Simple estimators for dynamic panel data models with errors in variables
Wansbeek, T.J.; Kapteyn, A.J.

Publication date:
1992

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Simple Estimators for Dynamic Panel Data Models with Errors in Variables

by

Tom Wansbeek
and
Arie Kapteyn

Reprint Series no. 88
Research Staff

Helmut Bester
Eric van Damme

Board

Helmut Bester
Eric van Damme, director
Arie Kapteyn

Scientific Council

Eduard Bomhoff
Willem Buiter
Jacques Drèze
Theo van de Klundert
Simon Kuipers
Jean-Jacques Laffont
Merton Miller
Stephen Nickell
Pieter Ruys
Jacques Sijben

Erasmus University Rotterdam
Yale University
Université Catholique de Louvain
Tilburg University
Groningen University
Université des Sciences Sociales de Toulouse
University of Chicago
University of Oxford
Tilburg University
Tilburg University

Residential Fellows

Svend Albaek
Pramila Krishnan
Jan Magnus
Eduardo Siandra
Hideo Suehiro

European University Institute
San Francisco State University
Tilburg University
UCLA
Kobe University

Doctoral Students

Roel Beetsma
Hans Bloemen
Sjaak Hurkens
Frank de Jong
Pieter Kop Jansen

Address: Warandelaan 2, P.O. Box 90153, 5000 LE Tilburg, The Netherlands
Phone: +31 13 663050
Telex: 52426 kub n1
Telefax: +31 13 663066
E-mail: "center@htikub5.bitnet"

ISSN 0924-7874

1992
Simple Estimators for Dynamic Panel Data Models with Errors in Variables

by

Tom Wansbeek
and
Arie Kapteyn

Reprint Series no. 88
13 Simple Estimators for Dynamic Panel Data Models with Errors in Variables
Tom Wansbeek and Arie Kapteyn

13.1 INTRODUCTION

The model considered in this chapter is a rather simple dynamic error components model. Models of this type have been studied by a number of authors, including Nerlove (1967, 1971), Trognon (1978), Anderson and Hsiao (1981), and Sevestre and Trognon (1985). Our assumptions will be fairly conventional, except for the fact that lagged endogenous or exogenous variables are allowed to suffer from measurement error. A variant of this model, not including error components, has been studied extensively in the literature, cf. Aigner et al. (1984). A full treatment of ML estimation in this so-called dynamic shock-error model has been given by Ghosh (1989). Griliches and Hausman (1986) study another variant, namely a static panel data model with measurement error in the exogenous variables.

The analysis of parameter estimation in models of this type tends to lead to rather complicated, if not messy, algebra. Our emphasis is on the use of methods that simplify derivations. The estimators presented can be written down in a transparent way and are easy to compute. Given that we aim at simplicity and tractability, generality is sacrificed whenever thought necessary.

In the *Handbook of Econometrics*, Hans Theil (1983) asked the question ‘Why are matrix methods useful?’ and of course he himself gave a most convincing answer, as one would expect from somebody who contributed so much to econometrics, in terms of both content and method. The present chapter is partly meant as another illustration of how useful matrix methods are.

The set-up of this chapter is as follows. In Section 13.2, we start by
considering a dynamic model, assuming exact measurement. In this context, we derive plims of a broad class of inconsistent parameter estimators and consider the implied consistent estimators in Section 13.3. Variances of these estimators are the subject of Section 13.4. Measurement error is introduced in Section 13.5, where we briefly review some well-known results and give some new ones. Section 13.6 integrates the two themes, bringing measurement error and (simple) dynamics together. Section 13.7 concludes.

13.2 THE DYNAMIC MODEL

For the time being we entertain the simplest possible dynamic model for panel data. This is:

\[y = \gamma y_{-1} + \upsilon_T \otimes \alpha + u, \]

where the symbols have the following meaning: let there be \(N \) households in the panel, each observed in \(T \) time periods. Then \(y \) is the \(NT \)-vector of observed values of some variable. The subscript \(-1\) indicates a one-period lag. By \(\upsilon_T \) we denote a \(T \)-vector of ones; \(\alpha \) is the \(N \)-vector of individual effects, and \(u \ (NT \times 1) \) is the disturbance vector, assumed to be white noise with variance \(\sigma_u^2 \), independent of \(y \). We do not specify whether \(\alpha \) is random or fixed. This issue is avoided since we consider throughout the chapter estimators that eliminate these effects. This elimination is achieved by some matrix \(R \ (NT \times NT) \) that has properties:

\[R(\upsilon_T \otimes I_N) = R'(\upsilon_T \otimes I_N) = 0. \]

(13.2)

Below we will often impose more structure on \(R \), frequently of the form:

\[R = Q \otimes I_N \]

(13.3)

with \(Q = Q' \) a \(T \times T \)-matrix with \(Q \upsilon_T = 0 \). In view of the requirements of Section 13.4 we will use a general \(R \) as much as possible, though.

The central issue is the behaviour of the OLSE of \(\gamma \) in the model where \(R \) is used to eliminate the effects, that is, of
$\hat{\gamma}(R) = \frac{y'R_{y-1}}{y'_{-1}R_{y-1}}$

$= \gamma + \frac{u'R_{y-1}}{y'_{-1}R_{y-1}}/N$

$= \gamma + \frac{l_t(R)}{m_t(R)}$ \hspace{1cm} (13.4)

with, in general,

$l_t(R) = \frac{1}{N} u'R_{y-t}$ \hspace{1cm} (13.5)

$m_t(R) = \frac{1}{N} y'_{-1}R_{y-t}$ \hspace{1cm} (13.6)

where the subscript $-t$ indicates a t-period lag. We also need:

$r_t(R) = \frac{1}{N} u'R_{u-t}$.

The expectations of these variables will be of importance:

$\lambda_t(R) = El_t(R)$ \hspace{1cm} (13.7)

$\mu_t(R) = Em_t(R)$ \hspace{1cm} (13.8)

$\epsilon_t(R) = Er_t(R)$ \hspace{1cm} (13.9)

Under general conditions there holds:

$\plim_{N \to \infty} \hat{\gamma}(R) = \gamma + \frac{\lambda_t(R)}{\mu_t(R)}$ \hspace{1cm} (13.10)

and we now work this out. Throughout, we will only be concerned with plim's that have N go to infinity and take T fixed. This is motivated by the typical panel, which contains observations on many individuals at a few points in time.
13.3 PROBABILITY LIMITS

First an auxiliary result is needed, concerning the \(p_t(R) \):

\[
p_t(R) = \frac{1}{N} Eu'Ru_-
= \frac{1}{N} \sigma_u^2 \text{tr} \left(B'_t \otimes I_N \right)
\]

(13.11)

where \(B_t (T \times T) \) is the \(t \)-period backward-shift operator:

\[
B_t = \begin{bmatrix}
0 & \ldots & 1 & \ldots & 0 \\
& \ddots & \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots \\
& & & & 1 \\
& & & & 0
\end{bmatrix}
\]

(13.12)

for \(t = 0, \ldots, T - 1 \); \(B_0 = I_T \) and \(B_T = 0 \). We can now elaborate \(\lambda_t(R) \). Take model (13.1), lag it by \(t \):

\[
y_{-t} = \gamma y_{-(t+1)} + \epsilon_t \otimes \alpha + u_{-t},
\]

(13.13)

premultiply by \(u'R/N \) and take expectations to obtain:

\[
\lambda_t(R) = \gamma \lambda_{t+1}(R) + q_t(R).
\]

(13.14)

So

\[
\begin{bmatrix}
1 & -\gamma \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots \\
& & & & 1 & -\gamma \\
\end{bmatrix}
\begin{bmatrix}
\lambda_1(R) \\
\vdots \\
\lambda_{T-1}(R) \\
\end{bmatrix}
= \begin{bmatrix}
e_1(R) \\
\vdots \\
e_{T-1}(R)
\end{bmatrix}
\]

(13.15)

Note that \(\lambda_T(R) = 0 \). Solving (13.15) gives for \(\lambda_t(R) \)
\[\lambda_1(R) = (1, \gamma, \ldots, \gamma^{T-2}) \]

\[= \sum_{t=0}^{T-2} \gamma^t \hat{e}_{t+1}(R) \]

\[= \frac{1}{N} \sigma_u^2 \text{tr} \left(R \left\{ \sum_{t=0}^{T-2} \gamma^t B'_{t+1} \right\} \otimes I_N \right) \]

\[= \frac{1}{N} \sigma_u^2 \text{tr} \left(L' \otimes I_N \right) \quad (13.16) \]

where \(L' (T \times T) \) is implicitly defined as the matrix in braces:

\[
L' = \begin{bmatrix} 0 & 1 & \gamma & \cdots & \gamma^{T-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \gamma & \cdots & 1 & 0 \end{bmatrix} \quad (13.17)
\]

When \(R \) has structure (13.3), (13.16) simplifies to:

\[\lambda_1(R) = \sigma_u^2 \text{tr} \ Q L \quad (13.18) \]

and in particular for \(Q = A_T = I_T - 1/T \upsilon_T \upsilon_T' \) the 'within' transformation,

\[\lambda_1(R) = \sigma_u^2 \text{tr} \ A_T L \]

\[= - \frac{1}{T} \sigma_u^2 \text{tr} L \upsilon_T \]

\[= - \sigma_u^2 \frac{P}{1 - \gamma'} \quad (13.19) \]
Another interesting case is to eliminate the individual effect by differencing the data. Then for

\[
D' = \begin{bmatrix}
-1 & 1 & \cdot & \cdot & \cdot & -1 & 1 \\
1 & -1 & \cdot & \cdot & \cdot & 1 & -1 \\
\cdot & \cdot & \cdots & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot & \cdot & \cdots & \cdot \\
-1 & 1 & \cdot & \cdot & \cdot & -1 & 1
\end{bmatrix}
\]

there holds \(Q = DD' \), so

\[
\lambda_1(R) = \sigma_u^2 \text{tr } DD'L
\]

\[
= \sigma_u^2 \text{tr } D'LD
\]

\[
= -\sigma_u^2 (T - 1).
\]

Hence \(\lambda_1(R) \) is independent of \(\gamma \).

After \(\lambda_1(R) \) in the numerator of (13.10), we now consider \(\mu_1(R) \) in the denominator. We make a simplifying assumption of stationarity in the sense that \(\mu_1(R) = \mu(R) \), independent of \(t \). Then

\[
\mu_1(R) = \mu(R)
\]

\[
= \frac{1}{N} \text{E} y' R y
\]

\[
= \frac{1}{N} \text{E}(\gamma y_{-1} + u)' R (\gamma y_{-1} + u)
\]

\[
= \gamma \mu(R) + \gamma \{\lambda_1(R) + \lambda_1(R')\} + \frac{1}{N} \sigma_u^2 \text{tr } R
\]
\[= \gamma^2 \mu(R) + \frac{1}{N} \sigma_u^2 \text{tr} R((I_T + \gamma L + \gamma L') \otimes I_N) \]

\[= \gamma^2 \mu(R) + \frac{1}{N} \sigma_u^2 \text{tr} R(S \otimes I_N) \]

(13.23)

with \(S \) (implicitly defined) the usual AR(1) correlation matrix with parameter \(\gamma \). From (13.23) it follows that

\[\mu(R) = \frac{1}{1 - \gamma^2} \frac{1}{N} \sigma_u^2 \text{tr} R(S \otimes I_N) . \]

(13.24)

For \(R = Q \otimes I_N \) this reduces to

\[\mu(R) = \frac{1}{1 - \gamma^2} \sigma_u^2 \text{tr} QS . \]

(13.25)

Combining (13.10), (13.18), and (13.25) we obtain:

\[\text{plim } \hat{\gamma} = \gamma + (1 - \gamma^2) \frac{\text{tr} QL}{\text{tr} QS} \]

\[= \gamma + (1 - \gamma^2) \frac{\text{tr} QL}{\text{tr} Q + 2\gamma \text{tr} QL} \]

(13.26)

In the two particular cases considered above, we have for \(Q = A_T \) (so \(\text{tr} Q = T - 1 \)),

\[\text{plim } \hat{\gamma} = \gamma - (1 + \gamma) \frac{\phi}{T - \left(1 + 2\phi \frac{\gamma}{1 - \gamma}\right)} \]

(13.27)

and for \(Q = DD' \) (so \(\text{tr} DD = \text{tr} D'D = 2(T - 1) \)).

\[\text{plim } \hat{\gamma} = \gamma - (1 - \gamma^2) \frac{T - 1}{2(T - 1) - 2\gamma(T - 1)} \]

\[= \frac{1}{2}(\gamma - 1). \]

(13.28)
Both estimators are inconsistent. The inconsistency is introduced by the elimination of the effects. Both (13.27) and (13.28) can be used to arrive at a consistent estimator; write (13.27) or (13.28) as \(\text{plim } \hat{\gamma} = f(\gamma) \) and estimate \(\gamma \) by \(\hat{\gamma} = f^{-1}(\hat{\gamma}) \). This is trivial in case of (13.28) and requires numerical methods in the case of (13.27). Expression (13.27) has been derived before (along different lines, and in a somewhat different form) by Nickell (1981).

13.4 VARIANCES

When a consistent estimator is derived by transforming \(\hat{\gamma}(R) \), the next question is one of second-order properties. In order to say something about asymptotic distribution, the essential step is to derive the variance of \(l_i(R) \). We do so under the assumption of normality of \(u \).

The method we use for easy computation is that of 'repeated conditioning' as introduced by Merckens and Wansbeek (1989). To appreciate this method it is easiest to consider what it looks like in the present context:

\[
E(l_i(R))^2 = \frac{1}{N^2} E(u'Ry_{-i})^2
\]

\[
= \frac{1}{N^2} (E_{12}E_{34} + E_{13}E_{24} + E_{14}E_{23})u'_{(1)}Ry_{-1(2)} u'_{(3)}Ry_{-1(4)}.
\]

(13.29)

This means the following: the four random variables are labelled (in parentheses) 1–4, and the expectation operator is broken down in three terms of two subsequent operations each. For example, \(E_{12} \) denotes the expectation with respect to the random variables labelled 1 and 2, considering everything else constant (even though variable 3 in this case is the same as variable 1!). The operator \(E_{12} E_{34} \) denotes the above operation, followed by taking the expectation w.r.t. variables 3 and 4. The order of both operations is immaterial. The method of repeated conditioning is not restricted to the case of four random variables, but extends to an arbitrary number.

We are now in a position to look at the variance. Since, trivially,

\[
(El_i(R))^2 = \frac{1}{N^2} E_{12}E_{34}u'_{(1)}Ry_{-1(2)} u'_{(3)}Ry'_{-1(4)},
\]

(13.30)
the variance of $l_1(R)$ can be evaluated using (13.16) and (13.24) repeatedly:

$$\text{Var}(l_1(R)) = E(l_1(R))^2 - (E(l_1(R)))^2$$

$$\begin{align*}
&= \frac{1}{N^2} \left(E_{33}E_{24} + E_{34}E_{23} \right) u_1(R)u_1(R) + \frac{1}{N^2} \left(E_{55}E_{24} + E_{54}E_{25} \right) u_1(R)u_1(R) \\
&\quad + \frac{1}{N} E_{34} \left(E_{24} \frac{1}{N} u_1(R)u_1(R) + \frac{1}{N} E_{55} \frac{1}{N} u_1(R)u_1(R) \right) \\
&\quad + \frac{1}{N^2} \left(E_{33}E_{24} + E_{34}E_{23} \right) u_1(R)u_1(R) + \frac{1}{N^2} \left(E_{55}E_{24} + E_{54}E_{25} \right) u_1(R)u_1(R) \\
&\quad + \frac{1}{N} E_{34} \left(E_{24} \frac{1}{N} u_1(R)u_1(R) + \frac{1}{N} E_{55} \frac{1}{N} u_1(R)u_1(R) \right)
\end{align*}$$

For the case $R = Q \otimes I_N$, this simplifies to

$$\begin{align*}
\text{Var}(l_1(R)) &= \frac{1}{N} \sigma_u^2 \left(\frac{1}{1 - \gamma^2} \text{tr} R^2 S + Q^2 Q + \text{tr}(R(L' \otimes I_N))^2 \right) \\
&\quad - \frac{1}{N^2} \sigma_u^2 \left(\frac{1}{1 - \gamma^2} \text{tr} R^2 S + Q^2 Q + \text{tr}(R(L' \otimes I_N))^2 \right)
\end{align*}$$

In the above derivation our calculus with the $\lambda-$ and $\mu-$functions appears to pay off.
13.5 MEASUREMENT ERROR IN STATIC PANEL DATA MODELS

We now introduce measurement error. To start with we do so in the context of a static model, and repeat the pertaining results in this area. These are from Griliches and Hausman (1986), in part elaborated by Wansbeek and Koning (1991). The model is:

\[y = x\beta + \nu_t \otimes \alpha + u, \]

(13.33)

where the difference with (13.1) is the substitution of a (single strictly) exogenous variable \(x \) for \(y \). This \(x \) \((NT \times 1) \) is unobservable and instead we observe

\[x_n = x + \nu \]

(13.34)

with \(\nu \) white noise with variance \(\sigma^2_\nu \). We start again from OLS in a model with effects eliminated by \(R = Q \otimes I_n, Q = Q' \). By entirely standard operations we arrive at:

\[
\text{plim } \hat{\beta} = \text{plim } \frac{y'R_x}{x'R_x} = \beta(1 - \sigma^2_\nu \psi)
\]

(13.35)

with

\[
\psi = \frac{\text{tr } Q}{\text{tr } Q\Sigma}.
\]

(13.36)

and \(\Sigma \) is the \(T \times T \) covariance matrix of the \(x_n \)'s, \(x_n \) being the \(T \)-vector of \(x \)'s for household \(n \). \(\Sigma \) is consistently estimable from the data and for all practical purposes we may assume it known. A consistent estimator for \(\beta \) is obtained by using two different \(Q \)'s, hence two different \(\hat{\beta} \)'s, \(\hat{\beta}_1 \) and \(\hat{\beta}_2 \), say and two different \(\psi \)'s, \(\psi_1 \) and \(\psi_2 \), say. Then:

\[
\text{plim } \hat{\beta}_i = \beta_i = \beta(1 - \sigma^2_\nu \psi_i),
\]

(13.37)
so by construction the estimators:

\[
\hat{\beta} = \frac{\psi_1\hat{\beta}_2 - \psi_2\hat{\beta}_1}{\psi_1 - \psi_2}
\]

(13.38)

and

\[
\hat{\sigma}^2 = \frac{\hat{\beta}_2 - \hat{\beta}_1}{\psi_1\hat{\beta}_2 - \psi_2\hat{\beta}_1}
\]

(13.39)

are consistent. When we construct more than two \((m, \text{say})\) estimators by using \(m\) different \(Q\)'s, we obtain \(m\) equations of the type (13.37), and we are faced with a situation of overdetermination since there still are two parameters. Optimal estimators are obtained by using the minimum distance method (e.g. Hsiao, 1986) based on a consistent estimator of the asymptotic covariance matrix of the \(\hat{\beta}_i\)'s. Wansbeek and Koning (1991) show that the \((i, j)\)th element of this matrix is

\[
V_{ij} = \text{avar}(\hat{\beta}_i, \hat{\beta}_j)
\]

(13.40)

\[
= \frac{1}{\text{tr} Q_i\Sigma \text{tr} Q_j} \left\{ \beta^2 \sum^i \text{tr} Q_iQ_j + (\sigma_u^2 + \beta^2 \sigma_v^2) \text{tr} \Sigma Q \right\},
\]

when the underlying distribution is normal. This result is easily derived by using the repeated conditioning method again.

The minimum distance estimators have a closed-form solution. Let

\[
\psi = (\psi_1, \ldots, \psi_m)'
\]

(13.41)

\[
t = (\hat{\beta}_1, \ldots, \hat{\beta}_m)'
\]

(13.42)

then

\[
\hat{\beta} = \frac{\psi't - \psi'\psi}{\psi't - \psi'\psi}
\]

(13.43)
\[
\delta^2_v = \frac{\psi' t - t' t}{\psi' \psi - t' \psi}
\]

where all inproducts are in the metric of \(V \), see (13.40)

13.6 MEASUREMENT ERROR IN A DYNAMIC MODEL

We again start from (13.1) and introduce measurement error in \(y: y' = y + v \) with \(v \) again white-noise measurement error. The equation for the observable vector \(y \) then becomes:

\[
y_\cdot = \gamma y_{-.1} + \alpha_t \otimes \alpha + u + v - \gamma v_{-.1}
\]

with \(\text{OLSE} \)

\[
\hat{\gamma}(R) = \frac{y'_R y_{-.1}}{y'_{-.1} R y_{-.1}} \quad (13.46)
\]

\[
= \gamma + \frac{(u + v - \gamma v_{-.1})' R (y_{-.1} + v_{-.1})/N}{(y_{-.1} + v_{-.1})' R (y_{-.1} + v_{-.1})/N}.
\]

The expectations involving \(v \) are

\[
Ev'Ry_{-.1} = Ev'_1 R y_{-.1} = Eu'R v_{-.1} = 0
\]

\[
\frac{1}{N} Ev'R v_{-.1} = \frac{1}{N} \sigma^2_v \text{tr} R (B_i \otimes I_N)
\]

\[
\frac{1}{N} Ev'_1 R v_{-.1} = \frac{1}{N} \sigma^2_v \text{tr} R
\]

Then for \(R = Q \otimes I_N \) there holds:

\[
\text{plim } \hat{\gamma}(R) = \gamma + \frac{\sigma^2_v \text{tr} Q L + \sigma^2_v \text{tr} Q B_i - \sigma^2_v \gamma \text{tr} Q}{\frac{1}{1 - \gamma^2} \sigma^2_v \text{tr} Q S + \sigma^2_v \text{tr} Q}
\]

\[
(13.50)
\]
For $Q = A_T$ this becomes:

$$\begin{align*}
\text{plim } \gamma(R) &= \gamma - (1 + \gamma) \frac{\varphi + \theta(\gamma + 1/T)}{T - (1 + 2\gamma \frac{\varphi}{1 - \gamma}) + \theta(1 + \gamma)} \\
&= \gamma - \frac{1}{2} (1 + \gamma) \frac{1 + (1 + 2\gamma) \sigma_e^2/\sigma_u^2}{1 + 2(1 + \gamma) \sigma_e^2/\sigma_u^2}.
\end{align*}$$

(13.51)

with

$$\theta = (1 - \gamma)(T - 1)\sigma_e^2/\sigma_u^2$$

(13.52)

and for differencing this becomes

$$\begin{align*}
\text{plim } \hat{\gamma}(R) &= \gamma - \frac{1}{2} (1 + \gamma) \frac{1 + (1 + 2\gamma) \sigma_e^2/\sigma_u^2}{1 + 2(1 + \gamma) \sigma_e^2/\sigma_u^2}.
\end{align*}$$

(13.53)

Once again, the plims can be used to construct a simple consistent estimator for the parameters in the model. One still needs only two different estimators to do so, although the number of parameters involved is now three. But σ_e^2 and σ_u^2 enter only via their ratio, cf. (13.52) and (13.53).

13.7 CONCLUDING REMARKS

As suggested in the introduction, the main aim of this chapter is to offer simplicity. We have exploited some convenient matrix tricks as well as a useful repeated conditioning rule for the evaluation of higher order moments of normally distributed random variables. Given this apparatus, the derivation of estimators for parameters in slightly more complicated models (e.g., with exogenous variables added to (13.45)) is rather straightforward. Generally, one can attain higher efficiency in estimation by employing full information methods, like ML. Even then, the availability of consistent starting values allows one to attain the same efficiency by two-step methods. Hence the derivations given here also serve a purpose in that context.
Acknowledgements
We thank Ruud Koning and Marno Verbeek for comments.

REFERENCES

No. 5 Th. ten Raa and F. van der Ploeg, A statistical approach to the problem of negatives in input-output analysis, *Economic Modelling*, vol. 6, no. 1, 1989, pp. 2 - 19.

No. 8 Th. van de Klundert and F. van der Ploeg, Wage rigidity and capital mobility in an optimising model of a small open economy, *De Economist*, vol. 137, nr. 1, 1989, pp. 47 - 75.

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Number</th>
<th>Year</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>W. van Groenendaal and A. de Zeeuw</td>
<td>Control, coordination and conflict on international commodity markets</td>
<td>Economic Modelling</td>
<td>8</td>
<td>1</td>
<td>1991</td>
<td>90-101</td>
</tr>
<tr>
<td>56</td>
<td>H.A. Keuzenkamp and F. van der Ploeg</td>
<td>Savings, investment, government finance, and the current account: The Dutch experience</td>
<td>External Constraints on Macroeconomic Policy: The European Experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>M.F.J. Steel and J.-F. Richard</td>
<td>Bayesian multivariate exogeneity analysis - an application to a UK money demand equation</td>
<td>Journal of Econometrics</td>
<td>49</td>
<td>1/2</td>
<td>1991</td>
<td>239-274</td>
</tr>
<tr>
<td>60</td>
<td>E. van Damme</td>
<td>Equilibrium selection in 2 x 2 games</td>
<td>Revista Espanola de Economia</td>
<td>8</td>
<td>1</td>
<td>1991</td>
<td>37-52</td>
</tr>
<tr>
<td>61</td>
<td>E. Bennett and E. van Damme</td>
<td>Demand commitment bargaining: the case of apex games</td>
<td>Game Equilibrium Models III - Strategic Bargaining</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>A. Roell</td>
<td>Dual-capacity trading and the quality of the market</td>
<td>Journal of Financial Intermediation</td>
<td>1</td>
<td>2</td>
<td>1990</td>
<td>105-124</td>
</tr>
<tr>
<td>No.</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>