under certain assumptions.\(^8\)

As in the Baseline treatment, the institution on the product market was a posted offer market with a separate market for each firm’s product.

2. Hypotheses

We advance three hypotheses here. They are evaluated in section three, which also contains an exploratory analysis of the data. The hypotheses are derived from empirical stylized facts from the field, from behavior of the theoretical DSGE model, and from previous experimental results. The first hypothesis concerns differences in the persistence of shocks between treatments. In the New Keynesian model, both menu costs and market power are required for a shock to productivity, inflation, or interest rate to exhibit an effect beyond the current period. Thus, we hypothesize that persistence of shocks in inflation, interest rate, and output, will be present in the Menu Cost treatment, but not in the Baseline and the Low Friction treatments.

Hypothesis 1 - Persistence: Shocks to inflation, output, and interest rate have persistent effects in the Menu Cost treatment. They do not have persistent effects in the Baseline, Low Friction, and Human Central Banker treatments.

The second hypothesis concerns the behavior of the human central bankers. It is that their behavior follows the Taylor principle. The rationale this hypothesis is both theoretical and empirical. The rule is optimal in the New Keynesian framework, and central bank policies tend to satisfy the principle. Furthermore, the available evidence suggests that the principle is fairly

\(^8\)This calibration was conducted in the following manner. The economy was simulated, assuming a markup of 11 percent, under the assumption that firms and consumers optimize for the current period. The resulting welfare is calculated and the initial shock parameters are chosen so that welfare in Low Friction is equal to that in Baseline.
transparent to typical experimental subjects in the role of central bankers in simple economies.\(^9\)

Hypothesis 2 - Taylor Principle: Under the Human Central Banker treatment, $\kappa > 1$. Interest rate policy follows the Taylor principle.

The third hypothesis concerns pricing patterns in the economy. We consider whether several stylized facts from the field, documented by Nakamura and Steinsson (2008), Bils and Klenow (2004), and Klenow and Malin (2010), appear in the experiment.

Hypothesis 3 - Pricing Behavior: Price changes between periods t and $t + 1$ exhibit the following patterns: (a) Positive price changes are more frequent than negative changes. (b) The frequency of price increases covaries strongly with inflation but the frequency of price decreases does not. (c) The magnitude of price decreases, as well as of price increases, covaries strongly with inflation. (d) The hazard rate of price changes is increasing, that is, price changes are more likely, the longer the same price has been in effect.

3. Results

3.1. Overall patterns and treatment differences in output, welfare and inflation.

Figure 1 shows the real GDP of the economy in each treatment, averaged over the four sessions comprising the treatment. All treatments have similar GDP at the beginning of the experiment until roughly period 10. The Baseline and the Human Central Banker treatment have comparable GDP until period 30. After period 30, the Human Central Banker treatment stabilizes at under 600 ECU, which is the lowest among all treatments. On average, GDP is similar under the Menu Cost and the Baseline treatments. This suggests that menu costs do not affect the real GDP of the economy. GDP is greatest in the Low Friction treatment, where it varies between 800 and 1000 ECU until period 36. Afterwards, period GDP drops and stabilizes at 700 ECU.\(^10\)

The welfare in the economy is shown in Figure 2 for the four treatments. Welfare is defined as the sum of the utilities, as expressed in equation (6), of the three consumers in each period. Welfare is on average greatest under the Low Friction treatment. It is similar in the other three treatments, except for the last 20 periods, when Human Central Banker has the lowest welfare. Average welfare in the Baseline and Menu Cost treatments has a similar time profile. The overall pattern suggests that a frictionless economy is strictly preferable from a welfare point of view.

\(^9\)Engle-Warnick and Turdaliev (2010) also study the monetary policy decisions of inexperienced human subjects. Their economy is a log-linearized variant of the standard DSGE model. They assume that the objective of the monetary policy is to minimize a loss function $E_t \sum_{i=0}^{\infty} \delta^{t-i} (\pi_t - \pi)^2$. They find that Taylor-type rules explain much of the variation of the interest rate decisions of subjects who successfully stabilize the economy. These subjects’ (approximately 82% of all participants) behavior is consistent with interest rate smoothing, and the sensitivity to inflation is, on average, close to or above 1 in their interest rate decisions.

\(^10\)There is no source of growth in the economy, so there is no reason for GDP to increase over time. Indeed, GDP may decline over time if firms reduce output over time in accordance with a convergence process toward a monopolistically competitive equilibrium.
view and that our instrumental rule is performing better than human central bankers.

Nonparametric tests confirm the impression conveyed in the figures. Specifically, under the Low Friction treatment, we observe significantly higher employment, real GDP, and welfare than in any other treatment. The Human Central Banker generates significantly lower welfare, real GDP and employment than any other treatment. There are no significant differences between the Baseline and Menu Cost treatments.
The average inflation rate is similar in all four treatments, ranging between -15% and +16%, except for three outlier periods. Nonparametric tests fail to reject the hypothesis that the level of inflation is the same between any pair of treatments. Comparing the variances of inflation between different treatments, however, indicates that the variance is the lowest in the Menu Cost, followed in turn by the Low Friction, Human Central Banker and Baseline treatments. All of the differences are statistically significant according to the Levene (1960) test.

Thus, from a welfare point of view in our experiment, menu costs have an ambiguous effect. On one hand, they reduce inflation variance, which has positive effect on welfare (see Woodford, 2003b). On the other hand, the costs themselves are a deadweight loss to the economy, since they are deducted from producer profits and thus from consumer cash holdings. The two effects on welfare appear to roughly offset each other.

3.2. Frictions and Persistence of Shocks.

Markup. One measure of friction in a DSGE economy is the markup that firms charge for their product. In our experimental economies, we are able to estimate the inverse demand function implied by the observed Dixit-Stiglitz aggregator in the economy, and use it as a measure of friction. We can thus consider differences between treatments in the level of friction the observed economic activity implies. We estimate the following inverse demand function:

$$\ln p_{jt} - \ln P_t = \frac{1}{\vartheta}(\ln C_t - \ln c_{jt}) + \varepsilon_t,$$

where P_t is the average price in period t and C_t is the total consumption in period t. We estimate $\frac{1}{\vartheta}$ using a panel data population average estimator with cluster-robust standard errors. $\frac{\vartheta}{\vartheta-1}$ is then the markup, according to the theoretical DSGE model. We can compare these elasticities with $\vartheta = 10$, corresponding to a markup of roughly 11%, which is a typical estimate in the DSGE literature (Fernandez-Villaverde, 2009). Table 3 shows the estimated, as well as the actual average, markups observed in the experiment. The average markup is measured as the actual profit per unit produced divided by its price.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Human CB</th>
<th>Menu cost</th>
<th>Low friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity of substitution in demand, ϑ</td>
<td>4.27</td>
<td>4.58</td>
<td>16.40</td>
<td>31.73</td>
</tr>
<tr>
<td>Markup implied by ϑ</td>
<td>30.6%</td>
<td>27.8%</td>
<td>6.5%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Observed average markup</td>
<td>37.5%</td>
<td>37.5%</td>
<td>22.1%</td>
<td>11.1%</td>
</tr>
</tbody>
</table>

Table 3: Estimated elasticities of substitution in demand and markups for each treatment.

The table reveals that the average markup observed in the economy is between 7 – 15% higher than the one implied by the estimations of the inverse demand functions. The Low Friction treatment has the highest value of the elasticity of substitution in demand (ϑ), and thus the lowest markup, 3.2%. The Menu Cost treatment has a markup roughly twice as great as the Low Friction treatment. Both the Baseline and Human Central Banker treatments have much lower values of ϑ than Menu Cost and Low Friction treatments. The estimated markup
levels are 30.6% and 27.8% respectively, in these treatments. The actual markup displays similar treatment differences as the estimates, though they are typically greater in magnitude. This shows that the presence of menu costs or perfect competition decreases the market power of firms, although the effect of a menu cost is smaller. The markup tends to exhibit a slight increase over time.

Persistence and Correlations. Monopolistic competition and menu costs are the two frictions that are needed for macroeconomic models to produce persistent effects of shocks to macro variables. We begin our analysis with the study of cross-correlations of output with other macro variables in the four treatments. We then examine the persistence of shocks using structural vector autoregressions.

<table>
<thead>
<tr>
<th>variable</th>
<th>rho</th>
<th>Cross-correlation of output with</th>
<th>corr with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t-3</td>
<td>t-2</td>
<td>t-1</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>0.504</td>
<td>0.190**</td>
<td>0.208**</td>
</tr>
<tr>
<td>rGDP</td>
<td>0.805</td>
<td>0.716***</td>
<td>0.751***</td>
</tr>
<tr>
<td>rGDPg</td>
<td>-0.094</td>
<td>-0.049</td>
<td>-0.090</td>
</tr>
<tr>
<td>gap</td>
<td>0.757</td>
<td>0.574***</td>
<td>0.629***</td>
</tr>
<tr>
<td>tot. hours</td>
<td>0.713</td>
<td>0.684***</td>
<td>0.670***</td>
</tr>
<tr>
<td>savings</td>
<td>0.992</td>
<td>0.070</td>
<td>0.103</td>
</tr>
<tr>
<td>r wages</td>
<td>0.952</td>
<td>0.405***</td>
<td>0.388***</td>
</tr>
<tr>
<td>prices</td>
<td>0.875</td>
<td>0.109</td>
<td>0.089</td>
</tr>
<tr>
<td>inflation</td>
<td>0.467</td>
<td>0.227***</td>
<td>0.149*</td>
</tr>
<tr>
<td>markup</td>
<td>0.958</td>
<td>-0.344***</td>
<td>-0.314***</td>
</tr>
<tr>
<td>welfare</td>
<td>0.971</td>
<td>0.552***</td>
<td>0.543***</td>
</tr>
<tr>
<td>Human Central Banker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>0.920</td>
<td>0.088</td>
<td>0.090</td>
</tr>
<tr>
<td>rGDP</td>
<td>0.865</td>
<td>0.791***</td>
<td>0.810***</td>
</tr>
<tr>
<td>rGDPg</td>
<td>-0.219</td>
<td>-0.105</td>
<td>-0.176***</td>
</tr>
<tr>
<td>gap</td>
<td>0.771</td>
<td>0.638***</td>
<td>0.667***</td>
</tr>
<tr>
<td>tot. hours</td>
<td>0.797</td>
<td>0.717***</td>
<td>0.738***</td>
</tr>
<tr>
<td>savings</td>
<td>0.999</td>
<td>-0.054</td>
<td>-0.063</td>
</tr>
<tr>
<td>r wages</td>
<td>0.899</td>
<td>0.491***</td>
<td>0.466***</td>
</tr>
<tr>
<td>prices</td>
<td>0.990</td>
<td>0.011</td>
<td>0.007</td>
</tr>
<tr>
<td>inflation</td>
<td>0.218</td>
<td>0.162*</td>
<td>0.196**</td>
</tr>
<tr>
<td>markup</td>
<td>0.951</td>
<td>-0.591***</td>
<td>-0.571***</td>
</tr>
<tr>
<td>welfare</td>
<td>0.945</td>
<td>0.615***</td>
<td>0.604***</td>
</tr>
</tbody>
</table>

*p < 0.05, **p < 0.01, ***p < 0.001

Table 4: Cross-correlations for the Baseline and Human Central Banker treatments

In tables 4 and 5, we report the cross-correlations of output with other macro variables in the experiment. These illustrate the functioning of the monetary policy transmission mechanism. The tables show that persistence of real GDP is lowest in the Low Friction and greatest in the Human Central Banker treatment. The other two treatments produce a similar degree of persistence.
The output gap and labor employed (which can be thought of as total hours worked) are highly correlated with output contemporaneously, as well as at all leads and lags. The weakest cross-correlations occur in the Low Friction treatment. Savings are at best only weakly correlated with output. An exception is the Low Friction treatment, where highly significant countercyclical behavior is observed. The strongest correlation is between lagged savings and current output. The negative sign is rather unexpected as one might expect savings to be procyclical. Except in the Menu Cost treatment, real wages exhibit significant positive cross-correlation with output of 0.3 – 0.5, similar values to those found in field data.

<table>
<thead>
<tr>
<th>variable</th>
<th>rho</th>
<th>Cross-correlation of output with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t-3</td>
</tr>
<tr>
<td>GDP</td>
<td>0.724</td>
<td>0.052</td>
</tr>
<tr>
<td>rGDP</td>
<td>0.770</td>
<td>0.706***</td>
</tr>
<tr>
<td>rGDPg</td>
<td>-0.339</td>
<td>-0.064</td>
</tr>
<tr>
<td>gap</td>
<td>0.627</td>
<td>0.539***</td>
</tr>
<tr>
<td>tot. hours</td>
<td>0.723</td>
<td>0.657***</td>
</tr>
<tr>
<td>savings</td>
<td>0.987</td>
<td>0.098</td>
</tr>
<tr>
<td>r wages</td>
<td>0.227</td>
<td>0.081</td>
</tr>
<tr>
<td>prices</td>
<td>0.987</td>
<td>-0.675***</td>
</tr>
<tr>
<td>inflation</td>
<td>0.308</td>
<td>0.249***</td>
</tr>
<tr>
<td>markup</td>
<td>0.805</td>
<td>-0.175**</td>
</tr>
<tr>
<td>welfare</td>
<td>0.827</td>
<td>0.547***</td>
</tr>
<tr>
<td>GDP</td>
<td>0.923</td>
<td>-0.196**</td>
</tr>
<tr>
<td>rGDP</td>
<td>0.610</td>
<td>0.515***</td>
</tr>
<tr>
<td>rGDPg</td>
<td>-0.312</td>
<td>-0.007</td>
</tr>
<tr>
<td>gap</td>
<td>0.537</td>
<td>0.360***</td>
</tr>
<tr>
<td>tot. hours</td>
<td>0.413</td>
<td>0.460***</td>
</tr>
<tr>
<td>savings</td>
<td>0.995</td>
<td>-0.196**</td>
</tr>
<tr>
<td>r wages</td>
<td>0.503</td>
<td>0.144*</td>
</tr>
<tr>
<td>prices</td>
<td>0.999</td>
<td>-0.333***</td>
</tr>
<tr>
<td>inflation</td>
<td>-0.113</td>
<td>0.208***</td>
</tr>
<tr>
<td>markup</td>
<td>0.853</td>
<td>0.044</td>
</tr>
<tr>
<td>welfare</td>
<td>0.882</td>
<td>0.541***</td>
</tr>
</tbody>
</table>

*p < 0.05, **p < 0.01, ***p < 0.001

Table 5: Cross-correlations for the Menu Cost and Low Friction treatments

The strength of the correlation between price level and output differs between treatments. In the Baseline and Human Central Banker treatments, there is no significant correlation, while in the Menu Cost and Low Friction treatments we observe a highly significant negative relationship. This is especially pronounced in the Menu Cost treatment, where cross-correlations reach values between −0.6 and −0.7. In the field, negative correlations of similar magnitude are typically observed. Kydland and Prescott (1990) argue that the negative contemporaneous relationship between output and prices suggests that supply shocks have prevailing effects over demand shocks. This is indeed the case in our experiment, where supply shocks are relatively more
important than demand shocks. Another factor that is intimately related to this correlation is price stickiness. As pointed out by Ball and Mankiw (1994), even if the demand shock is prevalent, it is possible to observe negative correlations if there are frictions in the price setting mechanism. This can explain the weaker cross-correlations in Menu Cost, compared to the three other treatments.

Cross-correlations between inflation and output, shown in Table 6, are only significant for lags of inflation. The only exception to this pattern is the Baseline treatment, which exhibits significant procyclical behavior for all leads and lags, but most strongly at $t+2$ and $t+3$. The cross-correlations between markup and output show quite a different pattern. In the Baseline and Human Central Banker treatments, the correlations are significantly negative, while in the Low Friction treatment they are significantly positive. In the former treatments, producers exploit their market power. This leads to a reduction in output. In Low Friction, however, this cannot occur due to fierce competition. As shown in table 3, the markups were indeed greatest under Baseline and Human Central Banker. In the Menu Cost treatment, the correlations are negative and only significant at long leads and lags. In all treatments, the cross-correlations with welfare are positive and highly significant (between 0.5 – 0.6).

<table>
<thead>
<tr>
<th></th>
<th>gap</th>
<th>t-3</th>
<th>t-2</th>
<th>t-1</th>
<th>t</th>
<th>t+1</th>
<th>t+2</th>
<th>t+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline treatment</td>
<td>0.309***</td>
<td>0.323***</td>
<td>0.249***</td>
<td>0.268***</td>
<td>0.289***</td>
<td>0.192**</td>
<td>0.284***</td>
<td></td>
</tr>
<tr>
<td>Human Central Banker treat.</td>
<td>-0.001</td>
<td>0.050</td>
<td>0.082</td>
<td>0.058</td>
<td>0.174**</td>
<td>0.171*</td>
<td>0.117</td>
<td></td>
</tr>
<tr>
<td>Menu Cost treatment</td>
<td>0.107</td>
<td>0.008</td>
<td>-0.073</td>
<td>0.041</td>
<td>0.145*</td>
<td>0.131*</td>
<td>0.215**</td>
<td></td>
</tr>
<tr>
<td>Low Friction treatment</td>
<td>0.074</td>
<td>0.019</td>
<td>-0.047</td>
<td>0.195**</td>
<td>0.176**</td>
<td>0.189**</td>
<td>0.213***</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05, **p < 0.01, ***p < 0.001

Table 6: Correlations between inflation and output gap

The correlations between nominal interest rates and other variables illustrate the influences on, and the effects of, monetary policy. There is some heterogeneity across treatments. Nominal GDP is positively correlated with interest rate in all treatments, except for Menu Cost. In the field data, positive correlation of similar magnitude to that in the Baseline treatment is typically observed. Positive correlations are also observed between the real GDP and output gap in the Baseline and Human Central Banker treatments. In the remaining two treatments, these correlations are not significant. Nominal interest rate and real GDP growth are negatively correlated. The correlations are weakly significant in the Menu Cost and Low Friction treatments, but insignificant in the Baseline and Human Central Banker treatments. The correlation with real wages is only significant (and negative) in the Baseline treatment. Price level and inflation are significantly positively correlated with interest rate in the Baseline and Human Central Banker treatments. In the Low Friction treatment, the correlation is only significant for the price level. Under Menu Cost, it is significant only for inflation. The field evidence regarding these correlations is mixed, but usually found to be weaker in magnitude than those in the Baseline treatment. Prices and wages tend to comove in the field, as well as in our experiment, except for the Baseline treatment.
3.3. VAR and impulse response functions. The persistence of macroeconomic variables is analyzed using different methods. First we focus on the cyclical behavior of inflation and on the cross-correlation analysis of inflation and output gap (see Yun, 1996) as detailed in table 6. The greatest degree of persistence is observed for the Baseline treatment, which produces remarkably similar persistence patterns to those generated in simulations, when 85% of firms change their price each period. Indeed, this is the actual frequency with which prices are changed under Baseline (section 3.5 analyzes price patterns in detail). Some persistence is also observed in the Low Friction treatment. In the remaining two treatments, we observe less persistence. Overall, the observed persistence in our experiment is not as pronounced as is usually observed in major developed economies (see e.g. Yun, 1996 for the US). Generally, the cross-correlations are greater for leads than for lags of inflation. This is consistent with the fact that technology shocks are relatively more important for business cycle fluctuations than demand shocks.

![Figure 3: Impulse Responses for Baseline treatment. Note: Orthogonalized impulse responses are plotted. 95% error bands are calculated using bootstrap techniques. IRFX, infX, gapX denotes IRF for group X, effect of inf shock to gap.](image)

The most common methodology employed in empirical monetary economics to assess the persistence of shocks is to estimate a structural vector autoregression (SVAR) and to plot the impulse responses. We follow this literature by estimating a trivariate VAR with two lags of output gap, inflation and interest rate. The appropriate identification scheme to use for our data is not obvious. In the literature, three options have attracted particular attention: Choleski decomposition, long run restrictions, and sign restrictions. However, they each have
advantages and disadvantages. Estimating the VAR using Choleski decomposition, we would fall into the trap described in Carlstrom, Fuerst, and Paustian (2009). They show that the IRFs can be severely muted if one assumes Choleski decomposition and the model actually does not exhibit the assumed timing. This critique does apply in the case of our experiment, where the demand, supply, and monetary policy shocks contemporaneously influence the realizations of inflation, output gap and interest rate. Therefore, Choleski decomposition is not an appropriate identification scheme. Long-run and sign restrictions have also been criticized (see, e.g. Faust and Leeper, 1997 and Chari, Kehoe, and McGrattan, 2008). Specifically, long-run restrictions tend to suffer from truncation bias as finite order VARs are not good approximations of infinite order VARs. However, we believe that the truncation bias is less severe than the misspecified timing in the case of Choleski decomposition. Therefore, we report the impulse responses using long-run restrictions.

Figure 4: Impulse Responses for the Human Central Banker treatment. Note: Orthogonalized impulse responses are plotted. 95% error bands are calculated using bootstrap techniques.

IRFX, infX, gapX denotes IRF for group X, effect of inf shock to gap.

Figures 3 - 6 display the IRFs of one representative session in each treatment (for comparison across sessions see Table A14 in Appendix). There are a number of regularities that are common to all treatments. A productivity shock induces a positive change in the output gap. Inflation reacts negatively to the productivity shock, though the reaction usually dissipates in a few periods. It appears that a positive productivity shock increases competition in the final product market. The effect of productivity shock on interest rate is rather ambiguous. However, this is
in line with the feature that our Taylor rule is set to respond only to inflation, and not to the output gap. Except for the last reaction, which is usually found to be positive, the effects of the productivity shock correspond to stylized facts for major industrialized economies.

The demand shock induces a reaction of inflation that is similar in sign. The persistence of this reaction varies substantially across treatments. It exhibits almost no persistence in the Low Friction treatment, while in other treatments, at least in some sessions, the shock lives for a few periods. In most sessions, the output gap reacts in the same direction as the demand shock, although in two sessions the reaction is opposite in sign and significant. The demand shock induces a change in interest rate that is similar in sign for most of the sessions. This is in line with the stabilizing objective of interest rates that are set in accordance with the Taylor principle. In the Human Central Banker treatment, all four sessions exhibit this property. This behavior is further studied in Section 3.4.

The last shock that we study is the monetary policy shock. This shock is different in nature in our Human Central Banker treatment, compared to all other treatments, in which the interest rate was set according to the instrumental rule specified in (13).\footnote{We reported the interest rate in the experiment to one decimal point accuracy. Therefore the monetary policy shock could be identified as the residual from the reported rounded interest rate and the actual interest rate implied by the Taylor rule.} In Human Central
Banker, the monetary policy shock induces a change in interest rate that is similar in sign. The persistence of this shock varies considerably across sessions, but generally it is greater than in other treatments. Note that we have not embedded any persistence in the monetary policy shock. The Taylor rule we implemented does not exhibit interest rate smoothing and the objective function of the human central bankers does not penalize the interest rate variability.

Figure 6: Impulse Responses for the Low Friction treatment. Note: Orthogonalized impulse responses are plotted. 95% error bands are calculated using bootstrap techniques. IRFX, infX, gapX denotes IRF for group X, effect of inf shock to gap.

A contractionary monetary policy usually has no significant effect on the output gap, and in some cases even increases the output gap. In our experiment, the interest rate changes induce both substitution and income effects to the consumers, due to their accumulation of savings. Therefore, in principle, it is possible that higher interest rates increase output, although the evidence from empirical macroeconomics supports a negative effect. In our experimental economy, there are no effects of interest rate that go through the supply side. In all but three sessions, inflation reacts positively to the contractionary monetary policy shock, although this reaction is often not significant. However, a similar pattern is also commonly found in VAR studies of the monetary policy transmission mechanism and is referred to as the price puzzle (Sims, 1992, Eichenbaum, 1992). The effect of a monetary policy shock on inflation and output gap displays the least persistence in the Low Friction treatment.

The effects of demand and monetary policy shocks correspond, for the most part, to stylized facts. Figures 3 - 6 suggest similar persistence of shocks for output gap and interest rate in
the Menu Cost and the Baseline treatments. Moreover, the Low Friction treatment exhibits a very low degree of persistence, and shocks rarely last more than one period. To further compare the persistence of shocks between different treatments, we design a simple comparison test. We compute the number of periods for which output gap, inflation and interest rate deviate significantly from their long-run steady states as a result of a positive one-standard-deviation shock. The values are presented in the table 7. We then compare these values using nonparametric tests, with each session as the unit of observation.

<table>
<thead>
<tr>
<th>Treatment</th>
<th># of periods (sig.)</th>
<th>output gap</th>
<th>inflation</th>
<th>interest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>10 3 10 6 0 0 0 1</td>
<td>1 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Central Banker</td>
<td>3 1 3 5 0 8 0 0 2 9 5 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu Cost</td>
<td>10 10 4 2 1 6 1 0 0 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Friction</td>
<td>1 2 2 1 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Persistence of shocks

As mentioned above, we do not observe much persistence of monetary policy shocks on interest rates, except in Human Central Banker. These differences are significant at the 5% level under standard nonparametric tests. The only significant difference regarding the effect of demand shocks on inflation is between the Menu Cost and Low Friction treatments (5% significance). The most interesting results are for the output gap, where the Baseline and Menu Cost treatments exhibit more persistence than the other treatments. In particular, Baseline and Menu Cost treatments are significantly different from the other two treatments at the 5% level, using a Kruskal-Wallis test. The Baseline treatment is also significantly different than the Human Central Banker treatment at the 10% level.

The relative importance of shocks for the determination of interest rate, inflation and the output gap, can be measured with a variance decomposition exercise, using our VAR estimations. We find considerable differences between the Human Central Banker and the other treatments. The demand shock is the shock that explains the most variance of interest rate in the other three treatments. In the Human Central Banker treatment, however, interest rate smoothing explains a greater proportion of the variability of interest rates.

3.4. Behavior of human central bankers.

Hypothesis 2 proposed that human central bankers’ interest rate decisions satisfy the Taylor principle. We evaluate the hypothesis with the following regression:

\[
i_t = \beta_1 i_{t-1} + (1 - \beta_1) (\beta_2 \pi_{t-1} + \beta_3 y_{t-1}) + \varepsilon_t
\]

(19)

The estimation employs the linear dynamic panel-data GMM estimation developed by Arellano and Bover (1995) and Blundell and Bond (1998). The standard errors are clustered by session and obtained by bootstrap estimations with 1000 replications. We estimate two different specifications, one for individual decisions over interest rates (ind) and one for the actual interest rate (group) in the economy (recall that the interest rate implemented is the median
choice of the subjects in the role of central bankers). The estimates of (19) are reported in Table 8.

<table>
<thead>
<tr>
<th></th>
<th>group</th>
<th>ind</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_{t-1}</td>
<td>0.9295^{***}</td>
<td>0.9026^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.0139)</td>
<td>(0.1331)</td>
</tr>
<tr>
<td>π_{t-1}</td>
<td>0.1517^{***}</td>
<td>0.1431^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.0115)</td>
<td>(0.0606)</td>
</tr>
<tr>
<td>y_{t-1}</td>
<td>-0.0170^{**}</td>
<td>-0.0207^*</td>
</tr>
<tr>
<td></td>
<td>(0.0072)</td>
<td>(0.0120)</td>
</tr>
<tr>
<td>N</td>
<td>225</td>
<td>625</td>
</tr>
<tr>
<td>χ^2</td>
<td>5415.1</td>
<td>51.5</td>
</tr>
</tbody>
</table>

Table 8: Taylor-rule regressions. Note: Coefficients are based on Blundell-Bond system GMM estimator. Standard errors in parentheses are calculated using bootstrap procedures (1000 replications) that take into account potential presence of clusters in sessions. */**/*** denotes significance at 10/5/1 percent level.

The test of hypothesis 2 is whether β_2 satisfies the Taylor principle. The Taylor principle is that the response of the nominal interest rate to inflation must be greater than 1 in order to guarantee determinacy (Woodford, 2003b). In our economy, determinacy is guaranteed if $\beta_1 + (1 - \beta_1) \beta_2 > 0$.\footnote{The full set of conditions are reported in Bullard and Mitra (2007).} This condition is clearly satisfied in our case. β_2 in our case is 1.47, which is very close to 1.5, the coefficient originally proposed by Taylor, and β_1 is 0.90. We also tested for a nonlinearity in policy. In particular, we considered whether there was an asymmetry in the sensitivity of interest rates to inflation, depending on whether inflation was above or below the target level of 3 percent. We found that there was no asymmetry of that form. In section 3.4, we evaluate the pricing patterns listed in hypothesis 3.

3.5. Price setting behavior of firms.

Frequency of price changes. We start by focusing on the overall frequency of price changes. Table 9 contains a summary of the incidence and direction of price changes in our experimental economy as a percentage of the total number of opportunities to change prices. In our experiment, on average, 74.5% of the time, firms change their prices in a period. Alvarez Gonzalez (2008) presents estimates of the mean frequency of price changes from datasets underlying national CPIs. Prices exhibit nominal stickiness, with an estimated mean frequency of price changes of 19% per month, corresponding to 46.9% over a three month quarter, under the assumption of a constant hazard rate. Furthermore, Klenow and Kryvtsov (2008) suggest that the average monthly frequency of price changes is 36.2% (or 73.8% per quarter) for posted prices between 1988 and 2005.\footnote{Their estimation is based on monthly data from all products in the three largest metropolitan areas in the US and for food and fuel products in all areas, and bimonthly for all other prices. Their estimated weighted median frequency of monthly price changes is 27.3%. However, it is difficult to directly compare these frequencies with experimental data due to potential differences in the definition of period. The percentages are close to those in our data if each of our periods is compared to one 3-month quarter.}
There is virtually no difference between the Baseline, Human Central Banker and Low Friction treatments (the price changes in about 85% of possible instances). Non-parametric tests, using sessions as observations, show no significant differences in the frequency of price changes between these treatments. However, there are significant differences between the Menu Cost and each of the other treatments at the 3% significance level. In the Menu Cost treatment, firms change their prices 40.9% of the time, which is roughly half of the average percentage of instances that firms change their prices in the other treatments. Thus, the introduction of menu costs has a significant effect on the price setting behavior of firms.

Vermeulen, Dias, Dossche, Gautier, Hernando, Sabbatini, and Stahl (2007) find that the degree of competition affects the frequency of price changes. The greater the degree of competition, the greater the frequency of price changes, especially decreases. Here, we also find the greatest frequency of changes in the Low Friction treatment, the most competitive condition, although it is not statistically different from the Baseline treatment. The same pattern holds if positive and negative price changes are considered separately.

Nakamura and Steinsson (2008) report that 64.8% of price changes in the US are increases. This percentage corresponds closely to our experiment, as can be seen in table 9. In our data, 64% of price changes are price increases, and 36% are decreases. The behavior in the Menu Cost treatment is once again significantly different from the other treatments at the 5 percent level. Under Menu Cost, 76% of price changes are increases, while only 24% are decreases. The percentages in the other three treatments are not significantly different from each other.

Size of price changes. Table 10 gives a summary of the average and average absolute price changes in the experiment. The average absolute price change is 12% in the experiment across all treatments while average price change is 2.8%. These numbers suggest that price decreases are an important component of price setting behavior of firms. The pattern of the size of average and average absolute price changes is comparable with the empirical results of Klenow and Kryvtsov (2008), who report a 14% average absolute price change and a 0.8% average price change.

The comparison of treatments reveals that the Menu Cost and Low Friction treatments are fundamentally different from the other two treatments in their price setting behavior. Average price changes are approximately 3.5% in the Baseline and Human Central Banker treatments. For the Menu Cost and Low Friction treatments, the average price changes are approximately
Frictions, persistence, and central bank policy in an experimental DSGE

2 – 2.5%. Prices decreases are both more likely and somewhat larger, though not significantly so. There is a similar pattern in absolute price changes. The sizes of these changes average 16% and 12% in the Baseline and Human Central Banker treatments, and 8.9% in the Menu Cost and Low Friction treatments. Therefore, both the competitiveness of the market and the introduction of a menu cost affects the pricing behavior of firms. The introduction of a menu cost decreases, while monopolistic competition increases, average absolute price changes.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Average price changes in ECU (%)</th>
<th>Average abs. price changes in ECU (%)</th>
<th>Average pos. price changes in ECU (%)</th>
<th>Average neg. price changes in ECU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>1.112 (2.88%)</td>
<td>7.890 (11.98%)</td>
<td>7.364 (12.4%)</td>
<td>-8.8126 (-11.2%)</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.239 (3.72%)</td>
<td>9.921 (16.32%)</td>
<td>8.404 (17.0%)</td>
<td>-12.26 (-15.2%)</td>
</tr>
<tr>
<td>Human CB</td>
<td>3.270 (3.35%)</td>
<td>11.421 (12.43%)</td>
<td>12.302 (13.2%)</td>
<td>-9.9779 (-11.2%)</td>
</tr>
<tr>
<td>Menu cost</td>
<td>0.407 (1.90%)</td>
<td>2.865 (8.87%)</td>
<td>2.53 (8.9%)</td>
<td>-3.9014 (-8.8%)</td>
</tr>
<tr>
<td>Low friction</td>
<td>0.694 (2.57%)</td>
<td>5.113 (8.84%)</td>
<td>4.737 (9.5%)</td>
<td>-5.7377 (-7.8%)</td>
</tr>
</tbody>
</table>

Table 10: Average and average absolute price changes

Nakamura and Steinsson (2008) also report separate statistics regarding the magnitude of positive and negative price changes. The median absolute size of price changes is 8.5%, the median size of price increases is 7.3%, and the median of price decreases is 10.5%. Table 10 also presents the average positive and negative price changes of the experiment both in terms of ECU and in percentage terms. The average positive price change is 12%, while the average negative price change is 11% in the experiment. In all treatments, the average magnitude of positive price changes is greater than that of negative price changes. Thus, the experiment does not confirm the stylized fact that price decreases are greater than increases. However, the difference in the size of positive and negative price changes is not statistically significant in any treatment.

Price changes are greatest in the Baseline treatment, where the magnitude of positive (negative) price changes is 17% (15%). The Human Central Banker treatment has a slightly smaller average magnitude of price changes, while in other two treatments the average is below 10%. However, the differences between treatments are not significant. The average absolute positive price changes are always smaller than the average negative price changes except in the Human Central Banker treatment.\footnote{Klenow and Malin (2010) discusses higher moments of the price changes. They report the kurtosis of the distribution of price changes is 10.0 for posted prices and 17.4 for regular prices. In our experiment, the distribution of all price changes has a 22.3 kurtosis, which is in the same magnitude as the empirical findings. The kurtosis is 11.3 in the Baseline treatment, 17.4 in Human Central Banker, 119.4 in Menu Cost, and 33.1 in Low Friction. This heterogeneity confirms the differences in the price setting behavior between treatments. The figures from the Baseline and Human Central Banker treatments are close to empirical findings. In the Menu Cost treatment there are more extreme price changes.}

Price changes and inflation. Klenow and Kryvtsov (2008) decompose monthly inflation into the fraction of items with price changes and the average size of those price changes. In their sample, they find that the correlation between the fraction of prices that increase and the overall inflation rate is 0.25, which means that the fraction is not highly correlated with
inflation. The average size of changes, however, has a correlation with inflation of 0.99, and thus comoves almost perfectly with inflation. In our data we find similar patterns. The fraction of prices changing is relatively stable and not highly correlated with inflation (0.10) in the pooled sample, however the average magnitude of price changes has a higher correlation (0.53) with inflation. The Baseline and Human Central Banker treatments exhibit similar correlation between magnitude and inflation (≈ 0.5), while the Menu Cost and Low Friction treatments have much greater correlations of roughly 0.84 and 0.79, respectively. Generally, the Menu Cost treatment figures are the closest to the field data.

Time Profile of Hazard Rate of Price Changes. The hazard function of price changes indicates the probability of a price change, depending upon the length of time that the same price has been in effect. Intuitively one might anticipate an upward sloping function, i.e. the longer the prices are fixed the higher the probability of changing them, particularly if there is a positive underlying rate of inflation. However, different theoretical models and empirical results suggest also the possibility of a flat or downward sloping hazard function. Klenow and Malin (2010) summarize the theoretical predictions for the hazard functions of different price-setting models. They show that the Calvo model assumes a flat hazard function, while the Taylor model predicts a zero hazard except at a single point in time, where the hazard is one. Furthermore, they point out that “menu cost models can generate a variety of shapes depending on the relative importance of transitory and permanent shocks to marginal costs. Permanent shocks, which accumulate over time, tend to yield an upward sloping hazard function, while transitory shocks tend to flatten or even produce a downward-sloping hazard function.”

In the empirical literature, the general result is that hazard functions are not upward-sloping. Klenow and Kryvtsov (2008) find the frequency of price changes conditional on reaching a given age is downward sloping if all goods are considered. When they exclude decile fixed effects, the hazard rates become constant. Nakamura and Steinsson (2008) estimate separate hazard functions for different classes of goods, and they find that hazard functions are downward sloping in the first few months, and constant after that period. Ikeda and Nishioka (2007), using Japanese CPI data, contrary to previous empirical research, find upward sloping hazard functions. They use a finite-mixture model and assume a Weibull distribution for price changes. They estimate increasing hazard functions for some products, and constant functions for others.

Table 11 shows the differences between treatments in the duration of price spells. The average durations are 1.17, 1.16 and 1.15 in the Baseline, Human Central Banker and Low Friction treatments. The Menu Cost treatment has an average of 2.41, significantly different at 3% from any of the other treatments.

The slope of the hazard function can be evaluated in our data. We assume a hazard function of the following form:

\[
\lambda_i(t|x_j) = \nu_i \lambda_0(t) \text{weibull}(x_{ij}\beta),
\]

(20)

where \(i\) indexes producers, \(j\) indexes observations, \(\nu_i\) is a producer specific random variable that reflects unobserved heterogeneity in the level of the hazard, \(\lambda_0(t)\) is a nonparametric baseline

\(^{15}\)See also Table A13 in Appendix.
hazard function, $x_{i,j}$ is a vector of covariates, and β is a vector of parameters. We assume that $\nu_i \sim \text{Gamma}(1, \sigma^2_j)$. As in Ikeda and Nishioka (2007), we assume a Weibull distribution in the hazard function, given by $\text{weibull}(x_{i,j}) = x_{i,j}^p \cdot t^{p-1}$, where p is a parameter to be estimated. Under this distributional assumption, we can test explicitly whether the hazard function is upward sloping so that $p > 1$, downward sloping with $p < 1$, or constant with $p = 1$.

The independent variables in the regressions are the wage of the firm, amount of labor hired, lagged value of the firm’s price, lagged value of its profit, lagged value of its unsold products, productivity shock, lagged value of the real interest rate and lagged value of the output gap. Individual differences are captured by producer-specific dummies (ν_i). The hazard rate is estimated for the pooled data, for each treatment and also for each subject separately. The estimation results can be found in Table A11 in the Appendix. There are significant explanatory variables in the regressions. Wage, amount of labor hired, lagged value of unsold products, lagged profits, and dummy for positive profit in the previous period are significant in the pooled regression. All of the hazard functions are upward sloping. When menu costs are present, average price spells are longer, (see Figure A.3 in the Appendix). As shown in Table A11, the estimated values of p are about 2.5 in all treatments except under Menu Cost, where $p = 1.55$. All of these estimates are significantly greater than 1 at the 1% significance level, indicating a significantly increasing hazard rate. These results are in line with Ikeda and Nishioka (2007), though differ from the findings generally reported in the literature.

4. Conclusion

In this study, we construct a laboratory DSGE economy populated with human decision makers. The experiment allows us to create the structure of a DSGE economy, but to make no prior assumptions about the behavior of agents. Different treatments allow us to study whether the assumptions of menu costs and monopolistic competition are essential to create the frictions required to make the economy conform to empirical stylized facts. The experiment allows the possibility that the behavior of human agents alone creates the requisite friction.

All of the results depend on whether we have been able to create a well-functioning economy, from which meaningful data can be extracted. This means that the complexity of the economy is not so great as to be beyond the capabilities of the participating human agents. The data provide clear evidence that economies with this level of complexity are amenable to experimentation. None of our subjects lost money overall or consistently made poor decisions.
The empirical patterns and treatment differences lend themselves to intuitive ex-post explanations, though many of these would not have been anticipated ex-ante. Thus, in our view, experiments, in conjunction with traditional empirical methods, can increase our understanding of how a macroeconomy operates.

The specific focus of the experiment reported here is the role of frictions in generating some stylized empirical facts. Comparison of our Baseline and Menu Cost treatments allows us to consider the effect of the addition of menu costs on the economy, holding all else equal. We find that the existence of monopolistic competition, in conjunction with the behavior of human agents, generates a considerable level of persistence, which is similar whether or not menu costs are present. Thus, with our boundedly rational agents, menu costs are not necessary to create persistence in the output gap. We also observe that the levels of GDP and welfare are also not substantially different with or without explicit menu costs. Nevertheless, menu costs have an effect on prices. Average markups are smaller under menu costs, perhaps as a result of greater forward-looking considerations in price setting, and thus menu costs inhibit the exercise of market power. Sellers, when facing a menu cost, appear to seek to guarantee sales over multiple future periods, by setting relatively low prices. In the absence of the menu cost, they are aware that they can lower their prices in any future period if they have been undercut by other sellers. While menu costs do not affect the level of inflation, they reduce its variability. The benefit from this lower variability offsets the direct deadweight loss of the cost itself, and results in an insignificant net effect on welfare.

Comparing the Baseline and Low Friction treatments allows us to analyze the differences between perfect and monopolistic competition. Low Friction is characterized by greater output, employment, and welfare, as well as smaller price markups than Baseline. The Low Friction treatment generates virtually no persistence of shocks, in contrast to Baseline, in which persistence is observed. Bounded rationality does not create persistence of shocks under perfect competition.

Under perfect competition, consumers’ purchase and firms’ output pricing decisions are straightforward. Consumers simply buy at the lowest price, and thus face a one-dimensional problem. Producers face a situation in which charging too high a markup can result in large losses, and thus there is powerful feedback reinforcing convergence to competitive pricing. This means that productivity shocks must be immediately passed through to output prices for producers to avoid losses. This competitive behavior is conducive to high output, welfare, and employment levels.

Under monopolistic competition, on the other hand, consumers face a multi-dimensional problem. They must compare the difference between the marginal utility and price of each of the goods, and choose the one yielding the greatest surplus. Reoptimization is required for each individual purchase, since marginal utility changes with each purchase. For producers, there is a relatively smooth tradeoff between price and sales, unlike the all-or-nothing tradeoffs under perfect competition. The parameters of this tradeoff depend in a complex manner on the other firms’ prices, as well as on the shocks to preferences for each of the goods. In light of complexity, boundedly rational agents might resort to rules of thumb or be reluctant to make relatively large
changes in behavior, as long as their current strategies seen to be working reasonably well. This inertia in decision making can cause slow adjustment and thus shock persistence. Such inertia is very costly under perfect competition, and can lead to large losses.

Humans, when given the role of discretionary central bankers in our experiment, tend to employ the Taylor principle. They make relatively large adjustments in interest rates in response to a deviation of inflation from the target level. Interest rate decisions show considerable persistence, despite the absence of explicit incentives for central banks to have them do so. Though typically applying the Taylor principle, our Human Central Bankers achieved lower levels of GDP and welfare than those attained under a simple instrumental rule. This can be seen in a comparison of the Baseline and Human Central Banker treatments. As illustrated in figures 1 and 2, the decrease in welfare occurs late in the life of the economies, when individuals are relatively experienced. This means that the low output and welfare are not long-term consequences of initial decisions taken during a learning process. Rather, they appear to reflect a slow policy response to price increases late in the sessions. Producers, as they gain experience, attempt to increase the wedge between output and input prices. This may be because of the greater policy uncertainty in Human Central Banker relative to Baseline, or because they come to realize that they have a degree of market power. In the Baseline treatment, the instrumental rule responds strongly to output price increases by raising interest rates. Thus encourages consumers to save rather than consume, putting downward pressure on prices. Producers respond to this by lowering prices. The Human Central Bankers react less effectively to such price increases, and this is reflected in the greater persistence of policy shocks and price inertia relative to Baseline.

We also considered whether a number of stylized empirical facts about pricing are observed in our economies. We find that price changes are frequent, occurring in 74.5% of possible instances compared to 73.8% quarterly in US data. A majority of roughly 64% of price changes are increases, compared to 64.8% in the US data. In percentage terms, price changes are also similar to empirical estimates and the ratio of magnitudes of the average positive and negative price change is similar. We find that the fraction of prices that change from one period to the next is not highly correlated with inflation, but the average magnitude of changes does exhibit a correlation with inflation. However, in contrast to most empirical studies, the hazard function of price changes is upward sloping. It is possible that the difference may be due to our relatively high inflation target of 3%. The inflationary environment means that prices deviate more and more negatively from the optimum over time if not changed. This increases the gains from reoptimization over time. Overall, the Menu Cost treatment has fewer price changes, but a greater percentage of increases conditional on a price change, than the other treatments.

We believe that the structure used in this experiment could serve as a basis for studying the consequences of other assumptions of DSGE models, and as a tool for policy analysis. While we have focused here primarily on questions of monetary policy, in principle issues of fiscal policy could also be considered within a similar environment. The effect of market institutions could also be analyzed, since experimental methods allow institutions to be changed, holding all environmental variables equal. The effect of different labor market arrangements, such labor unions, minimum wage laws, and an asymmetry in market power, such as might arise
from the use of a posted bid market institution rather than a double auction market, could be investigated.

Our findings suggest potential avenues to extend the standard DSGE model. It is clear that there is a role for constructing models with multiple heterogeneous agents. However, in designing our experiment, we noticed that certain features of standard DSGE models cannot be reproduced with interacting human participants. While the incentives to buy and sell that generate underlying output demand and labor supply can be specified and controlled by the experimenter, the effective realized demand and supply in the market are a function of the decisions of the human participants, which may be subject to strategic or boundedly rational behavior. Furthermore, it is impossible to control the expectations of agents in the economy and overcome the uncertainty they have about the behavior of other agents. Finally, in the DSGE framework, a positive level of savings is not possible. Positive savings are a feature of most functioning economies, and our results underscore that the existence of positive savings can influence the effects of monetary policy. We observed that monetary policy shocks induced both income and substitution effects, dampening the effect of monetary policy. Perhaps other channels of monetary policy, like credit channels, should be included in a standard DSGE model.

References

A. Appendix

Appendix A1 lists definitions for some of the aggregate variables used in the text. Appendix A2 contains the initial values of the shocks in the Low Friction treatment. Appendix A3 includes some supplementary tables containing estimation results and descriptive statistics. Appendix A4 is a reprint of the instructions for the Human Central Banker treatment. The instructions for each of the other three treatments is a subset of those given here. The differences are described in Appendix A5.

A.1. Initial value of shocks. The initial value of the A_t productivity shock is $A_0 = 3.5192$. The initial values of the preference shocks in all of the treatments except for Low Friction are

$$H_{1,t=0} = [475.0125, 190.0593, 165.4321]$$

for the first consumer,

$$H_{2,t=0} = [310.0125, 464.0593, 298.4321]$$

for the second consumer, and

$$H_{3,t=0} = [189.0125, 319.0593, 485.4321]$$

for the third consumer.

The initial values of the preference shocks in the Low Friction treatment are

$$H_{1,t=0} = [600.0125, 599.0593, 600.4321]$$

for the first consumer,

$$H_{2,t=0} = [600.0125, 599.0593, 600.4321]$$
for the second consumer, and

\[H_{3,t=0} = [600.0125, 599.0593, 600.4321] \]

for the third consumer.

A.2. Calculation of aggregate variables. The inflation rate at period \(t \) is computed with the following equation

\[\pi_t = \frac{\sum_{j=1}^{J} p_{jt}}{\sum_{j=1}^{J} p_{jt-1}}, \quad (21) \]

where \(p_{jt} \) is the price of good \(j \) at time \(t \).

GDP, real GDP and real GDP growth are calculated at each period according to the following equations

\[Y_t = \sum_{j=1}^{J} y_{jt} p_{jt}, \quad (22) \]

\[Y_t^r = \sum_{j=1}^{J} y_{jt} p_{j1}, \quad (23) \]

\[Y_t^{rg} = \frac{\sum_{j=1}^{J} y_{jt} p_{j1}}{\sum_{j=1}^{J} y_{jt-1} p_{j1}}, \quad (24) \]

where \(p_{jt} \) is the price of good \(j \) at time \(t \) and \(y_{jt} \) is the quantity of good \(j \) in period \(t \).

The output gap is given by

\[x_t = \frac{\sum_{j=1}^{J} y_{jt} p_{j1} - \sum_{j=1}^{J} y_{jt}^{P} p_{j1}}{\sum_{j=1}^{J} y_{jt}^{P} p_{j1}}, \quad (25) \]

where \(y_{jt}^{P} = A_{jt} L_{jt} \) is the potential level of production of firm \(j \), \(L_{jt} \) is the optimal level of work and \(A_{jt} \) is the average productivity shock.

Finally, aggregate wages and aggregate real wages are determined by the equations below

\[W_t^{R} = \frac{1}{I} \sum_{i=1}^{I} w_{it}, \quad (26) \]

\[W_t^{R} = \sum_{i=1}^{I} \frac{w_{it}}{1 + \pi_t}, \quad (27) \]
where w_{it} is the wage of subject i at period t.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>interest</td>
<td>958</td>
<td>5.662898</td>
<td>10.47261</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>inflation</td>
<td>958</td>
<td>2.45458</td>
<td>13.50272</td>
<td>-68.55409</td>
<td>134.0426</td>
</tr>
<tr>
<td>gap</td>
<td>958</td>
<td>-20.22278</td>
<td>19.4485</td>
<td>-93.12498</td>
<td>33.0037</td>
</tr>
<tr>
<td>gdp</td>
<td>958</td>
<td>1895.601</td>
<td>2297.108</td>
<td>4.5</td>
<td>26002</td>
</tr>
<tr>
<td>realgdp</td>
<td>958</td>
<td>655.4251</td>
<td>200.3036</td>
<td>48</td>
<td>1186</td>
</tr>
<tr>
<td>rgdpg</td>
<td>957</td>
<td>2.009392</td>
<td>37.52016</td>
<td>-89.89899</td>
<td>923.3333</td>
</tr>
<tr>
<td>labor hired</td>
<td>2874</td>
<td>4.573069</td>
<td>1.847017</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>price</td>
<td>2874</td>
<td>48.60571</td>
<td>86.88744</td>
<td>0.1</td>
<td>1500</td>
</tr>
<tr>
<td>profits</td>
<td>2874</td>
<td>40.45601</td>
<td>176.44012</td>
<td>-4191.352</td>
<td>1270.8</td>
</tr>
<tr>
<td>prodfun</td>
<td>2874</td>
<td>15.5588</td>
<td>6.694012</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>sales</td>
<td>2874</td>
<td>14.27105</td>
<td>6.808245</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>unsold products</td>
<td>2874</td>
<td>1.287752</td>
<td>2.955584</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>wage</td>
<td>2854</td>
<td>102.0619</td>
<td>136.4999</td>
<td>0.1</td>
<td>4402</td>
</tr>
<tr>
<td>Wage-marketwage</td>
<td>2854</td>
<td>1.650817</td>
<td>94.39867</td>
<td>-592.1738</td>
<td>3994.167</td>
</tr>
<tr>
<td>markup</td>
<td>2845</td>
<td>0.2675641</td>
<td>0.2277611</td>
<td>-0.577922</td>
<td>0.993205</td>
</tr>
<tr>
<td>wpratio</td>
<td>2854</td>
<td>2.691143</td>
<td>6.496245</td>
<td>0.0220833</td>
<td>291.5232</td>
</tr>
<tr>
<td>pricediff</td>
<td>2826</td>
<td>1.111925</td>
<td>28.72794</td>
<td>-710</td>
<td>600</td>
</tr>
<tr>
<td>rpricediff</td>
<td>2826</td>
<td>0.0287713</td>
<td>0.1708514</td>
<td>-0.9090909</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table A1: Descriptive statistics - pooled
<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>interest</td>
<td>242</td>
<td>8.387603</td>
<td>14.23122</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>inflation</td>
<td>242</td>
<td>3.199414</td>
<td>21.653</td>
<td>-68.55409</td>
<td>134.0426</td>
</tr>
<tr>
<td>gdp</td>
<td>242</td>
<td>1746.554</td>
<td>2100.203</td>
<td>4.5</td>
<td>26002</td>
</tr>
<tr>
<td>realgdp</td>
<td>242</td>
<td>626.8748</td>
<td>177.518</td>
<td>48</td>
<td>1012.8</td>
</tr>
<tr>
<td>rgdpg</td>
<td>242</td>
<td>4.051115</td>
<td>62.87422</td>
<td>-89.89899</td>
<td>923.3333</td>
</tr>
<tr>
<td>labor hired</td>
<td>726</td>
<td>4.414601</td>
<td>1.706865</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>price</td>
<td>726</td>
<td>44.53085</td>
<td>84.10343</td>
<td>0.1</td>
<td>1500</td>
</tr>
<tr>
<td>profits</td>
<td>726</td>
<td>62.94251</td>
<td>89.06482</td>
<td>-142.9054</td>
<td>707.3257</td>
</tr>
<tr>
<td>proffun</td>
<td>726</td>
<td>14.96143</td>
<td>6.18485</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>sales</td>
<td>726</td>
<td>13.46143</td>
<td>6.086324</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>unsold products</td>
<td>726</td>
<td>1.5</td>
<td>3.160423</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>wage</td>
<td>722</td>
<td>79.61597</td>
<td>63.59612</td>
<td>0.1</td>
<td>511.8</td>
</tr>
<tr>
<td>Wage-marketwage</td>
<td>722</td>
<td>-0.3438827</td>
<td>13.17343</td>
<td>-127.0192</td>
<td>203.0308</td>
</tr>
<tr>
<td>markup</td>
<td>722</td>
<td>0.3748539</td>
<td>0.2600075</td>
<td>-0.53</td>
<td>0.9932051</td>
</tr>
<tr>
<td>wpratio</td>
<td>722</td>
<td>2.097963</td>
<td>0.8725777</td>
<td>0.0220833</td>
<td>5.7375</td>
</tr>
<tr>
<td>pricediff</td>
<td>714</td>
<td>0.2389356</td>
<td>47.66071</td>
<td>-710</td>
<td>600</td>
</tr>
<tr>
<td>rpricediff</td>
<td>714</td>
<td>0.0371852</td>
<td>0.2422498</td>
<td>-0.9090909</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table A2: Descriptive statistics - Baseline treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>interest</td>
<td>225</td>
<td>5.881333</td>
<td>9.865943</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>inflation</td>
<td>225</td>
<td>2.63949</td>
<td>12.08882</td>
<td>-32.10526</td>
<td>98.8399</td>
</tr>
<tr>
<td>gdp</td>
<td>225</td>
<td>2431.577</td>
<td>3665.547</td>
<td>84.8</td>
<td>17190</td>
</tr>
<tr>
<td>realgdp</td>
<td>225</td>
<td>568.6938</td>
<td>222.4741</td>
<td>166</td>
<td>1062.8</td>
</tr>
<tr>
<td>rgdpg</td>
<td>224</td>
<td>1.113884</td>
<td>22.10198</td>
<td>-48.84354</td>
<td>81.49638</td>
</tr>
<tr>
<td>labor hired</td>
<td>675</td>
<td>4.134815</td>
<td>1.710819</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>price</td>
<td>675</td>
<td>72.29393</td>
<td>146.6704</td>
<td>4.5</td>
<td>1100</td>
</tr>
<tr>
<td>profits</td>
<td>675</td>
<td>71.41323</td>
<td>122.2867</td>
<td>-438.3405</td>
<td>1270.8</td>
</tr>
<tr>
<td>proffun</td>
<td>675</td>
<td>14.08296</td>
<td>6.291079</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>sales</td>
<td>675</td>
<td>12.45037</td>
<td>6.279717</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>unsold products</td>
<td>675</td>
<td>1.632593</td>
<td>3.065284</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>wage</td>
<td>671</td>
<td>95.51334</td>
<td>104.7708</td>
<td>5.5</td>
<td>374.925</td>
</tr>
<tr>
<td>Wage-marketwage</td>
<td>671</td>
<td>-0.4317104</td>
<td>17.45936</td>
<td>-159</td>
<td>172.1429</td>
</tr>
<tr>
<td>markup</td>
<td>670</td>
<td>0.3754929</td>
<td>0.2372643</td>
<td>-0.577922</td>
<td>0.9666333</td>
</tr>
<tr>
<td>wpratio</td>
<td>671</td>
<td>2.137723</td>
<td>0.9887657</td>
<td>0.1001001</td>
<td>14.86667</td>
</tr>
<tr>
<td>pricediff</td>
<td>663</td>
<td>3.270588</td>
<td>31.11294</td>
<td>-300</td>
<td>280</td>
</tr>
<tr>
<td>rpricediff</td>
<td>663</td>
<td>0.0334799</td>
<td>0.1846808</td>
<td>-0.6382979</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table A3: Descriptive statistics - Human CB treatment
<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>interest</td>
<td>239</td>
<td>2.847099</td>
<td>6.155897</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>inflation</td>
<td>239</td>
<td>1.795545</td>
<td>6.003486</td>
<td>-17.4482</td>
<td>57.41525</td>
</tr>
<tr>
<td>gap</td>
<td>239</td>
<td>-19.6395</td>
<td>17.74195</td>
<td>-79.0022</td>
<td>23.82888</td>
</tr>
<tr>
<td>gdp</td>
<td>239</td>
<td>1273.082</td>
<td>352.0875</td>
<td>382.1</td>
<td>2522.5</td>
</tr>
<tr>
<td>realgdp</td>
<td>239</td>
<td>637.9925</td>
<td>181.1477</td>
<td>153.8</td>
<td>1041.8</td>
</tr>
<tr>
<td>rgdpg</td>
<td>239</td>
<td>1.567379</td>
<td>24.91149</td>
<td>-76.46159</td>
<td>240.3121</td>
</tr>
<tr>
<td>labor hired</td>
<td>717</td>
<td>4.490934</td>
<td>1.90383</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>price</td>
<td>717</td>
<td>32.52204</td>
<td>13.16851</td>
<td>14</td>
<td>82</td>
</tr>
<tr>
<td>profits</td>
<td>717</td>
<td>14.72283</td>
<td>310.0241</td>
<td>-4191.352</td>
<td>571.7784</td>
</tr>
<tr>
<td>proffun</td>
<td>717</td>
<td>15.23291</td>
<td>6.866657</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>sales</td>
<td>717</td>
<td>14.03487</td>
<td>6.651766</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>unsold products</td>
<td>717</td>
<td>1.198047</td>
<td>2.661508</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>wage</td>
<td>710</td>
<td>93.42234</td>
<td>208.1062</td>
<td>42.0875</td>
<td>4402</td>
</tr>
<tr>
<td>Wage-marketwage</td>
<td>710</td>
<td>7.49169</td>
<td>187.3672</td>
<td>-592.1738</td>
<td>3994.167</td>
</tr>
<tr>
<td>markup</td>
<td>706</td>
<td>0.2214447</td>
<td>0.1661604</td>
<td>-0.2387387</td>
<td>0.7734902</td>
</tr>
<tr>
<td>wpratio</td>
<td>710</td>
<td>3.44522</td>
<td>12.90085</td>
<td>0.9142857</td>
<td>291.5232</td>
</tr>
<tr>
<td>pricediff</td>
<td>705</td>
<td>0.4065248</td>
<td>2.686908</td>
<td>-17</td>
<td>23.1</td>
</tr>
<tr>
<td>rpricediff</td>
<td>705</td>
<td>0.0190134</td>
<td>0.0877353</td>
<td>-0.3333333</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table A4: Descriptive statistics - Menu cost treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>interest</td>
<td>252</td>
<td>5.521825</td>
<td>9.281046</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>inflation</td>
<td>252</td>
<td>2.199243</td>
<td>8.907355</td>
<td>-30.66667</td>
<td>36.19048</td>
</tr>
<tr>
<td>gap</td>
<td>252</td>
<td>-14.17133</td>
<td>15.80603</td>
<td>-68.55325</td>
<td>33.0037</td>
</tr>
<tr>
<td>gdp</td>
<td>252</td>
<td>2150.587</td>
<td>1749.849</td>
<td>510</td>
<td>7763.4</td>
</tr>
<tr>
<td>realgdp</td>
<td>252</td>
<td>776.8143</td>
<td>157.5383</td>
<td>285</td>
<td>1186</td>
</tr>
<tr>
<td>rgdpg</td>
<td>252</td>
<td>1.263909</td>
<td>23.20006</td>
<td>-60.20236</td>
<td>210.5263</td>
</tr>
<tr>
<td>labor hired</td>
<td>756</td>
<td>5.1944444</td>
<td>1.882797</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>price</td>
<td>756</td>
<td>46.62262</td>
<td>42.42065</td>
<td>14</td>
<td>200</td>
</tr>
<tr>
<td>profits</td>
<td>756</td>
<td>15.62714</td>
<td>61.37043</td>
<td>-448.2118</td>
<td>188.8246</td>
</tr>
<tr>
<td>proffun</td>
<td>756</td>
<td>17.75926</td>
<td>6.818769</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>sales</td>
<td>756</td>
<td>16.89815</td>
<td>7.286307</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>unsold products</td>
<td>756</td>
<td>0.8611111</td>
<td>2.864354</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>wage</td>
<td>751</td>
<td>137.6601</td>
<td>119.9132</td>
<td>45.125</td>
<td>430</td>
</tr>
<tr>
<td>Wage-marketwage</td>
<td>751</td>
<td>-0.0928188</td>
<td>15.1116</td>
<td>-129.2857</td>
<td>116.25</td>
</tr>
<tr>
<td>markup</td>
<td>751</td>
<td>0.1009667</td>
<td>0.585665</td>
<td>-1.811667</td>
<td>0.4517544</td>
</tr>
<tr>
<td>wpratio</td>
<td>751</td>
<td>3.042976</td>
<td>0.5650854</td>
<td>1.8</td>
<td>9.840625</td>
</tr>
<tr>
<td>pricediff</td>
<td>744</td>
<td>0.6944892</td>
<td>9.121903</td>
<td>-70</td>
<td>57</td>
</tr>
<tr>
<td>rpricediff</td>
<td>744</td>
<td>0.0257473</td>
<td>0.1296174</td>
<td>-0.75</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table A5: Descriptive statistics - Low friction treatment
Table A6: Descriptive statistics - Pooled

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage</td>
<td>2876</td>
<td>99.23777</td>
<td>130.5316</td>
<td>0</td>
<td>1520</td>
</tr>
<tr>
<td>leisure</td>
<td>2877</td>
<td>5.425791</td>
<td>1.38231</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>work</td>
<td>2877</td>
<td>4.574209</td>
<td>1.38231</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>savings</td>
<td>2877</td>
<td>39549.66</td>
<td>245908</td>
<td>0.0383689</td>
<td>3638128</td>
</tr>
<tr>
<td>sum savings</td>
<td>959</td>
<td>118653.7</td>
<td>540950.5</td>
<td>525.0417</td>
<td>4646720</td>
</tr>
<tr>
<td>utility</td>
<td>2869</td>
<td>2741.456</td>
<td>1292.135</td>
<td>-6013.475</td>
<td>7054.952</td>
</tr>
<tr>
<td>cons good1</td>
<td>2877</td>
<td>4.687522</td>
<td>4.384988</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>cons good2</td>
<td>2877</td>
<td>5.014251</td>
<td>4.073576</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>cons good3</td>
<td>2877</td>
<td>4.575252</td>
<td>4.015571</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>cons (number)</td>
<td>2877</td>
<td>14.27702</td>
<td>7.295907</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>consumption</td>
<td>2877</td>
<td>631.5149</td>
<td>1078.006</td>
<td>0</td>
<td>24874</td>
</tr>
</tbody>
</table>

Table A7: Descriptive statistics - Baseline treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage</td>
<td>726</td>
<td>69.99287</td>
<td>62.84536</td>
<td>0</td>
<td>660.25</td>
</tr>
<tr>
<td>leisure</td>
<td>726</td>
<td>5.585399</td>
<td>1.230758</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>work</td>
<td>726</td>
<td>4.414601</td>
<td>1.230758</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>savings</td>
<td>726</td>
<td>69565.22</td>
<td>379341.9</td>
<td>0.0383689</td>
<td>3638128</td>
</tr>
<tr>
<td>sum savings</td>
<td>242</td>
<td>208695.7</td>
<td>796986</td>
<td>543.2195</td>
<td>4646720</td>
</tr>
<tr>
<td>utility</td>
<td>726</td>
<td>2438.292</td>
<td>1161.722</td>
<td>-142.8506</td>
<td>6247.739</td>
</tr>
<tr>
<td>cons good1</td>
<td>726</td>
<td>4.097796</td>
<td>4.048679</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>cons good2</td>
<td>726</td>
<td>5</td>
<td>4.242641</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>cons good3</td>
<td>726</td>
<td>4.363636</td>
<td>3.552949</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>cons (number)</td>
<td>726</td>
<td>13.46143</td>
<td>7.167784</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>consumption</td>
<td>726</td>
<td>582.1847</td>
<td>1144.688</td>
<td>0</td>
<td>24874</td>
</tr>
</tbody>
</table>

Table A8: Descriptive statistics - Human CB treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage</td>
<td>675</td>
<td>79.45976</td>
<td>115.0242</td>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>leisure</td>
<td>675</td>
<td>5.865185</td>
<td>1.509973</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>work</td>
<td>675</td>
<td>4.134815</td>
<td>1.509973</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>savings</td>
<td>675</td>
<td>81898.04</td>
<td>312248.7</td>
<td>0.3426774</td>
<td>2798072</td>
</tr>
<tr>
<td>sum savings</td>
<td>225</td>
<td>245694.1</td>
<td>719631.2</td>
<td>595.8868</td>
<td>4323971</td>
</tr>
<tr>
<td>utility</td>
<td>667</td>
<td>2352.707</td>
<td>1305.954</td>
<td>-6013.475</td>
<td>6143.891</td>
</tr>
<tr>
<td>cons good1</td>
<td>675</td>
<td>4.302222</td>
<td>4.013765</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>cons good2</td>
<td>675</td>
<td>4.325926</td>
<td>3.411513</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>cons good3</td>
<td>675</td>
<td>3.822222</td>
<td>4.124665</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>cons (number)</td>
<td>675</td>
<td>12.45037</td>
<td>6.915459</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>consumption</td>
<td>675</td>
<td>810.5256</td>
<td>1684.545</td>
<td>0</td>
<td>12160</td>
</tr>
<tr>
<td>Variable</td>
<td>Obs</td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>wage</td>
<td>720</td>
<td>73.29934</td>
<td>75.34377</td>
<td>0</td>
<td>1132.25</td>
</tr>
<tr>
<td>leisure</td>
<td>720</td>
<td>5.504167</td>
<td>1.182856</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>work</td>
<td>720</td>
<td>4.495833</td>
<td>1.182856</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>savings</td>
<td>720</td>
<td>2605.616</td>
<td>2875.418</td>
<td>0.4359367</td>
<td>13970.76</td>
</tr>
<tr>
<td>sumsavings</td>
<td>240</td>
<td>7835.598</td>
<td>6594.705</td>
<td>525.0417</td>
<td>26677.59</td>
</tr>
<tr>
<td>utility</td>
<td>720</td>
<td>2513.825</td>
<td>1063.925</td>
<td>-4752.119</td>
<td>6753.636</td>
</tr>
<tr>
<td>cons good1</td>
<td>720</td>
<td>4.183333</td>
<td>4.062071</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>cons good2</td>
<td>720</td>
<td>5.826389</td>
<td>3.986643</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>cons good3</td>
<td>720</td>
<td>4.05</td>
<td>3.255935</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>cons (number)</td>
<td>720</td>
<td>14.05972</td>
<td>6.029417</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>consumption</td>
<td>720</td>
<td>423.8192</td>
<td>182.6202</td>
<td>0</td>
<td>1576.9</td>
</tr>
</tbody>
</table>

Table A9: Descriptive statistics - Menu cost treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage</td>
<td>755</td>
<td>169.7777</td>
<td>192.6954</td>
<td>0</td>
<td>1520</td>
</tr>
<tr>
<td>leisure</td>
<td>756</td>
<td>4.805556</td>
<td>1.366785</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>work</td>
<td>756</td>
<td>5.194444</td>
<td>1.366785</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>savings</td>
<td>756</td>
<td>8098.946</td>
<td>18932.72</td>
<td>2.232203</td>
<td>146401.8</td>
</tr>
<tr>
<td>sumsavings</td>
<td>252</td>
<td>24296.84</td>
<td>42794.93</td>
<td>2994.799</td>
<td>260551.8</td>
</tr>
<tr>
<td>utility</td>
<td>756</td>
<td>3592.364</td>
<td>1211.448</td>
<td>649.9122</td>
<td>7054.952</td>
</tr>
<tr>
<td>cons good1</td>
<td>756</td>
<td>6.078042</td>
<td>4.976288</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>cons good2</td>
<td>756</td>
<td>4.869048</td>
<td>4.396271</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>cons good3</td>
<td>756</td>
<td>5.951058</td>
<td>4.616296</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>cons (number)</td>
<td>756</td>
<td>16.89815</td>
<td>8.097678</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>consumption</td>
<td>756</td>
<td>716.8622</td>
<td>723.9243</td>
<td>17.2</td>
<td>5311</td>
</tr>
</tbody>
</table>

Table A10: Descriptive statistics - Low friction treatment
<table>
<thead>
<tr>
<th>Hazard ratio</th>
<th>Pooled b/se</th>
<th>Baseline b/se</th>
<th>Human CB b/se</th>
<th>Menu cost b/se</th>
<th>Low friction b/se</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.price</td>
<td>1.0000 (0.0004)</td>
<td>1.0014*** (0.0005)</td>
<td>0.9992* (0.0005)</td>
<td>1.0234** (0.0109)</td>
<td>0.9982 (0.0043)</td>
</tr>
<tr>
<td>wage</td>
<td>1.0007* (0.0004)</td>
<td>0.9981** (0.0009)</td>
<td>1.0013 (0.0009)</td>
<td>0.9796*** (0.0062)</td>
<td>1.0023 (0.0015)</td>
</tr>
<tr>
<td>Stock</td>
<td>1.0262* (0.0154)</td>
<td>0.9684 (0.0289)</td>
<td>0.9632 (0.0290)</td>
<td>1.1983*** (0.0521)</td>
<td>1.0226 (0.0249)</td>
</tr>
<tr>
<td>prod</td>
<td>0.9311 (0.0061)</td>
<td>1.3261** (0.1497)</td>
<td>0.8368 (0.1113)</td>
<td>0.5055*** (0.1074)</td>
<td>0.9904 (0.1355)</td>
</tr>
<tr>
<td>lgap</td>
<td>1.0000 (0.0015)</td>
<td>1.0040 (0.0025)</td>
<td>1.0002 (0.0029)</td>
<td>0.9994 (0.0050)</td>
<td>1.0020 (0.0035)</td>
</tr>
<tr>
<td>L.realinterest</td>
<td>0.9986 (0.0016)</td>
<td>0.9990 (0.0023)</td>
<td>0.9921** (0.0032)</td>
<td>1.0024 (0.0087)</td>
<td>0.9991 (0.0033)</td>
</tr>
<tr>
<td>L.prodmsales</td>
<td>0.9777** (0.0112)</td>
<td>0.9516** (0.0188)</td>
<td>0.9875 (0.0238)</td>
<td>0.9374** (0.0300)</td>
<td>0.9745 (0.0343)</td>
</tr>
<tr>
<td>L.profits</td>
<td>1.0008** (0.0004)</td>
<td>0.9996 (0.0007)</td>
<td>1.0011** (0.0005)</td>
<td>0.9994 (0.0018)</td>
<td>0.9994 (0.0019)</td>
</tr>
<tr>
<td>Dpprofit</td>
<td>0.6807*** (0.0639)</td>
<td>0.6219*** (0.1028)</td>
<td>0.7798 (0.1491)</td>
<td>0.6565** (0.1379)</td>
<td>0.7041 (0.1521)</td>
</tr>
</tbody>
</table>

\[p \]

\[N \]

\[\chi^2 \]

\[BIC \]

*p<.10, **p<.05, ***p<.01

Table A11: Parametric hazard rate regressions
<table>
<thead>
<tr>
<th>dur</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1738</td>
<td>82.6</td>
<td>82.6</td>
</tr>
<tr>
<td>2</td>
<td>230</td>
<td>10.93</td>
<td>93.54</td>
</tr>
<tr>
<td>3</td>
<td>71</td>
<td>3.37</td>
<td>96.91</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>1.19</td>
<td>98.1</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>0.62</td>
<td>98.72</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0.43</td>
<td>99.14</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>0.24</td>
<td>99.38</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>0.14</td>
<td>99.52</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>0.14</td>
<td>99.67</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>0.14</td>
<td>99.81</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0.05</td>
<td>99.86</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0.05</td>
<td>99.9</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0.05</td>
<td>99.95</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0.05</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>2104</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table A12: Price spells

<table>
<thead>
<tr>
<th>inflation</th>
<th>All</th>
<th>Baseline</th>
<th>Human CB</th>
<th>Menu Cost</th>
<th>Low friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>frac</td>
<td>0.1043</td>
<td>0.0463</td>
<td>0.1751</td>
<td>0.2672</td>
<td>0.1434</td>
</tr>
<tr>
<td>size</td>
<td>0.5348</td>
<td>0.5522</td>
<td>0.4768</td>
<td>0.8489</td>
<td>0.7987</td>
</tr>
</tbody>
</table>

Table A13: Correlation of size and fraction with inflation

<table>
<thead>
<tr>
<th>Shock</th>
<th>Effect on</th>
<th># of periods (sig.)</th>
<th>output gap</th>
<th>inflation</th>
<th>interest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>output gap</td>
<td>Baseline</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Human Central Banker</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Menu Cost</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Low Friction</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>inflation</td>
<td>Human Central Banker</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Menu Cost</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Low Friction</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>interest rate</td>
<td>Human Central Banker</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Menu Cost</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Low Friction</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table A14: Persistence of shocks

A.3. Tables.
A.4. Instructions. This section contains the instructions of the experiment. Each subject received the same instructions during the experiment. The instructions reprinted here were used in the Human Central Banker treatment.

OVERVIEW. You are about to participate in an experiment in the economics of market decision making. The instructions are simple and if you follow them carefully and make good decisions, you can earn a considerable amount of money which will be paid to you in cash at the end of the experiment. Trading in the experiment will be in terms of experimental currency units (ECU). You will be paid, in Euro, at the end of the experiment.

The experiment will consist of a series of at least 50 periods. You are a consumer, a producer, or a central banker, and will remain in the same role for the entire experiment. If you are a consumer, you can make money by selling labor and buying products. If you are a producer, you can make money by buying labor and selling products that you make with the labor. If you are a banker you can make money by trying to get the inflation rate as close to possible to a target level. Whether you are a consumer, a producer, or a central banker is indicated at the top of the instructions.

SPECIFIC INSTRUCTIONS FOR CONSUMERS.

Selling labor. At the beginning of each period, you will have the opportunity to sell your labor for ECU. You will see the screen shown on the next page.

You can sell units of Labor for whatever wage you are able to get for them. To sell a unit, you use the table in the middle of the upper part of your screen entitled “Labor market”. There are two ways to sell a unit:

1. You can accept an offer to buy labor that a producer has made: To do this, look in the column labeled “offers to buy”, and highlight the wage at which you would like to sell. Then click on the red button labeled “sell”.

Figure A1: Hazard rate of price changes for Menu cost treatment
2. You can make an offer to sell, and wait for a producer to accept it. To do so, enter a wage in the field labeled “Your offer”, and then select “Offer to sell” to submit it to the market. Your offer will then appear in the column labeled “Offers to sell”. It may then be accepted by a producer. However, it is also possible that it may not be accepted by any producers before the current period ends, since they are free to choose whether or not to accept an offer.

When you do not wish to sell any more units in the period, please click the “Stop Selling” key.

You must pay a cost, in Euro, for each unit you sell. The table in the upper left part of the screen, called “Your cost to sell labor” tells you how much you have to pay for each unit of labor you can sell. The numbers are given in units of 1/100th of a cent, so that a cost of 400, for example, is equal to 4 cents. Each row of the table corresponds to a unit that you are selling. The first row is for the first unit you sell in the current period, the second row is for the second unit, etc. . . The second column of the table tells you how much it costs you to sell each unit. The numbers in the table will decrease by 1% from one period to the next.

Buying products. After selling labor in each period, you will have the opportunity to buy products by spending ECU. The screen on the next page will appear to allow you to do so.

In the upper left part of the screen, there is a table which will help you make your purchase decisions. There are three goods, 1, 2, and 3, which each correspond to a column in the table.
The row called “price” gives the current price per unit, in ECU, that the producer making the unit is currently charging for it.

The next row gives the “Next unit’s value per ECU”. This calculated in the following way. Your value for the next unit is the amount of money, in Euro, that you receive for the next unit you buy. As you buy more units within a period, your value for the next unit you buy will always be less than for the last unit you bought of the same good. Your values will change from one period to the next. They will randomly increase and decrease from one period to the next, but on average, they will decrease by 1% per period.

The numbers in the “Next unit’s value per ECU” row give the value for the unit, divided by the price that the producer selling the unit is charging. The last row in the table shows the number of units of each good that you have purchased so far in the current period.

To make a purchase of a unit of good 1, click on the button labeled “buy a unit of good 1”. To make a purchase of a unit of good 2 or 3, click on the button corresponding to the good you want to buy. When you do not want to purchase any more units of any of the three goods, click the button labeled “Quit buying”.

Saving money for later periods. Any ECU that you have not spent in the period is kept by you for the next period. It will earn interest at the rate shown on at the top of your screen next to the label “Savings interest rate”. That means, for example, if the interest rate is 2%, and you have 100 ECU at the end of the period, it will grow to 102 ECU by the beginning.
of the next period.

Note that saving ECU for later periods involves a trade-off. If you buy more products now, and save less ECU, you can earn more, in Euro, in the current period, but you have less ECU spend in later periods. If you buy fewer products now, you make fewer Euro in the current period, but you have more ECU to spend in later periods and can earn more Euro then. In a given period, you cannot spend more ECU than you have at that time.

Your share of producer profits. You will also receive an additional payment of ECU at the end of each period. This payment is based on the total profit of producers. Each consumer will receive an amount of ECU equal to $\frac{1}{3}$ of the total profit of all three producers. How the profit of producers is determined will be described in the next section. You might think of this as you owning a share in each of the producers so that you receive a share of their profits.

How you make money if you are a consumer. Your earnings in a period, in Euro, are equal to the valuations of all of the products you have purchased minus the unit cost of all of the units of labor that you sell.

For example, suppose that in period 5 you buy two units of good 1 and one unit of good 3. You also sell three units of labor in the period. Your valuation, that is, the amount of Euros you receive, for your first unit of good 1 is 400, and your valuation for the second unit of good 1 is 280. Your value of the first unit of good 3 is 350. These valuations can be found on your “Buy Products” screen in the row called “Your valuation for the next unit. The cost of your first, second and third units of labor are 50, 100, and 150. Then, you earnings for the period equal

$$400 + 280 + 350 - 50 - 100 - 150 = 730 = 7.3 \text{ cents}$$

Note that the ECU that you paid to buy products and those that you received from selling labor are not counted in your earnings. The ECU you receive from selling labor, saving, and producer profit is important, however, because that is the only money that you can use to buy products.

Your Euro earnings for the experiment are equal to your total earnings in all of the periods, plus a bonus at the end of the game that is described in section 6.

SPECIFIC INSTRUCTIONS FOR PRODUCERS.

Buying labor. At the beginning of each period, you will have the opportunity to buy labor with ECU. You will see the following screen.

You can buy units of Labor for whatever wage in ECU you are able to get them for. To buy a unit, you use the table in the middle of the upper part of your screen entitled “Labor market”. There are two ways to buy:

1. Accept an offer to sell that a consumer has made: To do this, look in the column labeled “offers to sell”, and highlight the price at which you would like to buy. Then click on the red button labeled “buy”.

2. Make an offer to buy, and wait for a potential seller to accept it. To do so, enter a wage in the field labeled “Your offer”, and then select “Make a new offer” to submit it to the market. Your offer will then appear in the column labeled “Offers to buy”. It may then be accepted by a seller. However, it is also possible that it may not be accepted by any sellers before the current period ends.

The table in the upper left of the screen, entitled “You require” can help you make your purchase decisions. In the first column is the number of the unit that you are purchasing. 1st corresponds to the first unit you buy in the period, 2nd corresponds to the second unit you are buying in the period, etc. The second column, indicates how many units of product that is produced with each unit of labor. In the example here, each unit of labor produces 3.4 units of product.

Selling products. After the market for labor closes, you automatically produce one of the three goods using all of the labor you have purchased in the period. You produce good \ldots \ldots and you will always be the only producer of that good. You can make money by selling the good for ECU. You can do so by using the following screen.

In the upper middle portion of the screen, the number of units of Labor you have purchased in the period is shown in the field labeled ‘Number of Units of Labor Purchased‘. Just below
that field is the amount of the product you produce that the labor you bought has made. The amount of product that you make with a given amount of labor can change from period to period. ‘Labor expense ’ indicates how much money you spent on labor in the period.

In the field labeled “Insert your price”, you can type in the price per unit, in ECU, that you wish to charge for each unit of the product you have produced. When you have decided which price to charge and typed it in, click on the field called ‘set price’. This price will then be displayed to consumers who have an opportunity to purchase from you.

How you make money as a producer. If the amount of ECU you receive from sales is more than the amount that you spent on labor, you will earn a profit.

Your profit in ECU in a period = Total ECU you get from sales of product – total ECU you pay for labor

In period 1, your profit in ECU will be converted to Euro at a rate of ECU = 1 Euro. Therefore:

Your earnings in Euro in period 1 =*[ECU you get from sales of product – ECU you pay for labor]

In later periods, the conversion rate of your earnings from ECU to Euro will be adjusted for the inflation rate.
Your ECU balance will be set to zero in each period. However, the profit you have earned in each period, in Euro, will be yours to keep, and the computer will keep track of how much you have earned in previous periods. Your Euro earnings for the experiment are equal to your total earnings in all of the periods.

SPECIFIC INSTRUCTIONS FOR CENTRAL BANKERS.

Setting the interest rate. Three of you are in the role of Central bankers. In each period, the three of you will set the interest rate that consumers will earn on their savings in the current period. You will see the screen shown on the next page at the beginning of each period.

In the field labeled “Interest Rate Decision”, you enter the interest rate that you would like to set for the period. Of the three of you who set interest rates, the second highest (that is, the median choice) will be the one in effect in the period.

Higher interest rates might encourage consumers to save rather than spend their money and might lead to lower prices, and therefore a lower rate of inflation. On the other hand, lower interest rates might discourage saving, and lead to more spending and higher prices.

How you make money as a central banker. You earnings in each period will depend on the inflation rate in the current period. The inflation rate for a period is calculated in the following way. The average price for the three products is calculated for this period and last period. The percentage that the prices went up or down is determined. This percentage is the inflation rate.

For example if the prices of the three products are 60, 65 and 70 in period 9, the average price in period 9 is 65. If the average prices in period 8 were 55, 55, and 70, the average price in period 8 was 60. Prices increased by \((65 - 60)/60 = .0833 = 8.33\%\) in period 9. Notice that prices could either increase or decrease in each period.

You make more money the closer the inflation rate is to \(\ldots\%\) in each period.

Specifically you earnings in Euro will be equal to \(\ldots\ldots\ - (Actual\ Inflation\ Rate - \ldots\%\)^2\) in each period.
ADDITIONAL INFORMATION DISPLAYED ON YOUR SCREENS. There are graphs on each of the screens described above that give you some additional information about market conditions. You are free to use this information if you choose, to help you make your decisions. In all of the graphs, the horizontal axis is the period number.

Consumers. If you are a consumer, the graphs show for each period, histories of:

- the interest rate (that you earn on the ECU you save),
- the inflation rate (the percentage that average prices for the three goods have gone up or down between one period and the next),
- the output gap (a measure of the difference between the most products that could be made and how much are actually made; the smaller the gap, the lower is production),
- the wage you received (for the labor you sold),
- the average wage in the economy (the average amount consumers received for selling labor),
- the number of units of labor you sold,
• your consumption (how much money that you spent on products)
• your savings (how much of your money that you didn’t spend on products),
• the price of each of the three products
• the quantity you bought of each of the three products

Producers. If you are a producer, the graphs show histories of:

• the interest rate,
• the inflation rate,
• the output gap,
• the wage you paid (for the labor you bought),
• the average wage in the economy,
• the number of units of labor you bought,
• your labor expense (how much you spent on labor),
• your production (how much you have produced),
• your sales (how much you have sold),
• your profits

Central Bankers. If you are a central banker, the graphs show histories of:

• Interest rates,
• Your earnings,
• The GDP, a measure of how much the economy is producing
• The output gap.

ENDING THE EXPERIMENT. The experiment will continue for at least 50 periods. You will not know in advance in which period the experiment will end. At the end of the experiment, any consumer who has ECU will have it converted automatically to Euro and paid to him/her.

If you are a consumer, we will convert your ECU to Euro in the following manner. We will imagine that the experiment would continue forever, with your valuations and costs following the downward trend they had during the experiment. We will then calculate how much you would earn if you made the best possible savings, labor selling, and product buying decisions that are possible, given the savings you currently have. We will use the average prices for labor and products during the experiment to make the calculation. We will then take the resulting amount of Euro and credit them to you.
STARTING THE EXPERIMENT. In the first two periods of the experiment, we will place limits on the range of wages and prices that can be offered. You will be informed of these limits when the experiment begins. These restrictions will be lifted in period three.

A.5. Differences with the instructions in other treatments. In the Baseline and Low Friction treatments, subject received the same instructions as those in Appendix A4, except for Section 4 entitled Specific Instructions for Central Bankers. That part was not included in Baseline and Low Friction, because the interest rate was set automatically by the computer.

In the Menu Cost treatment, section 4 was absent, similarly to the Baseline and Menu Cost treatments. In Menu Cost only, the screen-shot in the figure above was displayed in Section 3.b, entitled Selling products, instead of the one shown in Appendix A4. The screen shown in the Menu Cost treatment was accompanied by the following text:

After the market for labor closes, you automatically produce one of the three goods using all of the labor you have purchased in the period. You produce good and you will always be the only producer of that good. You can make money by selling the good for ECU. You can do so by using the following screen.

In the upper middle portion of the screen, the number of units of Labor you have purchased in the period is shown in the field labeled Number of Units of Labor Purchased’. Just below
that field is the amount of the product you produce that the labor you bought has made. The amount of product that you make with a given amount of labor can change from period to period. ‘Labor expense’ indicates how much money you spent on labor in the period.

In the field labeled “Insert your price”, you can type in the price per unit, in ECU, that you wish to charge for each unit of the product you have produced. When you have decided which price to charge and typed it in, click on the field called ‘set price’. This price will then be displayed to consumers who have an opportunity to purchase from you. You can change your price from one period to the next or you can keep it the same as in the last period. However, if you change the price you are charging for your product, you have to pay a cost that is calculated in the following way.

Cost to change price = (price you charged last period)*(how many units you have produced this period)*0.025.