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Abstract. The cut polytope P, is the convex hull of the incidence vectors of the cuts (i.e. complete
bipartite subgraphs) of the complete graph on n nodes. A well known class of facets of P, arises
from the triangle inequalities: X4 X, +x, < 2 and X5 — Xy — X < Ofor1 < i, j, k < n Hence,
the metric polytope M,, defined as the solution set of the triangle inequalities, is a relaxation of
P,. We consider several properties of geometric type for P,, in particular, concerning its position
within M,. Strengthening the known fact ([3]) that P, has diameter 1, we show that any set of k
cuts, k < log, n, satisfying some additional assumption, determines a simplicial face of M, and
thus, also, of P,. In particular, the collection of low dimension faces of P, is contained in that of
M,. Among a large subclass of the facets of P,, the triangle facets are the closest ones to the
barycentrum of P, and we conjecture that this result holds in general. The lattice generated by all
even cuts (corresponding to bipartitions of the nodes into sets of even cardinality) is characterized
and some additional questions on the links between general facets of P, and its triangle facets are
mentioned.

1. Introduction

In this paper, we prove several results of geometric type on the cut polytope P, of
the complete graph on n nodes. They are motivated by the study of the geometric
shape of P,, in particular, the position of the facets of P, with respect to its
barycentrum, the contribution of the important subclass of the triangle facets to the
global shape of P,, and also the study of some lattices generated by families of cuts.

We set [1,n] = {1,2,...,n}. Given a subset S of [1, n], the cut determined by S
is the set 4(S) of all pairs (i, j) of distinct points of [1,n] such that exactly one of i
and j belongs to the set S. The incidence vector of the cut 4(S), also called its cut
vector, is the vector X*® of R** V2 defined by Xi® = 1if (i, j) € §(S) and X® =0
otherwise, for 1 < i < j < n. The cut polytope P, is the convex hull of the incidence
vectors of the cuts 6(S) for all subsets S of [1,n]; it is a full dimensional polytope in
R*"»~112_ Given v € R"™ Y2 and v, € R, the inequality v.x < v, is said to be valid
for P, if it is satisfied by all cut vectors and, then, to be facet inducing if there exist
n(n — 1)/2 affinely independent cut vectors satisfying the equality v.x = v,. A well
known class of facets of P, arises from the following triangle inequalities:
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(1.1) xjj— x5 —xp3 <0for1 <ijk<n
as well as the inequalities:

(1.2) x;+ x5 + x5 <2for1 <i, jk<n

There are 3(3) facets of type (1.1) (homogeneous triangle facets) and (%) facets of type
(1.2) and so 4(3) triangle facets in total. Each triangle facet contains 3.2""3 cut
vectors, i.e. 3/4th of the total number of vertices of P,. Although P, has surely a lot
of quite complicated (and still yet undiscovered for the greatest majority) facets, its
most simple ones, the triangle facets, seem to gather already quite a lot of the
properties enjoyed by P,.

Let M, denote the polytope in R™""1/? defined as the solution set of the 4(})
inequalities (1.1) and (1.2), M,, is called the metric polytope. So M, contains the
polytope P, and M, is contained in the cube [0, 1] "2, The cut vectors are also
vertices of M,; in fact, they are the integral vertices of M,. The problematics of
describing vertices of M, and facets of P, are in some sense “dual”. Namely, while
the vertices of P, are easy (they are the cut vectors), it is probably very hard to find
explicitly all its facets; on the other hand, the facets of M, are easy (they are the
triangle inequalities) while it is also probably very hard to find all vertices of M,,.
We refer e.g. to [3], [5], [7], [8] for information on the facets of P, and to [2], [11]
for information on the vertices of M,,. Actually, [2] and [11] study the extreme rays
of the metric cone MC, = {x e R"""V2: x,, — x;, — x; <O0forall 1 <i, j, k <n}.
But, one secs easily that, if d defines an extreme ray of MC, and if a =
min(2/(dy; + dy + dy): dy; + dy, + dy # 0 for 1 <, j, k < n), then ad is a vertex of
the metric polytope M,

Since the metric polytope M, contains the cut polytope P,, it is natural to ask
how well M, approximates P,, i.c. how well the triangle facets wrap P,. In section
2, we give some elements of answer toward this question. Barahona and Mahjoub
([3]) proved that P, has diameter one, i.e. that any two cut vectors are adjacent on
P,. It follows from a result of Padberg that any two cut vectors are also adjacent
on M, (sece Remark 2.11). Therefore, the 1-skeleton of P, (its collection of vertices
and edges) is contained in the 1-skeleton of M,; in other words, M, has the Trubin
property (see [19]) with respect to P,. So, for d = 0, 1, all d-faces (faces of dimension
d) of P, are also faces of M,; this property holds for some higher dimension faces.
Namely, we show that any three cut vectors determine a simplicial face of M, and,
thus, also of P, and, therefore, all 2-faces of P, are faces of M,. Generally, we prove
that any k cut vectors, k <'log, n, which are in general position (see section 2 for
the definition) determine a simplicial face of M, and, thus, also, of P,. We conjecture
that, for k < log, n, all k-faces of P, are also faces of M,. We show that the minimum
integer k for which there exist k cuts that do not lie on any triangle facet is in
O(log, n). This indicates that log, n might be the limit value for validity of our
conjecture.

Several other geometrical facts are known on the cut polytope P,, for instance,
that it enjoys a lot of symmetries (see the precise description of its symmetry group
below), also its circumscribed sphere, since it is immediate to check that all cut
vectors lic on the sphere of center b = (1/2,...,1/2), the barycentrum of P,, and
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radius \/;/2 with r = n(n — 1)/2. However, the geometrical shape of P, is not yet fully
understood. For example, it is not quite excluded that P, might become more and
more “flat” for large n. This question is considered in section 3; unfortunately, we
cannot completely settle it. However, we show that any facet of P, having only 0, 1,
—1 coefficients (in the left hand side of its defining inequality) has distance at least
(2\5)‘1 from the barycentrum b of P,, this smaliest distance being attained precisely
by the triangle facets. We conjecture that this property holds generally for all facets
of P,, i.e. that the triangle facets are the closest ones to the barycentrum and so the
inscribed sphere to P, has radius greater or equal to (2\/5)'1.

It is known that the integer points x belonging to the lattice generated by the
cut vectors are characterized by the fact that their perimeter on any triangle must
be even, ie. x; + x; + xgisevenforall 1 <i < j <k <n([1]). Here, in section 4,
we characterize a sublattice of it, namely the lattice of all even cuts, i.e. all cuts 4(S)
with both sets S and [1,n] —S of even cardinality. Subfamilies of cuts obtained
by introducing some parity conditions are well studied and classical objects in
Combinatorial Optimization (see e.g. [13]).

We state in section 5 several questions concerning the links between arbitrary
facets of P, and its triangle facets, in particular, whether any facet of P, can be
decomposed as linear combination of triangles, also whether any facet collapses to
some triangle inequality? Both these properties can be observed on the classes of
facets of P, known so far. Finally, we show in section 6 how the structure of the
3-hypercut polytope HP(3), can be derived from that of the cut polytope P,. Given
asubset S of [1, n], the 3-hypercut 3,(S) is the set of triples (i, j, k) of distinct points
of [1,n] that intersect both S and its complement [1,#]-S and the polytope HP(3),
is the convex hull in R*"~1D®~2)/6 of the incidence vectors of the 3-hypercuts. So,
3-hypercuts are a direct generalization of cuts (i.e. 2-hypercuts). In fact, HP(3), is a
linear bijective image of P,.

We conclude the introduction by recalling the description of the symmetries of
the cut polytope P,. Given a cut 8(S), set rss, = [ [ . ss) 7 Where r;; denotes the
reflection around the hyperplane x;; = 1/2 for 1. <i < j <n. Hence, y = 755(x)
is defined by y; =1 — x; if (i, j) € 6(S) and y;; = x;; otherwise; rys, is an affine
map and, if we denote by Ry, its linear part, then ryg)(X) = Ry (x) + X°®. For
ve R"V2 et v¥ denote the vector of R*™ D72 defined by v = —uv;; if (i, j) € 5(S)
and v = v; otherwise for 1 <i < j < n. If the inequality v.x < v, is valid for P,
and defines the face F of P,, then the inequality v5.x < vy — v.(S) is also valid for
P, ([3]) and, in fact, defines the face r;s,(F) of P, ([6]). Any permutation o of [1,n]
clearly induces an isometry of R"®*~1%2 and, in fact, a symmetry of P,. For n # 4, the
only symmetries of P, are the reflections r,s, for S subset of [1,n] and the permuta-
tions of [1,n]; in fact, the symmetry group of P, coincides then with the central
quotient of the symmetry group of the n-dimensional cube ([6]).

2. How Well Do the Triangle Facets Wrap the Cut Polytope?

The metric polytope M, is the set of vectors satisfying all triangle inequalities (1.1)
and (12), le Mn = {x € Rn(n—l)/Z: xij — xik b x]-k < 0, xij + x,‘k + x]'k < 2 fOI‘ 1 < i, j,
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k < n}. Therefore, P, < M, < [0,1]""" V2. We are interested in how tight this
relaxation of P, by M, is. In fact, for n = 3, 4, both polytopes coincide but, forn > 5,
the inclusion P, = M, is strict. We show that some properties of P,, in particular,
concerning the structure of its low dimension faces, are retained by M,. We shall
use the following criterion for characterizing faces. Given some cuts 3(S,), ..., 8(Sy),
they determine a face of M,, namely the face F = {) ;. 0X**: o, >0 and
Y <ick®; = 1}, if one can find a vector w in R"*~Y2 such that Max(w.x: x € M,,)
is attained precisely at the points x € F. Clearly, if F is a face of M,,, then, F is also
a face of P,. The dimension of a face F is the largest number of affinely independent
points in F minus one.

A first useful observation is that all the symmetries of P, are also symmetries
of M,. Indeed, any permutation of [1,#n] trivially preserves M, and the following
lemma can be easily checked.

Lemma 2.1. For any subset S of [1,n], the reflection rss, preserves M,,. ]

Corollary 2.2. Let 6(S,), ..., 6(S,) be k distinct non empty cuts. Then, the set F =
Conv(X%5): 1 <i< k) is a face of M, (resp. P,) if and only if the set F' =
Conv(X?%®), X265:850; | < i< k — 1)is a face of M, (resp. P,).

Proof. 1t suffices to prove that, if F is a face, then F’ too is a face. We do the proof
e.g. for the case of the polytope M,, the proof being identical for the case of P,. Since
F is a face of M,, there exists a vector w such that w, := Max(w.x: x e M,) is
attained precisely at the points x € F. Define the vector w’ by w;; = —wj; if (i, j) €
d(S,) and wj = w; otherwise. For xe M,, if y = rys,,(x), then w'.x=w.y—
w. X?9 < wy — w. X% since, from Lemma 2.1, y € M,,. Moreover, equality holds
if and only if w.y =w,, ie. yeF, ie. y =3 ;o X% for some o; > 0 with
Y 1<i<k® =1, or equivalently, x = rys,)(¥) = 2.5 cich—g XS5, that is, x € F'.
This shows that F’ is a face of M, O

Lemma 2.3. Any set of four distinct cut vectors is affinely independent.

Proof. (i) Any two non zero cut vectors X°®, XD are linearly independent. Indeed,
if e XS + pX%T) = (, then, computing the value of the left hand side at coordinate
(i, /) € 6(S) — 8(T) yields « = 0 and thus § = 0 too.

(ii) Any three non zero cut vectors are linearly independent. Indeed, assume that
vi=oX®® 4 XD 4 yx°O = 0, If §(S) & 6(T)U 6(U), computing the value of v
at coordinate (i, j) € 8(S) — (6(T)U 8(U)) yields that « = 0 and thus we deduce
f =7 =0 from case (i) above. So we can suppose that §(S) = S(T)Uo(U), (T) <
S6(S)US(U) and 8(U) = (S)US(T). Take (i, j) in 6(S) — &(T), so (i, j) € 8(U); by
computing v;, we deduce that o + y = 0. Similarly, we obtain that « + f = 0 and
B+ y=0implying thata = f =y = 0.

(iii) Take now four distinct cuts §(S), 8(T), 6(U) and 6(V) and scalars a, S, 7,
4 such that « + f+y + A =0 and aX*® 4 XD 4 X0 41XV =0, If e.g.
8(V) = @, then we can conclude by applying case (ii). Otherwise, by applying the re-
flection 7, to the above relation, we obtain that aX*S2Y) 4 SXHTAY) 4 o xUAY) —
0, which, using again (ii), yields thata = f =y = 0. ]
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A polytope P is said to be k-neighborly (see [12]) if, for any subset X of k vertices,
the set F = Conv(X) is a face of P with vertex set X, i.e. X determines a simplicial
face of P. Let ¢,(P) denote the set of faces of dimension d of P.

Theorem 2.4. Any set of d distinct cut vectors determines a simplicial face of M, and,
thus, also of P, for 1 <d < 3.

Corollary 2.5. P, is 3-neighborly. O
Corollary 2.6. ¢,(P,) < ¢,(M,) for 0 <d < 2. [

Proof of Theorem 2.4. In view of Corollary 2.2, it is enough to prove the result for
a set of cuts containing the empty cut. The case d = 2 follows from [14], but it can
be checked directly as follows. Given a non empty cut 5(S), define the vector w by
w;; = 0if (i, j) € 4(S) and w;; = — 1 otherwise. Then, for x € M,,, w.x < 0 with equal-
ity if and only if x;; = 0 for (i, j) ¢ 6(S). Since x satisfies (1.1), then, for any i, j € S and
h¢S, xy < x; + xp = x5 and x;, < x;, + X; = X and thus x;, = x;,. Therefore,
x; = o for all (G, j) € 8(S), for some 0 < a < 1, i.e. x = aX*®. Hence, Conv(0, X*®)
is a face of M,,.

We now turn to the case d = 3. We prove the result for the three cuts 4(S),
8(T)and 6(). Set A=SNT,B=([1,n] = S)NT,C=SN([L,n]—T)and D =
([1,n] — S)yN([1,n] — T). We suppose first that the four sets 4, B, C, D are non
empty. Take some points a € 4, b € B, ¢ € C and d € D. We define the vector w by
Wap = Wae = Wog = Weg = — 1, Wyg=wy,, =1, w;=—1if (i, j)e E:= A>UB*UC?U

- D? and w;; = 0 otherwise. Thus, w. X°® = w. X*® = 0. Take x € M,; then, w.x =
=Y apeeXij + 0 Where 0, = Xgq + Xpe — Xgp — Xoe — Xpg — X4 Verifies the follow-
ing relations.

(i) 02 = (Xoa — Xae — Xea) + (Xpe — Xeg — Xpa) + Xea — Xap < Xea — Xgp
(i) 05 = (Xoa — Xap — Xpa) + (Xpe — Xap — Xac) + Xap — Xeg < Xgp — Xeg
(lll) 0y = (xad — Xae xcd) + (xbc — Xap xac) + Xge — Xpg < X = Xpg
(iv) 03 = (Xaa — Xap — Xpa) + (Xpe — Xpa — Xea) + Xpa — Xge < Xpg — Xge
From (i)—(iv), we deduce that ¢, < 0 and thus w.x < 0. Moreover, if w.x = 0, then
YiperX; = 0and o, = 0. Since 6, = 0, we deduce from (i)—(iv) that x,, = x.;:= o,
Xpe = Xpg = P, Xog = Xpe = o + B. Since Y g X; = 0, we have that x;; = 0 for all
(i, j) € E. Next, using again the inequalities (1.1), we obtain that x; = « for all
(,jJe AxBUCx D, x;=p for all (i,j)e Ax CUB XD, x;=o+ f for all
(i,j)e A x DU B x C.Hence,x = aX’® + pX*Dholdswith0 < o, fanda + f <
1. We suppose now that some of the sets 4, B, C, D is empty. Since 6(S), 6(T) are
distinct non empty cuts, at most one of the sets 4, B, C, D can be empty. Suppose,

for instance, that D is empty. Then, w is defined by w,, = w,, = —1, w; = —1 for
(i, j) € A*UB*U C?, w,, = 1 and w; = 0 otherwise. The proof is then identical (but
simpler). O

We conjecture that Corollary 2.6 can be generalized to low dimension faces.

Conjecture 2.7. For d < log,(n), ¢,(M,) < ¢,(P,).
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Given k cuts 3(S,), ..., 6(S;), we say that they are in general position if each of
the 2 intersection classes C(A) := ([ };c 4 S;) N (ﬂ,-éA ([1,n] — §;)) is non empty for
any subset 4 of [1,k]. Then, k < log,n and it is easy to see that the associated cut
vectors are linearly independent. Note that, if the cuts 6(S,), ..., 8(S;) are in general
position, then the cuts 6(S; A S,), ..., 8(S,—; A S,) are also in general position. The
next Theorem 2.8 is a partial contribution to Conjecture 2.7. In view of the pre-
ceeding remark and of Corollary 2.2, Theorem 2.8 implies that any k cuts in general
position together with the zero cut also determine a simplicial face of M,,.

Theorem 2.8. Let 5(S,), . . ., 6(Sy) be k distinct cuts which are in general position. Then,
they determine a simplicial face of M, and, thus, also of P,.

In order to prove Theorem 2.8, we introduce some notation. Given an integer
k < log,n, let X be a set of 2* distinct points of [1,#n]. Hence, the elements of X can
be indexed by the subsets of [1,k], ie. we can write X = {i(A): A = [1,k]}. If
x € R"*=D2_for the sake of simplicity in the notation, we write x4 5 for denoting
Xy ayip for A, B subsets of [1,k]. We set 6,(x) = 4ap=xXa.8 — 2 1ann=1 X4.5-
Hence, 0, (x) can be seen as the sum of the components of x along the main diagonals
of the k-dimensional cube minus the sum of the components of x along the edges
of the cube.

Lemma 2.9. With the above notation, if x € M, then a,(x) < 0 and 6,(x) = 0 if and
only if there exist some scalars oy, ..., o suchthat 0, > 0 for 1 <i<k,a, +- +
o <1and

(2.10) x, p= Y. o for all subsets A, B of [1,k].
iec AAB

Proof. First, it is easy to check that, if condition (2.10) holds, then g,(x) = 0 indeed
holds. We now show that, for x € M,, g,(x) < 0 and, if equality holds, then one can
find scalars a;, ..., 2, = 0, o, + --- + o, < 1, such that x satisfies (2.10); let us call
(H,) this property. We prove that property (H,) holds by induction on k > 2. The
proof in the case k = 2 is easy and, in fact, is already contained in the proof of
Theorem 2.4 (case d = 3). We assume that (H,_,) holds for k > 3 and we prove that
(H,) holds. The idea is to partition the set X = {i(4): 4 = [1,k]} of size 2* into the
two sets X' = {i(4): A = [1,k] and k ¢ A} and X" = {i(A): A = [1L,k] and k € A},
each of size 271; so this partition is done by distinguishing the point k. Correspond-
ingly to the sets X’, X", we set:

! —
Op—1(X) = Z X4,8 Z *4,B
k¢ A, B, [AAB|=k—1 k¢ A,B,|[ANB|=1
and
"
0i-1(x) = Z Xq,B— Z X4,B
ke d,B,|AAB|=k~1 keA,B.[AAB|=1
Then,

0x(X) = 04— (X) + 071 (x) + Wi(x) — Wy (x) — W3(x) — W, (x),
where W,, W,, W, W, are defined as follows.
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Wi(x) = Z XA,11,K]-4 = k;A XAU k), [1,k—1]-A>

KA
W (x) = Z X4,40 k)
Ked
Wi(x) = Z X4,[1,k-1)-4 = Z X4,11,k—1]-4
kk—i¢A k¢Ak—1eA
and
Wilx) = Z XAU{K}[1,k0-4 = Z X AUk} [1, k-4
kk-1¢Ad k¢Adk—1eca

Then, one can check that 6,(x) can be written in the following two ways:

0 (x) = 01 (x) + o1 (x) + k;A (%4, 11,K1-4 = X4, 4U k) — XUk}, [1,k1-4)

+ Y (a0 (k3 11,51-4 — XA, (1, k-1]-4)
kgASZ1ea

and

0, (x) = 01 (X) + a1 (x) + & (XAU ), [1,k-11-4 — Xa,[1,k~1]-4 — X4, 40 {k})

+ Z (Xap1, k13-4 — xAU{k},[l,k]—A)'
k¢ A k—1cA

Since x € M,, the first sum (being a sum of homogeneous triangles) in each of the
above expressions of ¢;(x) is non positive. The second sums in each of the above
expressions are opposite quantities, hence, 0,(x) < 0 indeed holds. Furthermore, if
o,(x) = 0, then g;_;(x) = g;_;(x) =0 and

(0 Xa,11,00-4 — Xa,4Utk) = XaUgpi1.01-4 = Xa,11,6-11-4 forany A < [1k — 1}
From the induction assumption (H,_,) applied to o;_,(x) and o;_; (x), we deduce,
respectively, that there exist k — 1 scalars o)(k), ..., og_;(k) such that x, 5 =
Y icanp (k) for A, B < [1,k — 1], and there exist k — 1 scalars of(k), ..., az_; (k)
suchthatx, 5 = ;_  ap/(k)for A, B = [1,k] with k € A, B. In particular, x,, Gy =
a;(k) for all i # k; also, Xpy g, r1,60- iy = & (k) for all i # k. In what preceeds, we have
distinguished the point k of [1,k], but any point s of {1,k] could have been
distinguished as well and, hence, we can define similarly the scalars o(h) and af (h)
for any i # h in [1,k]. In other words, we have x, 4 =oj(l) =(2) =" =
wi—1)=oi+1)="=aik):=a >0, forany 1 <i<k Also, x;; 1,641 =
a)=-=a/i—1)=ao/(i+ 1)="--=0a/(k):=0a = 0,forany 1 <i < k. Using
relation (i), we deduce that Y ;1 ,—11% = Y iep1p—1) % 1€ 0% — o = 4 ;o (0 — af);
this relation remains valid for any index h instead of k, so, by summation, one
obtains that Y, _; . (o — «f) = 0, and, therefore, a; = o := a; forall 1 <i < k. We
conclude by checking that (2.10) holds, i.e. X, p = Y ;. 45 for any subsets 4, B of
[1,k]. Indeed, this follows from the induction assumption if there exists a point
hin ANB or a point hin [1,k] — AUB. Otherwise, B=[1,k] — A4, eg k¢ 4
and, using (i), we obtain that X, ;; ;-4 = X4 gvie; + Di<i<k1 % = D1<ick® =
Y icanqr.m-4 % < 1. Thus, we have proved that property (H,) indeed holds. O

Proof of Theorem 2.8. Since the k cut 8(S,), ..., §(S;) are in general position, each
intersection class C(4) = ([Vic 4 S) N{((Nig4([1. k] — S;)) is non empty, for any sub-
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set A of [1,k]. We can choose a point i(4) belonging to C(A) and, thus, construct a
subset X = {i(A): A < [1,k]} of 2* points of [1,n]. We now define a vector w as
follows: w; = —1 if i, j belong to a common intersection class C(A4), w; = —1 if
(i, j) = (i(A),i(B)) for some subsets A, Bof [1,k] with [AAB| =1, w; = 1if(i,]) =
(i(A), i(B)) for some subsets A, B of [1,k] with |4 A B| = k, and w; = 0 otherwise.
Then, for x € M,, using Lemma 2.9, w.x = 6,(%) = Y sc(1.41 i< jii.jecin Xy < 0.
Furthermore, if equality holds, then x;; = 0 whenever i, j belong to the same
intersection class and, thus, since x satisfies the triangle inequalities, x; = x, g for
all i € C(A), j € C(B). Also, from Lemma 2.9, there exist scalars o, ..., o, > 0 with
Y cick® < lsuchthatx, = ;. 4ap for A, Bsubsets of [1,k], or, equivalently,
x =Yy ;<% X5 This shows that the cuts 4(S,), ..., 3(S) together with the zero
cut determine a face of M,,. O

Remark 2.11. Let M, denote the solution set of all the triangle inequalities (1.1), (1.2)
passing through a given fixed node, say node 1; then, P, € M, = M, < [0, 1]""" V2,
Padberg ([14]) proved that any two cut vectors are also adjacent on the polytope
M.. In fact, Padberg proved this result in the context of the boolean quadric
polytope which is a linear bijective image of the cut polytope. Therefore, the
1-skeleton of P, (its collection of vertices and of edges) is contained in the 1-skeleton
of M, and thus, alse, in the t-skeleton of M,. In other words, both M,, M, have the
Trubin property (see [19]) with respect to P,.

Let us consider the following question. What is the minimum number &k = k(n)
such that there exist & cuts that do not lie on any triangle facet? Clearly, 3 < k(n) <
n — 1, because the n cuts 8({1}), ..., 8({n}) do not lie on any triangle facet. We can
restrict our attention to homogeneous triangle facets, because, if ky(#) is the smallest
integer such that there exist k,(n) cuts that do not lie on any homogeneous triangle
facet, then ky(n) < k(n) < ko(n) + 1 holds clearly. The number ky(n) admits the
following alternative interpretation. A family of cuts {(S,),...,d(S,)} does not lie on
any homogeneous triangle facet if and only if the family {(S;,[1,#] — §,)....,
(S, [1,n] — S,)} of 2-partitions of [ 1, n] satisfies the property (+) below.

(%) for all distinct A, i, j in [1,n], there exists a partition (S,,[1,n] — S,) such that
heS,andi, je[l,n] — S,

In fact, in these terms, the quantity k,(n) has been investigated in ([15], Proposi-
tion 2.6, Remark 2.8, where it is denoted by M (n; 3, 2)). It is shown there that, for n
large, k,(n) is of the order of log, n. Therefore, for n large, k(n) is in O(log, n). This
might be an indication that log, n is indeed the limit value for validity of Conjecture
27.

We conclude the section with a few remarks. Let p denote the largest integer
such that any set of p cut vectors is affinely independent. Then, from Lemma 2.3,
p >4, and p < 7, because there exist 7 cuts whose incidence vectors are linearly
dependent. Indeed, X2(11:20 4 x2(1.3D 4 xa((2.3) — xo1}) 4 xo(2) 4 xo(3) 4
X?11:2.3) pholds. One can observe also that the set of cuts X = {5({1}),8({2}),
3({3}),8({1,2}),6({1,3}),6({2,3}),5()} does not determine a face of M,, neither
of P,. Indeed, if Conv(X) is a face of P,, then there exists a vector w such that
0 = Max{w.x: x € P,) is attained precisely at the vectors x € Conv(X); thus, 0 =



The Cut Cone I1I: On the Role of Triangle Facets 133

w. X%1.2.3D implying that X%{1:2:3D e Conv(X), a contradiction. Furthermore,
the smallest face of M, (or P,) containing X has dimension 6 and is not simplicial,
since it contains also X*{1:2:39_Therefore, P, is not 7-neighborly and it has some
non simplicial faces already for dimension 6. Note however that P, has some
simplicial facets (e.g. Example 5.6 below, see [7]).

3. How “Flat” Is the Cut Polytope?

A certain parameter of the shape of a polytope is the radius of the largest inscribed
ball. Let r, denote the radius of the largest ball that can be inscribed in the cut
polytope P,. How does r, change when n groes? Is it increasing, constant or
decreasing? The first alternative can be easily excluded, but we are not able to decide
between the latter two. However, we conjecture that r, remains, in fact, constant
and-is equal to (2\/ ) L.

The barycentrum b of the cut polytope P, is the point defined by b =
(Y scrz.m X227, hence b = (1/2,...,1/2).

Lemma 3.1. The distance of any triangle facet from the barycentrum of P, is equal
to (2/3)7".

Proof. The distance from a point (y,,...,v,) to a hyperplane a,x; + -+ + a,x, < b
is given by the formula

(3-2) layys + - + a,y, — bl/llal

where Ja|? = a? + -+ + a2
Hence, the distance of the triangle facet x;; — x; — X < 00r x;; 4 x5 + X < 2
from the barycentrum b is equal to (2\[ ) 1 ]

We conjecture that this is the smallest possible distance of a facet from the
barycentrum.

Conjecture 3.3. The distance of any facet of the cut polytope P, from its barycentrum
isatleast (2 \/3)‘1, independently of n, this smallest distance being attained precisely
by the triangle facets.

It is enough to prove the validity of Conjecture 3.3 for the homogeneous facets of
P,. Indeed, the two facets defined by v.x < v, and its switching by the cut 4(S),
v¥.x < vy — v. X%, are at the same distance from the barycentrum b. We can only
prove that the above conjecture is valid for all pure facets, i.e. the facets defined by
an inequality v.x < 0, where all components of v are 0, 1 or —1.

Theorem 3.4. Let v.x < 0 be an inequality which defines a facet of P, such that the
components of v belong to {0,1, —1}. Then, the distance of this facet from the
barycentrum (1/2,...,1/2) is at least (ZJ )"1. Moreover, this smallest distance is
realized precisely by the triangle facets.

In order to prove Theorem 3.4, we prove a more general result, which gives a lower
bound on the maximum cut in a weighted graph with weights 1, —1 on its edges.
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We recall some notation. Let G = (V, E) be a graph with weights c(e), e € E, on its
edges. We set ¢(E') := ZeE g c(e) for any subset E’ of E and we denote by MC(G, c)
the maximum weight ¢(6(S)) of a cut, i.e. MC(G, ¢) = max(c(3(S)): S = V). Let us
remark that a special case of Theorem 3.5 below, when all weights are 1, has been
first proved by Edwards ([10]). An algorithmic proof has been given later by Poljak
and Turzik ([17], [18]). We will use the method of the latter proof.

Theorem 3.5. Let G = (V, E) be a connected graph on n vertices with edge weights
c(e)e {1, — 1} for e € E. Then,

(3.6) MC(G,c) > ¢(E)2 + (n — 1)/4.

Proof. We proceed by induction on n, the number of vertices of G. The statement
is trivially valid if n = 1 or 2. We suppose that n > 3. We distinguish two cases.

Case (i). Assume that G is not 2-connected, i.e. G has an articulation vertex.
Let G,(V,,E;), i = 1, 2, be connected subgraphs of G such that E=E,UE, and
[V,NV,| =1, set n, = |V, so n = n, + n, — 1. By the induction hypothesis, (3.6) is
valid for both G, and G,, and one easily concludes that it is valid for G as well, because
MC(G,c) = MC(Gy,¢) + MC(Gy,¢) = c(E )2+ (n, — 1)/ + ¢(E,)/2+ (n,—1)/4 =
c(E)/2 + (n — 1)/4.

Case (ii). Assume that G is 2-connected. Then, one can show the existence of
an edge uv of G such that the graph G’ = G\{u,v} (i.e. the nodes u, v are deleted)
is still connected. The proof of this statement is given in ([17], case 3 in the
proof of Theorem 1). We consider two subcases, depending on the value 1 or
—1 of c(u,v). Suppose that c(u,v) = 1. Let S be a subset of the nodes of G’
which realizes the max-cut of G, ie. ¢(6(S)) = MC(G',c). Note that MC(G,c) >
max(c(8(S U {u})), ¢(3(5 U {}))) = (c(8(S U {u})) + c(3(SU {1}))2 = MC(G',¢) +
c(t,0) + (Y u., j=u.» C5)/2. By the induction hypothesis, we have that MC(G',c) >
c(E")/2 + (n — 3)/4. Hence, MC(G,c) = c(E)/2 + (n — 3)/4 + c(u,v)/2 = c(E)/2 +
(n — 1)/4.

Suppose now that c(u,v) = —1. Consider the pair of cuts 6(SU {u,v}) and
5(S) instead of 5(SU {u}) and 6(S U {v}). As in the previous subcase, one can check
that MC(G, c) > (c(8(5)) + ¢(3(S U {w,0})))/2 = MC(G'.0) + (Tisuvnjouo )2 =
c(E)2 + (n — 3)/4 — c(u,v)/2 = c(E)2 + (n — 1)/4. 0

Corollary 3.7. Let ¢ = (¢;j); <i< <y € {0,1, =1}"""V2, Then,

(3.8) MC(K,,c) = max(c(d(S)): S = [1,n]) = ( Y cij>/2 + el (2\/5)‘1.
1<i<j<n

Moreover, if ¢ # 0, then equality can only occur for ¢ such that c¢; # 0 for

i, j€ {h,k,1} and ¢;; = 0 otherwise, for some 1 <h <k <I<n.

Proof. Let G = (V = [1,n], E) denote the subgraph of K, formed by the edges (i, j)
with non zero weight. If G is connected, then, from relation (3.6), MC(G,¢) >
¢(E)2 + (n — 1)/4. Now, (n — 1)/4 = 2./3) (2)¥* = (2./3) " |lc|,, with equality be-
tween the first and the last term if and only if n = 3 and c;; € {1, —1} for all i, j.
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Hence, (3.8) follows. If G is not connected, let G,(V},E;), ..., G(V, E,) be the
connected components of G and let ¢; denote the restriction of the vector ¢ to the
pairs (i, j)of V,,i = 1,..., k. Ttis easy to see that |c|| < |lc;]| + -+ + lic; || and hence
(3.8) is valid for G since it is valid for each connected component. Moreover, if
equality holds in (3.8), then | c|| = |l¢, || + - + |lc, ||, implying that all ¢; except one
are zero (i.e. G; is isolated vertex), say ¢; # 0, and hence |V;| = 3 and ¢;; € {1, —1}
fori, je V. |

Proof of Theorem 3.4. Let v.x < 0 be an inequality that defines a facet of P, with
v;€{0,1, —1} for all 4, j. Consider the max-cut problem on K, with edge weights
c;;on the edges. Since v. x < Ois valid and facet inducing, we have that MC(K,,c) =
0 and, from (3.8), MC(K,.¢) = (3.1 <i<j<nCy)/2 + (2\/5)‘1 llc]l. Note that v.b =
(31 <i<j<n€i)/2 < 0. Therefore, we deduce that || <<, Cl/2 > (2\/5)'1 lc]l and,
hence, using formula (3.2), the distance of the facet v.x < 0 from the barycentrum
b is at least (2\/3)_1. From Corollary 3.7, equality can only occur if v.x <0 is a
triangle facet. O

Let us remark that Conjecture 3.3 would follow if one could prove Relation (3.8)
for arbitrary edge weights (not necessarily 1, —1, 0), i.e. the following Conjecture
3.9 implies Conjecture 3.3.

Conjecture 3.9. Let ¢ =1(Cy)i<i<jen- Then, MC(K,,0) > (Y1 cicjenty)/2 +
@3 fel.

Remark 3.10. We checked, by direct computation, that the following class of hyper-
metric inequalities satisfies Conjecture 3.3. Hypermetric inequalities Hyp,(by,. .., b,)
are of the form ) ;_;<;.,bbx; <0, where by, ..., b, arc integers whose sum
b, + - + b, is equal to 1. They are valid for the cut polytope P, and facet defining
for large classes of parameters b (see [S], [7], [&]).

4. The Lattice of Even Cuts

A cut 6(S) is called even (resp. odd) if both sets S and [1,n] — § are of even (resp.
odd) cardinality, so n must be even. The even (resp. odd) cut polytope EvP, (resp.
0dP,), defined as the convex hull of all even (resp. odd) cut vectors, was studied in
[9]; in fact, OdP, = r; 4,(EvP,) for any odd cut 5(4). Those polytopes share some of
the properties of P,. In particular, for n # 6, their only symmetries are the permuta-
tions of [ 1, n] together with the reflections 7,,, but now only for the even cuts 4(S).
Let L, denote the lattice generated by the cut vectors, i.e. L, = {) sc[1,, 356(S): as
integer for S = [1,n]} and let LE, denote the lattice generated by all even cut
vectors; L, is called the cut lattice, LE, the even cut lattice. Thus, LE, is a sublattice
of L,. The cut lattice L, admits the following simple characterization.

Proposition 4.1 ([1]). Given d € R"""V2 then d belongs to the cut lattice L, if and
only if d has integer components and satisfies the following condition:

(42) dj+dy +dyiseven forall 1 <i<j<k<n.
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Given a partition of [ 1, n] into k non empty disjoint subsets S, ..., S, the k-cut
6(Sy,...,38;) is the set of pairs (i, j) such that i€ S,, j € S, for distinct a, b in [ 1, k].
So, the 2-cut §(S,[1,n] — S) is the usual cut 5(S). Note that the lattice generated by
the incidence vectors of all k-cuts for k > 2 is simply the ring of integers Z"* 172,
because X°(P 4 xoUiD _ xodi Ukltn={bJ) = ¢ (the coordinate vector with all
zero components except one component equal to 1 in position (i, j)) for any i, j in
[1,n].

The dual lattice L} of L, too is well known, L¥ coincides with the lattice
generated by the half triangles (e; + e, + ¢;)/2 for 1 <i< j<k<n, and the
coordinate vectors e; for 1 <i < j < n. The less trivial inclusion is easily checked
as follows. If d € L¥, then 2d;; = d. X*® 4 4. x°U) — g x°!:3) s integer and so
can be written as 2d;; = y;; + 2z;; with y;; € {0,1} and z,; integer for any i, j. Hence
y. X% is even for any cut yielding that y is integer combination of triangles and
double unit vectors 2e;; and thus d is integer combination of half triangles and unit
vectors. In other words, given a vector d, d. X?® is an even integer for any cut 6(S)
if and only if 4 is linear combination of triangles (e; + e, + e;) and double edges
2e;. Note that the lattice generated by the triangles and the double edges coincides
with the lattice generated by the incidence vectors of all cycles of the complete graph
on n nodes. As application, the separation problem for the lattice L, can be solved
in polynomial time. Given a vector d, it consists of deciding whether or notd € L,
and, if not, of finding a vector ¢ € L¥ such that ¢.d. is not an integer.

Given a subset A of [1,n], we define the following linear form Q,.x:=
lei<j5n,(i,j)¢r§(A) Xy — lei<j5n,(i,j)56(A) x;- For i, jin [1,n], we also set Q; := Q,
and Q; ;:= Qy; ;. For any even cut 6(S), Q,. X°® = z(2a — n — z) where a = | A|
and z=2|ANS| —|S| is an even integer, say z =2y, and thus, Q,.X°S =
4y(a — n/2 — y). Therefore, the following relations hold.

(4.3) if A = N = [1,n], then Qy. X°® = 0 (mod 4) for all even cuts §(5)
(4.4) if a — n/2 is odd, then Q. X°*® = 0 (mod 8) for all even cuts §(S)

Hence, from relations (4.3), (4.4), one can derive easy necessary conditions for
membership in the even cut lattice LE,,. In fact, these conditions, together -with the
condition (4.2) on the perimeter of triangles, are sufficient for characterizing lattice
points in LE, and, even more, it is sufficient to consider the condition derived from
(4.4) by takinga = 1 if n = 0 (mod 4) and a = 2 if n = 2 (mod 4).

Theorem 4.5. Let n be an even integer, n > 6. Given d € R"""V72, then d belongs to
the even cut lattice LE, if and only if d has integer components and satisfies the
conditions (4.2) and (4.6), (4.7) below.
(46) Qy.d= Y d;=0(mod4)
1<i<j<n
(4.7) Q;.d =0(mod8) forall1 <i<n,if n=0(mod4),and Q, ;.d = 0(mod8) for
all <i<j<nifn=2(mod4).

Consequently, membership in LE, can be tested in polynomial time. The remain-
ing of the section is devoted to the proof of Theorem 4.5. Given ¢, d € R"™ V72 we
‘setcxdifc —deLE, ie. ce LE,ifand only ifd € LE,.
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Lemma 4.8. (i) 2(e;; + e, + ey + ;) € LE,, for all distinct i, j, h, k in [1,n]
(i) 4(e; + eq), 4(e; + ey) € LE, for all distinct i, j, h, kin [1,n]
(i) 8e;; € LE, for alli, jin [1,n].

Proof. Note first that 3({1,2}) + 3({3,4}) — 6({1,2,3,4}) = 2(ey3 + €33 + €34 +
e,4) € LE,, hence implying assertion (i). Similarly, 2(e,, + e¢,4 + €,5 + €34) € LE,
and 2(e,, + e;3 + e,4 + e3,) € LE,. By combination of these three relations, we
obtain that 4(e,; + e,4) € LE,. Similarly, 4(e,3 + esg) € LE, and 4(e,, + es6) €
LE,, yielding that 8¢5 € LE, and thus stating (iii). Finally, 4(e,, + es¢) € LE, and
4(e,3 + es¢) € LE,, implying that 4(e,, + ¢,5) € LE,, thus concluding the proof.
O

Proof of Theorem 4.5. Take d € R"*"12 with integer components and assume that
d satisfies the conditions (4.2), (4.6), (4.7). We show below that d indeed belongs to
the even cut lattice LE,.

We first remark that we can assume that d has only even components. Indeed,
set F = {(i, j): d; is odd}. From assumption (4.2), F is a complete bipartite graph
and thus, if its node partition is 4 and [1,n] — A, then d’ = d + 6(A) has only even
components. From assumption (4.6), we deduce that 4(A4) is an even cut and, thus,
d~d.

From now on, we suppose that d;; = 0 (mod 2) for all , j. The basic idea is now
to apply some reductions on d using Lemma 4.8. Set E = {(i, j): d;; # 0}. In view of
Lemma 4.8 (iii), we can assume that d;; = 2, 4 or 6 (mod 8) for all (i, j) € E and, in
view of Lemma 4.8 (ii), we can assume that d;; = 4 (mod 8) for at most one pair
(i, e E.

Claim 4.9. We can assume that E is contained in the set E' = {(2,3)} U{(L,i);
2<i<n} ’

Proof. Tt is based on the reduction of d by repeated applications of Lemma
4.8 (i). First, we can assume that d; = 0 for all 3 <i < j <n. Indeed, this can
be achieved by doing the following reductions on d. If d; = 2 (mod 8), then re-
place d by d — 2(e; + e; + e,; + e,,); if d;; = 6 (mod 8), then replace d by d +
2ey; + e+ ;5 + e55)and, if dyy = 4 (mod 8), thend ~ d + 4(ey; + ¢; + €5 + €1).
We can also assume that d,; = 0 for 4 < i < n. For this, it suffices to replace d by
d+ale; + ey +e,5+e3)witha=—2ifd,; = 2(mod 8),a = 4ifd,; = 4 (mod 8)
and a = 2ifd,; = 6 (mod 8). Similarly, we can assume thatd;; = 0for4 <i<n. O

Claim 4.10. We can assume that d,, = d,; =0 (mod4), d,=d,s==d,,'=a
(mod 4) and d,, = a(n — 3) (mod 4).

Proof. We now use assumption (4.7). We first show that d,, = 0 (mod 4). Indeed, if
n=0(modd), then Q,.d + Q,.d = —2d,, = 0 (mod 8) and, if n = 2 (mod 4), then
03,-d+Qy,.d=—2d, =0(mod8). Then, d,, = d,; (mod 4), because, forn = 0
(mod4), Q,.d—Q;.d=2(d,;—d;)=0 (mod8) and, for n=2 (mod4),
05,.d—03,.d=2d;3—d,)=0 (mod8). Finally, for 5<i<n, for n=0
(mod4),Q,.d — Q;.d =2(d,;, — d,,) = 0 (mod 8) and, for n = 2 (mod 4), 0, ,.d —
Q,,;.d=2(dy; — dy4) =0 (mod8). The last statement follows from assumption
(4.6). O
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Claim 4.11. If a = 0 (mod 4) (a being defined in Claim 4.10), then d € LE,,.

Proof. From Claim 4.10, we have that d; = 0 or 4 (mod8) for all i, j. In order
to show that d € LE,, it suffices to verify that the set E = {(i, j): d; = 4 (mod 8)}
is of even cardinality. To see it, note that, for n =0 (mod4), Q,.d = 4|E| —
Y 2cicn2d,; =0 (mod 8) and, for n =2 (mod4), Q, ,.d =4|E| — Y 3_,.,2(dy; +
d,;) = 0 (mod 8), which, in both cases, implies that [E| is even. 1

Let us make the following observation. Set ¢ = 2(e,3 + Y.4<;<n€y:), thenc € LE,
because ¢ = 6({1,3)} — 4({2,3}) + d({1,2}).

Claim 4.12. If a = 2 (mod 4), then d € LE,,.

Proof. Using Lemma 4.8 (ii), we can assume that d,; =2 (mod 8) forall4 <i<n
except at most one such index i. From Claim 4.10, each of d,, and 4,5 is 0 or 4
(mod 8) and d,; is 2 or 6 (mod 8). We distinguish two cases.

We suppose first that d,; = 2 (mod 8) for all 4 < i < n. There are six possible
cases, according to the possible value of (d;,,d,3,d,3) (mod 8); we examine below
all possibilities for this triple.

(i} (0,0,2),then d ~ c and thus d € LE,

(i) (0,0,6), then d ~ ¢ + 4e,5, in contradiction with the fact that d satisfies (4.7)
(iii) (4,0,2), then d &~ ¢ + 4e,,, yielding a contradiction as above

(iv) (4,0,6),thend ~ c + 4ey, + 4e,3 * cand thusd € LE,

(v) (4,4,2),thend ~ cand thusd e LE,

(vi) (4,4,6), then d = ¢ + 4e,;, yielding a contradiction.

Finally, we suppose that d,; =2 (mod 8)for 4 <i < n — 1 and d,, = 6 (mod 8). As
above, we examine the possibilities for the triple (d,,,d,3,d,3) (mod 8) and obtain,
for the cases (0,0,6), (4,0,2) and (4,4, 6) that d € LE,, and for the cases (0,0, 2),
(4,0, 6), (4,4, 2) a contradiction with the fact that d satisfies the assumption (4.7). [J

Remark 4.13. Given an integer t > 2, a cut 4(S) is called a t-ary cut if | S| = 0 (mod t)
and n — |S| = 0 (mod t) holds; so, even cuts are 2-ary cuts. Analogues of relations
(4.3), (4.4) for membership of a vector d in the lattice generated by all t-ary cuts
are as follows: Qy.d = 0 (mod t?) and, for any subset 4 of [1,n] such that | 4] —
njtis odd, setting A" = [L,n] — A, > i< i peaxalt = D?di+ Y icioinenxadi—
Yi<jicajea(t = 1)d;=0(mod 21%).

5. Do All Facets “Come” from-Triangles?

We give below two properties that we have observed on the classes of facets of
P, known so far. Let v € R"™ Y2 and v, € R. Let [1,n] = 1, U---U I, be a partition
of [1,n] into p parts, define v’ € RP?™V2 by vy, =3,y o vy for 1 <h <k <p,
one says that v’ is obtained by collapsing v. Collapsing preserves validity, namely,
if the inequality v.x < v, is valid for P,, then the inequality v'.x < v, is valid for

P, ([5D).

Property 5.1 (parity conjecture). Let v. x < v, be an inequality defining a facet of P,.
Then, v. X*® is an even integer for all cuts &(S) or, equivalently, the vector v belongs
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to the lattice generated by the triangles ¢;; + e;, + e; and the double edges 2e;; for
distinct i, j, k in [1,n].

Property 5.2. Let v. x < 0 be an inequality defining a facet of P,. Then, it collapses
to some triangle facet.

Some easy observations on Property 5.1.

(1) The switching operation preserves Property 5.1, hence it is enough to check
Property 5.1 for homogeneous facets, i.e. with vy = 0.

(i) Property 5.1 is preserved under collapsing; namely, if a facet inducing
inequality v.x < 0 has property 5.1, then any collapsing of it, v". x < 0, has it too.
Indeed, if v is integer combination of triangles and double edges, then so is v’,
because any collapsing of a triangle is a triangle or a double edge.

(i) Both assumptions of validity and full rank are necessary for Prop-
erty 5.1. Indeed, take 2p <n and v.X =G jer1.pIx[1. plUp+1, 251 xIp+1.25) Xif —
Y. pelt.pxip+1. 25 Xi then the inequality v. x < 0is valid but not facet inducing for P,
andv. X°") = —lisnoteven. Also, take 4p < nand v.x =Y o_; o1 Xa141. 2142 —
ZpsisZp—l X2i+1.2i+2, then the inequality v.x < 0 is not valid for P, but there exist
n(n — 1)/2 — 1linearly independent cut vectors satisfying v. x = Oand v. X?1H = {
is not even.

We checked that Property 5.1 holds for the known classes of facets of P, (namely,
parachute facet [7], CW facets [&], Boros-Hammer facet [4], Poljak-Turzik facet
[18]). It is an interesting question to look for a facet of P, that does not enjoy
Property 5.1; a good candidate is some inequality of theformv.x = Y o px; < vg
where E is a regular graph of odd degree and v, is the maximum size of a cut.

Similarly, we checked that Property 5.2 holds for most known classes of facets.
Note that a given facet may collapse on different triangle facets. Also, Property 5.2
does not extend to multicut polytopes.

Asillustration of the parity conjecture, we give below the explicit decomposition
of some facets as linear combination of triangles and double edges (i.e. degenerated
triangles). We use the following notation. We set T(, j; k) := x;; — x3 — xj. The
facets we consider are supported by an inequality of the form v.x < 0.

Example 5.3. (a switching of) the bicycle odd wheel inequality ([3]). Then,
v.xX = < Z Xii+1 + x2t+2,1> + Xar44,2045 — Z (X2t44,i T X2045,1)
1<i<2t+2

1<i<2t+3

= Y (TGi+t+52t+4+ TGi+t+22t+5)

1<i<t+1

+ T(t+2,2t+3;2t+4)— T(t + 2,2t + 5,2t + 4).
Example 5.4. The parachute facet ([7]).

v.x = Z X5 — Y (Xoi + Xoi + Xpr + Xd) — Xpges

G, )eP 1<i<k—1

where k is an odd integer and P denotes the edge set of the path (k,k — 1,...,2,1, 1,
2,...,(k—1),k'yand
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v.x= Y (TGi+ Lay)+ TG0+ 1);a)) + T(1,1:0) — Tk, k';0)

1<i<k—1

where a; = k, a,, = k’ for i odd and a;, = a;, = 0 for i even.

Example 5.5. The facet Gr, ([7]). Then,

v.x = Z xij+x56+x57—x67”x16"‘x36“x27“x47—2< Z x5i>
1<i<j<4 147<4

=T(1,2;5) + T(1,3;5) + T(1,4,6) + T(2,3;7) + T(2,45) + T(3,4;5)

— T(6,7;5).
Example 5.6. A hypermetric facet ([7]). Then,
v.x =Hyp,(—(n—4),-1,1,...,1) = — Z (n—4)xq; + x5
3<ign
- Z XZi + Z X,J
3<i<n 3<i<j<n

and

v.x=—(ln/2] = 2)2x, + s Z_< TG, j; o) — To,
<i<j<n
where a;; = 2if (i, j) = (2t + 1,2t + 2) for 1 <t < |n/2] — 1, and o;; = 1 otherwise,
and T, = T(2,n;1)if nis odd and T, = 0 if n is even.

We consider also 0" . x =1 —4) (X, +X1,)— 2.3 cicn—1 B —DX (i — Y 3 cicnt X2i +
Xow + Y a<i<jenXy — 2.3<i<n—1 Xin- Thus, the inequality v'.x <0 is a switching
of the inequality v.x < 0. Also, v'.x = —2([#/2] = 2)X15 + Y 3<i<jen T0, jst5) +
Y a<icn—t T, ay50) — Ty, where Ty = T(1,n;2) if nis odd and T; = 0if n is even.

Actually, in Examples 5.3, 5.4, 5.5 and case n = 5, 6 of Example 5.6, we have a
“strong” triangulation of the facets, i.e. all coefficients are + 1 except one coefficient
—1 in the linear decomposition. This implies, in particular, that all homogeneous
facets of P; admit a strong triangulation.

6. The Hypercut Polytope

Given a subset S of [1,n] and 2 < p < n — 1, the p-hypercut 6,(S) is the set of all
p-tuples (iy,. .., i,) of distinct points of [1,n] such that both sets {iy,...,i,}N S and
{is,..., 1,3 N([1,7] — §) are not empty. For p = 2, the 2-hypercut 6,(S) is the usual
cut 6(S). The p-hypercut polytope HP(p), is the convex hull of the incidence vectors
of the p-hypercuts J,(S) for all subsets S of [1,n], so HP(p), is a polytope in R™ where
m = (3) = n!/((n — p)'p!). Therefore, HP(2), = P,. In fact, as we see below, the
3-hypercut polytope HP(3), is the image of the cut polytope P, under a linear
one-to-one mapping. For n > 5, p = n — 1, one checks easily that the vertices of
HP(n — 1), are the vectors 0, 1 =(1,...,1), 1 — ¢; for 1 < i < n, where ¢; is the i-th
coordinate vector in R™. For p = n — 2, the vertices of HP(n — 2), are the vectors
1— X% for 1 <i<nand 1—e¢; for 1 <i<j<nin R V2 Generally, if
p > n/2, the incidence vector of the cut 6,([p + 1,n]) is 1 — e,, . , and, therefore,
HP(p), is full dimensional.
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Consider the map f from R 12 o RM=D®=2/6 defined by y = f(x) with
Vi = (x5 + Xy + x3)/2 for all triples (i, j, k). The map f is one-to-one if n > 5.
Indeed, assume that y = f(x) = 0. Take distinct points i, j, k, h, [ in [1,n]. Then,
X5+ Xy + Xp = X + x5 + X, = 0, yielding that x; + xj = x; + X3 Similarly,
Xi + Xg = Xp, + x; which, together with the preceding relation, implies that x; =
X, Similarly, x;, = x; = x;;, and thus all components of x are equal, implying that
x=0.

It is immediate to see that y = f(x) if x is the incidence vector of the cut 4(S) and
y is the incidence vector of the 3-hypercut §5(S) for any subset S of [ 1, n]. Therefore,
HP(3), = f(P,). Hence, for n > 5, the hypercut polytope HP(3), is a polytope of
dimension n(n — 1)/2 in R"*~D"=2)/€ and its linear description can be deduced from
that of the cut polytope P,, as we recall in Lemma 6.1 below.

Let f be a one-to-one linear map from R” to RY, g > p. Let A denote the
associated p x g matrix such that f(x) = Ax for x € R?. Since f is one-to-one, there
exists a non singular p x p submatrix A, of A. Assume that the rows of 4, are
indexed by the set L and let A, denote the (g — p) x p submatrix of A formed by
the remaining rows, so its rows are indexed by L' = [1,q] — L. For y € RY, set
V1 =)jerand y, = (y;)jcr» 50y = (¥1,¥2). Every row of A, is linear combination
of the rows of 4,, s0 A, = BA, for some (g — p) x p matrix B. One sees casily that
y € R? belongs to the range of f, i.e. y = f(x) for some x, if and only if y, = By,
holds. The following lemma is easy to check.

Lemma 6.1. Let P = {x € R”: Mx < b} be a polytope in RP. Then, its image under
the linear map f is given by f(P) = {y € R%: y, = By, and M(A,)"'y; < b}.

We conclude with the explicit description of some facets of HP(3},. Take p such
that 2p + 1 < n. Then, the inequality Y ; o;<<2,+1 X < p(p + 1) defines a facet of
P, and, therefore, the inequality Y, ;< j<k<2p+1 Vi < P(p + 1)(2p — 1)/2 defines a

facet of HP(3),, because Z1si<j<kgzp+1 Vi = (2p — 1)/2(Z1gi<jg2p+1 x;;) holds.
For instance, for p = 1, the triangle facet (1.2) corresponds to the facet y;; < 1.
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Note added in proof:

Since the paper was not type-set from the last revision, we would like to include some comments
concerning Section 2. The following results should be included:

— The cut polytope F, is not 4-neighbourly

— Any face of P, of dimension less than or equal to 5 is simplicial.



