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In combinatorial optimization, a popular approach to NP-hard problems is the design

of approximation algorithms. These algorithms typically run in polynomial time and

are guaranteed to produce a solution which is within a known multiplicative factor of

optimal. Unfortunately, the known factor is often known to be large in pathological

instances. Conventional wisdom holds that, in practice, approximation algorithms will

produce solutions closer to optimal than their proven guarantees. In this paper, we use the

rigorous-analysis-of-heuristics framework to investigate this conventional wisdom.

We analyse the performance of three related approximation algorithms for the uncapa-

citated facility location problem (from Jain, Mahdian, Markakis, Saberi and Vazirani (2003)

and Mahdian, Ye and Zhang (2002)) when each is applied to an instances created by placing

n points uniformly at random in the unit square. We find that, with high probability, these

3 algorithms do not find asymptotically optimal solutions, and, also with high probability,

a simple plane partitioning heuristic does find an asymptotically optimal solution.

1. Introduction

Many optimization problems are NP-hard. This is an unfortunate fact of life. There are a

variety of approaches to dealing with this problem. One approach is to find approximation

algorithms with provably good worst-case performance guarantees. Another approach is

to design heuristics which work well ‘on average’. In this paper we will combine these

two approaches and analyse an approximation algorithm in a probabilistic setting. The

aim is to investigate the notion that such algorithms will ‘typically’ do better than their

worst-case guarantees. This type of analysis is differs from the more common approach in

probabilistic analysis, where the algorithm is designed with the probability distribution of

inputs in mind. It has been used in the study of approximation algorithms for MAX-CUT

[9], the stacker crane problem [7], and bin packing [6].

† Supported in part by NSF Grant CCF-0502793.
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In the uncapacitated facility location problem (UFLP) we are given a set of facilities

F and a set of cities C. For every facility i ∈ F there is a cost fi for opening that facility,

and for every facility–city pair (i, j) ∈ F × C there is a cost ci,j for connecting facility i to

city j. There are no bounds on the number of cities that can be connected to a facility.

Thus, if we open the set of facilities F ⊆ F then each city j will connect to the open

facility with cheapest connection cost, and the total cost will be

c(F) =
∑
i∈F

fi +
∑
j∈C

min
i∈F

ci,j .

The goal is to find a set of facilities F that will minimize the total cost c(F).

Unfortunately, the problem is NP-hard, as it contains set-cover as a special case. It has

been the focus of a great deal of attention from many perspectives. In the 1980s, the

Operations Research community focused on branch and bound algorithms for solving

it, which led to some considerable success: see, for example, [14]. From that period,

there is also some worst-case analysis of the performance of greedy heuristics [8] and a

probabilistic analysis of the related k-median problem [1]. More recently, the Theoretical

Computer Science community has placed a significant emphasis on finding approximation

algorithms for NP-hard problems and one of its most notable successes has been in

finding constant factor approximations for this problem when the connection costs obey

the triangle inequality. The first algorithm to obtain a constant factor approximation

was based on LP rounding [17] and subsequent approaches based on LP rounding

improved the constant to 1 + 2/e [5] and then to 1.58 [19]. Alternative approaches to

approximating the solution are based on local search techniques [13], primal–dual schema

[12] and combinations of these [4]. At the present time the best approximation guarantee

that is obtainable in polynomial time is 1.52, due to Mahdian, Ye and Zhang [15]. This

is a greedy augmentation algorithm, and in the present paper, we will focus our attention

on it and on two related greedy algorithms [11].

It is likely that approximation algorithms will find solutions closer to optimal than

their guarantees guarantee. How much closer? One way to provide some answer to this

question is via an experimental study, which is exactly the approach of [3, 10] and is

also considered in Section 7 of [11]. Another way, which we will follow in this paper, is

to consider theoretically the result of applying the algorithms to an appropriate random

instance. Since the constant factor approximation algorithms are only supposed to work

on metric instances, we rule out one common random model, in which all distances

are chosen independently and uniformly from [0, 1]. Another random model we do not

study comes from choosing all distances from a discrete distribution that takes only the

values 1 and 2. The random model we use will be geometric in nature, formed by placing

points uniformly at random in the unit square. For additional reference on combinatorial

optimization over instances derived from random points, see [16, 18, 20]. Although it is

possible to design algorithms to take advantage of the special structure of these instances,

that is not the focus of the current investigation. Instead of first choosing a distribution

over instances and then designing an algorithm to work w.h.p. over this distribution, we

begin by choosing the algorithms to study and then choose an interesting (but tractable)

distribution of instances on which to run them.
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1.1. Random model

We will study random instances formed by choosing n points X = {X1, X2, . . . , Xn}
uniformly at random in the unit square [0, 1]2. We assume that each point represents

a city and also the possible location of a facility. For simplicity we will use the �∞ distance

between each facility–city pair as the connection cost (the techniques presented below

would also work for the �1 norm, but for the �2 norm, additional effort would be needed

to replace the results from Section 2).

Let m be a positive integer satisfying m = o((n/ log n)1/2). Then let α = m−1 and define

ω = m−1(n/ log n)1/2, so that ω → ∞ with n.

We will give every facility the same opening cost,

f =
1

6
α3n.

We have selected these values for later convenience in notation, and summarize it as

follows:

ω → ∞ m = ω−1

√
n

log n
α = ω

√
log n

n

f =
1

6
ω3 (log n)3/2√

n
.

It is really the facility cost f that controls the structure of the optimal solution. As f tends

to ∞, the optimal solution will open one facility in the centre of the square and connect

everything to it. As f tends to 0, the optimal solution will open a facility at every city.

Section 2 will show that the transition between these extreme behaviours is described by f

as parametrized above. For f = 1
6
m−3n, the optimal solution will open about m2 facilities.

We denote the �∞ distance between two points Xi and Xj by d(Xi,Xj). All logarithms

are base e.

We initially expected to prove that the algorithm of [15], which has worst-case

approximation ratio 1.52, was asymptotically optimal, i.e., that w.h.p.,† as n → ∞, the

ratio of the cost of the solution found by the approximation algorithm and the optimum

tends to 1. Instead we give a proof of the following. Let OPT denote the value of a

minimum cost solution. The algorithm of [15] is similar in spirit to the two algorithms

given in [11], which have worst-case approximation ratios of at most 1.861 and 1.61.

We denote these approximation algorithms by H1, H2, H3, and recall their descriptions in

detail in Section 2. We let Zi denote the value of the solution found by Hi.

Theorem 1.1. There exists a positive constant ε > 0 such that, for i = 1, 2, 3, w.h.p.

Zi

OPT
� 1 + ε.

On the other hand it is not difficult to describe a ‘trivial heuristic’ which is asymptotically

optimal and so it is disappointing that these sophisticated approximation algorithms are

in fact beaten by triviality w.h.p.

† A sequence of events En occurs with high probability (w.h.p.), if limn→∞ Pr(En) = 1.
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1.2. Outline

In the next section we describe the greedy approximation algorithms and the trivial

heuristic in detail, and give a non-rigorous explanation of ‘what goes wrong’ to prevent

the approximation algorithms from finding an asymptotically optimal solution.

Since our non-rigorous explanation will rely heavily on the asymptotic optimality of

the trivial heuristic, we prove that the heuristic is asymptotically optimal in Section 3.

The proof has two parts. First we obtain an upper bound that holds w.h.p. on the value

of the solution found by the heuristic. Since the heuristic is so simple, this only requires

us to consider basic probabilistic arguments. Some of these recur frequently enough to

merit little lemmas, which are stated and proved in Section 3.1. Then we obtain an

asymptotically matching lower bound that holds w.h.p. on the value any solution. We do

this by constructing a solution to the dual of the LP-relaxation which is feasible w.h.p.

The remainder of the paper proves Theorem 1.1. To do so, in Section 4.1 we state and

prove some lemmas which show that the structure of any near-optimal solution must take

a certain form; it must choose facilities to open so that, for most open facilities, the region

of the plane which is closer to that facility than any other is approximately a square of a

certain size and is approximately centred on the facility. Lemma 4.3 from Section 4.1 is a

quantitative version of this. Roughly, it says that if there are εn facilities opened which

violate these conditions then the solution will be a 1 + δ factor away from optimal.

To complete the proof of Theorem 1.1, in Section 4.2 we show that the approximation

algorithms from Section 2 open too many facilities which do not meet the requirements

for a close to optimal solution.

2. Approximation algorithms

The approximation algorithms we consider are all similar. We first recall Algorithm 1 of

[11] (which is most convenient for us in its restated form).

Approximation Algorithm 1.

(a) The algorithm starts at time 0. Initially, each city is defined to be unconnected. The

set of unconnected cities is denoted by U. All facilities are considered to be unopened

and δi = 0 for i ∈ C , the set of cities.

(b) While U �= ∅, increase the time and, simultaneously for every city i ∈ U, increase the

parameter δi at the same rate, until one of the following events occurs.

(1) For some unconnected city i, and some open facility j, δi = d(i, j). In this case,

connect city i to facility j and remove j from U.

(2) For some unopened facility j,
∑

i∈U max{0, δi − d(i, j)} = fj . In this case open this

facility and for every unconnected city with δi � d(i, j), connect i to j and remove

it from U.

Now we recall Algorithm 2 of [11], which is very similar to Algorithm 1, but allows

connected cities to contribute funds towards opening additional facilities.
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Approximation Algorithm 2.

(a) The algorithm starts at time 0. Initially, each city is defined to be unconnected. The

set of unconnected cities is denoted by U. All facilities are considered to be unopened

and δi = 0 for i ∈ C , the set of cities. We denote by π the mapping from connected

cities to open facilities.

(b) While U �= ∅, increase the time and simultaneously for every city i ∈ U increase the

parameter δi at the same rate, until one of the following events occurs.

(1) For some unconnected city i, and some open facility j, δi = d(i, j). In this case,

connect city i to facility j and remove j from U.

(2) For some unopened facility j, we have∑
i∈U

max{0, δi − d(i, j)} +
∑
i�∈U

max{0, ci,j − ci,π(i)} = fj .

In this case open this facility and for every unconnected city with δi � d(i, j),

connect i to j and remove it from U, and for every connected city with ci,j < ci,π(i)

change the facility to which i connects from π(i) to j.

Now, we recall Algorithm 3, which appears in [15] and currently has the best-proven

bound on worst-case approximation ratio.

Approximation Algorithm 3.

(a) In the first phase, the algorithm scales up the opening costs of all facilities by a

constant δ = 1.504, and uses Algorithm 2 to find a solution to the problem with these

new costs.

(b) In the second phase, the algorithm considers the unmodified costs and performs

a greedy augmentation to the solution found in phase 1. Let C denote the total

connection cost in the phase 1 solution. For each unopened facility j, let Cj denote the

total connection cost when j is also opened. If the maximum over unopened facilities

of the ratio (C − Cj − fj)/fj is positive, then open the facility that maximizes this

ratio.

Finally, we describe the plane partitioning heuristic, which is not guaranteed to produce

a solution within any constant factor. Figure 1 provides a visual reference.

Trivial Heuristic.

(a) We partition the square into an m × m grid Γ of subsquares Sp,q, 1 � p, q � m of

side length α, and then open the facility Fp,q closest to the centre of each subsquare,

assuming that there is one within distance α/ω =
(

log n
n

)1/2
of its centre.

(b) If any subsquare Sp,q has no facility within distance α/ω of its centre, then open each

Xi in Sp,q as a facility.

The Trivial Heuristic pays little attention to the structure of the instance, but, as we will

prove in Section 3, it produces a solution which is asymptotically optimal w.h.p. In fact, in

some sense, it is because it does not pay attention to the instance that it out-performs the

approximation algorithms. All of the greedy algorithms are distracted by local deviations
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Figure 1. A schematic representation of the asymptotically optimal solution.

in city density, and (at least at first) they will open facilities at what amount to random

points in the plane. This results in non-uniform coverage and requires some unlucky cities

to suffer excessive connection costs.

3. An asymptotically optimal solution

In this section, we prove that the solution found by the Trivial Heuristic is asymptotically

optimal. To do so, we obtain an upper bound on the cost of this solution and a matching

lower bound on the dual of the LP-relaxation.

Let HEU denote the total cost of the solution found by the Trivial Heuristic.

An intuition which explains the near-optimality of this solution is that the cities and

facilities are roughly uniformly placed in the square, so the advantage of using the special

structure of the instance is negligible.

To make this intuition rigorous, in the following two subsections we obtain an upper

bound on HEU which holds w.h.p., and a lower bound on OPT which also holds w.h.p.

and asymptotically matches the upper bound on HEU. But first we state and prove two

lemmas that will aid in our analysis.

3.1. Some simple lemmas

The following two lemmas will help us in analysing the heuristic and the dual lower

bound.

Lemma 3.1. Let A1, . . . , Ak be subsets of [0, 1]2 each of area a, let X be a set of n random

points distributed uniformly and independently in [0, 1]2, and let λ be a positive real with
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λ � 1/3. Then

Pr[∃i : Ai ∩ X = ∅] � k · e−an, (3.1)

Pr[∃i : |Ai ∩ X| �∈ (1 ± λ)an] � k · 2e−λ2an/3. (3.2)

Proof. Inequality (3.1) follows because the probability that a single point avoids Ai is

1 − a and 1 − x � e−x and the union bound.

Inequality (3.2) follows from Chernoff’s bound and the union bound.

Lemma 3.2. Let t be a positive real, let F1, . . . , Fk be points in [t, 1 − t]2, let X be a set of

n random points distributed uniformly and independently in [0, 1]2, and let λ be a positive

real with λ � 1/6. For i = 1, . . . , k, let

Zi =
∑
X∈X

d(X,Fi)�t

d(X, Fi).

Then

E[Zi] =
n(2t)3

3
, (3.3)

Pr

[
∃i : Zi �∈ (1 ± λ)

n(2t)3

3

]
� k · 4e−λ2(2t)2n/12. (3.4)

Proof. We begin by considering the contribution of a particular point X to Zi.

Conditioning on d(X, Fi) � t, the expected distance is

E[d(X, Fi) | d(X, Fi) � t] = t−2

∫ t

0

(u · 2u) du =
2t

3
.

We define Ni to be the number of points within distance t of Fi,

Ni = |{X ∈ X : d(X, Fi) � t}|.

It follows from the linearity of expectations that

E[Zi | Ni] = Ni

2t

3
,

and, since E[Ni] = (2t)2n, we have established (3.3),

E[Zi] =
(
(2t)2n

)2t

3
.

Conditioning on Ni, Zi is a sum of Ni independent random variables in the range [0, t].

So Hoeffding’s inequality gives

Pr

[
Zi �∈ (1 ± λ)Ni

2t

3

∣∣∣∣ Ni

]
� 2e−2(λNi2t/3)

2/(Nit
2)

= 2e−8λ2Ni/9.

Now, we apply Lemma 3.1 with Ai = {X : d(X, Fi) � t} and (3.2) shows that the

probability that some Ni does not contain (1 ± λ)(2t)2n points is at most k · 2e−λ2(2t)2n/3.
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Combining this with the conditional upper bound on the large deviation probability of

Zi and the union bound gives

Pr

[
∃i : Zi �∈ (1 ± λ)

(
(1 ± λ)(2t)2n

)2t

3

]
� k · 2e−λ2(2t)2n/3 + k · 2e−8λ2(1−λ)(2t)2n/9.

Since λ � 1/3, this simplifies to

Pr
[
∃i : Zi �∈ (1 ± λ)(2t)3n/3

]
� 4ke−λ2(2t)2n/3.

3.2. An upper bound on HEU

To achieve this goal, we define several events and random variables and bound probabil-

ities related to them.

Let F̂p,q be the point in the centre of subsquare Sp,q .

We begin by showing that in each subsquare, there is likely to be a facility within distance

α/ω of F̂p,q that we will open. To do this, we apply Lemma 3.1 with k = m2 and Apm+q

equal to the square within distance α/ω of F̂p,q . Then, since area(Apm+q) = (2α/ω)2 = 4 log n
n

,

(3.1) shows that

Pr[∃p, q : Apm+q ∩ X = ∅] � m2 · e−4 log n = o(n−3). (3.5)

Now we bound the transportation costs. We define a mapping π so that for each Xi

with Xi ∈ Sp,q and Fp,q = Xj we have π(i) = j to indicate that facility j services city i. In

the unlikely event that Apm+q is empty, we open all the facilities in Sp,q and set π(i) = i for

each of them, which results in transportation cost 0.

Note that, since Fp,q is within α/ω of F̂p,q , we have∑
Xi∈X

d(Xi,Xπ(i)) �
∑
Xi∈X

d(Xi, Fp,q) + nα/ω. (3.6)

We apply Lemma 3.2 with t = α/2, k = m2, Fpm+q = F̂p,q , and λ = ω−1. Then (3.3) and

(3.6) together imply that

E

[ ∑
Xi∈X

d(Xi,Xπ(i))

]
� m2 nα

3

3
+ nα/ω,

and (3.4) and (3.6) imply that

Pr

[ ∑
Xi∈X

d(Xi,Xπ(i)) � m2 · (1 + 4ω−1)
nα3

3
+

nα

ω

]

� m2 · 4e−16ω−2α2n/12

= 4m2e−4 log n/3.

Since there are m2 facilities opened with probability at least 1 − n−3, and there are

at most n facilities opened in even the most pathological point set, we may the bound

expected total cost of the solution by

E[HEU] =
nα

3
+ nα/ω + m2f + nfn−3 =

1

2
αn(1 + o(1)).



On the Average Case Performance of Some Greedy Approximation Algorithms 721

Finally, we observe that the probability that HEU exceeds this bound tends to 0; the

transportation cost is at most nα
3
(1 + O(ω−1)) with probability 1 − o(1) and the probability

that more than m2 facilities open is o(1). So we conclude that

HEU � nα

2
(1 + o(1)) w.h.p. (3.7)

3.3. Lower bound on OPT

To show this solution is asymptotically optimal, we will construct a solution to the dual

of the strong LP relaxation (which has been studied since [2]):

(LP-RELAX)

min
n∑

j=1

fyj +
n∑

i=1

n∑
j=1

d(Xi,Xj)xi,j

subject to
n∑

j=1

xi,j =1, 1 � i � n,

0 �xi,j � yj , 1 � i, j � n;

(DUAL)

max
n∑

i=1

ui

subject to
n∑

i=1

vi,j �f, 1 � j � n,

−vi,j + ui �d(Xi,Xj), 1 � i, j � n,

vi,j �0, 1 � i, j � n.

We get a good solution to DUAL as follows:

ui =

{
α
2
(1 − 3ω−1) Xi ∈ [α, 1 − α]2,

0 otherwise,

vi,j = max{ui − d(Xi,Xj), 0}.

The fact that this solution is feasible w.h.p. follows from Lemmas 3.1 and 3.2. We take

t = α
2
(1 − 3ω−1), k = n, Fi = Xi, and λ = 4ω−1. Then (3.4) shows that

Pr
[
∃i : Zi � (1 − 4ω−1)n(α(1 − 3ω−1))3/3

]
� n · 4e−16ω−2(α(1−3ω−1))2n/12

= 4ne−16(1−3ω−1)2 log n/12

= o(1).

Taking Ai to be the α(1 − 3ω−1) × α(1 − 3ω−1) square centred at Xi, (3.2) shows that

Pr[∃i : |Ai ∩ X| � (1 + 4ω−1)(1 − 3ω−1)2α2n]

� n · 2e−16ω−2(1−3ω−1)2α2n/3

= 2ne−16(1−3ω−1)2 log n/3

= o(1).
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So w.h.p. for all j we have

n∑
i=1

vi,j =
∑
Xi∈X

max

{
α

2

(
1 − 3ω−1

)
− d(Xi,Xj), 0

}

<
nα3

6
= f.

Since the objective value of this solution asymptotically matches that of (3.7), we

conclude that our ‘heuristic’ is asymptotically optimal.

4. Proof of Main Theorem

To prove Theorem 1.1, in Section 4.1 we state and prove some lemmas which show that

the structure of any near-optimal solution must take a certain form. In particular, the

solution must choose facilities to open so that, for most open facilities, the region of the

plane which is closer to that facility than any other (the Voronoi cell) is approximately

a square of a certain size and is approximately centred on the facility. Lemma 4.3 from

Section 4.1 gives a quantitative version of this fact: it says roughly that if there are εn

facilities opened which violate the conditions then the solution will be a 1 + δ factor away

from optimal.

To complete the proof of Theorem 1.1, in Section 4.2 we show that the approximation

algorithms from Section 2 open too many facilities which do not meet the requirements

given in Lemma 4.3 for a close to optimal solution.

4.1. Properties of close-to-optimal solutions

4.1.1. Refining Γ to super-grid Γ1. Let m1 = �ω1/2�m and let Γ1 be the m1 × m1 super-

grid of Γ where each subsquare has side α1 = m−1
1 . If we fix a subsquare S of Γ1

then the number of points νS of X which fall in S is distributed as B(n, α2
1). Thus

E(νS ) = α2
1n = ω log n(1 + o(1)). It follows from (3.2) of Lemma 3.1 that

Pr
[
∃S ∈ Γ1 : νS �∈ (1 ± ω−1/3)α2

1n
]

� m2
1 · 2e−ω−2/3α2

1n/3

< n · 2e−ω1/3 log n/3.

We use the term ‘quite surely’ (q.s.) to describe a sequence of events which occurs with

probability exceeding 1 − O(n−k) for any constant k. In this notation, we may say that

|νS − α2
1n| � ω2/3 log n, ∀S ∈ Γ1, q.s. (4.1)

4.1.2. An assignment which respects super-grid Γ1. For a set of facilities F and an

assignment of cities to facilities φ : X → F, we let

κ(F, φ) = f|F| +
∑
X∈X

d(X,φ(X)).

The assignment which maps points to their closest facility in F will be denoted φ�
F so that

c(F) = κ(F, φ�
F).
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Consider a particular facility set F = {F1, F2, . . . , Fk} ⊆ X. For each Fi let Vi be the

Voronoi cell associated with Fi, which is to say Vi is the set of points in [0, 1]2 which are

at least as close (in �∞ norm) to Fi as to any other member of F.

We say an assignment φ respects Γ1 if all the cities in a common subsquare of Γ1 are

assigned to the same facility by φ.

The next lemma says that there is an assignment which respects Γ1 and is not much

worse than φ�
F.

Lemma 4.1. There exists an assignment φ̃F that respects Γ1 and has

|κ(F, φ̃F)| − κ(F, φ�
F)| � 2α1n.

Proof. The proof of the lemma is a shifting argument. For any assignment φ, if there

exists some S ∈ Γ1 and i ∈ [k] such that Vi ∩ S ∩ X �= ∅ and S \ Vi �= ∅, then we make a

slightly different assignment φ̃ which assigns all cities in S to the same facility. Let i be

the smallest index in [k] such that cities in S are assigned to Fi. Then we re-assign all

Xj ∈ S \ Vi to facility Fi. We claim that this adds at most 2α1 in transportation cost for

each city. Indeed, suppose that Xj ∈ S ∩ Vi′ for i′ �= i. Then d(Xj, Fi) � d(Xj,X) + d(X, Fi).

If X ∈ Vi ∩ S , then we also have that d(X, Fi) � d(X,Xj) + d(Xj, Fi′), since X is in Vi and

not Vj . So d(Xj, Fi) � d(Xj, Fi′ ) + 2d(X,Xj). Since X and Xj are both in S , d(X,Xj) � α1.

By starting with φ�
F and repeating this shifting we eventually arrive with an assignment

φ̃F (since assignments to cities in each cell are adjusted at most once). This assignment

respects Γ1 by construction, and (again because each city is reassigned at most once) we

have

κ(F, φ̃F) � κ(F, φ�
F) + 2α1n. (4.2)

4.1.3. The likely cost per facility under φ̃F. For Fi ∈ F, let the Ṽi be the union of the

subsquares in Γ1 which contain cities which are mapped to Fi by φ̃F (we think of Ṽi

as the ‘quantized Voronoi cell’ of Fi). Let ηi denote the number of subsquares in Ṽi. Let

Xi = X ∩ Ṽi and let

ci =
∑
X∈Xi

d(X, Fi).

Note that, because of the way φ̃F was constructed, for any Γ1-subsquare S , if S ⊆ Vi then

S ⊆ Ṽi.

We say that Ṽi is an ε-quasi-square if there exists a square S centred at Fi such that

max{area(S \ Ṽi), area(Ṽi \ S)} � ε area(Ṽi).

Lemma 4.2. Assume that (4.1) holds. Assume that ε � α1. Then w.h.p. the following hold

for all i.

(i) ci � 1
3
n(1 − ω−1/3) area(Ṽi)

3/2.

(ii) If Ṽi is not an ε-quasi-square then ci � 1 + ε2/4
3

n(1 − ω−1/3) area(Ṽi)
3/2.
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Proof. In light of (4.1), this lemma reduces to a pair of geometric facts about collections

of squares. However, it is convenient for us to prove the facts via linear programming.

We begin by establishing part (i) of the lemma. Fix i. For every j define Uj = {S ∈ Γ1 :

S ⊆ Ṽi and jα1 � d(S, Fi) < (j + 1)α1}. We have |Uj | � 8j + 4. Let k be such that Uj = ∅
for every j > k. Such k exists because Ṽi is compact. By counting the number of Γ1-squares

in Ṽi we get

k∑
j=0

|Uj | = ηi = area(Ṽi)/α
2
1.

Now,

ci =
∑
X∈Xi

d(X, Fi)

=
∑

S∈Γ1:S⊆Ṽi

∑
X∈S

d(X, Fi)

�
∑
S⊆Ṽi

νSd(Fi, S)

� (α2
1n − ω2/3 log n)

∑
S⊆Ṽi

d(Fi, S)

= (α2
1n − ω2/3 log n)

k∑
j=0

∑
S∈Uj

d(Fi, S)

� (α2
1n − ω2/3 log n)α1

k∑
j=0

j|Uj |.

As we want a lower bound for ci we consider the primal–dual pair

(P.i)

min
k∑

j=0

jxj

subject to xj �8j + 4, j = 0, 1, . . . , k,
k∑

j=0

xj =ηi,

xj �0, j = 0, 1, . . . , k;

(D.i)

max ηiz −
k∑

j=0

(8j + 4)yj

subject to z − yj � j, j = 0, 1, . . . , k,

yj �0, j = 0, 1, . . . , k.
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A feasible solution for D.i is to take z = η
1/2
i /2 and yj = max(η

1/2
i /2 − j, 0), j = 0, . . . , k

with dual value � η
3/2
i /3, and then

k∑
j=0

j|Uj | � η
3/2
i /3 = area(Vi)

3/2/3α3
1.

(The expression
∑�

j=0(8j + 4)(A − j) = 4A(� + 1)2 −
(

8
3
�3 + 6�2 + 4

3
�
)

will no doubt

help the reader to verify the above claim.)

Now we show that part (ii) of the lemma holds. We introduce extra constraints

in the linear program above in order to enforce the condition that Ṽi is not an ε-

quasi-square. For this, assume that Ṽi is not an ε-quasi-square, let � = �η1/2
i /2� and

let S be the square of side 2�α1 centred at Fi. Then area(Ṽi) � area(S) � (1 − ε) area(Ṽi)

and therefore area(S ∩ Ṽi) < (1 − ε) area(Ṽi), otherwise area(Ṽi \ S) = area(Ṽi) − area(Ṽi ∩
S) � ε area(Ṽi) and area(S \ Ṽi) = area(S) − area(S ∩ Ṽi) � ε area(Ṽi). Then

�∑
j=0

|Uj | = area(S ∩ Ṽ1)/α
2
1 � (1 − ε) area(Ṽi)/α

2
1 = (1 − ε)ηi,

so we consider the primal–dual pair

(P.ii)

min
k∑

j=0

jxj

subject to xj �8j + 4, j = 0, 1, . . . , k,
k∑

j=0

xj =ηi,

�∑
j=0

xj � (1 − ε)ηi,

xj �0, j = 0, 1, . . . , k;

(D.ii)

max ηiz − (1 − ε)ηiz1 −
k∑

j=0

(8j + 4)yj

subject to z − z1 − yj � j, j = 0, 1, . . . , �,

z − yj � j, j = � + 1, . . . , k,

z1 �0,

yj �0, j = 0, 1, . . . , k.

A feasible solution for D.ii is z = (1 + ε)η
1/2
i /2, z1 = εη

1/2
i /2, yj = (1 − ε/2)η

1/2
i /2 − j,

j = 0, . . . , � and yj = max((1 + ε/2)η
1/2
i /2 − j, 0), j = � + 1, . . . , k with dual value � (1 +

ε2/4)η
3/2
i /3, and then

k∑
j=0

j|Uj | � (1 + ε2/4)η
3/2
i /3 � (1 + ε2/4) area(Vi)

3/2/3α3
1.



726 A. D. Flaxman, A. M. Frieze and J. C. Vera

4.1.4. The structure of any near-optimal solution. We continue by proving a property of

any near-optimal solution to the UFLP.

Lemma 4.3. Assume that (4.1) holds. Let ε be a sufficiently small constant, and let F ⊆ X
with κ(F, φ�

F) � (1 + ε)αn/2. Then, for ε1 = 5ε1/2, we have the following.

(a) |F| ∈ [(1 − ε1)m
2, (1 + ε1)m

2].

(b) Suppose that θ1 = 2ε1/3 and θ2 = 4ε1/3 and ε0 = 3ε1/3. Then at least (1 − 2θ2)m
2 of

the points Fi ∈ F are such that Ṽi is an ε0-quasi-square of area in the range [(1 −
θ1)α

2, (1 + θ1)α
2].

Proof. Let F = {F1, F2, . . . , Fk} and let ai = |Ṽi| for 1 � i � k. Let

J = {j : Ṽj is not a ε0-quasi-square}.

Applying Lemma 4.2 and equation (4.2) we see that

κ(F, φ�
F) � kf +

1 − ω−1/3

3
n

(
k∑

i=1

a
3/2
i +

ε2
0

12

∑
j∈J

a
3/2
j

)
− 2α1n. (4.3)

Now let aj =
1+ xj

k
, where −1 � xj and

∑k
j=1 xj = 0.

By examining the power series for (1 + x)3/2 when |x| � 1 and using elementary calculus

for x > 1 we see that

(1 + x)3/2 � 1 +
3

2
x + min

{
1,

1

4
x2

}
x � −1. (4.4)

It follows from (4.3) that

κ(F, φ�
F) � kf +

(
1 − ω−1/3

3
n

)

×
(

k−1/2 + k−3/2
k∑

i=1

min

{
1,

1

4
x2
i

}
+

ε2
0

12

∑
j∈J

a
3/2
j

)
− 2α1n. (4.5)

Now, let k = (1 + θ)α−2 for some θ � −1 and assume w.l.o.g. that |θ| � ω−1/6. Notice that

from (4.3) that we can assume θ < 3, otherwise kf � 4
6
αn. If θ ∈ [−1, 3] then 1

(1+θ)1/2
�

1 − 1
2
θ + 1

16
θ2, and we get

kf +
1 − ω−1/3

3
nk−1/2 − 2α1n

� (1 + θ)

6
αn +

(1 − ω−1/3)

3
αn

(
1 − 1

2
θ +

1

16
θ2

)
− 2α1n � αn

2

(
1 +

θ2

25

)
. (4.6)

Using (4.5) we get

κ(F, φ�
F) � αn

2

(
1 +

θ2

25

)
+

n

4

(
k−3/2

k∑
i=1

min

{
1,

1

4
x2
i

}
+

ε2
0

12

∑
j∈J

a
3/2
j

)
. (4.7)

Part (a) follows from (4.7): (1 + ε)αn/2 � κ(F, φ�
F) � αn

2

(
1 + θ2

25

)
and so |θ| � ε1/2/5.
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Using (4.7) again we get

κ(F, φ�
F) � 1

2
αn +

n

4k3/2

k∑
j=1

min

{
1,

1

4
x2
j

}
,

So if B = {j : |xj | � θ1} and |B| � βk for θ1, β � 1, we have

κ(F, φ�
F) � 1

2
αn +

θ2
1β

16(1 + ε1)1/2
αn.

Setting θ1 = 2ε1/3 we get β � θ2 = 4ε1/3. Returning once again to (4.7) we write

κ(F, φ�
F) � 1

2
αn +

ε2
0

48
n
∑
j∈J

a
3/2
j

� 1

2
αn +

3ε2/3

16
n(|J| − θ2k)

(
1 − θ1

k

)3/2

.

Thus, if |J| � 2θ2m
2 then

κ(F, φ�
F) � 1

2
αn +

3ε2/3

16
nθ2(2m

2 − k)

(
1 − θ1

k

)3/2

� 1

2
αn +

12

16
εn(1 − ε1)m

2

(
1 − 2ε1/3

(1 + ε1)m2

)3/2

� 1

2
αn +

11

16
εαn.

4.2. Properties of solutions found by greedy approximation algorithms

The goal of this section is to use the characterization of close-to-optimal solutions obtained

in Section 4.1 to show that the greedy approximation algorithms described in Section 2

find solutions which are not asymptotically optimal. This is achieved by considering

the behaviour of the algorithm on a 14α × 7α rectangular subregion of the unit square,

and showing that, with constant probability, this region contains a facility for which the

Voronoi region is not ε-quasi-square.

The intuition which motivates this approach is this: the candidate facilities which open

in the subregion will do so at random locations, thus there is no reason to expect these

random locations to result in nice Voronoi cells. Making this intuitive explanation rigorous

requires some work because of the complicated dependencies between which facilities are

opened. For example, all the approximation algorithms track a level of ‘funding’ available

for opening a candidate facility (in Approximation Algorithm 1, the funds for city j are∑
i∈U max{0, δi − d(i, j)}, and in Approximation Algorithms 2 and 3, the funds are at least

this much.) The funds available to a facility at time t is a difficult random variable to deal

with, and we must work around this difficulty.
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Figure 2. Concentric squares S1, S5, and S7.

Let pf(X, t) denote the potential funds at point X at time t, given by

pf(X, t) =
∑
i∈C

max{0, t − d(Xi,X)}.

This is the level of funding available to open a facility at X if no other facilities have

already opened within distance 2t of X.

Let T (X) = min{min{t : pf(X, t) = f}, α} be the earliest opening time of point X (which

is truncated at time α, because we want T (X) to depend only on the position of nearby

points).

We note that E(pf(X, α)) = f and pf(X, α) is the sum of n independent bounded random

variables and so the Central Limit Theorem implies that

Pr(pf(X, α) � f) =
1

2
− o(1). (4.8)

Consider concentric squares, S1, S2, . . . , where Si is an iα × iα square (see Figure 2 for

visual reference). Some facility X� in S5 has the minimum value of T (X) among all

facilities in S5, and which one it is only depends on the configuration of points in S7.

Note that if X� is in S1, (and T (X�) < α) then (in all three of the greedy approximation

algorithms) X� actually opens at time T (X�), because no cities within distance α of S1

are connected (because no facilities within 2α of S1 are open; in other words, no facilities

besides X� are open in S5). Since nothing within α of X� is connected,∑
i∈U

max{0, δi − d(Xi,X
�)} =

∑
i∈C

max{0, T (X�) − d(Xi,X
�)}.

We will partition S7 into subsquares of size α/4, and obtain a constant lower bound

on the probability X� appears in one of these subsquares that is contained in S1. For

(p, q) ∈ [4]2, let Qp,q , denote such a subsquare (with side length α/4 that is contained in

S1). Figure 2 provides a visual reference.



On the Average Case Performance of Some Greedy Approximation Algorithms 729

Lemma 4.4. Let X� be the facility in S5 which minimizes T (X) over X ∈ X ∩ S5. There

exists an absolute constant γ0 such that, for any (p, q) ∈ [4]2,

Pr[X� ∈ Qp,q and pf(X�, α) � f] � γ0.

Proof. We write A�
p,q = {X� ∈ Qp,q} and B� = {pf(X�, α) � f}. We then consider the

analogous question for X′ = X ∩ S7, where the edges of S7 have been identified to ‘wrap-

around’, making the distance function

dW ((x1, y1), (x2, y2)) = max{min{|x1 − x2|, 7α − |x1 − x2|},min{|y1 − y2|, 7α − |y1 − y2|}}.

(This makes the space a torus topologically.) In this case, some α/4 × α/4 subsquare of

S7 contains the facility X� which minimizes T (X) and, by symmetry, each subsquare

is equally likely to contain it. So the probability that X� is in Qp,q is the same as the

probability that it is in any of the (7 · 4)2 subsquares, which is exactly 1/(7 · 4)2. Using Pr′

for this model and double �’s to distinguish the S7 case from the S5 case, we have

Pr′(B��) =
∑

(a,b)∈[7·4]2

Pr′(B� ∧ A��
a,b) = (7 · 4)2Pr′(B�� ∧ A��

p,q),

giving

Pr′(B�� ∧ A��
p,q) � 1

3(7 · 4)2
.

Now, we remove the wrap-around on S7 but continue to ignore all the points of X that

lie outside S7 (i.e., consider the potential funds for point set X′ = X ∩ S7 under the �∞
distance). This change can only affect T (X) for a point X which lies within distance α of

the boundary of S7, and for such an X, the change can only make T (X) larger than it

was in the case with wrap-around. So every X which yielded B�� and X�� in Qp,q with

the wrap-around distance will have B� and the same X� in this case. So the probability

that B� occurs and Qp,q contains the point which opens first when X′ = X ∩ S7 is at least

(7 · 4)−2/3.

Finally, we return to the original set X, and note that considering the contributions

of points outside S7 to the potential funds does not affect T (X) for any X in S5. So the

probability that Qp,q contains the point which opens first in S5 with respect to X is at

least the probability that Qp,q contains the point which opens first in S7 with respect to

X′ = X ∩ S7. The previous paragraph showed that this is at least (7 · 4)−2/3.

Now consider two side-by-side copies of S7, as shown in Figure 3. Let B1 be the event

that, in the left copy of S7, the facility XL which minimizes T (X) in SL
5 is in QL

q,1 for

some q. Let B2 be the event that, in the right copy of S7, the facility XR which minimizes

T (X) in SR
5 is in QR

q′ ,3 for some q′. Because QL
q,1 and QR

q′ ,3 are sufficiently far apart,

Pr[B1 | B2] = Pr[B1], and so Pr[B1B2] � γ2
0 .

Suppose now that B1 and B2 occur. Let Σ be the (1 + ε)α × 8α strip containing SL
1 and

SR
1 (so that SL

1 , S
R
1 are located symmetrically at distance εα/2 from the horizontal borders
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Figure 3. Two side-by-side copies of S7.

of Σ, as depicted in Figure 3.) Here ε is some sufficiently small positive constant. Let I be

the index set of those open facilities whose quantized Voronoi cells Ṽi meet the strip Σ.

Lemma 4.5. With high probability, there must be some facility i ∈ I for which Ṽi is not

ε3-quasi-square with area in (1 ± ε3)α2.

Proof. Assume for the sake of contradiction that this is not the case. Each such Voronoi

region Ṽi can therefore be associated with a square Wi of side in the range (1 ± ε3)α.

Furthermore, any two such squares have a common area of at most ε3α2. With high

probability, there is no open facility j at distance 2α or more from Σ for which the

quantized Voronoi region Ṽj intersects Σ (every point in X ∩ Σ is connected to a closer

open facility). Thus |I | � 8(5+ε)
1−ε/2

< 50. It follows that all but an area of at most 50ε3α2 of

Σ is covered by the Wi, for i ∈ I . Now let Σ1 denote a strip of length 8α and thickness

εα/4 running across the middle of Σ. Any sub-strip of Σ1 which is of length εα is of area

ε2α2/4 and so will contain members of X which are covered by some Wi, i ∈ I .

If the centre of this Wi is outside Σ then Wi has side at least (1 + ε/4)α, which

contradicts our assumption. So let J be the set of facilities j with centre in Σ for which

there is a member of Σ1 contained in Wj . If any of these facilities is not ε3-quasi-square

then we are done, so we may assume that they all are. There is an open facility in SL
q,1 and

in SR
q′ ,3, and these facilities cover squares of side at least α. Thus the other members of J

appear in a substrip with length between 7.25α and 7.75α. If there are 6 or fewer open

facilities in this the strip bounding the two copies, then some pair of facilities are at least

1.04α apart. Therefore, one of them, call it Fi, has a Wi with side at least (1.04 − 100ε3)α,

a contradiction. On the other hand, if there are 7 or more facilities in the strip, then
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some pair of them are at most 0.96α apart, and so some Fi has a Wi with side at most(
0.96 + 2ε3

0.48

)
α, a contradiction.

Since the event B1B2 occurs independently in sufficiently separated disjoint regions

of the square (modulo there being enough points in the cell), w.h.p. we will have Ω(m2)

facilities for which Ṽi is not an ε3-quasi-square with area (1 ± ε3)α. So Lemma 4.3 finishes

the proof of the theorem.
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