SOLUTION CONCEPTS FOR GAMES WITH GENERAL COALITIONAL STRUCTURE

By Gleb Koshevoy, Dolf Talman

22 February 2011
Solution concepts for games with general coalitional structure

Gleb Koshevoy\(^2\) Dolf Talman\(^3\)

February 22, 2011

\(^1\)This research has been done while the first author was visiting CentER, Tilburg University, on a fellowship of the Netherlands Organization of Scientific Research (NWO).

\(^2\)G.A. Koshevoy, Central Institute of Mathematics and Economics, Russian Academy of Sciences, Nakhimovskii prospect 47, 117418 Moscow, Russia, e-mail: koshevoy@cemi.rssi.ru

\(^3\)A.J.J. Talman, CentER, Department of Econometrics & Operations Research, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands, e-mail: talman@uvt.nl
Abstract

We introduce several new solution concepts for cooperative games with arbitrary coalition structure. Of our main interest are coalitions structures being so-called building sets. A collection of sets is a building set if every singleton is a member and if the union of any two non-disjoint sets in the collection is also in the collection. For example, the vertex sets of all connected subgraphs of a connected graph form a building set. To a building set is associated a collection of strictly nested sets. These sets give rise to a polyhedral complex. Maximal strictly nested sets correspond to the vertices of this complex.

For a given characteristic function on a building set a marginal payoff vector is associated to any strictly nested set. The GC-solution is defined as the average of the marginal payoff vectors over all maximal strictly nested sets. The solution can be viewed as the gravity center of the image of the vertices of the complex and differs for graphical building sets from the Myerson value. The HS-solution is defined as the average of marginal payoff vectors over the class of so-called half-space nested sets. The NT-solution is defined as the average of marginal payoff vectors over another specific class of maximal strictly nested sets, the class of so-called NT-nested sets. On graphical buildings the collection of NT-nested sets corresponds to the set of normal trees on the underlying graph and the NT-solution coincides with the average tree solution. We also study core stability of the solutions.

For an arbitrary set system we show that there exists a unique minimal building set containing the set system. As solutions we take the solutions for this building covering by extending in a natural way the characteristic function to it.

Key words: Core, building set, nested set, Myerson value, average tree solution

AMS subject classification: 47H10, 49J40, 52C40, 90C30, 91B50.
JEL code: C71.
1 Introduction

We consider cooperative games with general coalitional structure. The structure is a set system \mathcal{F}, being a collection of subsets of a finite set of n elements, denoted by $[n] := \{1, \ldots, n\}$. A game is a function $v : \mathcal{F} \to \mathbb{R}$ defined on the set system. Elements of $[n]$ might be considered as economic agents or players, elements of \mathcal{F} are coalitions which players allow or are able to form, and v is a characteristic function assigning to each coalition S in the set system \mathcal{F} its worth $v(S)$. A solution is a mapping from the set of games to the n-dimensional vector space \mathbb{R}^n and assigns for any game a payoff to every player.

For the case all coalitions are allowable, i.e., $\mathcal{F} = 2^{[n]}$, the Shapley value is one of the most well-known solutions (see [14]). It is constructed as follows. To any permutation σ of $[n]$, where $\sigma : [n] \to [n]$ is a bijection, a chain of coalitions is associated, $\{\{\sigma^{-1}(1)\}, \{\sigma^{-1}(1), \sigma^{-1}(2)\}, \ldots, \{\sigma^{-1}(1), \ldots, \sigma^{-1}(n)\}\}$. Given a game $v : 2^{[n]} \to \mathbb{R}$, with $v(\emptyset) = 0$, to this chain a marginal payoff vector $m^\sigma(v)$ is associated, whose $\sigma^{-1}(i)$th coordinate equals player $\sigma^{-1}(i)$’s marginal contribution $v(\{\sigma^{-1}(1), \ldots, \sigma^{-1}(i)\}) - v(\{\sigma^{-1}(1), \ldots, \sigma^{-1}(i-1)\})$, $i = 1, \ldots, n$. The average of these marginal vectors over all $n!$ permutations of $[n]$ is the Shapley value of the game. Therefore, the Shapley value is a mapping from the class of cooperative games on the power set $2^{[n]}$ to \mathbb{R}^n. In [12] the Myerson value is introduced when the collection of allowable coalitions is constituted from the sets of vertices of connected subgraphs of a connected graph. The Myerson value for such a cooperative graph game is the Shapley value for the so-called M-extension of the game to the power set.

In this paper we define several solutions for cooperative games with arbitrary coalitional structure and more specific for games having a building set as coalitional structure. Buildings sets were introduced in algebraic geometry, see, for example, [3, 7, 13]. A set system on $[n]$ is a building set if it contains all singletons, the set $[n]$, and together with any two non-disjoint sets also the union of these sets. In economic terms, any two allowable coalitions with non-empty intersection are able to form a coalition being their union. To a connected graph is associated the graphical building set consisting of the vertex sets of all connected subgraphs of the graph. The class of graph games, introduced in [12], is therefore a subclass of the class of games on buildings sets.

An important property of a building set on $[n]$ is that any subset of $[n]$ has a unique partition that consists of maximal (with respect to set-inclusion) elements of the building set. Due to this property, to any permutation of $[n]$ a unique collection of n elements of the building set is associated. Namely, let σ be any permutation of $[n]$. Then $[n] \setminus \{\sigma^{-1}(n)\}$ is uniquely partitioned into maximal elements of the building set, say, S_1, \ldots, S_k. For each S_j, $j = 1, \ldots, k$, denote by t_j the maximal element of $[n]$ such that $\sigma^{-1}(t_j) \in S_j$, and next
partition $S_j \setminus \{\sigma^{-1}(t_j)\}$, and so on. In this way, we obtain a specific collection of elements of the building set, a so-called strictly nested set, being a collection of elements of the building set such that for any two different elements of it either they are disjoint or one is a subset of the other and, moreover, the union of any collection of subsets of disjoint sets in the nested set is not an element of the building set. When a strictly nested set consists of n different sets it is said to be maximal. Every maximal strictly nested set describes a unique way in which the grand coalition $[n]$ can be formed from elements of the building set by, starting with the empty set, subsequently adding players to allowable coalitions to form larger allowable coalitions until the grand coalition is formed.

In case the building set is the power set $2^{[n]}$ there are $n!$ maximal strictly nested sets and each maximal strictly nested set is a chain that corresponds to a unique permutation. If for an arbitrary building set a maximal strictly nested set is not a chain, it corresponds to a collection of permutations. Given a game on a building set we define a marginal vector with respect to every maximal strictly nested set. This vector coincides with the marginal payoff vector for an appropriately defined extension of the game, the so-called M-extension, with respect to any permutation from the collection of permutations that corresponds to the maximally strictly nested set. For graphical building sets the M-extension of a game coincides with the extension of a graph game considered in [12].

For the class of cooperative games on building sets we introduce several new solution concepts. The GC-solution is defined as the average of marginal vectors over all maximal strictly nested sets in the building set. For graphical building sets, the GC-solution differs from the Myerson value. Although the collection of marginal vectors is the same in both solutions, in the GC-solution all marginal payoff vectors are different, i.e., each marginal vector is counted only once when taking the average.

The HS-solution is defined as the average of marginal vectors over a specific class of maximal strictly nested sets, the class of so-called HS-nested sets. An element of a building set is said to be a half-space if its complement is also an element of the building set. A maximal strictly nested set is then an HS-nested set if every element of it not being a singleton is a half-space. It means that in the nested set a player can only be added to a coalition if the remaining players form an allowable coalition.

The NT-solution is defined as the average of marginal payoff vectors over another specific class of maximal strictly nested sets, the class of so-called NT-nested sets. A maximal strictly nested set is an NT-nested set if for any $i \in [n]$ and any successor j of i in the nested set $\{i, j\}$ is an element of the building set. On graphical buildings the collection of NT-nested sets corresponds to the collection of normal trees induced by the graph, introduced in [11]. It means that in the nested set a player can only be added to a coalition if he and the last player who was added to that coalition can form a coalition.
For graphical buildings, the set of NT-nested sets is a nonempty subset of the set of HS-nested sets. For more general building sets the HS- or the NT-solution may not exist. In case the set system is equal to the power set all three solutions coincide and are equal to the Shapley value. For a graphical building, the NT-solution coincides with the Average Tree solution, introduced in [10].

We study core stability of the three solutions. The core of a game consists of the payoff vectors that cannot be blocked by any coalition in the set system. We prove that, given a building set B, all marginal vectors and therefore also the GC-solution belong to the core if the game is B-supermodular and B-superadditive. For an HS-nested set in B the corresponding marginal vector belongs to the core if the game is half-space B-supermodular and B-superadditive. For any NT-nested set in B the corresponding marginal vector belongs to the core if the game is half-space B-supermodular and 2-superadditive. Half-space B-supermodularity of a game is a weaker condition than B-supermodularity, and the latter condition is weaker than supermodularity. If the game is totally positive, the GC-solution is the gravity center of the core. This property does not hold for the Myerson value when the set system is a proper subset of the power set.

For a general set system F, there exists a unique minimal building set $B(F)$, the so-called building covering of F, which contains F. For a characteristic function $v : F \to \mathbb{R}$, we restrict the M-extension of v to $B(F)$ to obtain a game $v^F : B(F) \to \mathbb{R}$. The GC-, HS-, and NT-solutions for the latter game we define as the corresponding solutions for the game v on F. Core stability of these solutions are provided by the corresponding conditions for the building covering. On the class of convex geometries we compare our solutions with the solution proposed in [1]. We also generalize the Myerson value to arbitrary set systems.

The paper is organized as follows. In Section 2, for a given arbitrary set system we introduce the concept of strictly nested set, and for a function on it we define its M-extension. We show that to every maximal strictly nested set N there corresponds a rooted tree on $[n]$ and define for this tree a marginal vector $m^v(N)$. To each such tree is associated a collection of permutations, being the set of linear extensions of the poset induced by the tree. We prove that for each such permutation the marginal payoff vector for the M-extension coincides with the marginal vector $m^v(N)$. In Section 3 we study maximal strictly nested sets and the M-extension of games on building sets. In Section 4 we introduce the different solution concepts for building sets. In Section 5 core stability of these solutions is studied. In Section 6 we discuss solutions for arbitrary set systems.
2 Strictly nested sets and the M-extension

Let \([n] = \{1, \ldots, n\}\) be a finite set and let \(\mathcal{F} \subseteq \mathcal{P}[n]\) be a given set system on \([n]\). We assume that both \(\emptyset\) and \([n]\) belong to \(\mathcal{F}\) and that for any function \(v : \mathcal{F} \to \mathbb{R}\) it holds that \(v(\emptyset) = 0\).

For a function \(f : \mathcal{P}[n] \to \mathbb{R}\), let \(\mu : \mathcal{P}[n] \to \mathbb{R}\) be its M"obius inversion, i.e., \(\mu\) satisfies

\[
f(T) = \sum_{T' \subseteq T} \mu(T'), \quad T \in \mathcal{P}[n].
\]

The M"obius inversion of \(v\) is given by

\[
\mu(T) = \sum_{T' \subseteq T} (-1)^{|T| - |T'|} f(T), \quad T \in \mathcal{P}[n].
\]

Definition 2.1 Let \(v : \mathcal{F} \to \mathbb{R}\) be a function, then the M-extension \(v^\mathcal{F} : \mathcal{P}[n] \to \mathbb{R}\) of \(v\) is given by the following conditions:

(i) \(v^\mathcal{F}|_{\mathcal{F}} = v\).

(ii) For the M"obius inversion of \(v^\mathcal{F}\), \(\mu^\mathcal{F}\), it holds that \(\mu^\mathcal{F}(S) = 0\) for every \(S \notin \mathcal{F}\).

Theorem 2.2 For a function \(v : \mathcal{F} \to \mathbb{R}\) its M-extension \(v^\mathcal{F}\) is well defined.

Proof. Consider the system of linear equations:

\[
v(S) = \sum_{T \in \mathcal{F} | T \subseteq S} \mu(T), \quad S \in \mathcal{F}.
\]

The matrix for this system corresponds after appropriate reordering of columns and rows by set inclusion to a \((0, 1)\) upper-triangular square matrix with all ones on the diagonal. Therefore the system has a unique solution \(\mu(S), \quad S \in \mathcal{F}\). Define \(\mu^\mathcal{F} : \mathcal{P}[n] \to \mathbb{R}\) by \(\mu^\mathcal{F}(S) = \mu(S)\) if \(S \in \mathcal{F}\) and \(\mu^\mathcal{F}(S) = 0\) if \(S \notin \mathcal{F}\). Then \(v^\mathcal{F}\) is the unique function for which \(\mu^\mathcal{F}\) is its M"obius inverse, i.e.,

\[
v^\mathcal{F}(S) = \sum_{T \in \mathcal{F} | T \subseteq S} \mu(T), \quad S \in \mathcal{P}[n].
\]

Q.E.D.

We have the following interesting property of the M-extension. Let \(\mathcal{F}_1 \subseteq \mathcal{F}_2\) be two set systems and let \(v : \mathcal{F}_1 \to \mathbb{R}\) be a function, then it holds that

\[
v^\mathcal{F}_1 = (v^\mathcal{F}_1|_{\mathcal{F}_1})_{\mathcal{F}_2}.
\]

In particular this property holds when \(\mathcal{F}_2\) is equal to \(\mathcal{F}_1\).
Definition 2.3 A subset \mathcal{N} of \mathcal{F} is a strictly nested set if it satisfies the following conditions:

1. (G1) For any different S, $T \in \mathcal{N}$ it holds that either $S \subset T$ or $T \subset S$ or $S \cap T = \emptyset$.
2. (G2) For any collection of k, $k \geq 2$, disjoint subsets T_1, \ldots, T_k in \mathcal{N} it holds that
 \[T_1' \cup \cdots \cup T_k' \notin \mathcal{F} \]
 for any nonempty $T_j' \subseteq T_j$, $j = 1, \ldots, k$.
3. (G3) $[n] \in \mathcal{N}$.

Property (G1) is known under the names nested sets, laminar or hierarchy, see, for example, [9]. Property (G2) is the strength of the nested property, see, for example, [3]. Notice that a chain $\{N_1, N_2, \ldots, N_{k-1}, [n]\}$ of length k with $N_1 \subset N_2 \subset \cdots \subset N_{k-1} \subset [n]$ and $N_j \in \mathcal{F}$ for $j = 1, \ldots, k-1$, $1 \leq k \leq n$, is a strictly nested set, since (G2) is automatically fulfilled.

Consider the set system \mathcal{F} consisting of all singletons of $[n]$ and $[n]$ itself. Then any strictly nested set \mathcal{N} consists of some collection of singletons and the set $[n]$. In this example chains are of the form $\{[n]\}$ and $\{\{i\}, [n]\}$ for $i = 1, \ldots, n$.

To any strictly nested set \mathcal{N} of \mathcal{F} there corresponds a rooted tree $F^\mathcal{N}$, whose vertex set is indexed by a partition of $[n]$, defined as follows. Because of (G1) and (G3) for any strictly nested set \mathcal{N} and $i \in [n]$ there is a unique minimal element in \mathcal{N}, denoted $T^\mathcal{N}(i)$, containing i. Let the ordering $\preceq^\mathcal{N}$ on $[n]$ be defined by $i \preceq^\mathcal{N} j$ if $T^\mathcal{N}(i) \subseteq T^\mathcal{N}(j)$ and consider the partition of $[n]$ constituted from sets being equivalent elements of $[n]$ with respect to $\preceq^\mathcal{N}$. Consider the factor-set $[n]/\sim^\mathcal{N}$, that is an element of $[n]/\sim^\mathcal{N}$ corresponds to a set of equivalent elements. The ordering $\preceq^\mathcal{N}$ induces a poset on $[n]/\sim^\mathcal{N}$. The Hasse-diagram of this poset is the rooted tree $F^\mathcal{N}$. More precisely, consider all maximal elements of \mathcal{N} different from $[n]$. Let $T^\mathcal{N}(i_1), \ldots, T^\mathcal{N}(i_m)$ be those sets. Because of (G2) their union is not equal to $[n]$. Hence, the set $[n] \setminus (T^\mathcal{N}(i_1) \cup \cdots \cup T^\mathcal{N}(i_m))$ consists of equivalent elements and is the root of the tree $F^\mathcal{N}$. The successors of the root are formed by the roots in the subtrees corresponding to the restrictions of \mathcal{N} to each of the sets $T^\mathcal{N}(i_1), \ldots, T^\mathcal{N}(i_m)$. The existence of the tree follows by induction, since the restriction of a strictly nested set to any such set is a strictly nested set with respect to the restriction of \mathcal{F} to the same set.

A strictly nested set \mathcal{N} is maximal if it contains n different nonempty sets. Notice that an arbitrary set system may not have a maximal strictly nested set. To every maximal strictly nested set \mathcal{N} in \mathcal{F} there corresponds a rooted tree $F^\mathcal{N}$ with vertex set $[n]$. In such a case, the ordering $\preceq^\mathcal{N}$ has no multiple equivalent elements, and therefore $([n], \preceq^\mathcal{N})$ is a poset. The tree corresponding to a maximal strictly nested set \mathcal{N} describes a particular way how the grand coalition $[n]$ can be formed by letting players join allowable coalitions to form larger allowable coalitions, starting with the empty set. For a maximal strictly nested
set N and $i \in [n]$, let $S^N(i)$ be the set of successors of i in the tree F^N i.e., $j \in S^N(i)$ if $T^N(j)$ is a maximal element of N in $T^N(i) \setminus \{i\}$. When player i forms the larger coalition $T^N(i)$ in N he joins simultaneously all allowable coalitions $T^N(j)$, $j \in S^N(i)$, that were formed by his successors. These latter sub-coalitions form a partition of the set $T^N(i) \setminus \{i\}$ of subordinates of i (property G1) and satisfy that their union is not allowable (property G2), i.e., these coalitions or subsets of them are not able to cooperate without player i. At last one player, the root of the tree, forms the grand coalition $[n]$, which is also allowable (property G3), by joining simultaneously all allowable coalitions formed by his successors. The collection of maximal strictly nested sets in F describes all different possibilities in which the grand coalition can be formed in this way.

For a maximal strictly nested set N of F, denote by \mathcal{S}^N the set of permutations on $[n]$ which are linear extensions (total orderings of $[n]$) of the poset $([n], \prec^N)$. In this way to a set system F is associated the set of permutations $\mathcal{S}^F := \bigcup_N \mathcal{S}^N$, where the union is taken over the set of all maximal strictly nested sets in F.

Now we show how this set of permutations is related to the M-extension. For this the following notion is of use, where \mathcal{S}_n is the set of all permutations of $[n]$.

Definition 2.4 Let $f : 2^{[n]} \to \mathbb{R}$ be a function and let $\sigma \in \mathcal{S}_n$ be a permutation. Then the marginal vector $m^f(\sigma)$ is given by

$$m^f_{\sigma^{-1}(i)}(\sigma) = f(\{\sigma^{-1}(1), \ldots, \sigma^{-1}(i)\}) - f(\{\sigma^{-1}(1), \ldots, \sigma^{-1}(i-1)\}), \quad i \in [n].$$

To each permutation σ of $[n]$ corresponds a chain of n non-disjoint sets, denoted N_σ. N_σ is a maximal strictly nested set in $2^{[n]}$. However, N_σ may not be a maximal strictly nested set in F, also not when $\sigma \in \mathcal{S}^F$.

Theorem 2.5 Let $v : F \to \mathbb{R}$ be a function and let $v^{\mathcal{F}}$ be its M-extension. Then, for any maximal strictly nested set N of F and every pair of permutations $\sigma_1, \sigma_2 \in \mathcal{S}^N$, it holds that

$$m^{v^{\mathcal{F}}}(\sigma_1) = m^{v^{\mathcal{F}}}(\sigma_2).$$

Since for a game v on F the marginal vector $m^{v^{\mathcal{F}}}(\sigma)$ is the same for all $\sigma \in \mathcal{S}^N$, we obtain for every maximal strictly nested set N of F a unique marginal vector. This payoff vector is denoted by $m^v(N)$ and called the marginal vector with respect to N. Notice that

$$m^v_i(N) = v(T^N(i)) - \sum_{j \in S^N(i)} v(T^N(j)), \quad i \in [n].$$
The payoff $m^i(N)$, $i \in [n]$, is the marginal contribution of i when he joins his subordinates in the tree F^N. The marginal vector $m^v(N)$ can also be interpreted as follows. Restrict v to N and consider the Möbius inversion μ^N of the M-extension of this restricted function. Then

$$m^v_i(N) = \mu^N(T^N(i)), \quad i = 1, \ldots, n.$$

For the proof of Theorem 2.5 we need the following lemma.

Lemma 2.6 Let $v : \mathcal{F} \to \mathbb{R}$ be a function and let $v^\mathcal{F}$ be its M-extension. Let T_1 and T_2 be two disjoint subsets of $2^{[n]}$ such that for any nonempty $T'_1 \subseteq T_1$ and $T'_2 \subseteq T_2$ it holds that $T'_1 \cup T'_2 \notin \mathcal{F}$. Then

$$v^\mathcal{F}(T_1 \cup T_2) = v^\mathcal{F}(T_1) + v^\mathcal{F}(T_2).$$

Proof. The proof follows because for the Möbius inversion $\mu^\mathcal{F}$ of $v^\mathcal{F}$ it holds that $\mu^\mathcal{F}(T'_1 \cup T'_2) = 0$ for any $T'_1 \subseteq T_1$ and $T'_2 \subseteq T_2$. Q.E.D.

Proof of Theorem 2.5. If the maximally strictly nested set N is a chain, then to this chain corresponds only one permutation, and the proposition holds.

Now suppose N is not a chain and therefore contains disjoint elements. Let σ_1 and σ_2 be two different permutations in \mathfrak{S}^N. Then they are different in possibilities to shuffle these disjoint elements, say, T_1, \ldots, T_k. Because of property (G2) and the previous lemma, any shuffle yields the same marginal contribution, as for example the shuffle which orders all elements of T_1 above all elements of T_2, and so on. Q.E.D.

Corollary 2.7 Let N_1 and N_2 be two different maximal strictly nested sets in \mathcal{F}, then

$$\mathfrak{S}^{N_1} \cap \mathfrak{S}^{N_2} = \emptyset.$$

Proof. Since the union of N_1 and N_2 is not a strictly nested set, there exists a function v on the set system \mathcal{F} which has different marginal vectors, i.e., $m^v(N_1) \neq m^v(N_2)$. Therefore $\mathfrak{S}^{N_1} \cap \mathfrak{S}^{N_2} = \emptyset$. Q.E.D.

From this corollary it follows that $\mathfrak{S}^\mathcal{F}$ is partitioned into \mathfrak{S}^N over all maximal strictly nested sets N in \mathcal{F}. The collection $\mathcal{N}(\mathcal{F})$ of strictly nested sets in \mathcal{F} forms a poset with respect to inclusion, that is for $\mathcal{A}, \mathcal{B} \subset \mathcal{F}$, we set $\mathcal{A} \leq \mathcal{B}$ if $\mathcal{A} \supseteq \mathcal{B}$, and one can define a corresponding cell complex $C(\mathcal{F})$ such that the open cells of the complex are indexed by the strictly nested sets and the closure of a cell contains all cells which are dominated by it in the poset. The vertices of $C(\mathcal{F})$ correspond to the maximal strictly nested sets in \mathcal{F}. We also may consider the dual collection of simplicial cones. Namely, to a strictly nested set N in \mathcal{F} is associated a cone $K(N)$ in \mathbb{R}^n spanned by vectors ξ_T, $T \in N$, where
ξ_T is the characteristic function of T, that is $\xi_{T,i} = 1$ if $i \in T$ and zero otherwise, and the vectors $\pm \xi_{[n]}$. We denote $\Sigma(\mathcal{F})$ the collection of these simplicial cones.

In the next section we consider an important class of set systems such that, for any set system \mathcal{F} of the class, $\Sigma(\mathcal{F})$ is a normal fan to a polytope and the complex of the faces of that polytope is the cell complex $C(\mathcal{F})$.

3 Building sets

In [13] the following combinatorial abstraction of connected subgraphs of a graph is introduced.

Definition 3.1 A set system \mathcal{B} on $[n]$ is a building set if it satisfies the following conditions:

(B1) For any $S, T \in \mathcal{B}$ such that $S \cap T \neq \emptyset$ it holds that $S \cup T \in \mathcal{B}$.

(B2) \mathcal{B} contains all singletons $\{i\}$, $i \in [n]$.

We assume again that any building set contains $[n]$.

Example 3.2 Let $G = (V(G), E(G))$ be a connected graph with vertex set $V(G) = [n]$ and edge set $E(G) \subseteq \{\{i, j\} \subset [n] \mid i \neq j\}$. Then the set system consisting of the vertex sets of all connected subgraphs of G forms a building set, called the graphical building $\mathcal{B}(G)$ of G.

Postnikov, see [13], defines \mathcal{B}-nested sets for a building set \mathcal{B} as follows.

Definition 3.3 A subset \mathcal{N} of a building set \mathcal{B} on $[n]$ is a \mathcal{B}-nested set if it satisfies the following conditions:

(N1) For any different $S, T \in \mathcal{N}$, it holds that either $S \subset T$ or $T \subset S$ or $S \cap T = \emptyset$.

(N2) For any collection of k, $k \geq 2$, disjoint subsets T_1, \ldots, T_k in \mathcal{N} it holds that $T_1 \cup \cdots \cup T_k \notin \mathcal{B}$.

(N3) $[n] \in \mathcal{N}$.

By definition, any strictly nested set in \mathcal{B} is a \mathcal{B}-nested set. The converse is also true.

Lemma 3.4 Let \mathcal{B} be a building set on $[n]$ and let \mathcal{N} be a \mathcal{B}-nested set. Then \mathcal{N} is a strictly nested set in \mathcal{B}.

Proof. For simplicity suppose that $k = 2$ and for disjoint T_1, T_2 in \mathcal{N} there exist nonempty $T'_1 \subseteq T_1$ and $T'_2 \subseteq T_2$ such that $T'_1 \cup T'_2 \in \mathcal{B}$. Because of property (B1) it holds that $T_1 \cup T_2 \in \mathcal{B}$ and again by (B1) $T_1 \cup T_2 \in \mathcal{B}$, which contradicts (N2).

From the lemma it follows that for a building set \mathcal{B} the set of \mathcal{B}-nested sets coincides with the set of strictly nested sets in \mathcal{B}.

8
Theorem 3.5 Let \mathcal{B} be a building set on $[n]$. Then for any permutation $\sigma \in \mathfrak{S}_n$ there exists a maximal strictly nested set \mathcal{N} in \mathcal{B} such that $\sigma \in \mathfrak{S}^\mathcal{N}$.

Proof. Let $\sigma \in \mathfrak{S}_n$ be a permutation. We construct a maximal strictly nested set \mathcal{N} such that $\sigma \in \mathfrak{S}^\mathcal{N}$ as follows. Step 1: $\{\sigma^{-1}(1)\}$ is an element of \mathcal{B}, thus we set $\mathcal{N} := \{\{\sigma^{-1}(1)\}\}$. Step $k = 2, \ldots, n$: Let $N(k)$ be the maximal element of \mathcal{B} which contains $\sigma^{-1}(k)$ and is a subset of $\{\sigma^{-1}(1), \ldots, \sigma^{-1}(k)\}$. Such a set exists, due to the definition of a building set and since $\{\sigma^{-1}(k)\} \in \mathcal{B}$. We set $\mathcal{N} := \mathcal{N} \cup \{N(k)\}$. After n steps, we will add $[n]$ and since $[n] \in \mathcal{B}$ we obtain a collection \mathcal{N} of n nested sets containing also $[n]$. We have to check the validity of (N2). Suppose (N2) is not valid, then there exists disjoint sets $N(k_1)$ and $N(k_2)$ such that $N(k_1) \cup N(k_2) \in \mathcal{B}$. Let $k_2 > k_1$, then $N(k_1) \cup N(k_2) \in \mathcal{B}$ and $N(k_1) \cup N(k_2) \in \{\sigma^{-1}(1), \ldots, \sigma^{-1}(k_2)\}$, which contradicts maximality of $N(k_2)$.

From this theorem and the previous lemma it follows that any building set contains maximal strictly nested sets. Another interesting property of a building set is that any $T \in \mathcal{B}$ is included in some maximal strictly nested set.

Lemma 3.6 Let \mathcal{B} be a building set on $[n]$ and $T \in \mathcal{B}$. Then there exists a maximal strictly nested set in \mathcal{B} which contains T among its elements.

Proof. The restriction of \mathcal{B} to T is a building set, denoted by $\mathcal{B}|_T$. By the previous lemma, we have a maximal $\mathcal{B}|_T$-nested set on T. Let us extend this set to a maximal \mathcal{B}-nested set on $[n]$. Pick an element $i \in [n] \setminus T$ and we choose a maximal element of \mathcal{B} in $T \cup \{i\}$ which contains i. We add this set to the $\mathcal{B}|_T$-nested set on T. On the next step, we pick an element i' in $[n] \setminus (T \cup \{i\})$ and consider a maximal element of \mathcal{B} in $T \cup \{i\} \cup \{i'\}$ which contains i' and we add this set, and so on. On the last step we will add $[n]$ since $[n] \in \mathcal{B}$, and we will end up with a maximal \mathcal{B}-nested set.

Lemma 3.7 Let \mathcal{B} be a building set on $[n]$ and let $v : \mathcal{B} \rightarrow \mathbb{R}$ be a function, then the M-extension $v^\mathcal{B}$ of v is given by, for any $T \in 2^{[n]}$,

$$v^\mathcal{B}(T) = \sum_{j \in 1}^k v(T_j),$$

where $\{T_1, \ldots, T_k\}$ is the unique partition of T into maximal elements of \mathcal{B}.

Proof. For any set $T \subset [n]$, there exists a unique maximal partition of T in sets from \mathcal{B} as follows by induction. Take any $t \in T$ and consider a maximal set of \mathcal{B} which contains t and is contained in T. Such a set exists and denote this set by T_1. Then T_1 together with the partition of $T \setminus T_1$, which exists by induction, form the desired partition.
of T. Because of property (B1), any subset S, $S \subset T$, having a non-empty intersection with more than one element of the partition does not belong to B, and hence $\mu^B(S) = 0$. This implies the proposition. Q.E.D.

Because of this lemma and Theorem 2.5 we may construct a maximal strictly nested set corresponding to a permutation σ as follows. To the set $\{\sigma^{-1}(1), \ldots, \sigma^{-1}(k)\}$, $k = 1, \ldots, n$, of the chain N_σ, we associate a partition of this set that corresponds to the value $v^B(\{\sigma^{-1}(1), \ldots, \sigma^{-1}(k)\})$. Then the collection of such sets of B constitutes the same B-nested sets as constructed in the proof of Theorem 3.5.

An important property of building sets is that, for any given building set B, the poset of a strictly nested set is a face poset of a simple polyhedron Δ_B, or equivalently the collection of simplicial cones, $\Sigma(B)$, is a normal fan to a polytope. We will prove this in Section 5.

For a building set B, let us describe which maximal strictly nested sets are being joined by an edge of the cell complex $C(B)$ to a given maximal strictly nested set N. This gives also the characterization of the cones that are adjacent to cone $K(N)$ in the fan $\Sigma(B)$.

Let N be a maximal strictly nested set in B. Pick an $i \in [n]$ and consider $u(i) \in [n]$ such that $i \in S^N(u(i))$. Denote by $\hat{T}(u(i))$ a maximal set of B which contains $u(i)$, does not contain i, and is contained in $T(u(i))$. Then $(N \setminus \{T^N(i)\}) \cup \{\hat{T}(u(i))\}$ is also a maximal strictly nested set, and this set and N are the two endpoints of the edge corresponding to the strictly nested set $N \setminus \{T^N(i)\}$.

For an arbitrary set system F on $[n]$ there is a minimum building set $B(F)$ containing F, called the building covering of F. Since the intersection of two buildings sets is also a building set, $B(F)$ is uniquely defined.

The following proposition shows that the cell complex corresponding to F is a subcomplex of the cell complex of $B(F)$.

Proposition 3.8 Let F be a set system and let $B(F)$ be the building covering of F. Then every strictly nested set in F is a $B(F)$-nested set.

Proof. Let N be a strictly nested set in F. Let T_1, \ldots, T_k be disjoint elements in N. Then we have to check that the union $T_1 \cup \cdots \cup T_k$ cannot be implemented of the form $A_1 \cup \cdots \cup A_l$, where A_1, \ldots, A_l is a non-disjoint family in F. Suppose not, then such a non-disjoint family A_1, \ldots, A_l exists. Then there exists at least one element of this family that has a non-empty intersection with at least two elements of the family T_1, \ldots, T_k. This contradicts with property (G2). Q.E.D.
4 Solution concepts for building sets

Let \mathcal{B} be a building set system on $[n]$ and $v : \mathcal{B} \rightarrow \mathbb{R}$ a function. We consider \mathcal{B} as coalition structure on the set of n players and v as characteristic function with $v(T)$, $T \in \mathcal{B}$, the worth of coalition T. Denote by $\mathcal{V}(\mathcal{B})$ the set of cooperative games on \mathcal{B}. A solution is a mapping from $\mathcal{V}(\mathcal{B})$ to \mathbb{R}^n.

We introduce first some notions. For a set system \mathcal{F} an element $S \in \mathcal{F}$ is called a half-space if $[n] \setminus S \in \mathcal{F}$.

Definition 4.1 For a set system \mathcal{F} a maximal strictly nested set \mathcal{N} is a half-space nested set (HS-nested set) if for every $i \in [n]$ with $S^{\mathcal{N}}(i) \neq \emptyset$, the set $T^{\mathcal{N}}(i)$ is a half-space.

Since for a maximal strictly nested set \mathcal{N} every set $T^{\mathcal{N}}(i), i \in [n]$, belongs to \mathcal{F}, we have that \mathcal{N} is an HS-nested set if for every $i \in [n]$ the complement to a non-singleton $T^{\mathcal{N}}(i)$ also belongs to \mathcal{F}. This means that in the corresponding tree $F^{\mathcal{N}}$, for every node it holds that after contracting all subordinates of the node and the node itself to the unique predecessor of the node, the resulting set of nodes is an allowable coalition. This restricts the collection of maximal strictly nested sets.

Given a graph G, we call a tree an HS-tree on G if it corresponds to an HS-nested set in the graphical building $\mathcal{B}(G)$.

Let us describe how to construct HS-trees by induction on the number of vertices of graphs. Suppose, for all graphs with less than n nodes, HS-trees are listed. Let $G = (V(G), E(G))$ be a graph with vertex set $V(G) = [n]$. Pick a vertex $i \in V(G)$ and delete all edges in $E(G)$ having i as an endpoint. Let $E(i)$ denote this set of edges and let $\{i\}, G_1, \ldots, G_m$ be the components of the graph $G = ([n], E(G) \setminus E(i))$. For each component G_j pick an HS-tree F_j with respect to the building set $\mathcal{B}(G_j), j = 1, \ldots, m$, and let r_j be the root of F_j. Since, for any $j_1 \neq j_2$, G_{j_1} and G_{j_2} are not connected, every $\mathcal{B}(G_j)$-nested set is a $\mathcal{B}(G)$-nested set. Now, we join i and $r_j, j = 1, \ldots, m$, and obtain a tree F with root i and as its successors r_1, \ldots, r_m. This tree is an HS-tree if and only if, for each $j = 1, \ldots, m$, one of the following conditions is fulfilled

- $\{i, r_j\} \in E(G)$;
- $\{i, r_j\} \notin E(G)$ and for every component K of $F_j \setminus \{r_j\}$ there exists a node $w \in K$ such that $\{i, w\} \in E(G)$;
- $\{i, r_j\} \notin E(G)$ and there exists a singleton component $\{w\}$ of $F_j \setminus \{r_j\}$ such that $\{i, w\} \in E(G)$.

Definition 4.2 For a set system \mathcal{F} a maximal strictly nested set \mathcal{N} is an NT-nested set if, for every $i \in [n]$ and $j \in S^{\mathcal{N}}(i)$, it holds that $\{i, j\}$ is an element of \mathcal{F}.
A maximal strictly nested set \(N \) is an NT-nested set if every player is able to cooperate with each of his successors in the corresponding tree \(F^N \). This restricts the collection of maximal strictly nested sets.

Example 4.3 Let \(B(G) \) be a graphical building for a connected graph \(G \) on a vertex set \([n]\). Then there is a bijection between the collection of maximal NT-nested sets in \(B(G) \) and the set of normal trees on \(G \). The latter form a subset of rooted spanning trees of \(G \) (see [11]). However, not every rooted spanning tree of a graph \(G \) corresponds to an NT-tree.

We proceed to construct NT-trees by induction on the cardinality of the vertex set. Suppose for all graphs \(G \) on \([k]\), \(k < n \), the corresponding NT-trees have been constructed. Let \(G = (V(G), E(G)) \) be a graph with vertex set \(V(G) = [n] \). Pick a vertex \(i \in V(G) \) and delete all edges in \(E(G) \) having \(i \) as an endpoint. Let \(E(i) \) denote this set of edges. Then consider the components \(\{i\}, G_1, \ldots, G_m \) of the graph \(G = ([n], E(G) \setminus E(i)) \). For each component \(G_j \) there is an edge \(\{i, r_j\} \in E(G) \) with \(r_j \in V(G_j), j = 1, \ldots, m \). Let \(F_j \) be an NT-tree in \(G_j \) with root \(r_j \), \(j = 1, \ldots, m \). Then an NT-tree in \(G \) with root \(i \) is obtained by joining each \(F_j \) to \(i \) by edge \(\{i, r_j\} \).

From the constructions above it follows that for a building set every NT-nested set is an HS-nested set.

Next is an example of maximal strictly nested sets, NT-nested sets, and HS-nested sets for a graphical building with the graph being a line-tree on \([n]\).

Example 4.4 Let \(A_n = ([n], E) \), where \(E = \{\{i, i+1\} \mid i = 1, \ldots, n - 1\} \), be a line-tree on \([n]\). Then there is a bijection between maximal \(B(A_n) \)-nested sets and plane binary trees on \([n]\). We proceed by induction on \(n \). Suppose that for \(k < n \) such a bijection between \(B(A_k) \)-nested trees and plane binary trees on \([k]\) exist. Note that \(B(A_k) \) consists of intervals, that is sets of the form \(\{a, a + 1, \ldots, a + b\} \) with \(a, a + b \in [k] \). Pick a vertex \(i \in [n] \). Then, in any \(B(A_n) \)-nested set, there are exactly two successors of \(i \), since these subsets are intervals and because of condition (N2), \(\{1, \ldots, i - 1\} \) and \(\{i + 1, i, \ldots, n\} \). Then any \(B(A_{i-1}) \)-nested set in \(\{1, \ldots, i - 1\} \) is a binary tree as well as any \(B(A_{n-i}) \)-nested set in \(\{i + 1, \ldots, n\} \). This provides the required bijection. The number of such trees is the Catalan number \(C_n := \binom{2n}{n} \). HS-nested sets in \(B(A_k) \) are constructed by the above construction and only the first and third items are possible. In Fig. 1 we depict an HS-tree.
There are $\sum_{i=1}^{n} F(i+1)F(n-i+2)$ HS-trees, where $F(k)$, $k = 1, 2, \ldots$, denotes the Fibonacci sequence. Any NT-tree takes the form: the root r has as successors vertices $r - 1$ and $r + 1$, and vertex i, $i \neq r$, has as successor vertex $i - 1$ if $i < r$ and vertex $i + 1$ if $i > r$. In total there are n NT-trees, because for each $i \in [n]$ there is one NT-tree having i as root.

The next example shows that in non-graphical building sets HS- and NT-nested sets may not exist.

Example 4.5 Let the building set B on $[n]$ consist of all singletons and the set $[n]$. This building set has n maximal strictly nested sets, each consisting of $[n]$ and all singletons but one. Each of these maximal nested sets is neither an NT-nested nor an HS-nested set.

Definition 4.6 Let a building set B on $[n]$ be given. For a game $v \in \mathcal{V}(B)$ the following solutions are given:
• The GC-solution is the average of the marginal vectors \(m^v(N) \) over all maximal strictly nested sets \(N \) in \(B \).

• The HS-solution is the average of the marginal vectors \(m^v(N) \) over all maximal HS-nested sets \(N \) in \(B \).

• The NT-solution is the average of the marginal vectors \(m^v(N) \) over all maximal NT-nested sets \(N \) in \(B \).

The GC-solution always exists, while for a graphical building set all three solutions exist. In case the graph is the line-tree \(A_n \), to compute the GC-solution we have to take the average over \(C_n := \frac{(2n)!}{(n+1)n!} \) marginal vectors for binary trees, to compute the NT-solution we have to take the average over \(n \) NT-trees, and to compute the Myerson value we have to take the average over all \(n! \) permutations.\(^1\)

Consider first the case of a graphical building set system \(B(G) \) for a connected graph \(G \) on \([n]\). If \(G \) is the complete graph, all three solutions coincide and are equal to the Shapley and the Myerson value. Denote \(n(G) \) as the number of maximal strictly nested sets in \(B(G) \), and, for a maximal nested set \(N \) in \(B(G) \), denote \(p(N) \) as the cardinality of the corresponding set \(\mathcal{S}_N \) of permutations. Then the difference between the GC-solution and the Myerson value is that

\[
GC(v) = \frac{1}{n(G)} \sum_N m^v(N)
\]

and the Myerson value is equal to

\[
M(v) = \frac{1}{n!} \sum_N p(N)m^v(N),
\]

where both summations are over all maximal strictly nested sets in \(B(G) \). The GC-solution is just the average of all different marginal vectors, while the Myerson value is a weighted average of these vectors with the weights determined by the number of permutations that correspond to the maximal strictly nested sets. The HS-solution is a new solution concept and takes the average of a specific set of marginal vectors, whereas the NT-solution takes the average of a more specific set of marginal vectors. For graphical building sets the NT-solution coincides with the average tree solution introduced in [10].

Example 4.7 Let \(G = ([n], E) \) be a circular graph with \(n = 4 \) and \(E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}\} \). Then the Myerson value is the average of \((4! =) 24\) marginal vectors, four of them showing up twice, the GC-solution is the average of all 20 different marginal vectors, the HS-solution is the average of 16 of these marginal vectors, and the NT-solution is the average of 8 of these latter marginal vectors.

\(^1\)One may compare the complexities of \(n! \cong (n/e)^n \) and \(C_n \cong 4^n \).
Example 4.8 Let $G = ([n], E)$ be a graph with $n = 4$ and $E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{3, 4\}\}$. Then the Myerson value is the average of ($4! = 24$) marginal vectors, two of them twice, the GC-solution is the average of all 22 different marginal vectors, the HS-solution is the average of 18 of these marginal vectors, and the NT-solution is the average of 14 of these latter marginal vectors. There are five trees corresponding to maximal strictly nested sets that have node 1 (or node 3) as root and six such trees that have node 2 (or node 4) as root, there are five HS-trees that have node 1 as root and four HS-trees that have node 2 as root, and there are three normal trees that have node 1 as root and four normal trees that have node 2 as root.

The following is an example of a building set which possesses neither an HS-nested nor an NT-nested set.

Example 4.9 Let the building set B on $[n]$ consist of all singletons and the set $[n]$. Then only the GC-solution exists and is equal to

$$GC_j(v) = v(\{j\}) + \frac{1}{n}(v([n]) - \sum_{i \in [n]} v(\{i\})), \ j \in [n].$$

5 Core stability

In this section we present conditions under which the solutions defined in the previous section are elements of the core. Our main tool is to establish such conditions for building sets. By using Proposition 3.8 one may formulate corresponding conditions for arbitrary set systems as conditions for the building covering of the set system.

Definition 5.1 Let v be a game on the set system \mathcal{F}, then the core $C(v)$ is given by

$$C(v) = \{x \in \mathbb{R}^n | x([n]) = v([n]), \ x(S) \geq v(S), \ S \in \mathcal{F}\}.$$

Obviously it holds that $C(v^\mathcal{F}) \subseteq C(v)$, where $v^\mathcal{F}$ is the M-extension of v. For a building set \mathcal{B} and game $v \in \mathcal{V}(\mathcal{B})$ it holds that $C(v) = C(v^\mathcal{B})$.

Let \mathcal{B} be a building set.

Definition 5.2 A function $f : \mathcal{B} \to \mathbb{R}$ is \mathcal{B}-supermodular if

$$f(A) + f(B) \leq f(A \cup B) + f^\mathcal{B}(A \cap B)$$

for any $A, B \in \mathcal{F}$ such that $A \cap B \neq \emptyset$.

Definition 5.3 A function $f : \mathcal{B} \to \mathbb{R}$ is \mathcal{B}-superadditive if for any disjoint family T_1, \ldots, T_k in \mathcal{B} such that $T_1 \cup \cdots \cup T_k \in \mathcal{B}$ it holds

$$f(T_1 \cup \cdots \cup T_k) \geq f(T_1) + \cdots + f(T_k).$$
Definition 5.4 A function \(f : B \to \mathbb{R} \) is 2-superadditive if for any disjoint pair of sets \(T_1 \) and \(T_2 \) in \(B \) it holds
\[
f(T_1 \cup T_2) \geq f(T_1) + f(T_2).
\]

In case of \(B = 2^{[n]} \), the conjunction of \(B \)-supermodularity and 2-superadditivity is equivalent to the usual supermodularity condition that \(f(A) + f(B) \leq f(A \cup B) + f(A \cap B) \) for all \(A, B \subseteq [n] \). Remark that in this case \(B \)-superadditivity follows from 2-superadditivity, which is not the case in general.

Theorem 5.5 Let \(v \in \mathcal{V}(B) \) be a \(B \)-supermodular and \(B \)-superadditive game on a building set \(B \). Then the core \(C(v) \) contains the GC-solution and is equal to the convex hull of the marginal vectors \(m^N(v) \) over all maximal strictly nested sets \(N \) in \(B \).

For the proof of this theorem we need the following proposition.

Proposition 5.6 The collection of cones, \(\Sigma(B) \), is a simplicial cone complex, that is for any maximal strictly nested sets \(N_1 \) and \(N_2 \) it holds that \(K(N_1 \cap N_2) = K(N_1) \cap K(N_2) \).

Proof. We have to prove that \(K(N_1 \cap N_2) \supset K(N_1) \cap K(N_2) \). This follows from the fact that a cone \(K(N) \) does not contain vectors \(\xi_T \) with \(T \in B \) and \(T \notin N \). If this is not the case and such a vector \(\xi_T \) exists, then \(\xi_T \) is equal to the sum of some \(\xi_{N_1}, \ldots, \xi_{N_k} \) with \(N_1, \ldots, N_k \) disjoint elements of \(N \). Then \(N_1 \cup \cdots \cup N_k = T \in B \), which contradicts property (N2) of \(B \)-nested sets.

Because of Theorem 3.5, the simplicial cone collection \(\Sigma(B) \) of a building set \(B \) is a full fan, that is \(\cup_N K(N) = \mathbb{R}^n \).

Proof of Theorem 5.5. A function \(f : B \to \mathbb{R} \) is \(\Sigma(B) \)-supermodular if the extension of \(f \) by affinity on each cone \(K(N) \), \(N \) being a maximal strictly nested set in \(B \), yields a concave function. Because of Theorem 3.5 each cone \(K(N) \) is the union of cones corresponding to permutations, which implies that the M-extension \(v^B \) of a \(\Sigma(B) \)-supermodular function \(f \) is a submodular function on \(2^{[n]} \), and therefore due to Theorem 2.5 and to Edmonds theorem in [6] (see also Shapley [14]), \(C(f^B) \) and therefore also \(C(f) \) is equal to the convex hull of the marginal vectors \(m^I(N) \) over all maximal strictly nested sets \(N \) in \(B \).

We still have to check that \(v \) is \(\Sigma(B) \)-supermodular. One-dimensional cones of the fan \(\Sigma(B) \) correspond to strictly nested sets \(\{A, [n]\}, A \in B \). Consider two full-dimensional adjacent cones corresponding to maximal \(B \)-nested sets \(N \) and \((N \setminus \{N^i\}) \cup \{T(u(i))\} \) as described before sharing the facet corresponding to the \(B \)-nested set \(N \setminus \{N^i\} \), for some \(i \in [n] \). The linear relation between the spanning vectors of the one-dimensional
cones corresponding to the nested sets \(\{ T^N(i), [n] \} \) and \(\{ \hat{T}(u(i)), [n] \} \) on the one hand and the spanning vectors of the facet on the other hand is of the form

\[
\xi_{T^N(i)} + \xi_{\hat{T}(u(i))} = \xi_{T^N(u(i))} - \sum_{j \in U} \xi_{T^N(j)} + \sum_{k \in M} \xi_{T^N(k)},
\]

where \(j \in U \) if \(T^N(j) \) is a maximal element of \(N \) in \(T^N(u(i)) \setminus (T^N(i) \cup \hat{T}(u(i))) \), and \(k \in M \) if \(T^N(k) \) is a maximal element of \(N \) in \(T^N(i) \cap \hat{T}(u(i)) \). Because of \(B \)-supermodularity we have

\[
v(T^N(i)) + v(\hat{T}(u(i))) \leq v(T^N(i) \cup \hat{T}(u(i))) + v^B(T^N(i) \cap \hat{T}(u(i))). \tag{2}
\]

Then \(B \)-superadditivity implies

\[
v(T^N(i) \cup \hat{T}(u(i))) + \sum_{j \in U} v(T^N(j)) \leq v(T^N(u(i))), \tag{3}
\]

and due to property (N2) of \(B \)-nested sets we have

\[
v^B(T^N(i) \cap \hat{T}(u(i))) = \sum_{k \in M} v(T^N(k)).
\]

Summing up the inequalities (2) and (3) and the last equality, we get

\[
v(T^N(i)) + v(\hat{T}(u(i))) + \sum_{j \in U} v(T^N(j)) \leq v(T^N(u(i))) + \sum_{k \in M} v(T^N(k)),
\]

which implies that \(v \) is \(\Sigma(B) \)-supermodular. Q.E.D.

As a consequence of the proof of this theorem we obtain the following result proven by Postnikov ([13], Proposition 7.5).

Proposition 5.7 For any function \(\mu : B \to \mathbb{R}_{++} \) the normal fan of the polytope

\[
\sum_{T \in B} \mu(T) \Delta_T
\]

is the fan \(\Sigma(B) \).

Proof. Given a function \(\mu : B \to \mathbb{R}_{++} \), define a game \(f^\mu : B \to \mathbb{R}_{++} \) by

\[
f^\mu(S) = \sum_{T \in B : T \subseteq S} \mu(T), \ S \in B.
\]

Due to Danilov and Koshevoy theorem in [4] the core of the game \(f^\mu \) has the form of the Minkowski sum of simplices

\[
\sum_{T \in B} \mu(T) \Delta_T.
\]

17
It is easy to see that, because $\mu(T) > 0$ for any $T \in \mathcal{B}$, for the function f^μ the \mathcal{B}-supermodularity and \mathcal{B}-superadditivity inequalities are strict. Hence the inequalities (2) and (3) are also strict and this implies that the normal fan to $C(f^\mu)$ coincides with the fan $\Sigma(\mathcal{B})$. Q.E.D.

From this proposition it follows that the GC-solution is the gravity center of the core $C(v)$ in case the characteristic function v is totally positive. Recall, that a function $f : \mathcal{B} \to \mathbb{R}$ is said to be totally positive if the linear system

$$\sum_{T \in \mathcal{B} \mid T \subseteq S} \mu(T) = f(S), \ S \in \mathcal{B}$$

has a positive solution.

If a building set \mathcal{B} contains at least one maximal HS-nested set or maximal NT-nested set, we can ensure that the marginal vector corresponding to such a maximal strictly nested set belongs to the core under weaker conditions than \mathcal{B}-supermodularity.

Definition 5.8 A function $f : \mathcal{B} \to \mathbb{R}$ is half-space \mathcal{B}-supermodular if, for any $S, T \in \mathcal{B}$ such that $S \cap T \neq \emptyset$ and at least one of the sets S or T is a half-space in \mathcal{B}, it holds that

$$f(S) + f(T) \leq f(S \cup T) + f^\mathcal{B}(S \cap T).$$

(4)

For $\mathcal{B} = 2^{[n]}$, half-space $2^{[n]}$-supermodularity coincides with $2^{[n]}$-supermodularity, since any subset of $[n]$ is a half-space in $2^{[n]}$. For other building sets \mathcal{B} half-space \mathcal{B}-supermodularity is weaker than \mathcal{B}-supermodularity, since we do not require validity (4) for two non-half-spaces.

Theorem 5.9 Let $v : \mathcal{B} \to \mathbb{R}$ be a half-space \mathcal{B}-supermodular and \mathcal{B}-superadditive game on building set \mathcal{B}. Then, for any maximal HS-nested set \mathcal{N} in \mathcal{B}, the marginal vector $m^v(\mathcal{N})$ belongs to the core $C(v)$.

Proof. Let \mathcal{N} be a maximal HS-nested set in \mathcal{B}. We have to prove that for every $Q \in \mathcal{B}$ it holds that

$$\sum_{j \in Q} m^j_\mathcal{N}(\mathcal{N}) \geq v(Q).$$

(5)

For a set $Q \in \mathcal{N}$ denote by $S^\mathcal{N}(Q)$ the set of successors of Q in the tree $F^\mathcal{N}$, i.e., $i \in S^\mathcal{N}(Q)$ if $i \notin Q$ and $i \in S^\mathcal{N}(j)$ for some $j \in Q$. We proceed by induction on the number of components of Q in the tree $F^\mathcal{N}$. When Q is connected in $F^\mathcal{N}$, (5) takes the form

$$v(Q \cup (\cup_{j \in S^\mathcal{N}(Q)} T^\mathcal{N}(j))) \geq v(Q) + \sum_{j \in S^\mathcal{N}(Q)} v(T^\mathcal{N}(j)).$$

(6)
This inequality holds because of \mathcal{B}-superadditivity.

Suppose (5) holds for any $Q \in \mathcal{B}$ having at most l components in F^N. Consider any $Q \in \mathcal{B}$ having $l + 1$ components in F^N. Denote by Q_0, Q_1, \ldots, Q_l these components.

One can easily check that inequality (5) is equivalent to

$$\sum_{k=0}^{l} v(Q_k \cup \left(\bigcup_{j \in S^N(Q_k)} T^N(j) \right)) \geq v(Q) + \sum_{k=0}^{l} \sum_{j \in S^N(Q_k)} v(T^N(j)).$$

(7)

Because of property (G2) of strictly nested sets, we can order Q_0, Q_1, \ldots, Q_l such that, for any $k \neq 0$, Q_k belongs to $T^N(j)$ for some $j \in S^N(Q_0)$, and all such $T^N(j)$ can not be singletons.

Pick $j \in S^N(Q_0)$ such that $Q_k \cap T^N(j) \neq \emptyset$. Denote by Q_{j1}, \ldots, Q_{jt} the components of $Q \cap T^N(j)$.

Due to half-space \mathcal{B}-supermodularity we have

$$v(Q \cup T^N(j)) \geq v(Q) + v(T^N(j)) - v^B(Q_{j1} \cup \cdots \cup Q_{jt}).$$

(8)

Because Q_{j1}, \ldots, Q_{jt} are disjoint subsets of sets of the NT-nested set N, there exists a partition $\{P_1, \ldots, P_s\}$ of the set $[t]$, such that

$$v^B(Q_{j1} \cup \cdots \cup Q_{jt}) = \sum_{h=1}^{s} v(\bigcup_{u \in P_h} Q_{ju}),$$

where, for each $h = 1, \ldots, s$, the union $\bigcup_{u \in P_h} Q_{ju}$ belongs to \mathcal{B}.

Because of the induction, we have validity of (7) for each set $\bigcup_{u \in P_h} Q_{ju}$, $h = 1, \ldots, s$, that is

$$\sum_{u \in P_h} v(Q_{ju} \cup \left(\bigcup_{k \in S^N(Q_{ju})} T^N(k) \right)) \geq v(\bigcup_{u \in P_h} Q_{ju}) + \sum_{u \in P_h} \sum_{k \in S^N(Q_{ju})} v(T^N(k)).$$

(9)

Summing up these inequalities over $h = 1, \ldots, s$ together with inequality (8), we get

$$v(Q \cup T^N(j)) + \sum_{u=1}^{t} v(Q_{u} \cup \left(\bigcup_{h \in S^N(Q_{u})} T^N(h) \right)) \geq v(Q) + v(T^N(j)) + \sum_{u=1}^{t} \sum_{h \in S^N(Q_{u})} v(T^N(h)).$$

Continue this procedure by adding every $T^N(j)$, $j \in S^N(Q_0)$, and we get inequality (7), which proves the theorem. Q.E.D.

As a consequence of this theorem, we obtain that if it exists the HS-solution belongs to the core under half-space \mathcal{B}-supermodularity and \mathcal{B}-superadditivity of the game. Furthermore, from the proof of Theorem 5.9 the next proposition immediately follows.
Proposition 5.10 Let \(\mathcal{B} \) be a building set having a maximal HS-nested set \(\mathcal{N} \) such that every \(Q \in \mathcal{B} \) induces a subtree on \(F^N \), and let \(v : \mathcal{B} \to \mathbb{R} \) be a \(\mathcal{B} \)-superadditive function. Then the marginal vector \(m^\mathcal{N}(v) \) belongs to the core \(C(v) \).

If the graph \(G \) is a tree on \([n]\), then for the graphical building \(\mathcal{B}(G) \) every NT-nested set satisfies the assumption of Proposition 5.10. Therefore for a superadditive function \(v : \mathcal{B}(G) \to \mathbb{R} \) it holds that the NT-solution belongs to the core. Such a specification of Proposition 5.10 was proven in [8], see also [10].

For the case when \(\mathcal{B} \) contains an NT-nested set, we can weaken the \(\mathcal{B} \)-superadditivity requirement in Theorem 5.9 to 2-superadditivity.

Theorem 5.11 Let \(v : \mathcal{B} \to \mathbb{R} \) be a half-space \(\mathcal{B} \)-supermodular and 2-superadditive game on building set \(\mathcal{B} \). Then, for any maximal NT-nested set \(\mathcal{N} \) in \(\mathcal{B} \), the marginal vector \(m^\mathcal{N}(\mathcal{N}) \) belongs to the core \(C(v) \).

Proof. We have to prove that for every \(Q \in \mathcal{B} \) it holds that

\[
\sum_{j \in Q} m^\mathcal{N}_j(Q) \geq v(Q). \tag{10}
\]

Because \(\mathcal{B} \) is a building set it holds for every \(i \in [n] \) that the complement of \(T^\mathcal{N}(i) \) belongs to \(\mathcal{B} \) and therefore \(T^\mathcal{N}(i) \) is a half-space.

We again proceed by induction on the number of components of \(Q \) in the tree \(F^N \). First consider the case when \(Q \) is one component in \(F^N \). For such \(Q \) we have to establish inequality (10). For any \(K \subset S^\mathcal{N}(Q) \), \(k' \in S^\mathcal{N}(Q) \), \(k' \notin K \), the sets \(Q \cup (\cup_{k \in K} T^\mathcal{N}(k)) \cup T^\mathcal{N}(k') \), \(Q \cup (\cup_{k \in K} T^\mathcal{N}(k)) \) and \(T^\mathcal{N}(k') \) belong to \(\mathcal{B} \) and the latter set is a half-space in \(\mathcal{B} \). Therefore, by half-space \(\mathcal{B} \)-supermodularity the following inequality holds

\[
v(Q \cup (\cup_{k \in K} T^\mathcal{N}(k)) \cup T^\mathcal{N}(k')) \geq v(Q \cup (\cup_{k \in K} T^\mathcal{N}(k))) + v(T^\mathcal{N}(k')). \tag{11}
\]

Gradually taking off \(F^N(j) \), \(j \in S^\mathcal{N}(Q) \), one by one from the set \(Q \cup (\cup_{j \in S^\mathcal{N}(Q)} T^\mathcal{N}(j)) \) and applying (11), we obtain (10).

Now, by repeating the proof of the previous theorem for the case when the intersection \(Q \) contains more than one component in the tree \(F^N \) we obtain the validity of inequality (10).

From this theorem it follows that the NT-solution belongs to the core under half-space \(\mathcal{B} \)-supermodularity and 2-superadditivity.

Remark. For a connected graph \(G \), \(\mathcal{B}(G) \)-superadditivity is equivalent to 2-superadditivity, because according to ([15], Proposition 7.3) a building set \(\mathcal{B} \) is a graphical building if and only if for any \(I, J_1, \ldots, J_k \in \mathcal{B} \) such that \(I \cup J_1 \cup \cdots \cup J_k \in \mathcal{B} \) it holds that there exists \(i \) satisfying \(I \cup J_i \in \mathcal{B} \). Due to this characterization, for a graphical building the assumptions in Theorem 5.9 boil down to the assumptions in Theorem 5.11.
6 Solutions for arbitrary set systems

For arbitrary set systems we have the following analogues of the above defined solutions and core stability theorems.

Let \mathcal{F} be a set system on $[n]$ and $v : \mathcal{F} \to \mathbb{R}$ a function. We consider the building covering $\mathcal{B}(\mathcal{F})$ and the (restricted) M-extension function $v^{\mathcal{F}} : \mathcal{B}(\mathcal{F}) \to \mathbb{R}$.

Definition 6.1 For a game $v \in \mathcal{V}(\mathcal{F})$ there are the following solutions:

- The **GC-solution** (gravity-center solution) is the average of the marginal vectors $m^{v^{\mathcal{F}}}(N)$ over all maximal $\mathcal{B}(\mathcal{F})$-nested sets N.

- The **HS-solution** is the average of the marginal vectors $m^{v^{\mathcal{F}}}(N)$ over all maximal HS-nested sets N in $\mathcal{B}(\mathcal{F})$.

- The **NT-solution** is the average of the marginal vectors $m^{v^{\mathcal{F}}}(N)$ over all maximal NT-nested sets N in $\mathcal{B}(\mathcal{F})$.

First we state the core stability theorems and then give some examples.

Theorem 6.2 Let \mathcal{F} be a set system and let $v : \mathcal{F} \to \mathbb{R}$ be a characteristic function.

- For a maximal strictly nested set N in $\mathcal{B}(\mathcal{F})$, the marginal vector $m^{v^{\mathcal{F}}}(N)$ belongs to the core $C(v)$ if the M-extension $v^{\mathcal{F}}$ of v is $\mathcal{B}(\mathcal{F})$-supermodular and $\mathcal{B}(\mathcal{F})$-superadditive.

- For a maximal HS-nested set N in $\mathcal{B}(\mathcal{F})$, the marginal vector $m^{v^{\mathcal{F}}}(N)$ belongs to the core $C(v)$ if the M-extension $v^{\mathcal{F}}$ of v is half-space $\mathcal{B}(\mathcal{F})$-supermodular and $\mathcal{B}(\mathcal{F})$-superadditive.

- For a maximal NT-nested set N in $\mathcal{B}(\mathcal{F})$, the marginal vector $m^{v^{\mathcal{F}}}(N)$ belongs to the core $C(v)$ if the M-extension $v^{\mathcal{F}}$ of v is half-space $\mathcal{B}(\mathcal{F})$-supermodular and 2-superadditive.

Proof. We present a proof of the second item: From Proposition 3.8 and Theorem 5.9 it holds that the marginal vector $m^v(N)$ is a vertex of the core $C(v^{\mathcal{B}(\mathcal{F})})$ because according to (1) the M-extension of the restriction $v^{\mathcal{F}}|_{\mathcal{B}(\mathcal{F})}$ is equal to the M-extension $v^{\mathcal{F}}$.

Because $C(v^{\mathcal{B}(\mathcal{F})}) \subseteq C(v)$, it holds that $m^v(N) \in C(v)$. For a point x in the core $C(v)$ it holds that $v(T^N(i)) \leq \sum_{j \in T^N(i)} x_j$ for all $i \in [n]$. We have n independent inequalities because for any two of the sets $T^N(i)$, $i \in [n]$, it holds that either one is a
subset of the other or the two sets do not intersect. Because of this $m^v(N)$ is a vertex of $C(v)$. Q.E.D.

We may also define a generalization of the Myerson value for a game on an arbitrary set system.

Definition 6.3 For a function $v : F \to \mathbb{R}$ let $v^F : 2^n \to \mathbb{R}$ be its M-extension. Then the M-solution, denoted $M(v)$, is the average of the marginal vectors $m^v(\sigma)$ over all permutations $\sigma \in S_n$.

We have the following result.

Theorem 6.4 Let F be a set system and let $B(F)$ be the building covering of F, and let $v : F \to \mathbb{R}$ be a characteristic function. Suppose that the M-extension v^F is $B(F)$-supermodular and $B(F)$-superadditive. Then the M-solution belongs to the core $C(v)$.

As example consider first the case of $F = \{[n]\}$. This set system has no maximal strictly nested set. Its building covering is equal to $\{[n], \{1\}, \ldots, \{n\}\}$. The M-extension of $v([n])$ is a function which equals zero on all proper subsets of $[n]$. The GC-solution coincides with the M-solution and is equal to the egalitarian solution

$$GC_j(v) = \frac{1}{n} v([n]), \quad j \in [n].$$

For this example the HS- and NT-solution do not exist.

Let us consider the case of convex geometries, set systems considered in [1].

Definition 6.5 A set system F on $[n]$ is a convex geometry if F is stable under intersection and the following shelling property holds. For any $T \in F$, including $T = \emptyset$, it holds that there exists $i \in [n] \setminus T$ such that $T \cup \{i\}$ is an element of F.

To a convex geometry F is associated a collection $\text{Bas}(F)$ of linear orders, a subset of S_n, see [5]. These permutations correspond to all maximal chains in F. In [1] Bilbao defines the Shapley value for a convex geometry F by the B-solution, $B(v)$, given by

$$B(v) := \frac{1}{|\text{Bas}(F)|} \sum_{\sigma \in \text{Bas}(F)} m^v(N_\sigma).$$

Example 6.6 Let G be a tree, then the graphical building $B(G)$ is a convex geometry. In this case the four solutions GC-, HS-, NT-, and M-solutions all differ from the B-solution. Remark, that for the line-tree A_n, there are only two permutations, the identical and the reverse to the identical, which define HS-trees.
This is an interesting example, which shows that different viewpoints on the same coalition structure yield different viewpoints on solutions.

In contrast to Theorem 3.5 for building sets, in an arbitrary system the union of permutations that correspond to the maximally strictly nested sets may not coincide with the set of all permutations. For example, this is the case for convex geometries which do not contain all singletons.

Example 6.7 Let ([n], ⊲) be a poset, then the set of ideals form a convex geometry. Recall, that a subset \(I \subset [n] \) is an ideal, if, for any \(i \in I \) and \(j \prec i \), it follows that \(j \in I \). Denote by \(\mathcal{I}(\prec) \) the set of all ideals. This set is stable under union and intersection. Therefore, the building covering of it is equal to \(\mathcal{I}(\prec) \cup \{\{1\}, \ldots, \{n\}\} \), that is we have to add all missing singletons. Given a function \(v : \mathcal{I}(\prec) \rightarrow \mathbb{R} \), the B-solution is the average of \(m^v(N_0) \) over all permutations \(\sigma \) being linear extensions of \(\prec \). This solution is different from the GC-, HS-, NT-, and M-solutions.

Example 6.8 In the previous example let \(n = 3 \) and \(3 \prec 1 \) and \(3 \prec 2 \). Then the set of ideals consists of the sets \(\{3\}, \{1,3\}, \{2,3\} \) and \(\{1,2,3\} \). This is a convex geometry with building covering the set of ideals plus the singletons \(\{1\} \) and \(\{2\} \). This graphical building set corresponds to a line-tree with node 3 connected to both 1 and 2. The M-extension of a game \(v \) is defined by setting \(v(\{1\}) = v(\{2\}) = 0 \). Then the B-solution is \(\left(\frac{1}{3}(2v(\{1,2,3\}) - 2v(\{2,3\}) + v(\{1,3\}) - v(\{3\})) + v(\{2,3\}) - 2v(\{1,3\}) - v(\{3\}) \right) + v(\{2,3\}) - 2v(\{3\}) \). The GC-solution is \(\left(\frac{1}{3}(2v(\{1,2,3\}) - 2v(\{2,3\}) + v(\{1,3\}) - v(\{3\})) + v(\{2,3\}) - 2v(\{1,3\}) - v(\{3\}) \right) + v(\{2,3\}) - 2v(\{3\}) \), and the NT-solution and the HS-solution are both equal to \(\left(\frac{1}{3}(2v(\{1,2,3\}) - 2v(\{2,3\}) + v(\{1,3\}) - v(\{3\})) + v(\{2,3\}) - 2v(\{1,3\}) - v(\{3\}) \right) + v(\{2,3\}) - 2v(\{3\}) \).

Next is an example of another important class of convex geometries.

Example 6.9 Let \(X = \{x^1, \ldots, x^n\} \) be a set in \(\mathbb{R}^k \). Then define the convex geometry \(\mathcal{F} \) as follows: \(A \) is in \(\mathcal{F} \) if the convex hull of the points \(x^a, a \in A \), contains no \(x^b, b \notin A \), i.e., \(\text{co}(\{x^a \mid a \in A\}) \cap X = \{x^a \mid a \in A\} \).

Example 6.10 Consider in the previous example the points \(x^1 = (0,0), x^2 = (1,0), x^3 = (2,0), \) and \(x^4 = (1,1) \). The corresponding convex geometry \(\mathcal{F} \) consists of all subsets of \(\{1,2,3,4\} \) except \(\{1,3\} \) and \(\{1,3,4\} \). The building covering is equal to \(\mathcal{F} \cup \{1,3,4\} \). For a function \(v : \mathcal{F} \rightarrow \mathbb{R} \), the M-extension has to be specified at \(\{1,3\} \) and \(\{1,3,4\} \): \(v^\mathcal{F}(\{1,3\}) = v(\{1\}) + v(\{3\}) \) and \(v^\mathcal{F}(\{1,3,4\}) = v(\{1,4\}) + v(\{3,4\}) - v(\{4\}) \). The B-solution is different from the other solutions.
References

