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Chapter 1
Introduction

Nowadays, with the enormous abundance of electronically available texts, man-
ual analysis of documents is no longer feasible. Yet, document analysis is nec-
essary for access to documents beyond simple keyword search. For instance,
the classi�cation of a topic of a document greatly facilitates the retrieval of re-
lated documents. The weblog monitor website Technorati1 reported as per June
2008 a massive amount of 133 million weblogs across the world, with 900,000
blog postings per 24 hours. This current orientation of the Web towards self-
publishing, with immensely popular social media such as Twitter, MySpace,
Facebook and Flickr, clearly illustrates the urgency for automated procedures
that accurately monitor, analyze and label the information in online repositories.
Due to the large number of documents involved, precision becomes increasingly
important: generally speaking, any system facilitating a user searching a large
set of documents should minimize the number of retrieved documents on the
basis of the user’s query to the smallest possible set of relevant documents.
Therefore, precise document analysis is crucial.

The automated analysis of text (or more broadly, linguistic content) has a
long tradition, and has in its early days bene�ted from the exploratory work of
e.g. Harris [1959] and Hillel [1964], in an era (the �fties and sixties of the pre-
vious century) that identi�ed in particular automated (machine) translation as
a desideratum. The �eld of computational linguistics, while originally drawing
heavily upon linguistics and statistics, has demonstrated the last two decades
an increasing orientation towards machine learning: the automated analysis
of data using learning algorithms, trained on sample, usually hand-performed
analyses. A trained learning algorithm (or classi�er) performs a classi�cation of
an object (such as a document) into one or more classes, by analogy to the data
it was trained on. This classi�cation can subsequently be assigned as meta-data
to the original datum. The commonly held opinion is nowadays that linguistic
analysis can be seen as a classi�cation process, and that complex analyses can

1http://www.technorati.com
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4 Chapter 1. Introduction

be built up from less complex subordinate analyses (see e.g. Daelemans and
van den Bosch [2005]).

Classi�cation is founded upon a notion of distance: test data is compared
to exemplary training data using certain distance metrics. The examples that
most closely resemble the test data determine its classi�cation. This thesis
addresses the automated analysis of text documents from a machine learning
perspective, and speci�cally focuses on the issue of distance metrics. Central in
this work is a set of recently proposed machine learning algorithms that exploit
the intrinsic geometry of the data space text documents are situated in, given a
certain statistical representation of these documents. This data space has been
shown to possess geodesic structure: it is a curved space much like Earth, and
distance metrics between documents should take into account curvature for ac-
curate measurements. We will formally analyze this type of algorithms, propose
extensions, and involve them into a number of new applications. In particular,
we will closely monitor the underlying distance metrics, and demonstrate under
which circumstances they reach optimal performance. The research topics of
this thesis are outlined in detail in Section 1.1.

1.1 Research questions

The problem of establishing similarity between documents, which is the central
problem underlying document retrieval and document classi�cation, is tradi-
tionally solved by measuring distances in the vector space constituted by the
vector representations of a set of documents. The determination of the topic
of an unlabeled test document is a case in point: given e.g. a 1-nearest neigh-
bor classi�er operating in vector space, we simply look for the labeled training
document of which the feature vector has minimal Euclidean distance to the
feature vector of the test document. The test document obtains the class label
of the corresponding training document.

The classic view on vector space is that it is Euclidean: a at world with-
out curvature, where the distances between objects (document representations)
are to be measured along straight lines. Recently, this Euclidean assumption
has been challenged. The work of John La�erty and Guy Lebanon (e.g. Laf-
ferty and Lebanon [2005]) has triggered an active research �eld concerned with
non-Euclidean geometry of document space. Their work demonstrates that a
very simple document representation, the so-called L1-normalization of word
frequencies, yields an embedding of documents in a curved information space,
known as a Riemannian manifold. This particular manifold corresponds to the
parameter space of the multinomial distribution. On Riemannian manifolds
in general, distances should not be measured with straight lines, but, just like
between points on Earth, along curves with geodesic distance measures.

We will evaluate this geodesic approach to document space geometry, which
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we shall dub ’multinomial language learning’. After establishing the perfor-
mance of geodesic classi�ers on a number of document classi�cation tasks, we
address the following problem:

Research question 1 (heterogeneous information): Multinomial
language learning is based on statistical representations (L1-normalized
frequencies) of strings, such as words, or word n-grams. An implicit as-
sumption behind the approach is that these strings form a homogeneous
distribution, consisting of e.g. all separate words, or all word bigrams,
but not both. Can we mix heterogeneous families of strings under this
approach, such as word unigrams and bigrams?

Multinomial language learning, while suitable for documents, does not lend
itself easily to limited context tasks, or sequentially organized, feature-based
tasks, like part-of-speech tagging: these tasks usually consist of small, �xed-
size windows over ordered feature sequences, where the notion ’frequency’ (the
crucial ingredient of L1-normalization) does not come into play. Therefore, we
address

Research question 2 (sequential and limited context tasks): How
can we apply multinomial language learning to tasks with a limited amount
of context, or even sequentially organized tasks?

The Euclidean point of view ignores the intrinsic geometry of objects, and
just measures angles between vectors in a at hyperspace. The multinomial
language learning view on document geometry o�ers an alternative: it assumes
that Euclidean distance only comes into play on a small scale, between neigh-
boring points where the e�ect of curvature is negligible. The question we would
like to raise is:

Research question 3 (high entropy data and geodesic distance):
What is the e�ect of the distance between data points on the performance
of geodesic distance measures?

Speci�cally, we will study degenerate cases where the geodesic distance measure
is no longer accurate, and, in fact, collapses into the Euclidean distance measure.
The triggers a corollary question:

Research question 4 (hybrid geometry): Is document space under
the L1-based representation schema best modeled using curved manifolds
only, or are hybrid geometrical (Euclidean and geodesic) representations
desirable?

We will investigate the possibility of hybrid geometry for document space, and
the conditions of optimal combination of Euclidean and geodesic information:
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Research question 5 (classi�er calibration): How can classi�ers be
calibrated in order to yield optimal performance when applied to document
spaces with hybrid geometry?

The problem statement of this thesis therefore is three-fold:

1. Can we extend the standard multinomial language learning apparatus to
heterogeneous data, and sequential, limited context classi�cations tasks?
(Research questions 1 and 2)

2. Can we motivate the existence of hybrid geometry in L1-normalized doc-
ument representations? (Research questions 3 and 4)

3. If such hybrid geometry can indeed be motivated, how can we calibrate
classi�ers operating on this document space such that their performance
is optimized? (Research question 5)

The answers to research question 3, 4 and 5 serve to support our central
theorem:

Depending on the entropy of local neighborhoods, the space
of L1-normalized document representations possesses both Eu-
clidean and geodesic structure, and classi�ers should be aware
of this hybrid structure for optimal performance.

1.2 Thesis outline
The thesis consists of two major parts. In part I, Geodesic Models of Docu-
ment Geometry, we are concerned with the application of geodesic kernels to
a number of document classi�cation tasks, predominantly from the sentiment
mining �eld (detection and classi�cation of sentiments in text). In Chapter 2,
we present a bird’s eye overview of machine learning, introducing the important
concepts and algorithms for our work. This introduction contains a novel al-
gorithm for the estimation of hyperparameters of machine learning algorithms.
We demonstrate in Chapter 3 the adequacy of geodesic kernels for the classi�-
cation of sentiment at the sentence level (subjectivity classi�cation) as well as
at the document level (polarity classi�cation). Subsequently, we propose two
types of extensions. In Chapter 4, addressing research question 1, we propose
an interpolation strategy for combining multiple sources of information. We for-
mally show that this interpolation strategy corresponds to a stratagem known
as manifold regularization, and a so-called pullback operation on a manifold. In
Chapter 5, we address research question 2 and extend the multinomial approach
to sequential tasks without explicit document structure. We formally show that
this extension also corresponds to a pullback operation.
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Part II of the thesis, A Back-O� Model for Document Geometry, is concerned
with �nding evidence for the hypothesis that document space has, under certain
conditions, hybrid geometry: both geodesic (explicitly curved) and Euclidean
(at). We start out in Chapter 6 with a formal proof that under the unfavorable
condition of maximum entropy data, a geodesic distance measure known as
the negative geodesic kernel becomes isometric to the Euclidean kernel. This
chapter investigates the relationship between data entropy and distance, and
thus answers research question 3.

In Chapter 7, we empirically con�rm the presence of both Euclidean and
geodesic structure in L1-normalized data, on the basis of evidence from feature
selection and manifold denoising experiments (research question 4). We develop
a dimensionality reduction (feature selection) method based on heterogeneous
Laplacian Eigenmaps. We demonstrate for a number of data sets that stan-
dard Euclidean Laplacian Eigenmaps, when combined with geodesic Laplacian
Eigenmaps, lead to better results than single-geometry variants. In a similar
spirit, we propose a manifold denoising method that removes both Euclidean
and geodesic noise from Riemannian manifolds. The combined approach yields
optimal performance in most cases. Finally, in Chapter 8, we answer research
question 5 and develop a method for classi�er calibration. This method can be
used to identify hard cases that cannot be classi�ed automatically with a pre-
speci�ed accuracy. We subsequently generalize this method, by showing that
it can be used to identify intrinsically Euclidean and geodesic parts of data
on the basis of the entropy of local neighborhoods of test points. This elabo-
rates on the formal result of Chapter 6, by estimating thresholds that restrict
the application of the negative geodesic distance to low or moderate entropy
data, and leads to an operationalization of the hybrid view on document space
geometry: it implements a decision procedure for switching between two alter-
native representations of the same data. We demonstrate that the usefulness of
the calibration technique is a consequence of the established relation between
entropy and distance between datapoints in a manifold.

Appendix A contains an explanation of the formal concepts relevant to the
study of manifolds and information geometry. Appendix B describes the formal
apparatus necessary to evaluate classi�ers. We have deferred the description
of all algorithms to Appendix C in order to improve readability. In Appendix
D, as an aside, we outline a connection of our work with the rapidly emerging
�elds of quantum information science and quantum machine learning.

1.3 Research methodology

This is an evidence-based thesis, in which we will attempt to gather answers for
our research questions based on empirical evidence. Consistently, we will use
hand-annotated (i.e. pre-classi�ed) datasets, and split them up into separate
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training, test and development partitions. The development partitions are used
to tweak eventual parameters of the machine learning methods to be applied,
using specialized search algorithms (see Section 2.2). These partitions are usu-
ally split up in one or more training/test parts themselves. Once parameters
have been �xed, the actual application of the machine learning algorithms to
the remaining training and test partitions takes place. Results are reported
using well-known measures from the �elds of information retrieval and machine
learning, as laid out in Appendix B. Whenever two or more learning algorithms
are compared, statistical signi�cance and correlation tests are carried out in
order to measure performance di�erences.



Chapter 2
Machine learning: algorithms and data

representation

In this chapter, we introduce the major concepts of machine learning, and dis-
cuss the formalism we investigate in this thesis: multinomial classi�ers using
geodesic distance measures. We start with a general overview of machine learn-
ing in Section 2.1, with emphasis on the family of classi�ers known as Support
Vector Machines. In Section 2.2, we will present and evaluate a novel algorithm
for the tuning of classi�ers. We will make use of this algorithm in a number of
experiments discussed in Chapter 4. Section 2.3 discusses the ubiquitous vector
space model for document classi�cation, a representational space that is inti-
mately linked to Euclidean distance measures. In Section 2.4 we introduce the
general concept of the multinomial manifold, the geometric backbone of multi-
nomial classi�ers. In Section 2.5 we discuss two non-Euclidean, geodesic kernels
operating on the multinomial manifold: the Information Di�usion Kernel, and
the Negative Geodesic Distance kernel.

2.1 Machine learning
Machine learning is an active �eld of research, and is roughly interdisciplinary
between statistics, information science, cognitive psychology, and mathematics.
The main research question addressed by machine learning is to �nd both ac-
curate and parsimonious models of learning, which can be used to teach the
discrimination of di�erent objects to a machine. Well-known examples are face
and speaker recognition (recognizing persons on the basis of visual and acoustic
cues), image classi�cation (labeling images with descriptive keywords), intru-
sion detection (classi�cation of network behavior as deviant or normal), and a
wide variety of linguistic applications such as document classi�cation (assigning
topics to documents), part-of-speech tagging (assigning parts of speech to words
in a text), syntactic parsing (assigning phrasal structure to sequences of words),
and sentiment classi�cation (labeling ’emotions’ or opinions in e.g. blog posts).

9



10 Chapter 2. Machine learning: algorithms and data representation

Formally, a model of learning is a complex function that maps descriptions
of objects (instances) I to a set of classes C:

f : I 7! C (2.1)

The instance space I is a feature space: a vector space of descriptors (features)
that describe a certain aspect of an object using a well-de�ned vocabulary. Ev-
ery i 2 I is a vector of feature values. Binary classi�cation problems limit C
to f�1;+1g. One-class classi�cation problems also exist: sometimes, a comple-
mentary second class is too rare to provide su�cient training data (e.g. data
representing the malfunctioning of an almost error-free system) or the comple-
mentary class is too heterogeneous (e.g. certain content that is not of interest
to a certain user). One-class classi�ers are solely trained on data representing
the single observable class, which is modeled as a coherent group (Tax [2001]).
In machine learning, classes usually consist of discrete symbols (class labels),
but can be real-valued as well, in which case we speak of regression.

If the function f is derived from a set of pre-labeled (and usually hand-
checked) examples, we call any method to derive f from the examples supervised.
The set of input examples to derive f is called the training set. Alternatively,
f can be deduced from unlabeled data as well, in which case f is called un-
supervised, or from mixtures of labeled and unlabeled data, in which case we
call f semi-supervised. Transductive learners (e.g. Joachims [1999]) are test
set-speci�c classi�ers that use unlabeled information from a speci�c test set to
better approximate the class boundaries dictated by the labeling in the training
data.

Usually, f is parametrized, needing adjustment of a certain set of controls
called hyperparameters. The process of �nding values for these hyperparameters,
which directly control the learning process, is called hyperparameter estimation.
We return to the problem of hyperparameter estimation in Section 2.2, and
propose a novel approach to the problem based on a stochastic sampling method.

In addition to hyperparameter estimation, feature selection can be per-
formed to eliminate noise from training and test data. Both hyperparame-
ter estimation and feature selection are part of the training process. A fully
trained version of f , then, is called a classi�er. It can be applied to a set of
test data, and will produce assignment of each of the test examples to one or
more classes, using the knowledge it inferred from the training data. Typically,
f is constrained during the learning process by a loss function measuring the
discrepancy between the correct class of a datapoint x and the prediction of f
for x.

After training, the classi�er f will have access to a set of instantiated vari-
ables adjusted during the training process. These variables (e.g. weights for
features, or instances) are called parameters. Together, sometimes coupled with
a selection of important examples from the training data, they make up the
model for f . Models can be derived as the product of training, in which case
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they are a succinct, statistical approximation of the set of training examples. A
model is a hypothesis: it is an estimate of a target function represented partially
by the labeled training data. Finding the best hypothesis is the solution of
the learning problem. Model-constructing classi�ers are called eager learners.
So-called lazy learners do not infer a model from their training data, but, in-
stead, construct separate models on the y for test points during classi�cation.
For these learners, learning basically is storage without abstraction. For this
reason, these methods are also called memory-based (Daelemans and van den
Bosch [2005]).

Yet, even if it is possible to accurately model the training data with a good
hypothesis, this is no guarantee that this hypothesis can be fruitfully applied as
an accurate classi�er to new, unseen test data. So, in addition to being simple
and accurate, we want our hypothesis to be able to generalize to new data
outside the training data. Hypothesis selection methods balancing complexity
and accuracy should be used here. For instance, rote classi�ers, classi�ers
that have zero test error on their training data, but perform erroneously on test
data, can be easily constructed by optimally complex models storing all training
data. These models are over�tting, by becoming too speci�cally tuned to the
training data used. Ockham’s razor-based selection or model pruning principles
(such as Minimum Description Length (MDL; Rissanen [1983]) can be applied
to select the simplest yet most accurate hypothesis from the hypothesis space.
Here, the notion of class separation comes into play. A classi�er learning to
discriminate between objects of, say, classes y1 and y2, will need to �nd an
optimal boundary b between y1 and y2 such that b maximizes the distance
between objects of class y1 and y2 everywhere in the model representation of
the training data. This type of boundary will have minimal over�tting, and
is known as a large margin1. An example of large-margin based classi�ers are
Support Vector Machines (Cristianini and Shawe-Taylor [2000]). Building upon
the initial approach of Rosenblatt’s Perceptron from 1957 (Rosenblatt [1958]),
Support Vector Machines attempt to �nd a linear function performing a large
margin separation of input data. In Figure 2.1, two classes are separated by
three boundaries called hyperplanes: linear functions that are described by w �
x + b, with w a weight vector, x an n-dimensional vector in

� n, and b 2
�

.
The hyperplanes w � x + b = 1 and w � x + b = �1 are maximally apart. The
intermediate hyperplane w � x + b = 0 is the maximum hyperplane or margin:
it has maximal distance to any of the datapoints in the two classes.

Let the Euclidean distance between two datapoints (vectors in a n-dimensional
space) be de�ned as

k x� y k=

vuut
nX

i

(xi � yi)2 (2.2)

1The principle of large margin separation is not universally the best option; sometimes,
class boundaries are quite sharp, and do not demand large margin separation.
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Figure 2.1: Large-margin binary classi�cation.

The Euclidean norm (or length) or a vector is de�ned as

k x k=

vuut
nX

i

x2
i (2.3)

It can be shown that the Euclidean distance between the two border hyper-
planes is 2

kwk , so minimizing k w k increases distance. The proof of this is
straightforward.

Let x be any point on the hyperplane w � x + b = 1, and y any point on
w �x+b = �1. Proving that the weighted di�erence between x and y, w(x�y)
equals 2 entails that the distance between x and y, k x � y k, (and hence the
distance between the two hyperplanes they lie on) is 2

kwk .

2.1.1. Proposition. w(x� y) = 2 implies x� y = 2
w .

Proof We know: w � x + b = 1 and wT � y + b = �1. Then we have x =
1�b
w and y = �1�b

w . Starting from w(x�y) = w �x�w �y, since w( 1�b
w ) = 1�b

and w(�1�b
w ) = �1� b, we obtain 1 � b � (�1 � b) = 2. From this, it follows

that x� y = 2
w , hence k x� y k= 2

kwk as desired.
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Every datapoint xi in one of the two classes f+1;�1g, written as C+; C�,
is constrained by

w � xi + b � 1; 8xi 2 C+
w � xi + b � 1; 8xi 2 C�

(2.4)

which leads to the following optimization problem for Support Vector Machines:

81 � i � n; find optimal w;x that minimize k w k under the constraints
w � xi � b � 1; 8xi 2 C+ and w � xi � b � �1; 8xi 2 C�

(2.5)
This has an equivalent formulation (ci the class of point xi in the training data):

81 � i � n; find optimal w;x that minimize k w k under the constraint
ci(w � xi � b) � 1

(2.6)
which allows for a dual formulation: given

w =
X

i

�icixi

X

i

�ici = 0

�i � 0

(2.7)

�nd

max
nX

i=1

�i �
1
2

X

i;j

cicj�i�jxTi xj (2.8)

This is a Lagrangian dual problem (Cristianini and Shawe-Taylor [2000]). Every
optimization problem

Find the minimum of f(w) (w 2
� n)

under constraints gi(w) � 0; i = 1; : : : ; k
hi(w) = 0; i = 1; : : : ;m

(2.9)

has a Lagrangian dual formulation

maximize �(�; �)
under constraint � � 0 (2.10)

where
�(�; �) = infw2 � n L(w; �; �)

= f(w) +
Pk
i=1 �igi(w) +

Pm
i=1 �ihi(w)

(2.11)

Only for the datapoints xi that lie closest to the margin, the � weights are non-
zero. The other datapoints receive zero weights as they do not play a role in
computation of the optimal hyperplane. The datapoints with non-zero weights
are called the support vectors.
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The optimal hyperplane can be represented parsimoniously by the data
points that lie on its margins. Notice the use of dot products in the dual
formulation. Swapping these dot products with non-linear functions leads to
implicit expansion of the input space (the original features space) to a high di-
mensional feature space (the space that emerges after the implicit expansion).
For instance, the feature space derived from the input space fx; yg for a poly-
nomial function f(x; y) = (x+ y)2 would be fx2; 2xy; y2g. Data that is linearly
inseparable in the low dimensional input space hopefully becomes linearly sep-
arable in feature space. The implicit expansion of low dimensional input space
to high dimensional feature space is known as the kernel trick. The expansion
is never carried out explicitly, but occurs as a side-e�ect of performing the non-
linear computations. Both the standard dot product and its non-linear variants
are called kernels. A kernel is a similarity function that computes a similar-
ity score for two input feature vectors. The usual operations involved in these
computations originate from matrix algebra, such as the dot product:

x � y =
nX

i=1

xiyi + : : :+ xnyn (2.12)

which can be equivalently written in vector notation as

xT � y = [x1 : : :xn]

2

64

y1
...
yn

3

75 = [xiyi + : : :+ xnyn] (2.13)

Some well-known kernels are

Kernel Description Hyperparameters
Linear K(x;y) = hx � yi none
Polynomial K(x;y) = hx � yid d
Radial Basis Function K(x;y) = exp(� k x� y k2) 

(2.14)
A special cost hyperparameter C that is kernel-aspeci�c (in the sense that it is
part of the underlying optimization engine deriving the model, and is not part
of the actual kernel computations that are performed) relaxes the large margin
constraints by allowing support vectors to lie not exactly on a linear margin
line. This implements a control mechanism with which the distance of support
vectors to the large margin boundary can be more or less penalized. The higher
the value of C, the more rigid the boundaries between classes become. Tuning C
can have major e�ects on generalization performance, depending on the kernel
that is used.

The Gram matrix for a certain kernel K : X �X 7!
�

is the matrix Gij =
K(x;y), for all data points x;y in the domain of the kernel. This matrix encodes
the distances computed by the kernel for a dataset.
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For a candidate kernel to be useful, one has to prove that it is positive
de�nite: this means its solution is unique and that the optimized problem is
convex (see e.g. Sch�olkopf and Smola [2002]). For convex problems, a local
minimum is a global minimum. These problems are easily solvable using linear
methods.

2.1.2. Proposition. Given a kernel K : X �X 7!
�

, with j X j= m, let the
m �m Gram matrix K consist of all values K(x;y); 8x;y 2 X. If cTKc� 0
for any vector c2

� m, then K is positive de�nite.

If the condition cTKc� 0 holds only for vectors c such that cT1=0, K is called
conditionally positive de�nite or cpd. The connection between positive de�nite
and conditionally de�nite kernels is as follows. First, any positive de�nite kernel
is conditionally positive de�nite (Sch�olkopf and Smola [2002]). Positive de�nite
kernels are usually interpreted as dot products in feature spaces. Condition-
ally positive de�nite kernels can be interpreted as translation-invariant distance
measures in feature spaces. Support Vector Machines are translation invariant
in the feature space (Zhang et al. [2005]) and therefore can use both types of
kernels. The kernel trick, mentioned above, can only be carried out for positive
semi-de�nite kernels: if, for any �nite subset2 fx1; : : : ;xng of a data space X ,
and any real numbers fc1; : : : ; cng

X

i;j

K(xi;xj)cicj � 0 (2.15)

then there exists a function � such that

K(x;y) = �(x) � �(y) (2.16)

In other words: the kernel can be re-expressed as a linear dot product in feature
space. We refer the reader to Sch�olkopf and Smola [2002] for further details.

As noted above, in contrast to the eager Support Vector Machines, lazy
or memory-based learners defer model construction to the classi�cation stage.
The simplest form of memory-based learning is the standard k-nearest neighbor
classi�er (Cover and Hart [1967]). Depending on the hyperparameter k, for
every test point x, a neighborhood of k nearest neighbors in the training data
is estimated, using a distance function. The test point receives a class based on
majority voting over the classes of the training points in its nearest neighbor
set. The nearest neighbor classi�er is both a transparent implementation of
distance-based classi�cation, and a generic classi�er architecture. It can be
viewed as a local, kernel-based method that partitions a data space into a
number of cells (a Voronoi tessellation; Duda et al. [2001]). Its error rate has
an upper bound of less than twice the Bayes error rate (Duda et al. [2001]),

2Here, xi refers to the i-th element of X 0.
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which is a statistical lower bound on the classi�cation error for a certain task
given a set of features. The use of local context can be traced back to many
machine learning algorithms, e.g. decision trees (Quinlan [1993]), and some
support vector kernels (e.g. the Radial Basis Function kernel; see Jebara [2003]).
The relationship between nearest neighbor classi�cation and Support Vector
Machines is investigated in e.g. Decoste and Mazzoni [2003], who propose a
classi�cation technique based on nearest support vectors, and Zhang et al. [2006],
who propose a hybrid SVM/k-nearest neighbor machine learning algorithm.

Memory-based learning has proved quite successful for natural language
analysis (see e.g. Daelemans and van den Bosch [2005] and Hendrickx [2005]).
One explanation for this success is the fact that language displays pockets of
exceptions: small families of subregularities, which, while easily ’compiled away’
by model-based methods, are fully retained in memory by memory-based meth-
ods (Daelemans et al. [1999]).

2.1.1 Bias, variance and noise
The error of a classi�er is often decomposed into bias error, variance error, and
noise (Breiman [1996]): the bias error is the systematic, intrinsic error of a
classi�er, the variance error is its data dependent error, and noise corresponds
to errors (either in features or classes) in the data. Speci�cally, the expected
zero-one loss of a classi�er C is measured as

E(C) =
X

x

p(x)(�2
x + bias2

x + variancex) (2.17)

with �2
x the noise in the data for datum x. Noise is often assumed to be zero

(Kohavi and Wolpert [1996]) as reliably estimating noise is often infeasible for
large datasets. Kohavi and Wolpert [1996] propose the following de�nition of
bias error and variance error:

bias2
x =

1
2

X

y2Y

[PY;X(Y = y j X = x)� PT (L(T )(x) = y]2 (2.18)

variancex =
1
2

0

@1�
X

y2Y

PT (L(T )(x) = y)2

1

A (2.19)

According to this de�nition, the bias error of a classi�er at a data point x is
the squared di�erence between the true class observed for x in the training data
X;Y (X a feature space and Y a class space), and the class predicted for x in the
hypothesis space T , i.e. the output of the classi�er L trained on T and applied
to x. In Kohavi and Wolpert [1996], bias and variance error are measured on
the basis of the following procedure: each data set is partitioned into a training
set d and a test set t. The training data d is partitioned into 50 training sets
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of size 2m, where m is 100 for data sets less than 1,000 data points, and 250
otherwise. The bias and variance error estimates are then derived from training
the classi�er on the 50 training subsets in turn, and applying it to the test data
t.

2.2 Hyperparameter estimation

We noted in Section 2.1 that machine learning algorithms are complex, param-
eterized functions of which the hyperparameters need adequate estimation. In
this section, we outline a procedure for estimating these hyperparameters. In
Section 4, we will use this procedure in a number of experiments.

For a given machine learning algorithm and an evaluation function - typically
an empirical loss function, like accuracy - one needs to simultaneously optimize
all hyperparameters of the learning algorithm such that the loss function is
minimized after training. Hyperparameter values need to be robust and should
lead to adequate results of the trained classi�er when applied to new, unseen
cases. While sometimes default settings can provide adequate results, there is
no guarantee this will in general lead to acceptable performance. Daelemans
et al. [2003] provide evidence for the fact that variation in accuracy arising
from hyperparameter settings and interaction with information sources (such as
arising from feature selection) is often higher than variation between separate
machine learning algorithms using default settings. This implies that the widely
used methodology of comparing classi�ers with default hyperparameter settings
is unreliable, and that, in order to faithfully compare classi�ers on a given task,
one needs to optimize hyperparameters for both classi�ers.

Hyperparameter spaces are usually extremely sparse, and search in this event
space is not transparently conditioned on an intermediate search result, which
makes this a very hard search problem. Optimal combinations of hyperparame-
ter values can be quite rare. Proposed methods for hyperparameter estimation
usually view the problem as a search problem. The paramsearch estimation
procedure of van den Bosch [2004] is an example of a grid search algorithm; on
the basis of a sweep across a discrete partitioning of the hyperparameter space,
it progressively builds bigger training/test partitionings for successful hyperpa-
rameter settings, in order to cope with the problem of accidentally discarding
settings that perform badly on small data sets, but better on bigger sets. It
essentially optimizes generalization accuracy by performing cross-validation for
small datasets (<1000 points) and progressive sampling for bigger datasets.

Friedrichs and Igel [2005] tune SVM hyperparameters using an evolutionary
technique (covariance matrix adaptation evolution). Their approach is related to
ours in the sense that they optimize a �tness function that directly is associated
with a possibly non-di�erentiable empirical loss function. Their method also has
hyperparameters of its own, which are set to default settings or to heuristically
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determined values.
Gradient minimization approaches, such as Bengio [2000] and Chapelle et al.

[2000] work by minimizing a cost function and performing search in the hyper-
parameter space based on the gradient of this cost function with respect to the
kernel hyperparameters. This implies that the cost function needs to be contin-
uously di�erentiable for these hyperparameters, which is a strong assumption,
and rules out many reasonable cost functions.

Many optimization problems involve reliable estimates of the probability of
rare but interesting events. The Cross-Entropy method of Rubinstein [1999],
explained below, is a case in point; using a technique called importance sam-
pling, rare but important events are made more likely to occur in a certain
sequence of observations, such that reliable estimates of the probabilities for
these events can be derived. This process can be parameterized, and if one can
devise an isomorphism between the desired outcome of the sampling process
and the parameters guiding this process, one e�ectively has a search algorithm
in a rare event space. It is possible to treat an optimal hyperparameter setting
as a rare event, and casting it into the framework of the cross-entropy method
leads to a novel way of �nding adequate hyperparameter settings. We propose
in this section a beam search algorithm inspired by the cross-entropy method.
First, we will discuss the cross-entropy method in some detail.

2.2.1 The Cross-Entropy Method
The Cross-Entropy (CE) Method (Rubinstein [1999]) is a stochastic optimiza-
tion method that iteratively performs an importance-based sampling on an
event space using a family of parameterized sampling principles. It has been
successfully applied to routing problems (Cadre [2005]. Chepuri and de Mello
[2005]), network optimization (de Boer [2000]) and HMM parameter estimation
(Dambreville [2007]). An excellent introduction can be found in de Boer et al.
[2005].

The CE-method in its most general form can be described as follows. Sup-
pose we want to �nd a certain p̂ = argmaxp S(p), where S is a general empirical
loss function, which is not necessarily continuous. Let X be a vector space3

consisting of vectors (events, in the nomenclature of cross-entropy methods)
Xi; : : : Xn, with every vector Xi 2

� n for some positive integer n. We denote
the j-th element of Xi with Xij . Let f(�;u) be a probability density function on
X parameterized by u. Let’s assume we have an importance measure, an inde-
pendent evaluation function, such that we can evaluate for every event how im-
portant this event is. We would like to adapt the probability of rare events pro-
portional to their importance. To estimate whether event Xi is important, i.e. a

3In order to be compliant with the standard notation used in the Cross-Entropy Method
literature, we will use a di�erent notation for vectors and their components, as described in
the text.
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candidate solution to the optimization problem, we need to compute the chance
that S(Xi) � , where  is a real number. If this chance is very low, then Xi is a
rare event. Let the indicator function IfS(x)�g be a binary valued function over
the set fXi j S(Xi) � g; IfS(x)�g(x) = 1 iff x 2 fXi j S(Xi) � g; 0 else.
For a randomly drawn sample X1; : : :Xn, the maximum-likelihood estimate of
this chance would be

1
N

NX

i=1

IfS(Xi)�g (2.20)

For rare events, reliable random sampling is hard to perform and large samples
need to be drawn. If we were to have a ’better’ estimate of f , say g, a pdf based
on importance sampling, the chance P (S(Xi) � ) can be estimated with more
con�dence by

1
N

NX

i=1

IfS(Xi)�g
f(Xi;u)
g(Xi)

; (2.21)

However, g is based on importance sampling, and thus depends on the very
probability we want to compute. The idea now is to stepwise approximate g
by a sequence of distributions g1; : : : ; gn such that the Kullback-Leibler (KL)-
distance between every gi and f(Xi;u) is minimized. Every such distribution
would maximize the probability of the samples with respect to . The CE-
method repeatedly performs importance sampling, and adjusts the parameter
vector u such that the KL-distance between the importance sample g and the
current pdf f conditioned on u is minimized.

Minimizing the KL-distance between two pdfs g and f(x;u)

KL(g; f) =
R
g(x) ln g(x)dx �

R
g(x) ln f(x)dx (2.22)

amounts in the case of f parameterized by parameter vector u to solving

max
v

Z
g(x) ln f(x; v)dx (2.23)

By de�ning a change of measure as a likelihood ratio (w an arbitrary parameter
vector)

W (Xi;u;w) = f(Xi;u)
f(Xi;w) =

exp

0

@�
NX

j=1

Xij(
1
uj
�

1
vj

)

1

A
NY

j=1

vj
uj

(2.24)

the adapted parameter vector v̂t (t a time index) can be derived as follows:

v̂t = max
v

1
N

NX

i=1

IfS(Xi)�gW (Xi;u;w) ln f(Xi; v) (2.25)
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with X1; : : : ; Xn a random sample drawn from f(�;w). This, through some basic
di�erentiation, can be brought into the following parameter update formula

v̂t =
Pn
i=1 IfS(Xi)�tgW (Xi;u;v̂t�1)XijPn
i=1 IfS(Xi)�tgW (Xi;u;v̂t�1) (2.26)

for the details of which we refer the reader to de Boer et al. [2005]. The general
CE algorithm for rare event simulation is outlined in Algorithm C.1 in Appendix
C.

2.2.2 Elitist Cross-Entropy Hyperparameter Estimation
It is quite tempting to apply the CE-method to the problem of hyperparameter
estimation. A large body of empirical and analytical work demonstrates that
the CE-method is e�cient and robust against local minima (see de Boer et al.
[2005] for an overview). In this section, we recast the hyperparameter estimation
problem into the CE framework and demonstrate that a beam search algorithm
inspired by the CE-method indeed can be applied, provided some facilities are
added to the basis algorithm.

2.2.3 Change of measure
For the essential ingredients of the CE-method to be applicable to the problem
of hyperparameter estimation, two things are necessary: �rst, the sampling of
candidate hyperparameter settings must be made dependent on the parame-
ter vector updated by the CE algorithm, and secondly, a suitable change of
measure guiding the search process must be devised. Since initialization of the
hyperparameter search process usually is arbitrary - based on a random vec-
tor, eventually with values restricted to a certain range - the likelihood term
W (2.24) would not make sense. But leaving it out of the parameter update
formula (2.26) would reduce the search process to crude trial-and-error Monte-
Carlo search (de Boer et al. [2005]).

Genetic algorithms control the direction of search in non-probabilistic spaces
using history mechanisms such as elitism (de Jong [1975]): explicitly favoring
the reproduction of an elite of �t individuals. In the present case, the elitist
solution at time t would consist of the best performing hyperparameter vector
encountered. The information in this successful elitist solution seems valuable
for steering the search process to more optimal solutions. Let us refer to the
elitist solution found at time t with Et. In order to evaluate whether a candidate
solution di�ers signi�cantly from the elitist solution, Euclidean distance is a
natural distance measure. The following normalized Euclidean distance, taking
values in the interval [0,1], can be used as a change of measure for the CE
algorithm; just like the original log-likelihood ratio in (2.24) produces a value
of 1 whenever the two pdfs f(Xi;u) and f(Xi;w) are the same, this measure
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produces 1 whenever the Euclidean distance between Xi and Et is zero.

W (Xt
i ;Et) = 1�
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(2.27)

2.2.4 Conditional drawing
In order to condition the drawing at time t of a random sample X1; : : : ; Xn from
the hyperparameter event space X on the parameter vector derived at time t,
we limit the choice for every Xij to lie within the interval

[v̂t;j � (1� �); v̂t;j � (1 + �)] (2.28)

where � is a width parameter. This is essentially a beam search operation:
search is carried out in a limited region of the search space, constrained by the
width of the beam constituted by the parameter �.

In order to avoid the algorithm getting stuck in a local minimum, we run
it in parallel in a number of n independent threads. From these threads, the
maximum result is the winner. Algorithm C.2 lists the �nal hyperparameter
algorithm. Notice that wheneverW (X t

i ;Et) evaluates to 1, the parameter adap-
tation step reduces to crude Monte Carlo search. The �nal parameter vector vt
is the solution to the hyperparameter estimation problem. A typical stopping
condition would be a persistent  for a number of iterations.

Solving a hyperparameter estimation problem with a method that itself has
hyperparameters may seem odd and circular. Yet, this is common as opti-
mization algorithms are seldom parameter-free; compare for instance Friedrichs
and Igel [2005] who use parameterized evolutionary techniques to optimize sup-
port vector machines. The hyperparameters of the CE algorithm are known
to predominantly inuence the speed of convergence rather than the quality of
the exact solution. de Boer et al. [2005] note that these hyperparameters can
be easily found using an adaptive algorithm. Another option is to apply the
CE-method iteratively to itself, migrating from relatively large hyperparameter
spaces to ever smaller hyperparameter spaces. A suitable metaphor would be
to adjust a device with analogue controls by means of a superimposed stack of
devices with digital, discrete controls, where device t adjusts device t� 1, and
t has larger intervals between the digits (less ’clicks’) than device t � 1. Put
di�erently, the hyperparameters of the CE algorithm are piecewise functions,
whereas the hyperparameters of the procedure to be optimized are continuous
functions. We shall not pursue this issue further in this chapter, but we will
demonstrate the relative insensitivity of the ECE-method to various choices for
N; �; � in a separate experiment, described below.
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The ECE algorithm is completely neutral with respect to the evaluation
function S, which can consist of any machine learning algorithm, eventually
wrapped in extensive cross-validation procedures.

2.2.5 Experiments

We started comparing ECE with paramsearch on single test data splits; subse-
quently, we compared the ECE solutions with the paramsearch solutions using
10-fold cross-validation in order to assess the generalization capabilities of the
ECE solutions. Finally, we used the ECE algorithm to optimize a challenging
loss function based on a window-based recall and precision-measure for the task
of topic segmentation of transcribed speech. Throughout we used the SVMlight
software4.

2.2.6 Accuracy-based optimization

Our data consisted of 11 datasets, originating from the UCI repository (Hettich
and Bay [1999]), the LIBSVM dataset repository (Chang and Lin [2001]), and
the SVMlight example data collection (Joachims [2004]). None of the datasets
used was published with a separate development set for hyperparameter opti-
mization, and some did not have a separate test set either. Notice that we are
only interested in relative performance of hyperparameter optimization tech-
niques, and not in absolute results obtained on this data. For every dataset
listed in Table 2.2.6 the experimental procedure was the following. First, we
manually split the concatenation of training and test data into a training part, a
test part and a development part. For ijcnn1 and a3a we used the standard test
sets provided by the publishers of this data, in order to evaluate performance on
very large test sets. The development part was subsequently split into a devel-
opment train and development test part. The development set as a whole was
used by paramsearch to derive the SVM parameters. The training/test parts
of the development set were used by the ECE algorithm as follows: for every
candidate hyperparameter vector, training on the basis of this hyperparameter
vector took place on the development training set, and testing on the devel-
opment test set. In theory this could set back the ECE algorithm compared
to paramsearch, as the latter applies cross-validation and progressive sampling
to the entire development set, whereas the ECE algorithm only uses one �xed
partitioning of the development data. While the ECE algorithm can be easily
furnished with similar cross-validation routines, as it is completely neutral with
respect to the performance function, we did not implement this, and report
results on the basis of the �xed training/test splits of the development data.
Second, we applied 10-fold cross-validation to the training splits we created,

4Available from http://svmlight.joachims.org/.
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and applied Wilcoxon’s Rank Sum test to the results, in order to assess the
di�erences between paramsearch and ECE.

The hyperparameter search space can optionally be constrained by imposing
limits on the range of generated random values. For instance, degrees larger
than 5 for a polynomial kernel are in practice rather unlikely, as well as values
exceeding 1000 for the SVM regularization parameter C. This domain knowl-
edge, although not crucial to the performance of the ECE algorithm, can be
easily applied if reliable. The (uniform) limits we imposed on the various SVM
parameters are listed in Table 2.2.6; they address the regularization param-
eter C, the RBF kernel parameter g, the positive class penalty term j, and
the polynomial degree parameter d (see Joachims [2004] for details on these
parameters).

Task Features devset-train devset-test train test
svmlight ex1 sparse 400 300 1000 300
news20 1,355,191 (sparse) 1500 319 15,000 3000
svmguide1 21 700 389 1500 500
a1a 123 (sparse) 200 105 1000 300
a3a 123 (sparse) 700 189 2000 29,376
a6a 123 (sparse) 1000 259 8000 1500
ijcnn1 22 10,000 4990 35,000 91,701
ringnorm 20 1500 336 300 5000
splice 60 300 100 600 2175
rcv1 47,236 (sparse) 1242 358 15,000 3000
diabetes 8 100 68 500 100

Table 2.1: Number of features and examples of the 11 datasets.

SVMlight kernel parameter Limit
-g 0.01 � g � 10
-j 0.1 � j � 5
-c 1 � c � 1000
-d 1 � d � 5

Table 2.2: Uniform limits imposed on the value range of SVM kernel parameters.

We let the paramsearch algorithm determine the kernel type (RBF or poly-
nomial), and �xed this parameter when running the ECE algorithm, in order
to perform a close ’within-kernel’ comparison of results. For every run of the
ECE algorithm, we used ’common-sense’ settings of N = 10; � = 0:1; � = 0:9;
we discuss this in more detail in Section 2.2.8. We compared both paramsearch
and ECE with a baseline: default parameter settings for the kernel-type deter-
mined by paramsearch. First, we evaluated the hyperparameter values on the
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Dataset Fixed train/test split (accuracy) 10-fold CV average accuracy
Default paramsearch ECE paramsearch ECE WRS

svmlight
example1 94.33 94.33 94.34 97.19 96.89 =
news20 95.8 95.63 96.77 95.2 96.75 +
svmguide1 94 85 85 76.26 68.6 =
a1a 79 87 99.3 80.2 80.2 =
a3a 75.94 81.45 81.13 80.4 79 =
a6a 82.8 83.07 77.7 83.8 82.38 =
ijcnn1 98.18 97.47 98.52 97.45 98.21 =
ringnorm 50.78 93.82 98.34 90.66 95.66 +
splice 52.18 87.08 89.1 80.8 84.5 =
rcv1 97 96.7 97.13 96.84 97.15 =
diabetes 86 85 87 71.8 73.2 =

Table 2.3: Experimental results, for a �xed training/test split, and Wilcoxon’s
Rank Sum (WRS) test applied to 10-fold cross-validation results obtained on
the training data; ’+’ indicates ECE outperforming paramsearch according to
the WRS test; ’=’ indicates equivalence.

�xed training/test splits. Subsequently, we applied 10-fold cross-validation to
the training data, after which we compared the accuracy scores for ECE and
paramsearch using Wilcoxon’s Rank Sum test. As can be seen in Table 2.2.6,
for the �xed training/test data split, in 10 out of 11 cases, ECE �nds hyperpa-
rameter settings that are as good as or better than paramsearch, even though
no cross-validation was used. The baseline of default hyperparameter settings
appears acceptable in 7 out of 11 cases, which means one cannot rely on default
settings in general, as noted above. The cross-validation results show that ECE
�nds equivalent and robust hyperparameter values compared to paramsearch.
Again, this is remarkable, as ECE was applied to a single data split.

In practice, the ECE algorithm proved very e�cient, with convergence un-
der 100 iterations, in a matter of minutes5. The paramsearch algorithm ran
signi�cantly slower, sometimes taking several hours to �nish.

2.2.7 Optimization for skewed class distributions
We now turn from accuracy-based optimization to an even more challenging
problem: optimization of a loss function for skewed class distributions. When
class distributions display a high level of entropy, i.e. P (ci j T ) � P (cj j T ); i 6=
j for any two classes c and training data T , accuracy is an acceptable measure
of quality for a classi�er. But when class distributions are highly skewed, recall,
precision and harmonic means of these such as the F1-score are better measures.

5On a 2G RAM 2.0 GHz Pentium dual-core OSX machine.
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Topic segmentation, segmenting a text into separate topics, is a typically
class-imbalanced task. The number of linguistic units on which segmentation is
based (such as sentences) typically by far exceeds the number of actual topics.
Consequently, optimizing a classi�er for accuracy would automatically favor a
majority classi�er that labels all sentences as not opening a topic. Optimization
for the classical notions of recall and precision would not work well here either:
for instance, a topic segmenter that always predicts a topic boundary close but
not exactly corresponding to the ground truth prediction would produce zero
recall and precision, while its performance can actually be quite good.

Speci�c measures such as Pk and WindowDi� (Pevzner and Hearst [2002])
compute recall and precision in a �xed-size window to alleviate this problem,
but they do not penalize false negatives and false positives in the same way.
For topic segmentation, false negatives probably should be treated on a par
with false positives, to avoid undersegmentation. To this end, Georgescul et al.
[2006] proposed a new, cost-based metric called Prerror:

Prerror = Cmiss � Prmiss + Cfa � Prfa (2.29)

Here, Cmiss and Cfa are cost terms for false negatives and false alarms; Prmiss
is the probability that a predicted segmentation contains less boundaries than
the ground truth segmentation in a certain interval of linguistic units (such
as words); Prfa denotes the probability that the predicted segmentation in a
given interval contains less boundaries than the ground truth segmentation.
We refer the reader to Georgescul et al. [2006] for further details and the exact
computation of these probabilities.

The ECE algorithm was applied to multimodal, topic-segmented meeting
data from the AMI project (Carletta et al. [2005]), consisting of 50 videotaped,
manually transcribed scenario-based meetings annotated for main topic struc-
ture. From this data, a mixture of phonetic and lexical features was extracted.
Lexical cues for topic openings were determined using �-square-based term ex-
traction. The LCSEG algorithm proposed by Galley et al. [2003] was used
to produce lexical cohesion scores and cohesion probabilities between blocks of
words. Further, speaker activity change in a window of 5 seconds was measured,
as well as the number of pauses and the amount of word repetition. These fea-
tures are similar to those proposed in Galley et al. [2003]. The linguistic unit on
which segmentation is based was the spurt: consecutive speech in which pauses
between utterances are under 5 seconds.

As the paramsearch algorithm does not cater for minimizing a loss func-
tion of this type, we compared the results of the ECE algorithm applied to
optimization of the Prerror measure to four di�erent baselines: A- (generating
negative classes only), A+ (generating positive classes only), R (generating ran-
dom positive and negative classes) and R-n (generating random classes, with
n positive classes, where n is the number of known segments in the test data).
As it turns out, both the A-, A+, and R baselines yielded similar performance
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(errors around 0.5). This indicates that a 0.5 error rate and the 0.48 producing
R-n baseline are the only non-trivial baselines. We set Cmiss and Cfa to 0.5, in
order to penalize undersegmentation as much as oversegmentation.

Results are listed in Table 2.2. The ECE algorithm appears to signi�cantly
outperform the 4 baselines, and produces scores comparable to the ones reported
by Georgescul et al. [2006] on ICSI meeting data.

Fold Prerror A- A+ R R-n
1 34.95 0.5 0.5 0.5 0.48
2 31.98 0.5 0.5 0.498 0.499
3 38.87 0.5 0.5 0.498 0.49
4 37.69 0.5 0.5 0.498 0.483
5 36.47 0.5 0.5 0.5 0.47
6 35.93 0.5 0.5 0.499 0.51
7 33.85 0.5 0.5 0.5 0.489
8 38.62 0.5 0.5 0.499 0.486
9 35.92 0.5 0.5 0.498 0.499
10 35.13 0.5 0.5 0.497 0.485
Average 35.9 0.5 0.5 0.499 0.484

Figure 2.2: Topic segmentation results.

2.2.8 Persistence of results

In a separate experiment, we evaluated the persistence of results of the ECE
algorithm by varying its hyperparameters. We took the ringnorm dataset, and
varied N; �; � (N 2 f5; 10; 50g, � 2 f0:1; 0:5; 0:7g, � 2 f0:1; 0:5; 0:9g), training
on the training part of the development data, and testing on the corresponding
test partition. The stopping criterion for the ECE algorithm consisted of a
persistent  for 50 iterations. Figure 2.3 illustrates the convergence rates for
the various combinations of the ECE hyperparameter values and N 2 f5; 10g.
As can be seen, all variants converge to the same level of accuracy (i.c. >99%),
demonstrating persistence of accuracy. When N = 10, the number of iterations
prior to convergence goes up signi�cantly. For the cases where N = 50, we
only obtained steadily increasing accuracy in 3 cases under 50 iterations; this
demonstrates that the number of iterations prior to convergence is at least
proportional to the sample size.



2.2. Hyperparameter estimation 27

Figure 2.3: Iteration/accuracy trade-o�s of ECE for the ringnorm dataset.
Values of respectively N; �; � are listed in the legend. Accuracy was measured
on the test part of the development data.
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2.3 Vector space models of documents
As the work in this thesis is heavily dependent on vector space models, we will
provide in this section an introduction to the basic concepts.

Ever since the seminal work on document representation by Luhn [1957] and
Salton et al. [1975], vector space models of documents in information retrieval
and machine learning have become ubiquitous. Vector representations of docu-
ments usually consist of statistical scores for a certain index vocabulary, binary
on/o� representations signaling the presence of absence of a certain word, or
normalized frequencies. For instance, given a toy vocabulary consisting of pairs
of index terms and their index

f(1; hate); (2; like); (3; good); (4; awesome); (5; bad); (6; poor); (7; really)g
(2.30)

one could index documents for sentiment. Every document becomes represented
by a vector, in which every position is bound to a certain word, and every value
for that position consists of, say, the frequency of that word in the document:

I really really like this movie; the acting is awesome 7!
< 0; 1; 0; 1; 0; 0; 2 > (2.31)

So, the vector space model basically is a bag-of-words model: it treats docu-
ments as multisets (bags) of words: unordered collections with repetition, and
represents documents as ordered vectors consisting of counts of designated index
words.

Usually, the terms to index a document with are selected through term
selection. For instance, the tf:idf representation is widespread, and combines
term frequency (tf , the frequency of a term t in a speci�c document d) and
inverse document frequency (idf , the number of documents in a collection D
that contain a speci�c term) in one complex measure that can be used to rank
terms for importance:

tf(t; d) = jt2DjP
ijti2dj

idf(t;D) = log jDj
jd2D:t2dj

tf:idf(t; d;D) = tf(t; d)� idf(t;D)

(2.32)

The tf:idf score is dominated by the idf -score, which will be low when the
number of documents containing a speci�c term will approach the total number
of documents. This will demote words that occur in many documents (such as
articles, prepositions, etc.), and promote words that are distinctive. Usually,
the idf scores are computed from a training corpus, and the tf -scores are taken
from a test document to be indexed.
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Given a suitable vector representation of documents, similarity between doc-
uments can be measured by operations de�ned on vectors, for instance the dot
product (expressed here as a linear kernel on two vectors x and y):

KLIN(x;y) =
X

i

xiyi (2.33)

or by measuring the angle between two vectors x and y, which relates document
length (j x j, j y j) and dot products:

j x j=
p

xx

6 xy = arccos
�
KLIN (x;y)
jxjjyj

� (2.34)

As noted above, the well-known Euclidean distance measure is

KEUCLID(x;y) =
sX

i

(xi � yi)2 (2.35)

Alternatively, similarity between document vectors can be measured as the
cosine between their representative, length-normalized vectors:

cos(x;y) =
x � y

j x j � j x j
(2.36)

where
j x j= (x � x)1=2(the Euclidean norm of x) (2.37)

The use of these essentially Euclidean distance measures for document classi-
�cation has a long and thriving tradition (see e.g. Joachims [2002]). Many
variations have been proposed that address di�erent normalizations of vectors.
For instance, given a document representation consisting of vectors of tf:idf
values, the use of L2-normalization of these values in combination with a linear
kernel has been known to produce very accurate results, e.g. Zhang et al. [2005].

Given a vector x; its L2� normalized variant is
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(2.38)
The underlying assumption of the Euclidean approach is that document

space is at, without curvature, and that distances between documents are
measured along straight lines.
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2.4 The multinomial simplex
In this section, we introduce the key concepts and formal methods behind the
classi�cation framework that is central to our work. Recent work by Lebanon
[2005] states that the vector space model for documents, although useful, is an
ad hoc approximation, and that documents are more naturally represented in
the multinomial manifold: a curved information structure arising from so-called
L(evel)1-embeddings. A manifold is a topological space that is (only) locally
Euclidean. Geometric objects such as curves and spheres are manifolds, as they
possess Euclidean structure in lower dimensions (like a sphere projected onto
2D). An in�nitely di�erentiable manifold is called a Riemannian manifold when
equipped with a distance metric measuring the distance between two arbitrary
points.

The multinomial simplex6 is the parameter space � n of the multinomial
distribution equipped with the so-called Fisher information metric (La�erty
and Lebanon [2005]):

� n =

(

x 2
� n+1 : 8j xj � 0;

n+1X

i=1

xi = 1

)

(2.39)

Every x 2 � n is a vector of n+ 1 probabilities, or outcomes of an experiment.
The analogy with normalized word frequencies in a document is the following:
every word is an experiment, and its normalized frequency in the document (the
number of times the word occurs, divided by the total number of words) is its
outcome, which corresponds to L1-normalization. Representing a document as
a vector x of word frequencies, we note that

Given a vector x; its L1� normalized variant is
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(2.40)
A multinomial distribution is a probability distribution consisting of n sepa-

rate independent trials in each of which a set of random variables Xi : : :Xk was
observed with probabilities pi : : : pk such that

Pk
i=1 pi = 1. For any document,

the random variables correspond to the di�erent words occurring in it, and the
probabilities pi are the L1-normalized frequencies of those very words in that
particular document. The connection of L1-normalization with the multinomial
distribution explains the ’multinomial’ epithet of this approach. The multino-
mial manifold therefore is a natural habitat for document representations under
L1-normalization.

6A simplex is a manifold with boundaries and corners (Lee [1997]); see also Appendix A.
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The native metric on the multinomial simplex is the Fisher Information7:

g�(u; v) =
n+1X

i=1

uivi
�i

(2.41)

with � 2 � n and u; v 2 T� � n are vectors tangent to � in the space � n.
As it turns out, there exists a di�eomorphism that relates � n to the positive

n-dimensional sphere Sn+

Sn+ =

(

x 2
� n+1 : 8j xj � 0;

n+1X

i=1

x2
i = 1

)

(2.42)

namely
F (x) = (

p
x1; : : : ;

p
xn+1) (2.43)

This is a pullback (see Appendix A): it pulls back the distances measured on
the n-sphere onto the multinomial simplex. It allows for measuring the geodesic
distance between points x;y in � n by measuring the distance between F (x) and
F (y) on Sn+, which are connected by a curve, the shortest path that actually is
a segment of a great circle:

D(x;y) = arccos
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p
xiyi

!

(2.44)

Thus, distances between objects (such as documents) in the multinomial space
are measured taking into account the intrinsic curvature of the lines connecting
them. This sets the multinomial approach apart from the Euclidean approach,
where shortest distance is computed irrespective of curvature. We shall refer to
distance measures on the multinomial simplex as geodesic kernels. The reader
is referred to Kass [1989] for further details.

An Ldp-normalization formally corresponds to an embedding of data into the
space

� d endowed with the Lp norm k x kp. This means that performing the
normalization to a certain datum automatically embeds the datum into the
corresponding information space. Usually, the d superscript is dropped. For
any x 2

� d,

k x kp=

 
dX

i=1

j xi jp
!1=p

(2.45)

When we set p = 1, the L1 norm gives rise to the Manhattan distance, when
measuring the distance between two points x;y 2

� d:

MHD(x;y) =
dX

i=1

j xi � yi j (2.46)

7Sometimes, we will write vectors in non-bold, whenever this is appropriate according to
convention.
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2.5 Geodesic kernels
Recently, the use of kernels operating on probabilistic representations of doc-
uments have become quite popular. Moreno et al. [2003] propose the use of
Kullback-Leibler divergence-based kernels for speaker identi�cation and image
classi�cation. This type of kernel has found its way into text classi�cation
as well (e.g. Coutinho and Figueiredo [2005]). Likewise, Jebara et al. [2004]
investigate a probability product kernel based on products of L2-normalized
probabilities. This work demonstrates a growing awareness of the bene�ts of
combining generative models (e.g. language models) with discriminative models
(supervised learning), as already proposed in Jebara [2001].

2.5.1 The Information Di�usion Kernel
La�erty and Lebanon [2005] and Lebanon [2006b] show that applying geodesic
kernels to document classi�cation tasks produces state-of-the-art results. In
particular, La�erty and Lebanon [2005] propose the following information dif-
fusion kernel on the multinomial manifold:

KID
t (x;y) = (4�t)�

n
2 exp

 

� 1
t arccos2

 nX

i=1

p
xiyi

! !

(2.47)

This is a one-parameter kernel, n being the dimension of the data. For su�-
ciently small t 2 [0; �), this kernel is positive de�nite, guaranteeing a unique
solution to the convex problem the kernel machine has to solve (La�erty and
Lebanon [2005]).

Interestingly, the so-called Bhattacharyya distance occurs as a subterm in
this kernel:

B(p; q) =
X

x2X

p
p(x)q(x) (2.48)

with p; q two probability distributions over the same event space X . The Bhat-
tacharyya distance is basically Euclidean distance restricted to probability dis-
tributions. In kernel (2.47), the inverse cosine (arccos) is used to measure
distance across curves, and the Bhattacharyya kernel introduces a local notion
of Euclidean distance. The Information Di�usion Kernel is related to the heat
kernel (La�erty and Lebanon [2005]), which plays a central part in the modeling
of spreading activity through networks, in both physics (e.g. temperature ow)
and information science.

The following two-hyperparameter (n; t) variant of the KID kernel has an
additional scaling facility:

KIDS
n;t (x;y) = (4�t)

n
2 exp
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(2.49)



2.6. Summary 33

Here, n is a free hyperparameter, part of a positive exponent, and no longer
bound to the dimension of the data; the constant m is the original dimension
of the data vectors. Kernel KID

t arises as a special case of KIDS
n;t , by setting n

to �m.

2.5.2 Negative geodesic distance
In Zhang et al. [2005], a simple, hyperparameter-free geodesic kernel is proposed:
the negative geodesic kernel NGD

KNGD(x;y) = �2 arccos

 
nX
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p
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!

(2.50)

Notice that this kernel combines a local, Euclidean notion of similarity (the
geometric mean, pxiyi) with a geodesic notion of similarity: the vector product
expresses cosine similarity, while the inverse cosine expresses the measurement
of distance along a curve. Two vectors that are completely similar will produce
a kernel score of 0; two totally di�erent vectors will produce ��. This is not
strictly speaking a distance; however, the value j KNGD(x;y) j is a distance:
the positive geodesic distance. We will refer to this distance with KGD(x;y).
Zhang et al. [2005] obtain state of the art results with the NGD kernel on a
number of text classi�cation tasks, outperforming the linear kernel applied to
L2-normalized tf:idf values. A shifted version of this kernel is

K+
NGD(x;y) = �2 arccos

 
nX

i=1

p
xiyi

!

+ � (2.51)

taking values in the interval [0; �].
Zhang et al. [2005] prove that the kernel KNGD is conditionally positive

de�nite, and that the shifted version is positive de�nite. The kernel KIDK , on
the other hand, was proved not to be positive de�nite by Martins et al. [2008].
Zhang et al. [2005] found no use in tweaking the C (cost) hyperparameter of
the quadratic optimization problem solver.

2.6 Summary
In this chapter, we have presented an introduction to the basic concepts and
techniques of machine learning that are relevant to this thesis. In addition, we
presented a hyperparameter estimation procedure based on the cross-entropy
method, and compared it in a number of experiments with a progressive sampling-
based grid search algorithm. Subsequently, we discussed Euclidean distance-
based vector space models for document classi�cation, and the geodesic tech-
niques underlying the multinomial document classi�cation framework. A simple
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transformation, L1-normalization, turns frequency-based bag of words represen-
tations of documents into objects that are embedded in a Riemannian manifold:
a curved information space. This manifold is related through a simple pullback
operation to the multinomial simplex, the parameter space of the multinomial
distribution. On this manifold, distances between points are measured using
geodesic metrics. Results from the �eld of text classi�cation show that these
geodesic measures are better approximations of interdocument distances, and
therefore warrant the multinomial approach to document classi�cation as a
geometry-sensitive approach. In Chapter 3, we will evaluate this approach on
two document classi�cation tasks.



Chapter 3
Multinomial text classi�cation

In this chapter, we describe two text classi�cation experiments with geodesic
kernels. In Section 3.1, we address the classi�cation of sentences as either ex-
pressing an opinion (a subjective point of view) or a factual, objective statement.
We obtain state of the art results using L1-normalized frequencies of character
n-grams. In Section 3.2, we apply a similar approach to classi�cation of entire
blog posts as either positive or negative (the 2008 Blog Trec task). The latter
task is known as polarity classi�cation.

3.1 Subjectivity analysis
Given the huge growth of the blogosphere, and the increasing awareness by the
industry of the merits of mining social media, sentiment analysis {the automated
analysis of sentiments and opinions{ has �rmly established itself on the research
agenda. Applications are diverse, ranging from analyzing customer feedback
in blogs, web forums and e-mails to security investigations and personalized
advertising. This implies there are many approaches to analyzing sentiment.
One can focus on generating alerts for negative opinions given a certain product
or person, on exploring the process of opinion-formation around a certain topic
(identifying opinion leaders), or on modeling the ow of sentiment in a certain
textual domain, for instance.

Global sentiment classi�cation, the classi�cation of entire documents as be-
ing (e.g.) positive, negative or neutral on average, can be viewed to a large
extent as a document classi�cation problem. While sentiment seems to be a too
intricate notion to capture in terms of crude categories such as positive, neu-
tral or negative, this is not really di�erent from any classi�cation task, where
class labels usually only partially cover the semantics of objects to be classi�ed.
The global sentiment of an entire document is built up from several opinions,
usually expressed on (or even below) the sentence-level, and it is not a priori
clear how to exactly compute the aggregate sum of sentiments for the entire

35
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document. Similarly, in document classi�cation, the global topic of a text may
be split up into several subtopics as well. Sentiment classi�cation can be seen as
a rough approximation of the sentiment in a document, ignoring the exact dy-
namics of sentiment ow, and its structural decomposition into linguistic units
like sentences.

Subjectivity classi�cation involves the discrimination between subjective and
objective utterances, such as sentences, or even phrases. Subjective utterances
reect a private point of view, emotion or belief. Recognition of subjectivity is
important from several points of view. Research in the �eld of sentiment mining
(Pang and Lee [2004]) has shown that removing objective sentences from text
prior to applying sentiment classi�cation yields higher classi�cation accuracy.
Subjectivity classi�cation is important for product review mining (Hu and Liu
[2004], Kim and Hovy [2006]). Both summarization and information extraction
(Seki et al. [2005], Stoyanov and Cardie [2006]; Rilo� et al. [2005]) bene�t from
an adequate discrimination between subjective and objective content.

In this section, we present a shallow linguistic approach to subjectivity clas-
si�cation (Raaijmakers and Kraaij [2008]). Using Support Vector Machines
equipped with geodesic kernels, we demonstrate that a data representation
based on counting character n-grams is able to improve on results previously
attained on the MPQA corpus using word-based n-grams and syntactic infor-
mation. Speci�cally, we compare two types of string-based representations: key
substring groups and character n-grams. Bias-variance decompositions of the er-
rors made by the various classi�ers show that word-spanning character n-grams
substantially reduce the bias error of a classi�er, and boost its accuracy.

We view subjectivity classi�cation as a regular text classi�cation problem.
For a well-known annotated dataset, we present empirical evidence that shows
how shallow representations consisting of character n-grams reduce the bias
error of a classi�er, and leads to higher accuracies than obtained with more
elaborate linguistic features. We start out by discussing shallow, string-based
representations of language, and subsequently present an array of experiments.

3.1.1 Shallow linguistic representations

The question how much high-level or deep linguistic structure (such as syntac-
tic, or semantic information) is necessary for machine learning approaches to
language analysis is part of an historical and ongoing debate. Already in 1957,
Luhn proposed to represent text simply by a vector of weighted terms (Luhn
[1957]). This eventually led to several document ranking models such as the
probabilistic model of Robertson and Jones [1976] and the vector space model
of Salton et al. [1975]. Document classi�cation turned out to be feasible us-
ing only shallow, simple vector space representations of normalized or weighted
frequencies of words, irrespective of word order or phrasal context.

Recent research in text analytics has provided further motivation that shal-



3.1. Subjectivity analysis 37

low linguistic representations are able to capture important linguistic aspects
of utterances, while being far easier to compute and presupposing less linguistic
theory. For instance, Giuliano et al. [2006] show that shallow linguistic features
consisting of words, lemmas and orthographic equivalence classes (capitalized
words, numerals, etc.) are quite useful for relation extraction in the biomedical
domain, and outperform approaches that deploy syntactic and semantic infor-
mation. Stamatatos [2006] uses character n-gram models to successfully predict
authorship, using ensemble classi�ers. Li and Roth [2001] observe that shallow
parsers provide for better performance and robustness when confronted with
new and low quality texts than their ’deep linguistic’ counterparts. Kanaris
and Stamatatos [2007], propose the use of character n-grams for webpage genre
identi�cation. Mcnamee et al. [2001] used word-spanning character n-grams in
the haircut document retrieval system at TREC-9. The early work of Cavnar
and Trenkle [1994] evaluates character n-grams for document classi�cation. The
LingPipe suite1 uses character n-grams for sentiment classi�cation.

3.1.2 Attenuation
String-based feature representations often su�er from a high level of speci�city.
Finding a suitable level of abstraction from raw feature values that still captures
important distributional properties of the underlying data is an area of active
research in the machine learning community. Eisner [1996] presents a form of
feature value abstraction he calls attenuation: in order to deal with unknown
words for dependency parsing, low-frequency unknown words are converted to
high-level descriptors describing orthographical properties (such as capitaliza-
tion, digits, etc.). Unknown name are described by MORPH-CAP, for instance;
words ending in digits are described by MORPH-NUM. This leads to equivalence
classes of tokens. In van den Bosch and Buchholz [2001], this technique is used
for shallow parsing with memory-based learners.

The work of Macskassy et al. [2001] has applied binning (discretization) to
numeric data, followed by the application of textual classi�cation methods. For
several numerical classi�cation tasks from the UCI data repository, numerical
values were discretized to symbolic values indication the bin into which a certain
value falls. This creates a bag of word-like representation that can be directly
used by regular text classi�cation methods that operate on this type of data.
Binning can be seen as a form of attenuation, grouping numerical features into
equivalence classes (bins). The bias error of the resulting classi�ers was shown
by Macskassy et al. [2001] to be much lower than the bias error of classi�ers
operating on the original numerical data. In the biomedical domain, the work of
Settles [2005] proposes the use of regular expression-style (’regex’) features for
protein and gene tagging in biomedical texts using Maximum Entropy models.
These regex features abstract from speci�c orthographic properties of strings by

1Available from http://www.alias-i.com/lingpipe/
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grouping characters into character equivalence classes, such as [A-Z] (capital-
ized characters) or [0-9] (digits). Leslie and Kuang [2004] use speci�c kernels
(such as wildcard kernels) that allow for inexact string matching, thus perform-
ing a similar kind of abstraction.

Zhang and Lee [2006] present a key substring group representation for doc-
ument classi�cation purposes that signi�cantly outperforms approaches based
on deep linguistic analysis. Given a text corpus, a su�x trie is formed that
compresses the entire corpus in a tree labelled with set-valued nodes. These
nodes are containers for substrings that have exactly the same distribution in
the given corpus: a key substring group is a set of substrings that share the same
path label in the trie that stores them. By de�nition of the trie data structure,
all strings in a key substring group have exactly the same frequency. Since these
substrings are equivalent from a distributional point of view, they can be safely
replaced by a single arbitrary symbol, which constitutes another form of attenu-
ation based on distributional string equivalence. The author reports signi�cant
improvement of state-of-the-art results, including a 20% improvement over deep
linguistic (morphological and syntactical) analysis of Greek authorship classi-
�cation, and the best result ever reported on the ten largest categories of the
Reuters-21578 dataset. For these tasks, character n-gram approaches appeared
to fare quite well, but not as good as key substring groups.

3.1.3 Character n-grams
In statistical language modeling (Rosenfeld [2000], Jelinek [1997]), language
models assign probabilities to sequences of tokens t1 : : : tN according to a prod-
uct of local probabilities:

P (t1 : : : tN ) =
NY

i=1

P (ti j t1 : : : ti�1) (3.1)

which, in the case of an n-gram representation (n = 1:::N) becomes

P (t1 : : : tN ) =
NY

i=1

P (ti j ti�n+1 : : : ti�1) (3.2)

Maximum likelihood (ML) estimates for n-grams are determined by relative
frequencies of cooccurrence:

r(ti j ti�n+1 : : : ti�1) =
j ti�n+1 : : : ti j
j ti�n+1 : : : ti�1 j

(3.3)

These ML estimates can be made much more accurate when the amount of data
increases. In general, n-gram models converge to the ML estimate with enough
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data, under smoothing schemes that usually reserve a small probability mass
to assign non-zero probabilities to unseen events. Clearly, the more data these
models see, the less probability mass is consumed by unseen events. Generating
more data by using longer n-grams (5-grams, 6-grams, etc.) is not a realistic
option, as this will lead to sparse event spaces: the chances of observing a certain
n-gram decrease with increasing values of n. An easy way to generate more data
is to exploit the subword level and use character n-grams. For instance, for the
following sentence

This car really rocks : (3.4)

subword character bigrams and trigrams are

� th, hi, is, ca, ar, re, ea, al, ll, ly , ro, oc, ck, ks, thi, his, car, rea, eal, all,
lly, roc, ock, cks.

Any n-character word produces n�1 character bigrams and n�2 character
trigrams. This means that for any document D containing w words with average
length l, the rough expansion factor is w � (l � 1) + w � (l � 2) = 2wl � 3w for
character bigrams and trigrams.

In discriminative (non-generative) models of machine learning, n-gram in-
formation typically is used in the form of a bag of words (bow), or, better put,
a bag of n-grams. The bow model assumes a feature space consisting of a set of
frequency counts, and treats every feature in this feature space as an element
of a multiset. The bag fa; b; a; b; bg can be interpreted as a frequency table
a : 2; b : 3, and is open to term weighting methods, such as tf:idf (see e.g.
Joachims [1998]).

Intuitively, more items in the bag make the bag more informative, as it
makes for a more descriptive event space and presumably a better model. So,
more data might be beni�ciary for discriminative models as well. Yet, this is an
intricate issue, as words that are not strongly predicative of a certain class may
lead to conation problems with other classes. This is the reason why in many
applications (e.g. Ng et al. [2006] and Raaijmakers [2007]), term selection is
applied in order to create a strongly class-predictive index vocabulary. Further,
the number of model parameters should be optimized according to the trade-
o� between bias and variance errors: a low number of model parameters may
increase the bias error of the model (the systematic errors it makes), and a
high number contributes to high variance error (the data-dependent errors) and
leads to an over�tted model.

The bag of word approach ignores sequentiality altogether2. Nonetheless
it is clear that there is useful information in the sequential structure of docu-
ments. For sentiment mining, speci�c combinations of terms appear particularly

2External information, such as a language model, allows to reconstruct some of the se-
quential structure underlying in a bag of words.
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informative, most notably valence shifting combinations such as ’not good’ (An-
dreevskaia et al. [2007]). A simple (but limited) way of restoring sequentiality
for a character-based bow approach is to employ n-grams on the subword level
that span word boundaries and therefore reach the superword level. For in-
stance, a bigram and trigram representation for sentence (3.4) that span word
boundaries produces

� th, hi, is, s#, #c, ca, ar, r#, #r, re, ea, al, ll, ly, y#, #r, ro, oc, ck, ks,
thi, his, is#, s#c, #ca, car, ar#, r#r, #re, rea, eal, all, lly, ly#, y#r,
#ro, roc, ock, cks

with # a whitespace indicator. These n-grams capture transitions between
consecutive words, and thus encode phrasal e�ects on character level. Notice
that the amount of string data increases signi�cantly (39 vs. 24 character n-
grams). For w words, the expansion factor for bigram and trigram superword
character n-grams is 2(w� 1) + 3(w� 1) = 5w� 5 extra strings. We shall refer
to these word-spanning n-grams as superword character n-grams (supergrams,
for short) and to word-internal character n-grams as subword character n-grams
(or subgrams). As character n-grams do not encode positional information, a
limited form of attenuation arises naturally from string overlap, where similar
n-grams coming from di�erent words are considered to be the same, forming
equivalence classes not unlike regular attenuation.

In our recent work (Raaijmakers and Kraaij [2008]; Raaijmakers and Wilson
[2008]; Raaijmakers et al. [2008]) we have found ample evidence for the informa-
tivity of character n-grams for sentiment analysis. In Raaijmakers et al. [2008]
we demonstrated for a large array of experiments that character n-grams are
the most informative source of information compared to phonemes, prosody and
word n-grams. The role of prosody as compared to lexical features for sentiment
classi�cation was also investigated in Truong and Raaijmakers [2008].

3.1.4 Data and experiments
Our data consists of the MPQA corpus (Wiebe et al. [2005]), a corpus composed
of 535 news articles from 187 foreign and US sources, manually annotated for
sentiment according to the Multi Perspective Question Answering annotation
scheme (Wiebe et al. [2005]). This annotation scheme is based on the notion
of private state (Quirk et al. [1985]). A private state models the state of an
experiencer displaying an attitude towards a certain target. Annotations have
been made at the phrasal level; higher-level annotations at the sentence level are
derived from these lower-level annotations. We extracted 9,266 sentences from
the lower-level annotations of this dataset. From the speci�cations of Rilo�
et al. [2006], a sentence is subjective if it contains a subjective expression of
medium or higher intensity. We counted 5,010 subjective sentences and 4,256
non-subjective sentences (54% of the data is subjective). According to this
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de�nition, sentences are labelled as subjective on the basis of minimally one
subjective expression. Sample subjective sentences from the MPQA corpus are:

� Under these circumstances, Taiwan and Japan both must recognize clearly
the important role of the navy.

� So when the White House says it is going to treat the Taleban in accordance
with the Geneva Convention, it is pure rhetoric, nothing other than a
public relations exercise and will be meaningless in practice.

Some objective sentences are:

� By the time of Mao Tse-tung’s Moscow speech the Chinese were actively
searching for a site for their rocket range.

� McKerrow’s estimates are based on household counts coupled with mathe-
matical models used by the WHO.

In a number of experiments, we set out to answer the following question: are
shallow linguistic representations adequate for subjectivity classi�cation at the
sentence level? Sentences being relatively short, using shallow representations
based on words (such as unigrams and bigrams) might perform not as good as
representations based on the much richer information space of substrings. The
work of Rilo� et al. [2006], discussed in Section 3.1.7, is revelant to our work,
as it addresses subjectivity classi�cation of the MPQA corpus. These authors
kindly made available their exact data fragment from the MPQA corpus, from
which we derived a number of substring-based representations:

� Subword character n-grams (bi-, tri- and quadrigrams)

� Superword character n-grams (bi-, tri- and quadrigrams)

� Key substring groups

� A mixture of key substring groups and superword character n-grams (bi-,
tri- and quadrigrams)

The word-internal character n-grams were used as a baseline. The key sub-
string group features were generated with standard parameter settings of the
software made available by Zhang and Lee [2006]3. Due to an inherent memory
restriction of this software, we had to (uniformly) limit training set size over all
runs and data representations to 5,000 datapoints, which amounts to 81% of
the original training data. In the experiments reported in this section, we use
the negative geodesic kernel KNGD applied to normalized ’count once’ frequen-
cies (every feature out of a total of n obtains a probability 1=n), following the

3Software available from
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang kdd2006 supplement.html.
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work of Yang et al. [2007] on bags of visual words, where it was demonstrated
empirically that for large vocabularies, binary frequencies outperform regular
frequencies. In our case, the character n-gram representation leads to a large
vocabulary size. This type of representation e�ectively is a maximum entropy
representation, as the probability distribution is at. In Chapter 6 and Chapter
7 we will argue that this type of representation may be better learnable with
non-geodesic kernels, but that is not our main concern in this section.

3.1.5 Results

Results in Table 3.1 show �rst of all that superword character n-grams perform
the best among the other representations. Even on the basis of 81% of the
training data, this representation also leads to improvement of results reported
on this data by Rilo� et al. [2006] using unigram, bigram and extraction pattern
features.

SUB SUPER KSG KSG + SUPER
Acc 74.57 82.5 77.9 81.9
Rec 77.6 84.9 80.7 84.4
Prec 75.9 83.2 78.9 82.5
F1 76.7 84 79.8 83.5

Table 3.1: Average accuracy, recall, precision and F1 (three-fold cross-
validation) for subgrams, supergrams, key substring group features and a com-
bination of key substring group features and supergrams (best results in bold).

We graphically compare the four di�erent data representations across the
three cross-validation folds using cost curves (Drummond and Holte [2006]; see
Appendix B). The curves in Figure 3.1 con�rm the superior performance of
superword character n-grams (lower lines indicate better performance; the op-
erating point 0.5 indicates equal costs for both classes (subjective vs. objective),
and the values on the y-axis reduce to error rate. The combination of key sub-
string group features and superword character n-grams performs worse than
superword character n-grams alone. The baseline consisting of word-internal
character n-grams performs worst.

3.1.6 Bias and variance decomposition of classi�cation er-
ror

As has been noted by Webb [2000], the implementation of bias and variance
error presented by Kohavi and Wolpert [1996] su�ers from the fact that train-
ing subsets become very small for medium to average size data sets, and the
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Figure 3.1: Combined cost curves for 3 folds, comparing superword character
n-grams (solid line), subword character n-grams (dotted), KSG (long dashed),
and KSG+superword character n-grams (short dashed).

estimates for bias and variance error consequently become unreliable. We took
to heart the recommendations of Webb [2000], and applied 10 runs of 3-fold
cross-validation, in order to get better estimates of bias and variance. From
Table 3.2, we see that supergrams yield lower bias error than subgrams and key
substring groups. The combination of key substring groups and superword char-
acter n-grams has a slightly lower bias error than superword character n-grams
alone, but it this di�erence is probably not signi�cant. As noted, overall perfor-
mance of this combination is lower than the performance of superword character
n-grams alone. From the variance error decomposition, it appears that super-
grams reduce the systematic error of a classi�er more than its data-dependent
error. The variance error produced by supergrams is lower than subgrams, but
slightly higher than for KSG or the combination of KSG and supergrams. All in
all, the combined advantage of lower bias error and comparable variance error
of supergrams compared to subgrams and KSG-based representations is quite
clear.

3.1.7 Related work
A signi�cant body of work has addressed subjectivity classi�cation, ranging
from phrase level, to sentences and the document level. In this overview, we
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SUB SUPER KSG KSG + SUPER
Bias 39.8 35.9 37.9 35.8
Variance 27.9 27.7 27.5 27.6

Table 3.2: Bias and variance decomposition of the classi�cation error, using
subgrams, supergrams, key substring group features and the combination of
key substring group features and supergrams

limit ourselves to work addressing the sentence and phrase level.
Kim and Hovy [2004] investigate a number of metrics that combine lexical

sentiment polarities at the word level into an aggregate polarity score for entire
sentences. Their best approach is a polarity product method that e�ectively
cancels out negative-negative combinations in a certain region (negative times
negative is positive). They conclude that the presence of negative words is
more important than their exact polarity strengths. Their method is basically
a lexical method. The interaction between word senses (meaning) and subjec-
tivity is studied by Wiebe and Mihalcea [2006], arguing for a direct relation
between lexical subjectivity and the use of subjectivity information for word
sense disambiguation. Similarly, Yu and Hatzivassiloglou [2003] take a lexical
approach to subjectivity classi�cation of both sentences and entire documents.
The authors detect subjective sentences in TREC data using word unigrams,
bigrams, parts of speech and frequency counts of subjective words, obtaining
91% F-measure scores with a Naive Bayes classi�er at the sentence level, and
up to 97% F-measure scores at the document level. Their work illustrates the
di�culty of identifying subjectivity at the sentence level.

The focus of Wilson et al. [2006] is on intensity classi�cation: classifying
the strength of opinion using a �ve-point scale (neutral, low, medium, high,
extreme), after �rst detecting opiniated texts. This work addresses also clauses
below the sentence level. Likewise, the work of Wilson et al. [2005] is con-
cerned with phrase-level subjectivity classi�cation and sentiment classi�cation.
In addition to a bag of three tokens (previous, current and next word, on the
basis of a shifting window), contextual features addressing parts of speech and
syntactic dependency are used. After the discrimination between subjective
and neutral phrases, polarity classi�cation is carried out. Breck et al. [2007]
describe phrase-level recognition of subjectivity (below sentence-level) in the
MPQA corpus, using conditional random �elds that treat the task as a tagging
problem.

Wiebe et al. [1999] extract subjective nouns from unannotated text on the
basis of manually created lists of seed words, and use these nouns together
with a wide range of previously identi�ed interesting features for sentence-based
subjectivity classi�cation. Most notably, these features include strongly class-
predictive stems: words in their base form that are strongly associated with
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either the subjective or objective class. Rilo� et al. [2003] also investigate
subjectivity classi�cation at the sentence level. They apply rule-based classi�ers
based on lexical lookup and simple decision rules to bootstrap labelled training
data from unlabelled data, on which extraction pattern learning algorithms are
trained. These algorithms feed back their output to a training set, and the
process is reiterated. Recall and precision scores on a 2,197 sentences test set
range from 32.9{40.1 and 90.2{91.3 respectively.

Rilo� et al. [2005] use rule-based classi�ers to bootstrap training material
for a Naive Bayes classi�er for sentence level subjectivity classi�cation. Their
system is evaluated in the context of MUC-4 terrorism data, the Naive Bayes
classi�er producing information extracts on the basis of subjectivity. Using
additional �ltering contraints, they obtained higher precision and only slightly
lower recall compared to previous attempts, thus illustrating the usefulness of
sentence-level subjectivity classi�cation.

The issues of feature construction and feature selection are addressed by
Rilo� et al. [2006] for sentence-level subjectivity classi�cation. Observing sub-
sumption relations between many feature types (e.g. bigrams are subsumed
by the unigrams they are composed of), these authors propose a subsumption
hierarchy for features, which subsequently can be used for feature selection
purposes: complex features can have di�erent (sometimes better) predictive
properties (higher information gain) than their simple parts. They reported a
best accuracy of 74.9% (three-fold cross-validation) using either a combination
of word unigrams and word bigrams, or word unigrams and bigrams together
with syntactic extraction patterns. Li et al. [2007] report an F-score of 77.9 on
a single training-test split of the MPQA corpus, using Support Vector Machines
and raw token unigrams, lemma unigrams and part of speech information.

3.1.8 Conclusions

In this section we have evaluated shallow, character-based representations of
subjectivity data. Character-based representations are easy to compute, and
presuppose a minimum amount of linguistic theory: basically, tokenization is
the only prerequisite. We compared character n-gram representations with key
substring group representations, and provided empirical evidence for the su-
perior performance of superword character n-grams: character n-grams that
surpass word boundaries. We found that these n-grams substantially reduce
the bias error of a classi�er, and also outperform the combination of shallow
and deep linguistic features used by Rilo� et al. [2006]. A logical continuation of
this work is to apply the technique to local sentiment on the phrase level and to
investigate the combination of deep and shallow information in one classi�er. In
Chapter 4, we will demonstrate that carefully balancing (interpolating) hetero-
geneous information in a multinomial classi�er applied to sentiment classication
is bene�ciary.
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3.2 Large-scale polarity classi�cation

In this section we describe the TNO submission (Raaijmakers and Kraaij [2009])
to the Blog TREC 2008 task of large-scale polarity classi�cation. We submitted
5 runs provided by NIST, to which we applied information di�usion kernels
operating on character n-gram representations.

3.2.1 Introduction

The polarity task of Blog TREC 2008 consists of retrieving and ranking for each
of a total of 150 topics (queries) the positive and negative opiniated documents
in the test collection. TREC has made available 5 topic-relevance baseline runs,
to which polarity classi�cation or opinion �nding techniques can be applied.
This allows participants to focus on one aspect of the processing chain. In this
contribution, we describe the result of applying the TNO polarity classi�cation
approach to these 5 baselines. We discuss the results of our submissions in
Section 3.2.5 and present conclusions and lessons learned in Section 3.2.6. In
the next three sections, we describe the data, our feature representation, and
the general outline of our setup.

3.2.2 Data and pre-processing

The TREC Blog06 collection, a 148 Gigabytes sample of the blogosphere, is the
result of an eleven-week period crawl (December 2005-February 2006). Due to
the automated crawling process, the dataset contains not only legitimate blog
postings, but also spam, javascript, homepages and RSS feed material. The
data itself consists of raw HTML, with a total of over 3.2 million documents.
In order to train a classi�er on these class-labeled web pages, these documents
have to be cleaned up and converted to plain text, which is by far not a trivial
task. Our HTML to text conversion strategy consists of a dedicated DOM-
parser e�ectively stripping the larger part of HTML tags and javascript code.
We combined this parser with the html2text Python script4 in sequence: fol-
lowing our dedicated parser, we applied html2text.py. While this produced
reasonably clean text, we found that in a lot of cases the output data still
contained tags and programming constructs.

3.2.3 Character n-gram representations

As for the subjectivity analysis presented in Section 3.1, we opted for a character
n-gram approach to the polarity classi�cation task. For every training docu-
ment, we generated superword character n-grams from 2 up to 6 characters. In

4Available from http://www.aaronsw.com/2002/html2text/
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the experiments reported in this section, we used the hyperparameter-free neg-
ative geodesic kernel KNGD. Expanding the TREC data to character n-grams
leads to a huge expansion of data. Due to memory constraints of our systems,
we took a random portion of training data of only 16% (amounting already to
over 250 megabytes of training data).

3.2.4 Thresholding decision values

Support Vector Machines output decision values that can be discretized to bi-
nary classes (a negative value produces a negative class label, and a positive
value a positive class label), or posterior class probabilities (e.g. Platt [2000],
and Chapter 8). We performed no such discretization, but used the raw de-
cision values for ranking the various positive and negative cases. We devised
a simple threshold estimator that, on the basis of class distribution priors in
the training data, determines the optimal threshold above which decision values
should produce positive classes. Algorithm C.3 performs a pseudo-exhaustive
one-parameter sweep, �xing a decision value threshold that optimally approx-
imates the a priori class distributions in the training data. The dmin; dmax
demarcate the range of the decision values in the training data. The � factor
is a resolution factor that serves to round o� obtained class distribution scores.
We used this threshold to assign classi�ed documents to the positive and neg-
ative classes, prior to ranking their respective decision values. The value of �
was set to 0.05.

3.2.5 Results

In Figure 3.2 and Figure 3.3, the results for positive and negative queries are
displayed, by plotting the di�erence of the produced MAP and R-PREC values5

and the reference values. As can be seen, the runs for the positive queries
produce well above median scores for both MAP and R-PREC. Averaged over
the 5 baseline runs, for the positive queries, a portion of 62.3% is equal to
or above the reference median average precision. For the R-PREC scores for
positive queries this portion is on average 70.5%. The R-PREC scores produced
by the 5 positive baseline runs were all signi�cantly6 better than the median R-
PREC reference scores. The average di�erence between produced R-PREC and
reference R-PREC was +12.1%. For the negative queries, on average, 24.7%
of all MAP scores produced were equal to or above the reference MAP values.
For R-PREC, a much higher proportion of on average 57.8% scores was equal
to or above median reference R-PREC. The averaged di�erence over all 5 runs

5Mean Average Precision and Precision at R (with R the number of relevant documents);
see Appendix B.

6All signi�cance results were computed with the non-parametric Wilcoxon signed rank
test, with p < :5.
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for R-PREC compared with reference R-PREC was -1.7%. In 4 out of 5 runs,
this di�erence was signi�cant, its average amounting to a rather small -1.7%.

The percentages of deviations are listed in Table 3.3, as well as the results
of the Wilcoxon signed rank applied to the R-PREC results.

Task % MAP % R-PREC MAP R-PREC W
Positive queries

base1 +66.9 +75.7 26.2 21.3 +14.7
base2 +53.4 +60.8 19.4 15.4 +7.9
base3 +64.2 +73 24.1 19.4 +12.5
base4 +64.2 +71.6 23.8 19 +12.3
base5 +62.8 +71.6 24.8 19.7 +13.2
Average +62.3 +70.5 16.2 11.5 +12.1

Negative queries
base1 +22.7 +61 8.7 4.5 -1.3
base2 +14.9 +49.7 6.7 3.5 -3.3
base3 +27.7 +58.9 7.7 4 -2.3
base4 +31.2 +59.6 8.3 4.5 -1.6
base5 +27 +59.6 8.4 4 =
Average +24.7 +57.8 10 6.7 -1.7

Table 3.3: Percentage of queries with MAP scores above/below (+/-) median
average precision; percentage of queries with R-PREC scores above/below me-
dian R-PREC; average MAP and average R-PREC scores for the 5 polarity
baselines; Wilcoxon signi�cance of the di�erence of the obtained score with the
reference score (p < :5), as well as the di�erence of the average obtained score
with the average reference score.

3.2.6 Conclusions

In this section, we presented the TNO approach to polarity classi�cation and
ranking of the Blog TREC 2008 data. For 5 baseline runs, we applied infor-
mation di�usion kernels to character n-gram representations. We trained our
system on a relatively small portion of 16% of the total available training data.
Results show that our system performs well above median for positive queries.
For negative queries, results are in 4 out of 5 runs below median, albeit with
a small (but signi�cant) percentage. While it is de�nitely necessary to invest
more time in thorough data cleaning prior to classi�er training and testing,
these results underline the e�cacy and accuracy of multinomial approaches to
document classi�cation.
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3.3 Summary
In this chapter, we have demonstrated the usefulness of multinomial classi-
�ers. Applied to the problem of sentiment analysis, we obtained state of the
art performance for subjectivity classi�cation on sentence level. Character n-
gram expansion was applied to generate a su�cient amount of data for the
multinomial classi�ers. For the Blog Trec task, we obtained well above median
performance for positive blog posts, and slightly below median performance for
negative blog posts. Given the fact that we used a mere 16% of the training
data, and that we only partially succeeded in cleaning up the training and test
data, this result demonstrates the potential of these kernels when applied to
only partially cleaned up text. Apart from the research reported in this chap-
ter, we applied multinomial classi�ers to the problem of re-ranking answers to
why-questions (see Verberne et al. [2009]). In Chapter 4 and Chapter 5, we will
propose extensions to the standard multinomial framework in order to be able
to deal with two phenomena: heterogeneous information, and sequential and
limited context problems.
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Figure 3.2: Di�erence of TNO produced MAP and R-PREC values with the
TREC reference values for positive queries (queries sorted by descending per-
formance), for the �ve submitted runs.
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Figure 3.3: Di�erence of TNO produced MAP and R-PREC values with the
TREC reference values for negative queries (queries sorted by descending per-
formance).





Chapter 4

Hyperkernels

4.1 Introduction

Up to now, we have seen the application of geodesic kernels to L1-normalized
frequencies of string data. Both for the tasks of subjectivity classi�cation and
polarity classi�cation, we have applied the negative geodesic kernel to hetero-
geneous data: bags of strings drawn from di�erent multinomial distributions,
mixing uni-, bi- and higher-order n-grams without keeping them apart. While
e.g. word unigrams and bigrams are related through subsumption, it seems
counterintuitive to normalize the frequencies of higher n-grams with the fre-
quencies of lower-order n-grams. Revisiting our previous example

th ; hi ; is ; ca ; ar ; re; ea ; al ;
ll ; ly ; ro; oc; ck ; ks ; thi ; his ;
car ; rea; eal ; all ; lly ; roc; ock ; cks :

(4.1)

we get a normalized frequency of 1
24 for every string (all strings (24) are ha-

paxes). However, in this example there are only 10 trigrams, opposed to 14
bigrams, which shows that the normalized trigram frequency is dominated by
the bigram frequencies.

It has been demonstrated in a number of publications (Section 4.3.4) that
n-gram features bear quite di�erent information. In this chapter (based on
Raaijmakers [2007]), we therefore raise the question whether it is bene�ciary
to discriminate between di�erent sources of information in the classi�cation
process, speci�cally when using L1-normalized data and geodesic classi�ers.
We will start with a formal analysis of weighted information as a form of kernel
interpolation, after which we will present empirical evidence for the fruitfulness
of this approach.

53
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4.2 Kernel interpolation
In the language modeling �eld, mixing di�erent types of information is usu-
ally done by interpolation (e.g. Kraaij [2004]) and mixtures of Gaussians (e.g.
Dasgupta [1999]) in generative models. While our framework of kernel-based
classi�cation is discriminative as opposed to generative (Jebara [2001]), it turns
out there is a simple method for implementing similar ideas: kernel interpola-
tion. Kernel interpolation is the process of combining two or more kernels in
a weighted manner. Every kernel receives its own weight that expresses the
importance of the contribution of this kernel in the classi�cation process. The
idea for our problem is to have two similar kernels both addressing di�erent
types of information: one for word unigrams, and one for word bigrams.

While there are many ways to combine heterogeneous information in one
kernel, the following composed kernel combines information through a weighted
sum, factoring out the contributions of two separate Bhattacharyya subker-
nels. The weights �1 and �2 are interpolation weights that express the relative
importance of the two information sources.
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The two subscript parameters i and j indicate the highest index positions of

the word unigrams and bigrams in the vocabulary. This information is used by
the kernel to factorize the unigram and bigram parts: any feature with an index
higher than the maximum unigram index will be considered a bigram feature.

As we will see in Section 4.2.1 and Section 4.2.2, this method has at least
two mathematical interpretations.

4.2.1 A pullback metric
Weighting the Bhattacharyya subkernels corresponds to computing a weighted
inner product, which e�ectively weighs an entire feature subspace with uniform
weights:

�(
NX

i=1

p
xiyi) =

NX

i=1

p
(�xi)(�yi) (4.3)

From this observation, we derive the following

4.2.1. Proposition. Kernel interpolation corresponds to a pullback metric on
the Fisher information.
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Proof The proof of the proposition is direct, by the following:
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4.2.2 Submanifold regularization
An alternative, formal interpretation of kernel interpolation is the following. A
learning algorithm is a map that selects from a hypothesis space of functions
H : X �X 7!

�
a function f� : x 7! y such that f(x) � y in a predictive way,

with y the true class of x.
Assume a set of l labeled examples (xi; yi), with xi a feature vector and

yi 2 f+1;�1g its class1. Mercer kernels K : X � X 7!
�

are associated with
a set of functions HK called the Reproducing Kernel Hilbert Space (RKHS).
These functions f : X 7!

�
have a norm k � kK , and penalizing this norm in the

following formula amounts to smoothing solutions for f (Belkin et al. [2006]):

f� = arg min
f2HK

1
l

lX

i=1

�(xi; yi; f) +  k f k2K (4.5)

with � a loss function, like the hinge loss

j 1� yif(xi) j+ (4.6)

with
j x j+= max(x; 0) (4.7)

This technique, known as Tikhonov Regularization (e.g. Sch�olkopf and Smola
[2002]), is an extension of Empirical Risk Minimization (ERM; e.g. Vapnik
[1999]), which leaves out the penalty term:

f� = arg min
f2HK

1
l

lX

i=1

�(xi; yi; f) (4.8)

ERM is known to be ill-posed for unfortunate choices of H : f should not
be easily perturbed by variation in the training data, it should be stable and
continuously dependent on the data. Usually, however, H is unconstrained,

1As before, we use superscripts (xi being the i-th vector x) to avoid confusion with our
previous subscript notation that refers to components of a vector.
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and this condition is not trivially met. Tikhonov regularization (also known as
manifold regularization) serves to constrain H with a penalty term.

We now show that the technique of kernel interpolation corresponds to a
form of Tikhonov manifold regularization. As a prerequisite, note the following
about a norm: a nonnegative function k � k is a norm i� 8f; g in a vector space
N and � 2

�

1. k f k� 0 and k f k= 0 i� f = 0

2. k f + g k�k f k + k g k

3. k � � f k=j � j � k f k

We now prove the following:

4.2.2. Proposition. Regularizing a function that interpolates two kernels cor-
responds to a form of manifold regularization addressing two submanifolds.

Proof Let F+ � POW (F) be a set of feature subspaces of the feature space
F . Assume our classi�er is a composite function f = 1

2 [�1f1jk + �2f2jl], with
fijj a classi�er restricted to feature subspace j 2 F+. So, the f1 and f2 both
address di�erent slices of the feature space, which implies they address di�erent
manifolds. Notice that �1 and �2 are always positive, drawn from

� +, hence
j � j= �. We then have

f� = arg min
f2HK

1
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(4.9)
From this it follows that the penalty terms for the submanifolds directly depend
on the choice for the interpolation weights (�1; �2), or, put di�erently, that
optimizing the interpolation weights of the two submanifolds determines the
solution of the regularization of f .
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4.3 N-gram interpolation for global sentiment
classi�cation

The research question addressed in this section is the following. A substantial
body of research has addressed the question which types of linguistic information
are useful for sentiment classi�cation, especially investigating the role of word
unigrams and bigrams. We will take up this issue, and investigate the division
of labor between word unigrams and bigrams for binary sentiment classi�cation:
classifying a document as either positive or negative. We start by presenting
the ingredients for our experiments: the data, and the classi�er apparatus. We
then describe our experiments, and draw conclusions.

4.3.1 Data

We will focus on predicting the global sentiment for the annotated movie review
dataset of Pang et al. [2002], commonly referred to as the polarity dataset. This
dataset, consisting of 1000 positive and 1000 negative movie reviews, has become
a de facto benchmark dataset for global binary sentiment classi�cation. In Table
4.1, two sample snippets from a positive and negative review are listed.

Positive
Kidman knows a star-making role when she sees it
and she plays the conscience-deprived Suzanne as
the ultimate career driven, post-feminist uber-temptress
from hell. She is ably abetted by wonderfully
demented comic dialogue, which Kidman delivers
in a unselfconsciously funny way.

Negative
Tons of illogical moments about; more than I really have
the inclination to list. And I don’t mean illogical in
the summer popcorn movie sense. That type of illogical
can be fun. This �lm insults your intelligence more
times than I care to remember.
The last 20 minutes especially degenerates into
such lunacy that you’ll be laughing more than you’ll
be screaming.

Table 4.1: Sample snippets of positive and negative movie reviews.
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4.3.2 Combining linguistic information for sentiment min-
ing

Many types of information have been identi�ed as relevant for sentiment clas-
si�cation during the last years, e.g. sentiment-bearing word unigrams, word
n-grams, valency information of adjectives, valency-shifting properties of ad-
verbs, and dependency relations. In Section 4.3.4, we will discuss the relevant
literature. In the work reported here, we concentrate on using word unigram
and bigram information only, represented by frequency counts. These informa-
tion sources are the natural ingredients for information di�usion kernels, once
properly represented as normalized frequencies. Radial basis function (RBF)
kernels, on the other hand, are frequently applied to either index vectors (where
every feature ags the presence of a certain unigram or bigram), raw frequencies,
or term weighting representations such as tf.idf (see e.g. Joachims [1998]).

Normalization of word unigram and bigram frequencies will produce two sep-
arate multinomial probability distributions that need to be reconciled during
the classi�cation process. There are two options here. The �rst would be to view
all word unigram and bigrams strings as coming from the same distribution, ig-
noring intrinsic di�erences between the two distributions such as variance. The
second option would be to interpolate the two information sources by assigning
weights (Lagrange multipliers) to both unigram and bigram contributions, es-
timating these weights with an estimation procedure. Our hypothesis is that a
good balance between these information sources will lead to performance gains.

4.3.3 Classi�er setup
After having veri�ed the bene�ts of the scaled Information Di�usion Kernel
(see Section 2.5) in a number of pilot tests, we decided to use this kernel in the
experiments reported below. The hyperparameters of the kernel were estimated
with the cross-entropy-based beam search algorithm of Section 2.2, using held-
out development data. The exact splitting up of the data into training, test and
development data is described in Section 4.3.5. By treating the interpolation
weights as additional hyperparameters, we estimated these weights jointly with
the ’normal’ kernel hyperparameters n and t, which seems only natural to do.

Every movie review was indexed for word unigrams and bigrams. The result
is a sparse feature vector, consisting of separately normalized frequencies of word
unigrams and bigrams. The hyperkernel (4.2) was implemented as an extension
to the LIBSVM support vector machine toolkit2.

4.3.4 Related work
Turney [2002] takes an unsupervised approach to polarity classi�cation of doc-

2Software available from http://www.csie.ntu.edu.tw/~cjlin/libsvm.
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uments, by inferring the semantic orientation of documents from the semantic
orientation of phrases, which are gathered from the web by neighborhood queries
containing positive or negative seed words. Pang et al. [2002], using a predeces-
sor of the movie data of Pang et al. [2002] consisting of 1400 documents, report
negative e�ects on accuracy for polarity classi�cation of documents when using
bigrams as the sole features. They note a drop in accuracy of 5.8% for Support
Vector Machines applied to the polarity dataset using only bigrams as features.
Even the combination of word unigrams and bigrams was outperformed by us-
ing unigrams alone. In Pang and Lee [2004], an accuracy of over 87% on the
polarity data was achieved by focusing on subjective sentences only. Rilo� et al.
[2006] �nd that using both word unigrams and bigrams, in combination with
selected complex (syntactic) features taken from an information gain-based sub-
sumption lattice of complex features produces the best results. They achieve
82.7% on the polarity dataset, but they report for 3-fold cross-validation3 only.

Kennedy and Inkpen [2006] obtain an accuracy of 85.9% on the polarity data
(10CV), using Support Vector Machines and valency shifting bigrams, together
with word unigrams. Ng et al. [2006] report 90.5% on the polarity data using
additional information sources, such as valency information for adjectives, and
�lter out objective sentences �rst. To our knowledge, this is the best result
reported ever on the polarity data. They report 89.2% using word unigram,
bigram and trigram features together, and also notice signi�cant drops in accu-
racy when using bigrams only. The latter is attributed by the authors to data
sparseness: test documents frequently did not contain any of the bigrams in the
training documents.

Mullen and Collier [2004] also analyze the movie review data and investigate
the combination of various information sources such as semantic orientation and
emotive aspects of adjectives, the proximity of emotive phrases to the topic, and
lemmatized word unigrams. Using Support Vector Machines, they �nd that the
best results (86% for 10-fold cross-validation for the movie data) are obtained by
allocating information sources to separate Support Vector Machines, as opposed
to merging them in one feature space and using a single classi�er. In their
approach, a hyperclassi�er combines the model information of the subordinate
classi�ers, extracting features directly from the lower-level SVM models.

Work on local sentiment prediction, e.g. on the sentence level, is relevant
to the work reported in this section when identifying certain combinations of
words that are important indicators for the sentiment of a document. Benamara
et al. [2007] investigate the use of adverb-adjective combinations for local sen-
timent analysis. They propose an axiomatic system by which adverbs of degree
modify the strength of sentiment of an adjective they combine with. This ap-
proach is related to Andreevskaia et al. [2007] and Kennedy and Inkpen [2006],
who investigate the use of valency shifting adverbs (like ’not’), that reverse the

3See Appendix B.
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sentiment of adjectives in their scope. and the work of Wilson et al. [2005]),
where polarity expressions are used for computing the polarity of their context.
In sum, these lexical approaches, though addressing sentiment on a local level
(like sentences), shed light on informative data sources beyond word unigrams
for sentiment analysis.

4.3.5 Experiments
We set out to investigate the following questions. First, should we use all
word unigrams and bigrams in the training data, or a dedicated selection only?
Second, should we interpolate word unigram and bigram information, or just
combine these two information sources, pretending they arise from the same
distribution? In our experiments, we used the interpolated information di�usion
kernel (4.2) and the non-interpolated information di�usion kernel (2.49). For
the interpolation experiments, we also investigated the e�ects of setting one of
the weights �1 and �2 in kernel (4.2) to zero; setting �1 = 0 eliminates the word
unigram contribution, and �2 = 0 eliminates the bigram contribution.

4.3.6 Term selection
Following Ng et al. [2006], we ranked all word unigrams and bigrams t in the
movie review data based on their weighted log-likelihood ratio (WLLR) scores,
for the two classes c 2 f+1;�1g:

WLLR(t; c) = P (t j c) log
P (t j c)
P (t j :c)

(4.10)

For both classes, we selected the 5,000 highest ranked word unigrams and 5,000
highest ranked word bigrams from the training data as index vocabulary. Some
illustrative word unigrams and bigrams from the top 50 WLLR scores are listed
in Table 4.2.

4.3.7 Experimental setup
For every experimental condition, we performed 10-fold cross-validation. We
permuted the data, and split it into 10 training and test partitions. Every
training partition (90% of the data) was subsequently split into a secondary
90% training partition (90%� 90%=81% of the data), and a 10% development
data partition. Finally, every development data partition was subsequently split
into a 60% development training partition and a 40% development test parti-
tion. The two development data partitionings were used by the hyperparameter
estimation algorithm to derive the hyperparameters for the kernel machine, for
every separate fold. After the hyperparameter estimation algorithm found these
hyperparameters, we trained on the 81% training data partitionings, and tested
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Class unigram
{1 bad, worst, stupid, boring, ridiculous, awful
+1 great, best, well, perfect, wonderful
Class bigram
{1 this mess, the worst, worst movie

a stupid, is terrible, waste of
+1 the best, is excellent, most powerful

very e�ective, a great

Table 4.2: Highly WLLR-ranked word unigrams and bigrams across the two
classes.

Interpolation
�1 6= 0; �2 6= 0 �1 = 0 �2 = 0

All terms 87.3 79.75 86.2
Selected terms 86.4 80.5 84

No interpolation

All terms 80.5
Selected terms 86.8

Table 4.3: Generalization accuracy (10CV), for the various experimental con-
ditions.

on the corresponding 10% test partitioning. We kept the development data
separate from the training data; this makes our results not exactly comparable
to 10CV results reported for this data that do not employ development data4.
Signi�cance of results was measured using a paired t-test.

4.3.8 Results
Table 4.3 lists the results for the various experiments. Results for the interpo-
lated kernel �rst of all underline the importance of the word unigram contribu-
tion. The hyperparameter estimation algorithm predominantly assigned higher
weights to the word unigram subkernel across the various folds. The importance
of word unigrams becomes clear when manually deactivating the word unigram
subkernel, i.e. setting �1 = 0. The drops in accuracy are more dramatic than
when eliminating the bigram contribution, sometimes even amounting to over
6%. This is in line with the �ndings of Pang et al. [2002].

Our results show that the combination of word unigrams and bigrams with-
out performing term selection yields signi�cantly better performance than using
only one of these resources, and outperforms term selection followed by either
interpolation or no interpolation. The interpolation of all word unigrams and

4In fact, comparison of cross-validation results produced by di�erent classi�ers on the same
dataset should actually be done on exactly the same splits.
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word bigrams signi�cantly outperformed the corresponding uninterpolated com-
bination of all terms. When performing term selection, no statistical di�erence
between interpolation or no interpolation could be established; however, these
conditions were both outperformed by the interpolation of all terms. We con-
jecture that the lack of performance gains of interpolation for the selected terms
arises from a too aggressive term selection. Clearly, the ad hoc chosen bound of
5,000 highest ranked WLLR terms should be thresholded on development data.
The observation that using all terms {including possibly noisy term { bene�ts
the most from interpolation shows that interpolation can stabilize situations of
imbalanced information.

4.4 Summary
In this chapter, we proposed a formal method for the combination of hetero-
geneous sources of information within the multinomial framework, by means of
kernel interpolation. We supplied two formal interpretations of kernel interpola-
tion. We subsequently investigated the use of heterogeneous word unigram and
bigram information for sentiment classi�cation of movie reviews. We found that
a composite kernel consisting of a separate word unigram and bigram kernel,
which were interpolated automatically with a cross-entropy-style hyperparame-
ter estimation procedure, produced the best results. These results rank among
the best reported using word unigrams and bigrams on the movie review data
set of Pang et al. [2002], and are still open to improvement, by incorporating
other sources of useful information reported in the literature, such as valency
information of adjectives. We conclude that kernel interpolation is a viable
technique of practical interest, with a sound formal interpretation.

In Chapter 5, we focus on the problem of language learning with an inherent
sequential nature or a very limited amount of information: tasks that do not
possess a document structure amenable to frequency-based feature representa-
tions.



Chapter 5
Sequential and limited context feature

spaces

Up to now we have applied the multinomial framework to document-like objects:
full texts (e.g. the polarity classi�cation of entire blog posts and movie reviews)
and smaller textual units such as sentences (subjectivity classi�cation) which
were expanded into pseudo-documents by using character n-grams. Yet, there
are many more classi�cation tasks to be carried out on texts that do not pos-
sess this document structure nor are easily reconcilable with character n-gram
expansions, speci�cally linguistic analyses based on small windows of linguistic
context. These tasks are essentially ordered. An example is part of speech
tagging, where part of speech ambiguities emanating from a lexical lookup step
are usually resolved in a limited, left-to-right ordered context1. Frequency, the
important notion underlying the multinomial framework, is no longer an intu-
itive notion for these tasks: the frequency of a certain part of speech in the
context of an ambiguity to be resolved certainly is interesting information, but
we cannot represent each item in the window solely by its relative frequency
without losing important information about left-to-right ordering.

In this Chapter, we address the question whether multinomial language
learning can indeed be e�ective here once we switch from counting co-occurrences
of features within a bag to counting global co-occurrences of features and classes:
the estimation of co-occurrence statistics from an entire data set, instead of the
strictly local context of a bag of features. In Section 5.1, we outline this idea of
counting outside of the bag. We present two types of transformations that trans-
form sequential representations into representations suitable to the multinomial
classi�cation strategy: �rst-order and higher-order. The �rst-order transforma-
tion is based on unigram information, whereas the higher-order transformation
is based on interpolated unigram and bigram (or higher n-gram) information.
We demonstrate that both types of transformation correspond to pullback met-

1Part of speech tagging and a number of other ordered tasks are discussed in Daelemans
and van den Bosch [2005].
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rics of the Fisher information. Experimental results are presented in Section
5.2.

5.1 Co-occurrences of features and classes
In order to apply information di�usion kernels to sequential representations,
suitable transformations into a frequency space need to be applied. Co-occurrence
of classes and feature values is a logical source of frequency information, express-
ing characteristics of an entire dataset instead of a small feature space.

5.1.1 First-order models
An apparent candidate L1-embedding for feature vectors of sequential, multi-
class classi�cation problems would be the following transform. Every instance

< f1; : : : ; fn; c > (5.1)

with fi a feature value, and c a class symbol from the set C of k classes, is
replaced by a vector

< jf1;C1jPk
i=1

Pn
j=1jfj ;Cij

; : : : ; jf1;CkjPk
i=1

Pn
j=1jfj ;Cij

;
: : :

jfn;C1jPk
i=1

Pn
i=1jfj ;Cij

; : : : ; jfn;CkjPk
i=1

Pn
i=1jfj ;Cij

; c >
(5.2)

This e�ectively is an L1-embedding of joint observations of feature values and
classes. We shall refer to this type of representation as co-occurrence transform.
Notice that the transform in (5.2) ignores positional information of features. For
this reason, we refer to it as a position-unaware transform. A position-aware
version would be

< jf1[1];C1jPk
i=1

Pn
j=1jfj [j];Cij

; : : : ; jf1[1];CkjPk
i=1

Pn
j=1jfj [j];Cij

;
: : :

jfn[n];C1jPk
i=1

Pn
i=1jfj [j];Cij

; : : : ; jfn[n];CkjPk
i=1

Pn
i=1jfj [j];Cij

; c >
(5.3)

where fi[j] means feature value fi at position j. An example will make the
di�erence clear.

Ratnaparkhi [1998b] presents a task known as PP-attachment, consisting of
the attachment of a prepositional phrase as either a noun or a verb modi�er,
on the basis of a four-cell window containing a verb, a noun, a preposition, and
a noun. An example from this task is

� cast, brothers, as, brothers, V
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This example states that the prepositional phrase as brothers is a modi�er of
the verb cast rather than the noun brothers. The capitalized ’V’ is a class
symbol; the second class symbol for this binary classi�cation task is ’N’. The
position-unaware transform (5.2) would transform this instance to

< jcast;Nj
j cast;N j +
j cast; V j +
j brothers; N j +
j brothers; V j +
j as;N j +
j as; V j +
j brothers; N j +
j brothers; V j

; jcast;V j
j cast;N j +
j cast; V j +
j brothers; N j +
j brothers; V j +
j as;N j +
j as; V j +
j brothers; N j +
j brothers; V j

; jbrothers;Nj
j cast;N j +
j cast; V j +
j brothers; N j +
j brothers; V j +
j as;N j +
j as; V j +
j brothers; N j +
j brothers; V j

; jbrothers;V j
j cast; N j +
j cast; V j +
j brothers; N j +
j brothers; V j +
j as; N j +
j as; V j +
j brothers; N j +
j brothers; V j

;

jas;Nj
j cast; N j +
j cast; V j +
j brothers; N j +
j brothers; V j +
j as;N j +
j as; V j +
j brothers; N j +
j brothers; V j

; jas;V j
j cast; N j +
j cast; V j +
j brothers; N j +
j brothers; V j +
j as;N j +
j as; V j +
j brothers; N j +
j brothers; V j

; jbrothers;Nj
j cast; N j +
j cast; V j +
j brothers; N j +
j brothers; V j +
j as;N j +
j as; V j +
j brothers; N j +
j brothers; V j

; jbrothers;V j
j cast; N j +
j cast; V j +
j brothers; N j +
j brothers; V j +
j as;N j +
j as; V j +
j brothers; N j +
j brothers; V j

; V >

(5.4)

The position-aware transform would produce a similar result, with one dif-
ference: all counts would now be based on feature-class co-occurrences taking
positional information into account:

< jcast[1];Nj
j cast[1]; N j +
j cast[1]; V j +
j brothers[2]; N j +
j brothers[2]; V j +
j as[3]; N j +
j as[3]; V j +
j brothers[4]; N j +
j brothers[4]; V j

; jcast[1];V j
j cast[1]; N j +
j cast[1]; V j +
j brothers[2]; N j +
j brothers[2]; V j +
j as[3]; N j +
j as[3]; V j +
j brothers[4]; N j +
j brothers[4]; V j

; jbrothers[2];Nj
j cast[1]; N j +
j cast[1]; V j +
j brothers[2]; N j +
j brothers[2]; V j +
j as[3]; N j +
j as[3]; V j +
j brothers[4]; N j +
j brothers[4]; V j

; jbrothers[2];V j
j cast[1]; N j +
j cast[1]; V j +
j brothers[2]; N j +
j brothers[2]; V j +
j as[3]; N j +
j as[3]; V j +
j brothers[4]; N j +
j brothers[4]; V j

;

jas[3];Nj
j cast[1]; N j +
j cast[1]; V j +
j brothers[2]; N j +
j brothers[2]; V j +
j as[3]; N j +
j as[3]; V j +
j brothers[4]; N j +
j brothers[4]; V j

; jas[3];V j
j cast[1]; N j +
j cast[1]; V j +
j brothers[2]; N j +
j brothers[2]; V j +
j as[3]; N j +
j as[3]; V j +
j brothers[4]; N j +
j brothers[4]; V j

; jbrothers[4];Nj
j cast[1]; N j +
j cast[1]; V j +
j brothers[2]; N j +
j brothers[2]; V j +
j as[3]; N j +
j as[3]; V j +
j brothers[4]; N j +
j brothers[4]; V j

; jbrothers[4];V j
j cast[1]; N j +
j cast[1]; V j +
j brothers[2]; N j +
j brothers[2]; V j +
j as[3]; N j +
j as[3]; V j +
j brothers[4]; N j +
j brothers[4]; V j

;

; V >

(5.5)
For the position-unaware transform, the counts j brothers;N j and j brothers; V j

are not based on the actual position of ’brothers’ in the feature vectors in the
training data, as opposed to the position-aware transform.

For binary tasks like this, the feature-class co-occurrences are complemen-
tary, e.g.

j cast; V j= 1� j cast;N j (5.6)

so the output of the transform can be simpli�ed by leaving out one of the
probabilities.

In practice, many events (j fi; c j or P (c j fi)) in the test data will be
unobserved in the training data, but simple smoothing methods can be applied
to solve this problem, such as Good-Turing and Laplacian add-one methods
(Gale and Sampson [1995]).
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5.1.1. Proposition. The co-occurrence transforms are pullback metrics of the
Fisher information.

Proof Let �i denote the L1-normalized frequency of the i-th feature, and c a
class; fi is the value of the i-th feature, and Cj is the j-th class. Starting with
the original sequence of L1-normalized feature frequencies �1; : : : ; �n (which in
the sequential case are of the form 1

n ), we see that the embedding obtained by
the co-occurrence transforms is a pullback metric of the Fisher information:

G�(�) =

0

BBBBB@

�i�1
i

kX

j=1

nX

i=1

�i�ji

; : : : ;
�i�ki

kX

j=1

nX

i=1

�i�ji

; : : : ;
�n�1

n
kX

j=1

nX

i=1

�i�ji

; : : : ;
�n�kn

kX

j=1

nX

i=1

�i�ji

1

CCCCCA

(5.7)
where �ji = n� j fi; Cj j , or �ji = n � P (Cj j fi) .

Adding an extra subscript generalizes this result to the position-aware trans-
form.

5.1.2 Higher-order models
First-order models are based on collocations of feature values (eventually on a
certain position in a feature vector) and classes. Higher-order models would take
into account contextual information, like collocations of sequences of features
and classes. A combination of these two approaches is possible, and common
practice in the language modeling �eld. It is possible to construct a back-o�
model using Expectation-Maximization (Dempster et al. [1977]) that estimates
two or more models di�ering in complexity, and a set of interpolation parame-
ters estimated from held-out development data. The interpolation parameters
determine the relative weight of the di�erent sources of information. Estimating
an interpolation weight for a separate information source is in fact related to
hyperkernel interpolation, as it also consists of uniform weighting of an entire
feature (information) space.

In particular, it is possible to back o� from a joint frequency model that
addresses co-occurrences of longer sequences of features and classes, to a model
of co-occurrences of shorter sequences of features and classes. Given a sequence
of n features f1; : : : ; fn, let fki be the subsequence of features fi : : : fi+k. If
k > n, then fki is the empty sequence �, and for all classes c 2 C, P (c j �) = 0.

Algorithm C.4 in Appendix C is an instantiation of the EM-algorithm that
can be used to smooth L1-normalized conditional probabilities, by interpolating
a-th order probabilities (based on joint occurrences of a features and classes)
with b-th order probabilities (a > b). Every �k is the value of the interpolation
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parameter � at time k, which is used to interpolate the two models Ma and Mb.
These �’s can be computed from the training data.

Log-likelihood of the data given the estimated parameters at time k is de�ned
as

L(fn1 ;�k) =
P

i
P

c2C log(�kPa(c j fai ) + (1� �k)Pb(c j f bi )) (5.8)

A suitable stopping criterion for Algorithm C.4 in Appendix C can consist of a
test on change of log-likelihood, based on a threshold �:

L(fn1 ;�k)� L(fn1 ;�k�1) < � (5.9)

or, similarly, a test on change of the � parameter:

�k � �k�1 < � (5.10)

For a k-class problem and two models Ma and Mb, the original feature
vectors < f1; : : : ; fn; c > are replaced by

<
P
c2C �Pa(cjfa1 )+(1��)Pb(cjfb1 )

P
c2C

Pn
i �Pa(cjfai )+(1��)Pb(cjfbi ) ; : : : ;

P
c2C �Pa(cjfan)+(1��)Pb(cjfbn)

P
c2C

Pn
i �Pa(cjfai )+(1��)Pb(cjfbi ) >

(5.11)

5.1.2. Proposition. The higher-order co-occurrence transform can be refor-
mulated as a pullback metric of the Fisher information.

Proof The proof of the proposition is direct, by the following:

G�(�; a; b) =

0

BBBB@

�i�a;bi
nX

i=1

�i�a;bi

; : : : ;
�n�a;bn
nX

i=1

�i�a;bi

1

CCCCA
(5.12)

where �a;bi = n �
�P

c2C �Pa(c j fai ) + (1� �)Pb(c j f bi )
�
.

5.2 Experiments
In order to verify the usefulness of co-occurrence-based pullback metrics for
sequential tasks, we experimented with the following sequential tasks:

� English prepositional phrase attachment (PP; Ratnaparkhi [1998b], and
briey introduced in Section 5.1.1).

� German plural noun formation (GPLURAL; Daelemans and van den Bosch
[2005]), the classi�cation of a noun to one out of eight plural conjugation
classes, on the basis of a 7-feature window. The 7 features describe the
contents of the two �nal syllables of the noun and its grammatical gender.
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� Dutch diminutive formation (DIMIN; Daelemans and van den Bosch [2005]),
the prediction of a diminutive su�x (5 classes) for Dutch nouns on the
basis of its last three syllables, which are described by 4 features each:
the presence or absence of stress of the syllable, its onset (start), nucleus
(middle part) and coda (ending).

� English shallow parsing (CHUNK; Daelemans and van den Bosch [2005]),
the shallow parsing of sentences (WSJ Penn Treebank) into major con-
stituents (22), such as NP, VP, PP, on the basis of a 7-cell window contain-
ing words and parts of speech. The tagging is based on the IOB schema
(Ramshaw and Marcus [1995]), where I-XP indicates the presence of a
word inside a phrase XP, O-XP indicates being outside a phrase XP, and,
B-XP indicates the start of a phrase XP preceded by another XP of the same
category.

We used only a part of CHUNK: the �rst 10,000 �rst items in the training
partition, and the �rst 4,000 items in the test partition for testing. These
datasets have �xed training/test partitions. Statistics are listed in Table 5.1,
as well as the results obtained with memory-based learners for these datasets,
as reported by Daelemans and van den Bosch [2005]2. We report their highest
scores and indicate the type of measure. Scores not reported are indicated with
a hyphen.

In our experiments, we varied the use of pullback metric: position-aware
(’pos’) and position-unaware (’no-pos’). We evaluated a maximum entropy rep-
resentation (’maxent’) consisting of L1-normalized ’count once’ frequencies (see
Section 3.1.4), which can be seen as a baseline representation or this type of
learning tasks, where feature repetition (and hence the occurrence of frequen-
cies greater than 1) is minimal. This implies that for this representation, the
use of positional information is not relevant: counting takes place inside the
bag and every feature-position combination receives a count of 1, normalized to
1
n for n features. We further evaluated the interpolation between unigram fea-
tures (P (c j fi)) and bigram features (P (c j fifi+1)), using the position-aware
pullback transform.

5.3 Results
Our experiments demonstrate that co-occurrence transforms are e�ective for all
tasks as compared with the maximum entropy representations. Although for
PP only improvement in Fmicro is observed, the average of Fmicro and Fmacro
for the position-aware pullback is 81.9, vs. 81.6 for the maximum entropy
representation. For PP and DIMIN, the pullback transforms obtain higher
results than the results reported by Daelemans and van den Bosch [2005]. For

2These authors reported sometimes accuracy, sometimes F-scores (and not both).
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Task # Train # Test # Classes Accuracy F1
PP 20,801 3,097 2 80.7 {
GPLURAL 12,584 12,584 6 94.3 {
DIMIN 2,999 950 5 97.6 {
CHUNK 211,727 47,377 22 { 91.9

Table 5.1: Statistics of the sequential tasks. The accuracy and F-scores, ob-
tained with memory-based learners, are reported by Daelemans and van den
Bosch [2005].

GPLURAL, the interpolated classi�er improves on the result reported by these
authors. For CHUNK, our results cannot be easily compared, but the micro-
averaged F1-score obtained by the position-aware pullback suggests comparable
performance.

The position-aware pullback metric uniformly outperforms the position-
unaware pullback, as is to be expected for sequential tasks. As can be seen,
interpolation is not e�ective for PP, CHUNK and DIMIN, but it is e�ective
for GPLURAL. For this dataset, the computed interpolation parameter was
� = :47. For the other datasets this parameter was much higher, showing there
is virtually no information to be gained from the bigrams, except for CHUNK,
where the situation is opposite: the low value of � = :1 indicates that the
unigrams are virtually uninformative. For GPLURAL, unigrams and bigrams
happen to be roughly equally informative. Since their contribution apparently is
complementary, the interpolation strategy is able to improve here on the simple
pullback transform.

5.4 Related work
We are not aware of work in the multinomial language learning tradition that
addresses sequential and limited context tasks. Interpolation of several sources
of information for sequential tasks has a longstanding tradition, e.g. Brants
[2000] (part-of-speech tagging) and Black et al. [1993], Collins [2003] (parsing).

Hall and Hofmann [2000] investigate the use of multinomial submanifolds
for the purpose of dimension reduction for n-gram language models. This work,
predating geodesic kernel methods on the multinomial simplex, does not address
quasi-document structures. Extensions of multinomial classi�cation methods
that model sequential information (like topic segmentation) instead of static
word frequency-based information have been presented by Lebanon [2006b].
These methods operate on document level, by �tting a kernel to model changes
in word frequencies under a bag-of-words approach (the lowbow approach).

Numeric transformations from discrete data based on conditional probabili-
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Task Condition Accuracy Fmicro Fmacro
No interpolation

PP maxent 82.9 80.6 82.6
L1,no-pos 80.6 80.6 80.3

L1,pos 82.1 82.1 81.7

GPLURAL maxent 88 88 79.6
L1,no-pos 90.5 90.5 82.1

L1,pos 91.9 91.9 85.3

DIMIN maxent 79.2 79.2 57.7
L1,no-pos 96.8 96.8 89.2

L1,pos 97.8 97.8 92.4

CHUNK maxent 38.3 38.3 10.2
L1,no-pos 69.1 69.1 22.3

L1,pos 91.5 91.5 39.1
Interpolation

PP � = :89 79 80.5 80.5
GPLURAL � = :47 94.6 94.6 91
DIMIN � = :73 95 95 80.3
CHUNK � = :1 80 80 26.2

Table 5.2: Experimental results for the sequential tasks. Best results are indi-
cated with boldface.

ties were proposed by Kasif et al. [1998], who devised a numeric transform based
on the MVDM, or Modi�ed Value Di�erence Metric proposed by Stan�ll and
Waltz [1987]:

< f1; : : : ; fn; c >7! < P (+1 j f1); : : : ; P (+1 j fn) > for c 2 f�1;+1g (5.13)

in the context of k-nearest neighbor classi�cation. Their distance metric es-
sentially being Euclidean, this L1-embedding of feature spaces does not bene�t
from, nor pay attention to the intrinsic geometry of the resulting multinomial
data.

5.5 Summary
In this chapter, we have proposed two types of transformations that allow for
the application of multinomial classi�ers to sequential and limited context tasks.
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We presented �rst-order and higher-order transformations that respectively ad-
dress unigram and higher n-gram information. By computing feature-class co-
occurrence statistics, we solve the problem of having insu�cient information for
applying multinomial classi�ers to limited context, sequential learning tasks.
We demonstrated that the proposed transforms formally correspond to pull-
back metrics of the Fisher information, thus providing the approach with a
sound formal basis. Our experimental results show that the ’position-aware’
pullback metric {taking into account the position a feature value occurs on,
when computing feature-class co-occurrence statistics{ is the most e�ective for
these tasks. An interpolation strategy providing a back-o� option to a unigram
model was found to be particularly e�ective for one task, where the interpola-
tion parameter computed showed roughly equal informativity of unigram and
bigram features.

This brings us to the end of Part I of this thesis, where we have both veri�ed
the performance of standard multinomial classi�ers (Section 3) and proposed
a number of extensions in order to deal with heterogeneous information in a
principled manner (Section 4) and sequential, limited context tasks (Section 5).
In Part II, we will assess exactly under which conditions multinomial classi-
�ers with geodesic distance measures perform well, and under which conditions
Euclidean distance would be a better option.





Part II

A Back-O� Model for
Document Geometry
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Chapter 6
Isometry, entropy and distance

In this chapter we �rst prove in Section 6.1 analytically that for maximum
entropy data, the Euclidean and negative geodesic distance measures become
isometric. Then, we expose a particular weakness of geodesic distance mea-
sures based on the inverse cosine: certain regions in the domain of the arccos
function produce either rounding errors or non-linear behavior. We identify
the conditions under which these phenomena take place, which have important
rami�cations for the applicability of geodesic kernels. Subsequently, Section 6.3
proposes a least squares based method for inspecting the geometry of data.

6.1 An algebraic perspective on isometry
In this section we prove the existence of a mapping from KNGD to KEUCLID
and vice versa for maximum entropy data. This shows that for this type of
data, KEUCLID and KNGD display metric isometry (Lee, 1997, p.112), by the
existence of a homeomorphism between them. Two metrics D1 and D2 on a
manifold M are topologically equivalent or isometric if the identity mapping

I : (M;D1) 7! (M;D2) (6.1)

is bijective, continuous, and has a continuous inverse. Let (M;K) be a manifold
endowed with a metric K, and let MME

L1 be a maximum entropy L1-normalized
vector space. Then we need to show that

I : (MME
L1 ;KEUCLID) 7! (MME

L1 ;KNGD) (6.2)

and, vice versa,

I : (MME
L1 ;KNGD) 7! (MME

L1 ;KEUCLID) (6.3)

6.1.1. Proposition. L1-normalized maximum entropy data endowed with KNGD
is isometric to Euclidean space.
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Proof Given two vectors x and y, let x1 (y1) be the number of dimensions in
which x (y) has a non-zero value:

x1 =j xi 6= 0 j (6.4)

Similarly, let x0 (y0) be the number of dimensions in which x (y) has a zero
value:

x0 =j xi = 0 j (6.5)

Let a (agreements) be
a =j xi = yi j (6.6)

and let d (di�erences) be a quantity composed of

d1 =j xi 6= yi; xi 6= 0; yi 6= 0 j
d2 =j xi 6= yi; xi = 0 j
d3 =j xi 6= yi; yi = 0 j

(6.7)

Finally, let c (collisions) be the number of components in which both x and y
simultaneously have a non-zero value:

c = j xi = yi j + j xi 6= yi j �x0 � y0 =
a+ d� x0 � y0 =
a+ d1 + d2 + d3 � x0 � y0

(6.8)

The Euclidean distance metric (Section 2.3) then computes the following
quantity:

KEUCLID(x;y) =
r
d1

�
1
x1
� 1

y1

�2
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�
1
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1
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+ d1
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(6.9)

For KNGD, we have

KNGD(x;y) = �2 arccos
�
c
r�

1
x1
� 1

y1

��
=

�2 arccos
�
a+d1+d2+d3�x0�y0px1�y1

�
(6.10)
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We can now re-express KNGD as a function of KEUCLID:

KNGD0 (x;y) =

� 2 arccos
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(6.11)
Likewise
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(6.12)

The mapping KNGD0 maps KEUCLID to KNGD, and the inverse map-
ping KEUCLID0 maps KNGD to KEUCLID: the operations involved are ex-
actly paired, and each operation in KEUCLID0 is the inverse of an operation
in KNGD0 . Note that we would never be able to relate KEUCLID and KNGD
for non-maximum entropy data, as all probabilities ’vanish’ in the aggregate
product

P
i
pxiyi that is part of KNGD, and we can’t eliminate the square

root operation. This is easiest to show if we take the linear dot product as a
Euclidean distance measure. Suppose we want to map the NGD kernel to this
product. As a �rst step,

cos
�
KNGD(x;y)

�2

�
=

nX

i=1

p
xiyi (6.13)

But now there is no possibility of eliminating the various squared products by
means of exponentiation, as these are all combined in one product.

The operations in (6.12) are bijective, continuous mappings. From the exis-
tence of these mappings it becomes clear that the two distance metrics coalesce
(only) in the case of maximum entropy L1-normalized data. Yet there is a dif-
ference between these two metrics under maximum entropy, as we will point
out in the next subsection.
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6.2 The relation between entropy and distance
In Section 6.3 we investigate empirically under which conditions this approxi-
mation becomes particularly close. Prior to that, we notice the following. Let
D be a set of K documents d1 : : : dn, n � 1. Any document d 2 D is repre-
sented as a bag (a set with repetition) of words, which together make up the
vocabulary of d, Vd. A frequency variant d0 of d would be any element of the
set fd0 2 V �d j d

0 � dg. For instance, the document a a b b c c is a frequency
variant of the document a b c. Let L be the total set of L1-normalized possible
frequency variants of D. The Gram matrix Gl;D;M is the matrix of pairwise dis-
tances between all elements of D, under the representation l and the geodesic
distance measure KNGD � D �D 7!

�
The average Gram distance G l;D;M is

de�ned as 1
K2

nX

i=1

nX

j=1

Gl;D;M (i; j). Then the following holds:

6.2.1. Proposition. 8l0 2 L : if H(l0) � H(arg maxl2LH(l)) then Gl0;D;M �
Gl;D;M

Proof The proposition follows from the observation that when x � 1, arccos(x) �
0, and �2 arccos(x) � 0, and when x � 0, arccos(x) � 1

2�, and �2 arccos(x) �
��. Under a maximum entropy situation, for two n-dimensional vectors x and
y, probabilities xi; yi converge to 1

n . The sum of squared probability products
then approaches

nX

i=1

p
xiyi �

nX

i=1

r
1
n2 �

nX

i=1

1
n
� 1

for quite similar vectors; any feature that is de�ned in vector � but not in
vector �0 (or vice versa) will produce a zero contribution to the total sum of
probabilities.

This proposition states that, under a maximum entropy representation, ob-
jects become maximally close to each other in the representing manifold: the
maximum entropy representation yields the smallest possible average distance
between objects, since values close to 1 of the dot product that is part of the
NGD kernel lead to distances around zero.

6.2.2. Remark. It is well known that the arccos function, part of the NGD
kernel, becomes inaccurate for small values due to large rounding errors (Sin-
nott [1984]). Figure 6.1 displays the rounding error for j x � cos(arccos(x)) j,
for x 2 [0; 1]. While the function composition cos � arccos should in theory
produce the identity function, in practice, on current hardware, application of
arccos introduces a rounding error. For small values of x, this rounding error
is relatively high, and becomes zero for values of x above 0.7. These small
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Figure 6.1: Rounding error for cos(arccos(x)) with x 2 [0; 1]. The y-axis plots
j x � cos(arccos(x)) j on a log scale. Di�erences between x and cos(arccos(x))
equal to zero receive y = 0.

values occur easily for maximum entropy data when overlap between vectors is
minimal. Notice further that arccos(0:9) = 0:45, and that arccos(0:99) = 0:14,
where arccos(1) = 0, which shows a non-linear steep descent behavior of arccos
for values close to 1. See Figure 6.2, which illustrates this trend for arguments
above 0.7, by showing a fragment of the poor result of a linear least squares �t,
with large inaccuracy especially for the value range [0:7; 1]. This non-linearity
will lead to unjusti�ably large di�erences between vectors that di�er only in a
few features.

We surmise that this causes distance measures based on arccos to work
suboptimally for low similarity values, as well as for values close to 1. We
summarize this for clarity.

� High entropy data increases the risk for dot products with small values for
highly dissimilar vectors; for these small values the NGD kernel produces
distances close to ��, with large rounding errors.

� High entropy data increases the risk for dot products close to 1 for very
similar vectors; for these large values the NGD kernel produces distances
close to zero, with non-linear behavior.

Returning to Proposition 6.1.1, for maximum entropy cases, the NGD kernel
still is based on the inverse cosine (Eqn. 6.11), whereas the Euclidean kernel
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Figure 6.2: The function arccos(x) for x 2 [0; 1], and a least squares �t, shown
here only for the range [0:7; 1].

applies cos to the NGD kernel (Eqn. 6.12). This reformulation reduces the
NGD kernel to a rounding error-free dot product for values of the dot product
approaching 1, where cos(arccos(x)) � x:

cos(KNGD(x;y)
�2 ) =

cos(arccos
P

i
pxiyi) =

P
i
pxiyi

(6.14)

So, for the boundary case of maximum entropy, the reformulated Euclidean
kernel e�ectively compiles away the arccos function, which favors this kernel
over the reformulated NGD kernel by eliminating arccos-based errors. There-
fore, under high to maximum entropy conditions, it would make sense to use
Euclidean kernels that omit the arccos function. In Chapter 8 we will re-address
this issue and put forward a procedure that thresholds the arccos-based error
component of the NGD kernel. Also, we will propose a novel kernel based on
the so-called haversine distance (Sinnott [1984]), that is particularly accurate
on small distances.



6.3. Least squares estimation of isometry 81

6.3 Least squares estimation of isometry
In the previous section we showed an algebraic isometry between KNGD and
KEUCLID for maximum entropy L1-normalized data. In this section, we develop
a pragmatic method that, for a given L1-normalized dataset, will determine if
there indeed is isometry between KEUCLID and KNGD.

6.3.1. Proposition. A Riemannian manifold M1 is isometric to a Euclidean
manifold M2 if there exists a constant c such that the Gram matrix for M1 is
equal to c times the Gram matrix for M2.

Proof Let DM1 ; DM2 be the associated distance metrics with M1 and M2. By
de�nition, if there exists a homeomorphism h mapping DM1 to DM2 , then M1
and M2 are isometric (Lee [1997]). Clearly, h(DM1) = c � DM2 is bijective,
continuous, and has a continuous inverse.

Since multiplication with a constant is a linear operation, we can use linear
methods such as Least Squares Estimation (LSE) to determine the existence
of such a constant. The least squares method minimizes the sum of squared
residuals, i.e.

E =
nX

i=1

[yi � f(xi; �)]2 (6.15)

where � is a set of parameters, yi the dependent or observed variable, xi a
predicted value, and f(x; �) a model function relating xi to yi through the
parameters �1; : : : ; �m:

f(x; �) =
mX

i=1

f 0j(x)�j (6.16)

Let ri denote the residual [yi�f(xi; �)]. Minimizing E corresponds to setting
its gradient to zero:

@E
�j

= 2
nX

i

ri
@ri
@�j

= 0 (6.17)

which is equivalent to

�2
nX

i

ri
@f(xi; �)
@�j

ri = 0 (6.18)

For the linear case this can be expressed as

�2
nX

i

f 0j(xi)

 

yi �
mX

k

f 0j(xi)�k

!

= 0 (6.19)

Given two distance metrics D1 and D2 on a certain manifold M , we can
compute the Gram matrices G1 and G2. The Gram matrices contain exactly



82 Chapter 6. Isometry, entropy and distance

n2 distances for n datapoints. If the two metric spaces (M;D1) and (M;D2)
are isometric, then the LSE problem G1 � z = G2 should have a solution, and
therefore we can carry out the computations speci�ed in Algorithm C.5.

Typically, EGin Algorithm C.5 will be around zero in the case of full isom-
etry. In practice, due to rounding errors and numerical instability, the error
will be over zero. Normalization can be applied to two respective Gram errors
E1; E2 to compute the relative Gram error

GR(E1 j E2) =
E1

E1 +E2
(6.20)

If the least squares method outlined above �nds an isomorphism (a Gram error
� 0), then the KNGD kernel is no more e�ective than the KEUCLID kernel.

Experiment
In order to assess the usefulness of this procedure, we performed the following
experiment. We used the AMI sentiment dataset (Carletta et al. [2005]), a
dataset consisting of 13 speech recognized scenario-based meeting recordings,
of approximately 30 minutes each. Every meeting had four participants. This
dataset was annotated by Wilson [2008] for both sentiment subjectivity (the
presence or absence of an opinion in an utterance) and polarity (the classi�ca-
tion of an opiniated utterance as positive, negative or neutral). In this data,
utterances consist of dialogue act segments (see Raaijmakers et al. [2008] and
Raaijmakers and Wilson [2008]). A subjective utterance is a sequence of words
where a private state is being expressed. A private state (Quirk et al. [1985])
is an an opinion, belief, sentiment, emotion, etc. The subjectivity problem is
a two-class problem. On average, every meeting contains about 1150 manu-
ally transcribed speech utterances, with roughly 107,723 (65.5%) objective and
56,628 (34.5%) subjective utterances. This is a di�cult task that is best mod-
eled with features that capture sequential information (e.g. Raaijmakers and
Kraaij [2008]).

For every meeting of the AMI sentiment dataset, we took 10 random sam-
ples of 500 datapoints (40% on average) from the training �le of that partic-
ular fold, for both the normal L1-representation and the maximum entropy
L1-representation. For each type of representation, the same random sample
was used. Subsequently, we computed the Euclidean and NGD Gram matrices
for each of these 130 500 points samples, after which the Gram error was mea-
sured. The average Gram error of the maximum entropy L1-data was .008% of
the average Gram error obtained with the normal L1-data (equivalently, the L1-
based Gram error was 124 times higher than the maximum entropy-based Gram
error). So, the relative Gram error of the maximum entropy data compared to
the original L1 data was e�ectively around zero, and the relative Gram error
for the normal L1 data was close to 1. The maximum entropy L1-normalized
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data therefore was much more similar to Euclidean data than the normal L1
data: the di�erences between the two errors were found to be highly signi�cant
by a Wilcoxon ranked sum (p < :002).

6.4 Summary
In this chapter we have both analytically and empirically veri�ed that the en-
tropy of L1-normalized data has immediate consequences for the application
of geodesic kernels. We demonstrated analytically that for maximum entropy
L1-normalized data, the NGD and Euclidean distance metrics are isometric.
As a corollary, we argued that high entropy data is represented by regions on a
manifold with small distances between points. In fact, maximum entropy data
produces the smallest distances possible between data points. For high entropy
data with a substantial degree of overlap between vectors, dot products between
vectors approach 1, which leads to non-linear behavior of the arccos function
part of the NGD kernel. Small di�erences lead to signi�cant perturbations of
the outcome of arccos. For vectors with a limited amount of overlap, dot prod-
ucts produce small values for which arccos produces large rounding errors. We
conclude that the NGD kernel does not yield optimal performance on these
boundary cases. The Euclidean kernel, while isometric to the NGD kernel for
maximum entropy data, compiles away the arccos function for maximum values
of dot products, omitting the non-linear behavior of arccos in the high end of
its domain. Finally, we proposed a diagnostic method that determines isometry
of the NGD and Euclidean kernels through least squares computations on the
respective Gram matrices. We showed that maximum entropy data is much
better represented with a Euclidean Gram matrix than with a geodesic Gram
matrix.

In Chapter 7, we will provide additional evidence challenging the point of
view that L1-normalized data should be uniformly analyzed with geodesic dis-
tance measures, from a performance point of view: we will carry out a number
of experiments that assess the performance of geodesic and Euclidean distance
measures when confronted with high entropy data.





Chapter 7
Hybrid geometry

In Chapter 6, we have established analytically a relationship between distance
and entropy. In this chapter, we provide additional empirical evidence for the
hypothesis that, under certain circumstances, L1-normalized document space
possesses hybrid Euclidean-geodesic geometry. Section 7.1 argues that dimen-
sionality reduction (or feature selection), when based on hybrid geometrical
principles, is able to outperform single-geometry methods on certain data, while
this situation is reversed on other data. Likewise, Section 7.2 presents a man-
ifold denoising strategy based on combined Euclidean and geodesic geometry
that uniformly outperforms single-geometry denoising. These observations show
that L1-normalization does not automatically entail the unconditional use of
geodesic distance measures.

7.1 Dimensionality reduction
In this section, we investigate the use of geometric feature selection approaches
to document dimensionality reduction. If L1-normalized documents indeed are
naturally embedded in Riemannian manifolds, then it makes sense to look for
dimensionality reduction techniques that operate exactly on these manifolds.
On the other hand, if documents have both geodesic and Euclidean properties,
then a mixed approach might make sense. In this section we will outline and
evaluate exactly such an approach.

The contributions of this section are the following. First, we propose a fea-
ture weighting algorithm that, using a geometric method, performs a blockwise
analysis of input data, where feature weights are computed for every data block.
These feature weights are averaged after completion of the algorithm, and are
used to select features. We compare standard Euclidean Laplacian Eigenmaps
with a proposed variant: geodesic Laplacian Eigenmaps. The latter uses the
distance function inherent to Riemannian manifolds. In addition, we evaluate a
combination of these two, where the weights computed by the Euclidean Eigen-
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map and the geodesic Eigenmap are averaged. This variant combines informa-
tion from two representational spaces: the Euclidean space and the Riemannian
manifold. Evaluation of the weighting algorithms is performed by deleting it-
eratively low-weight features. We demonstrate for two text classi�cation tasks
that the geodesic variant o�ers the best performance, and, for experiment 2,
that the combined approach signi�cantly outperforms the other approaches,
providing evidence for the hypothesis that hybrid geometrical representations
of documents may be bene�ciary.

7.1.1 The curse of dimensionality

As most text classi�cation problems su�er from the curse of dimensionality { a
large, sparse feature space, and an abundance of irrelevant or noisy features {
feature selection is an active area of research in the text classi�cation commu-
nity. A feature selection algorithm attempts to identify valuable features and
eliminates features whose presence is detrimental for the performance of a clas-
si�er on a certain dataset. A great variety of feature selection techniques have
been proposed throughout the years { including analytical approaches (e.g. in-
formation gain-based �ltering (e.g. Yang and Pedersen [1997], Forman [2003]),
heuristic methods (e.g. wrapper-based methods (Kohavi and John [1997]; Raai-
jmakers [1999])) and search-based methods (e.g. genetic algorithms (the early
work of Siedlecki and Sklansky [1989], and, more recently, Daelemans et al.
[2003]) and ant colony search algorithms (e.g. Aghdam et al. [2009]). A partic-
ular class of feature selection algorithms consists of methods that take into ac-
count the underlying geometry of the data. Modeling the data as an information
space (a topological space, or manifold) with a certain dimensionality (the num-
ber of features), these methods aim at reducing high-dimensional information
spaces to lower dimensional subspaces with minimal loss of information. Well-
known examples are PCA, LLE and Isomap (for an overview see der Maaten
[2007] and der Maaten [2009]). So-called Laplacian Eigenmaps have been pro-
posed by Belkin and Niyogi [2002] and Gerber et al. [2007] as e�cient methods
for dimensionality reduction of manifold structures. A Laplacian Eigenmap re-
constructs a neighborhood graph approximating the geodesic distances in the
original manifold, and projects this neighborhood to a lower-dimensional mani-
fold that faithfully represents the original higher-dimensional data and preserves
local neighborhoods. The neighborhood reconstruction is based on Euclidean
distance; the neighborhood graph consists of weighted edges connecting near-
est neighbors. The computation of the low-dimensional manifold Y from an
original manifold X involves minimizing a cost function C:

C(Y ) =
X

ij

(yi � yj)2Wij (7.1)
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with Wij the weight of the edge connecting points i and j. Given a suitable
choice of weights, the cost function can be made to produce a penalty when
the original points xi; xj are mapped too far apart in the reconstruction Y .
From the weight matrix W , the diagonal matrix weight M (the row sums of
W;Mij =

P
jWij) can be computed. The graph Laplacian is L = M �W . It

encodes a graph as a matrix by listing the di�erence between the degree matrix
(the number of incoming nodes, for any node) and the adjacency matrix (the
number of adjacent nodes, for any node)1:

Lij =

8
<

:

deg(vertexi) if i 6= j
�1 if i 6= j and vertexi is a neighbor of vertexj
0 else

The cost function can be re-expressed as

C(Y ) = 2Y TLY (7.2)

Minimizing C becomes equivalent to solving

Lv = �Mv (7.3)

where the d smallest nonzero eigenvalues constitute the low-dimensional em-
bedding Y :

Lv0 = �0Mv0
...

Lvd+1 = �d+1Mvd+1

(7.4)

The low-dimensional embedding Y thus consists of the mapping

Y : xi 7! (v(i)1; : : : ;v(i)m) (7.5)

The value of m can be found automatically as the intrinsic dimensionality of
the data (der Maaten [2007]). Algorithm C.6 in Appendix C summarizes these
steps.

The generic Laplacian Eigenmap algorithm solves the problem of dimension-
ality reduction for general manifolds. Euclidean distance is used as a generic
distance measure for the construction of the neighborhood graph (Belkin and
Niyogi [2002]):

jj xi � xj jj2 (7.6)

This approach thus essentially makes a similar assumption about the geome-
try of the input data space: this space is assumed to be Euclidean, and distances

1Notice that the graph Laplacian is neutral with respect to eventual negative distances
in the neighborhood graphs arising from a negatively shifted kernel such as KNGD : as long
as the neighborhood relations are preserved (by measuring absolute di�erences between data
points), the actual value of the distances is of no importance to the computation of the graph
Laplacian.
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are best measured along straight lines connecting datapoints. In the present
case, as we focus on L1-normalized textual data, we propose a geodesic variant
of Laplacian Eigenmaps that uses the negative geodesic distance (KNGD) for
the computation of nearest neighbors.

7.1.2 Feature weighting and selection with Eigenmaps

The products of the eigenvectors and the eigenvalues produced by the Laplacian
Eigenmaps can be used as feature weights (der Maaten [2007]). They describe
the importance of the weight of the original dimensions for the reconstruction
process: the higher the weight, the more important the original dimension (or:
the feature). Due to the large dimensionality of feature selection problems, we
propose a blockwise approach to �nding these weights. Given a data matrix
D with r rows and c columns, we perform feature weighting on all submatrices
d = D(ri : rj ; ck : cl) We call rj � ri the row step size, and cl � ck the column
step size. Operating row-�rst, the algorithm averages the weights for every
pass through all row blocks. E�ectively, it constructs Laplacian Eigenmaps for
subspaces, and combines the weight information that arises from this process.
The �nal weight vector is a matrix with one row and c columns.

An example will make this clear. Given a 10x10 matrix D, �rst construct a
Laplacian Eigenmap for the submatrix d1(1 : 5; 1 : 5), then for d2(5 : 10; 1 : 5),
then average the weight matrices for d1 and d2, W1 and W2:

W1 : : :W5 =
1
2

(W11 : : :W5 +W25 : : :W210) (7.7)

Then proceed with the submatrices d3(1 : 5; 5 : 10) and d4(5 : 10; 5 : 10),
producing W3 and W4. The �nal weight vector W then becomes

[
1
2

(W11 : : :W15 +W25 : : :W10) ;
1
2

(W31 : : :W35) +W45 : : :W410) ] (7.8)

This weight averaging procedure is outlined in Algorithm C.7. Algorithm C.9
computes a one-row n-column feature weight vector, by traversing blockwise
through a data matrix with n columns. It uses the Compute-Eigenvalues
algorithm (Algorithm C.8) that returns the entire matrix of eigenvalues2.

The matrix is split up into submatrices, each of which is subject to dimen-
sion reduction. The weights emerging from this process are averaged over all
submatrices.

The parameters that have to be estimated are the row and column step size,
and the number of k for the neighborhood computations by the Eigenmaps.

2See Appendix C for these algorithms.
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Task A Task B
Number of labeled emails 4,000 100
Number of emails within one evaluation/tuning inbox 2,500 400
Number of inboxes for evaluation 3 15
Number of inboxes for tuning 1 2

Table 7.1: The ECML 2006 Discovery Challenge data.

Hybrid weights

In order to verify the existence of hybrid geometry in documents, we propose
to combine the weights from a Euclidean and geodesic Laplacian Eigenmap,
and compare the e�ects to either Euclidean or geodesic Eigenmaps. Probably
the simplest combination strategy consists of a simple weight averaging scheme.
For a data set (matrix) M ,

W =
1
2

[�1WNGD + �2WEUCLID] (7.9)

where WNGD and WEUCLID are found by Blockwise-Feature-Weighting
using respectively �NGD and �EUCLID as distance measures. We report results
for uniform choices of �1; �2 = 1. Further, as described below, we will evaluate
the feature weighting process by iteratively deleting low-weight features, thus
performing feature selection based on feature weights.

7.1.3 Data

Our �rst dataset consists of the 13 sentiment-annotated meetings from the AMI
Meeting Corpus (Section 6.3). The second dataset we use is a spam detection
dataset, available from the ECML 2006 Discovery Challenge3. The challenge
addresses the separation of spam from non-spam e-mail messages, and consists of
two separate tasks: a task (A) with user-speci�c training data, addressing user-
speci�city, and a task (B) with a limited amount of data per user, addressing
generalization over users. All data sets consist of word/frequency pairs, which
were L1-normalized. The average entropy for this data is around 6 bits. The
breakdown in terms of training and test data is listed in Table 7.1. We used
task A, where for three users (mailboxes) there are 4000 labeled training email
messages and 2500 test cases. Like experiment 1, this experiment is a two-class
problem (spam vs. non-spam).

All data was L1-normalized and no feature construction nor data cleanup
was performed; using all words the data thus consists of L1-normalized unigram

3http://www.ecmlpkdd2006.org/challenge.html
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frequencies. We have made no e�ort to obtain absolute high scores for these
tasks, as we are interested in relative performance only.

7.1.4 Experimental setup
Our classi�er uses the negative geodesic kernel KNGD discussed in Section 2.5.2.
which we implemented in LIBSVM. The Eigenmap feature selection algorithms
were implemented as modi�cations of and extensions to the Dimensionality
Reduction Toolkit of der Maaten [2007]4.

For experiment 1, we set apart two meetings (two folds) as development
data for parameter estimation. On this data, we estimated the row and column
stepsize and the k value for the Eigenmap neighborhood function. Observing
no major di�erences between choices for these values, we settled on stepsizes
of 10% and 1% for the rows and columns, and k = 10. The other 11 folds
were used for 11-fold cross-validation: in every round of the testing procedure,
one meeting was used for testing, and the other ten meetings were used for
training the classi�er and for constructing the feature map. The data has a
dimensionality of 3,784 features.

For experiment 2, we ran into a practical limitation of Matlab R 7: the
number of variables (dependent on the number of features) became too big
to handle. The training data for this task has a dimensionality of 206,908,
which we limited to 10,000 (the dimensionality of the data of experiment 1)
by eliminating every feature with an index (based on occurrence in the data)
above 10,000. The fact that we are interested mainly in relative performances
legitimates this approach5. We used the same k-value, and row/column stepsize
as for experiment 1.

For both experiments, we ran the standard Euclidean Eigenmap (MEUCLID)
and the geodesic Eigenmap (MNGD). The weights produced by these algorithms
were ordered, and starting with all features, portions of 10% were eliminated
(the lightest features were eliminated �rst). Subsequently, the two feature maps
produced were averaged, and a similar feature elimination was carried out based
on the mixed Euclidean/geodesic weights (MCOMBI).

7.1.5 Evaluation
We evaluate the experimental outcomes using subjective, macro-averaged F1
and AUC (area under curve) scores, for all folds and partitionings of the datasets.
Speci�cally, we averaged the F1 and AUC scores for all folds per feature selec-
tion percentage. On these averaged scores, we computed signi�cance with a
non-parametric Wilcoxon signed rank test.

4Software available from http://ticc.uvt.nl/~lvdrmaaten.
5In the latest Matlab R release, limitations with respect to the number of variables are

lifted.
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From a usability perspective, an optimal feature weighting and selection
algorithm would produce a performance curve where the maximum performance
is reached with a minimum of features: it achieves maximal compression with
minimal loss of performance. We de�ne the following simple error measure for
a performance curve S =< s1; : : : ; sn >, where every si is the score of a certain
performance function for a measurement at time tick i, max(S) the maximum
value in S, and �n the standard deviation among the top most n values in S.

E(S; n) = min( [ arg minsi si � max(S)&
max(S)� si � �n];
arg minsj sj � max(S)
)

(7.10)

This error function �nds the �rst good operating point in a sequence of
ordered measurements that either is above the maximum value in S, or at most
one standard deviation less than this maximum, where the standard deviation
is measured among the top n of the best scores in S. The compression rate of
a feature selection algorithm A producing a performance curve S can then be
de�ned as

CRA(S; n) = 1:0�E(S; n) (7.11)

7.1.6 Results and discussion

For experiment 1 results show that the geodesic feature selector MNGD consis-
tently reaches its �rst good operating point before the Euclidean and mixture
selectors do: its compression rate is 10% higher than for the Euclidean feature
selector EUCLID. Figure 7.1 and Figure 7.2 display the average area under
curve (AUC) and F1 scores for the 11 folds.

At around 60% of the features, MNGD reaches its optimum. This means
that 40% of the features were eliminated without loss in performance. For
MEUCLID, this operating point was only reached at 70%: only 30% could
de eliminated without loss in performance. Table 7.2 lists the averaged AUC
and F1 results. While the MNGD feature selector outperformed or equalled
MEUCLID and MCOMBI in terms of error scores, signi�cance of these results
could not be established at p < :05. In Table 7.3, the error scores for the three
feature selectors are listed for the 4 performance curves. With the exception
of AUC, MNGD outperforms the other two selectors, reaching its �rst good
operating point around 60% of all features.

For experiment 2 however, we see that MNGD consistently and signi�cantly
outperforms MEUCLID. The averaged combination of MNGD and MEUCLID
even outperforms signi�cantly both MNGD (F1) and MEUCLID (AUC and F1)
(see Table 7.4). Also, it can be observed that feature selection is quite advan-
tageous for this task. The combined system obtains a maximum AUC score
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Figure 7.1: AUC curve for experiment 1.

at 30% of the features that is 10% higher than when using all features. Like-
wise, a peak score for F1 is obtained at 60% of the features that is 11% higher
than when using all features. The fact that averaging the weights from the
Euclidean and NGD-based Eigenmaps produces better performance indicates
that this data is best modeled partially by Euclidean space and partially by a
Riemannian manifold.

7.1.7 Related work

Lebanon [2003] is concerned with �nding low-dimensional Riemannian mani-
folds or textual data. In his work, the problem is to learn an optimal metric
on Riemannian manifolds. Metric candidates are pullback metrics of the Fisher
information that maximize the inverse volume of the training data. In doing so,
they de-emphasize common words and emphasize more distinctive terms, just
like tf:idf . This process can, like tf:idf , be interpreted as a feature weighting
method.

Zhao et al. [2008] presents a feature scoring algorithm based on Laplacian
Eigenmaps. Their intuition is that important features preserve the local geome-
try of the original data in the reconstructed submanifold. Their Laplacian Score
is based on a weighted quotient of the Laplacian weight matrix and its diagonal.
They report high compression rates and e�ectiveness on the Iris dataset and
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Figure 7.2: F1 curve for experiment 1.

PIE face data set.
In Lu et al. [2007] a variant of PCA called Principle Feature Analysis (PFA)

is proposed. Feature vectors are decomposed into vectors (one for every feature)
that represent the weight of every feature on each axis of a subspace. These
vectors can be clustered, and the mean element of each cluster becomes selected
as a feature. Their approach, applied to image data, uses a similar blockwise
subspace decomposition as our approach.

Gu�erif and Bennani [2007], drawing inspiration from weighted k-means clus-
tering, use Self-Organizing Maps (SOM; Kohonen [2001]) that deploy a weighted
distance function which replaces the standard unweighted Euclidean distance
function used for computing neighborhoods. This weighted distance function
can be optimized by the standard SOM algorithm.

Gerber et al. [2007] identify a fundamental problem of non-linear dimension-
ality reduction of noisy data, the repeated eigendirections problem. This prob-
lem arises when eigenvectors computed from the graph Laplacian are strongly
correlated. This hinders the discovery of important dimensions of the low-
dimensional manifold. Their algorithm, Successive 1-Dimensional Laplacian
Eigenmaps, reconstructs iteratively one eigenvector at a time (the one with
the smallest non-zero eigenvalue), and the dimension found by this eigenvec-
tor is eliminated from subsequent computations. The approach is e�ective, yet
computationally demanding.
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Average MNGD MEUCLID MCOMBI
AUC

MNGD 66.5 X = +
MEUCLID 68.1 = X =
MCOMBI 65.9 { = X

F1
MNGD 28.8 X = =
MEUCLID 30.6 = X =
MCOMBI 29.1 = = X

Table 7.2: Average AUC and F1 outcomes of experiment 1, and signi�cance
results (p < 0:05).

E(S; n = 3) MNGD MEUCLID MCOMBI
F1 0.6 0.7 0.6
AUC 0.8 0.7 1
Recall 0.6 0.7 1
Precision 0.6 0.7 0.6

Table 7.3: Error scores for experiment 1

The work by Underhill et al. [2007] is closely related to our work, in that it
investigates a number of dimensionality reduction techniques such as PCA and
Isomap applied to tf:idf encoded documents. The methods they use do not
deploy geodesic distance measures. They �nd that using quite simple methods
(i.c. Multi-Dimensional Scaling (MDS) and Isomap) perform the best in yielding
signi�cant compression ratios and accuracy gains during classi�cation.

We are, to the best of our knowledge, not aware of geometrical feature
selection approaches using neighborhood graphs that operate on multinomial
representations for documents.

7.2 Manifold denoising

In this section, we attempt to gather additional evidence for the possibility of
hybrid geometry of L1-normalized documents from the perspective of manifold
denoising, a technique aiming at eliminating noisy data from a manifold. Man-
ifold denoising techniques rely on distance measures. We develop a geodesic
distance-based denoising algorithm, and compare it to a standard Euclidean
version and a hybrid Euclidean-geodesic version. Our hypothesis is that a care-
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Figure 7.3: AUC curve for experiment 2.

ful comparison of these three denoising algorithms sheds light on the geometry
of the noise in a manifold, and, hence, on the geometry of the manifold itself.

7.2.1 Di�usion-based manifold denoising

Manifold denoising attempts to project noisy data in a manifold back onto a
low-dimensional, noise-free submanifold that intrinsically represents the data.
The data, as represented by data points in a high dimensional feature space, is
obscured by noise that hides the inherent manifold structure representing the
data. This noise could originate from artifacts in the input data, such as features
with low predictive quality, from annotation errors, or from accidentally skewed
data that misrepresents the actual problem. The challenge is to e�ectively
eliminate this noise and project the data onto the hidden submanifold. This
presupposes a noise model, and a means of restructuring the manifold in such
a way that noise interacting with the structure of the manifold is eliminated as
much as possible. Hein and Maier [2007] propose a method that assumes the
noise is isotropic or Gaussian, and put forward an algorithm that iteratively
removes this noise. An arbitrary manifold M of dimension m is assumed to be
mappable via a smooth function i into its actual, ’true’ manifold of dimension
d (d � m):

i : M 7!
� d (7.12)
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Figure 7.4: F1 curve for experiment 2.

A dataset X can then be described as ’true’ data (generated by a probability
measure PM ) obscured by noise �:

X = i(PM ) + � (7.13)

The probability measure PM is the true model of the data in M . It can be used
to estimate the density of the noisy data X (Hein and Maier [2007]):

PX (x) = (2��2)
d
2

Z

M
e�
kx�i(�)k2

2�2 p(�)dV (�) (7.14)

where dV , the natural volume element, is an estimate of the volume of a mani-
fold on the basis of the metric associated with it.

The well-known heat kernel (La�erty and Lebanon [2005]) is equivalent to
this formulation under the condition �2 = 2t. It plays an important role in
the modeling of information (or temperature) di�usion processes in networks.
Viewing noise generation as a di�usion process, Hein and Maier propose to
model noise elimination as a backward di�usion process. If we knew PX and
PM , noise elimination would be trivial. In practice, we only have available a
partial characterization of PX : a sample fXn

i=1g. The crucial insight, coming
from Hein et al. [2005], is that the data sample fXig is su�cient, as the true
generator of the di�usion process, a graph Laplacian (Section 7.1.1), can even
be approximated by a graph Laplacian of a random neighborhood graph.
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Average MNGD MEUCLID MCOMBI
AUC

MNGD 77.4 X + =
MEUCLID 70.8 { X {
MCOMBI 78.1 = + X

F1
MNGD 68.6 X + {
MEUCLID 65.9 { X {
MCOMBI 71.3 + + X

Table 7.4: Average AUC and F1 outcomes of experiment 2, and signi�cance
results (p < 0:05).

E(S; n = 3) MNGD MEUCLID MCOMBI
F1 0.1 0.8 0.1
AUC 0.2 0.9 0.2
Recall 0.9 0.6 1
Precision 0.1 0.1 0.1

Table 7.5: Error scores for experiment 2

Algorithm C.10 describes the original Hein and Maier algorithm for mani-
fold denoising. The crucial ingredient is the adaptation of all data vectors at
time step t + 1 as a function of the graph Laplacian at time t and the param-
eter �t. The algorithm gradually moves noisy datapoints towards high-density
areas. The data changes during this process; as such, the approach is related
to the competitive learning strategy found in self-organizing maps (Kohonen
[2001]). Notice that the Hein and Maier algorithm is based on Euclidean dis-
tance measurements in the neighborhood graph for the data. A geodesic variant
is presented in Algorithm C.11. It di�ers from the original algorithm by replac-
ing the Euclidean distance function h with the geodesic distance function �GD,
de�ned as

�GD(x) =j KNGD(x;y) j= KGD(x;y) = 2 arccos

 
nX

i=1

p
xiyi

!

(y the nearest neighbor of x)
(7.15)

We investigate whether this geodesic variant is better suited for eliminating
noise than the Euclidean version, for L1-normalized data. In order to verify
this, we need an objective function that measures (quanti�es) the e�ect of noise
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elimination on data. As the result of manifold denoising with the Hein and Maier
algorithm is a nearest neighbor graph, we implement an objective function as
a transductive nearest neighbor classi�er derived from the output graph, and
evaluate its performance on test data. We compare the original version of the
Hein and Maier algorithm with a special geodesic version, as well as a hybrid
version.

For voting purposes, the geodesic distances, taking their values in the inter-
val [�; 0] (with � for the most dissimilar cases) were normalized to the interval
[0; 1] with the following formula

� 7!j
�
�
� 1 j (7.16)

This leads to a weight of zero for the dissimilar cases, and a weight of 1 for
the most similar cases. Following Hein and Maier, we subsequently treat these
weights exponentially using exp(��), where we uniformly used  = 1, produc-
ing exp(��).

The combined data (unlabeled training and test data) is used to construct
the nearest neighbor graph that encodes the denoised manifold. Subsequently,
a distance-weighted nearest neighbor classi�er is extracted from the nearest
neighbor graph, that uses the class information of the nearest neighbors that
correspond to training data for voting over the class of each test point. This ef-
fectively amounts to a form of transductive learning, where feature information
of the test data (with class labels kept hidden) is used during learning. While
not pretending to produce an optimal classi�er, this strategy does allow us to
evaluate the e�ects of the two types of noise elimination with an objective func-
tion. Optimal parameters for the denoising algorithms were estimated by grid
search on heldout development data. This gives rise to Algorithms C.12 (the
evaluation of single-geometry manifold denoising with a transductive classi�er)
and Algorithm C.13 (the evaluation of hybrid-geometry manifold denoising with
a transductive classi�er).

In order to evaluate these alternatives, we carried out a number of Monte
Carlo tests. Our data consisted of the datasets PP, GPLURAL and DIMIN,
introduced in Section 5.2. In addition, we used the NER dataset from the
CoNLL-2003 shared task (Tjong Kim Sang and Meulder [2003]), a 4-class named
entity recognition task (persons, organizations, locations, miscellaneous) using
windows of 7 words and their parts of speech, annotated in the IOB schema
(Section 5.2).

From each of the datasets PP, GPLURAL, DIMIN and NER, we took a
random portion of 6,000 items, which we permuted 5 times, and from which,
for every permutation, we split o� 5,000 items for training and development,
and 1,000 for testing. As to our data representation, we used the class-feature
co-occurrence pullback of Chapter 5. We subsequently applied the dual method
transductive algorithm. The algorithm was optimized on the development data,
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using a grid search across its parameter space. Keeping record of the interme-
diate single-method results allowed us to check the e�ect of merging Euclidean
and geodesic nearest neighbors sets on classi�er performance. Notice that we
are not pursuing optimal performance compared to a baseline. We are merely
gathering evidence for the hypothesis that, for certain data, hybrid geometry
is a more natural representation, as opposed to uniform Euclidean or geodesic
geometry. Therefore, we will only report relative performances.

7.2.2 Results
In Table 7.6, the macro-averaged F-scores for the four tasks are listed. Table 7.7
lists the results of a paired t-test to the obtained results. For PP, the combined
classi�er geo+euclid signi�cantly outperforms the single-source geodesic classi-
�er, but not the single source Euclidean classi�er. Apparently, the combination
bene�ts most from the Euclidean neighbors. For GPLURAL, this situation is
reversed: the combined classi�er signi�cantly outperforms the Euclidean single
source classi�er, but not the geodesic classi�er. The combined classi�er attains
the absolute highest F-score, and the overlap between nearest neighbor sets is
minimal compared to the other tasks. For NER, the Euclidean single source
classi�er supersedes the geodesic classi�er, and for DIMIN, the geodesic single
source classi�er outperforms the Euclidean classi�er. For these last two tasks,
the combined classi�er is not able to improve upon the single source classi�ers.

Task Classi�er macro-F % NN Overlap
PP geo 85.1

58euclid 85.5
geo+euclid 85.7

GPLURAL geo 67.8
6euclid 65.9

geo+euclid 69.7
NER geo 48.3

29euclid 52
geo+euclid 50.2

DIMIN geo 81.2
25euclid 77

geo+euclid 81

Table 7.6: Macro-averaged F-score, for four tasks, obtained with transductive
classi�ers.

Spearman’s ranked correlation test reveals a strong negative correlation
(� = �:8) between the amount of overlap of the nearest neighbor sets and
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the di�erence between the F-score produced by the combined nearest neighbors
and the averaged single-source F-scores. The higher the overlap between the
Euclidean and geodesic neighbor sets, the lower the performance gain of the
combined classi�ers. Notice that this e�ect is not attributable to voting over a
larger space of nearest neighbors: the optimal value for k, the size of the near-
est neighborhoods, was already determined during the classi�er optimization
step. A strong geodesic classi�er will boost a weak Euclidean classi�er, and
vice versa, but not if their nearest neighbors overlap considerably. This leads
us to Observation 7.2.1:

7.2.1. Observation. The extent to which a dataset has mixed Euclidean and
geodesic geometry determines the e�cacy of single-source nearest neighbor clas-
si�ers.

PP
geo euclid geo+euclid

geo X = - (p < :03)
euclid = X =
geo+euclid + (p < :03) = X

GPLURAL
geo euclid geo+euclid

geo X = =
euclid = X - (p < :6)
geo+euclid = + (p < :6) X

NER
geo euclid geo+euclid

geo X - (p < :01) - (p < :03)
euclid + (p < :01) X + (p < :01)
geo+euclid + (p < :03) - (p < :01) X

DIMIN
geo euclid geo+euclid

geo X + (p < :04) =
euclid - (p < :04) X - (p < :05)
geo+euclid = + (p < :05) X

Table 7.7: Signi�cance results of the F-scores according to a paired t-test, for
four transductive classi�ers.
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7.3 Summary
In this chapter, we have motivated along two empirical lines the possibility of
hybrid geometry in L1-normalized document space. In Section 7.1, we presented
an e�ective and low-complexity feature selection algorithm based on Laplacian
Eigenmaps. Focusing on L1-normalized textual data lying on a Riemannian
manifold, we replaced the standard Euclidean distance measure of Laplacian
Eigenmaps with the Negative Geodesic Distance, a distance measure native to
the multinomial simplex. We observe for the AMI subjectivity classi�cation
task that the resulting geodesic Laplacian Eigenmap reaches a �rst good op-
erating point prior to the Euclidean variant, and for a spam detection variant
that it performs signi�cantly better in terms of averaged F1 and AUC scores.
Moreover, for the second task we found that combining weights computed by the
standard Euclidean Laplacian Eigenmap and its geodesic variant yields maxi-
mum performance. We interpret these results as evidence for the prevalence of
hybrid geometry of L1-normalized data.

In Section 7.2, we pursued this line of research, and investigated whether
noise elimination techniques can provide additional evidence for hybrid geom-
etry. In that section, we showed that a geodesic variant of the Hein-Maier
algorithm is capable of eliminating geodesic noise from Riemannian manifolds,
and that the combination of geodesic and Euclidean noise elimination leads in
all of the investigated tasks to signi�cantly better performance of either one
of the two single source noise elimination procedures. The performance of the
combined noise elimination strategy was shown to be dependent on the variety
in neighbor selection by the noise elimination algorithms. The more varied the
merge of the two neighbor sets produced by the Euclidean and geodesic noise
elimination algorithms, the higher the performance di�erence of the combined
noise elimination strategy, as compared to the average single algorithm perfor-
mance. We take the latter observations as evidence for the existence of hybrid
geometry as well: if the geometry of the datasets were homogeneous (either Eu-
clidean or geodesic), then combination of geodesic and Euclidean information
would not be able to improve on either one of these data sources.

Concluding, then, these two techniques underline our hypothesis that L1-
normalized document space should not be approached uniformly with geodesic
distance measures. In Chapter 8, we will outline a procedure that allows us
to determine the trade-o� between Euclidean and geodesic distance measures,
through a back-o� classi�er calibration strategy.





Chapter 8
Classi�er calibration

In this chapter, we put to use our �ndings from Sections 7.1 and 7.2, where we
have shown empirically that it is possible for L1-normalized document space to
have hybrid geometry. In Section 7.1 we showed that hybrid geometry Laplacian
Eigenmaps outperform single-geometry Eigenmaps for the purpose of feature
selection, and in Section 7.2 we argued that a denoising algorithm based on
both Euclidean and geodesic distance measures obtains the best results and
outperforms single-geometry methods.

In Section 8.1, we �rst develop a calibration technique based on threshold-
ing the decision function of a classi�er. We demonstrate that this technique,
applied to L1-normalized data, creates practical added value: it can be used to
automatically determine the hard cases that cannot be labeled automatically
with su�cient con�dence by a classi�er, given a pre-speci�ed accuracy level. In
Section 8.2, we subsequently generalize this technique: we demonstrate that by
thresholding two distance measures (the geodesic and Euclidean distance met-
rics), we can learn how to separate our data in overtly geodesic and Euclidean
parts, as well as a mixed, hybrid part. This procedure leads to increased clas-
si�er performance. We obtain additional evidence for our central thesis that
L1-normalized document data may display hybrid geometry, and that entropy
is the decisive demarcating principle.

8.1 Accuracy-based classi�er calibration
From a user’s perspective, classi�er accuracy is usually perceived as an intuitive
and easily conveyed evaluation criterion for classi�er performance. In many
practical application scenarios, disappointing accuracy results will hinder the
application of classi�ers. However, even weakly performing classi�ers could in
principle be successfully deployed in manual workows: namely, when they are
restricted to classifying the subset of cases they are known to perform well on,
while meeting minimal quality requirements. An operationalization of this idea

103
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would lead to a workow according to which some work might be automated
by a classi�er, whereas the ’hard cases’ that produce too much di�culty for the
classi�er would be delegated to humans. Such a workow would call for a more
articulate classi�er evaluation criterion, where a classi�er is tuned to optimal
performance on the basis of a priori determined accuracy requirements. Its
utility can then be computed as the amount by which it is able to realize these
requirements. In this section (based on Kraaij et al. [2008]), we propose to
augment a �rst-level classi�er with a second-level or meta-classi�er mapping all
decisions of the �rst classi�er that do not meet a pre-speci�ed con�dence value
to a category ‘for manual inspection’. The �rst-level classi�er can be evaluated
in terms of what we will call yield: the proportion of observations that can be
classi�ed automatically with a minimum pre-speci�ed accuracy. Classi�er yield
can be viewed as an estimate of classi�er deployability for a certain task.

8.1.1 Accuracy and yield
The intended use of the ensemble faccuracy,yieldg is to measure the classi�er
yield at a �xed (minimum) level of accuracy. Table 8.1.1 shows a ternary con-
tingency table with one additional label: "?" (’manual inspection’). On the
basis of this contingency table, accuracy can be de�ned as usual:

accuracy =
TP + TN

TP + TN + FP + FN
(8.1)

We subsequently de�ne yield, the proportion of observations that is not labeled
as M, as:

yield =
TP + TN + FP + FN

TP + TN + FP + FN + M
(8.2)

Ground truth Assigned

+ - ?
+ TP FN M{ FP TN

Table 8.1: Ternary classi�cation contingency table.

As far as we know, the proposed ensemble of measures (yield at minimum
accuracy) is a novel way of measuring the quality of a classi�er. There are
several established extrinsic (task-based) traditions that have some elements in
common, like linear utility (Hull and Robertson [1999]):

linear utility = �TP + �FP + FN + �TN (8.3)
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and detection cost (Fiscus and Doddington [2002]; see Appendix B):

detection cost = CMiss � PMiss � PT + CFA PNT PFA (8.4)

We refer the reader to Appendix B for a short overview. A commonly used
evaluation procedure is to measure the false alarm rate at a �xed maximum false
reject (miss) rate, or vice versa (Bolle et al. [2003]). Our proposed procedure is
similar in the sense that a certain operating point can be pre-de�ned in order
to compare systems. This pre-de�ned operating point provides an anchor in the
recall-precision trade-o� and simpli�es evaluation to a single measure, just as the
F-score de�nes a certain point in the precision-recall space. The implementation
of these concepts in a classi�er architecture is speci�ed in Section 8.1.2.

8.1.2 Classi�er setup
In our implementation of the two-level classi�er architecture, the �rst level clas-
si�er consists of a Support Vector Machine using the NGD kernel. The SVM
was modi�ed to provide a posterior probability (a Platt score; Platt [2000]) as
output in addition to the predicted class1. The Platt scores were subsequently
used as input (� below) for a meta-classi�er which was implemented by a deci-
sion rule, based on two thresholds �l and �u:

Class(�) =

8
><

>:

+ if � => �u

M if �l < � < �u

� if � <= �l

(8.5)

Maximizing yield now boils down to minimizing M , the quantity of data that
cannot be labeled with the pre-speci�ed level of minimum accuracy. The thresh-
olds maximizing the yield while satisfying the pre-speci�ed minimum accuracy
were computed through pseudo-exhaustive search by a two dimensional param-
eter sweep (for both threshold parameters �u and �l ) on a development set. We
used a small, �xed stepsize of 0.05. The development data set for parameter
training should be chosen carefully, since we assume that the class distribution
is the same in the development set and the test set and that the Platt score
distribution is more or less similar in the development and test set, for both
classes. The training process is outlined in Algorithm C.14.

8.1.3 Experiments
We evaluated the bene�ts of the two-level classi�er architecture with two ex-
periments. The �rst experiment concerns the detection of domestic violence in
police �les of the Regional Police Force Amsterdam-Amstelland (RPAA). The
second experiment addresses the ECML 2006 spam detection data.

1In fact it is not essential for the classi�er to output true probabilities, it can be any
monotonously increasing ranking function.
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Detection of domestic violence

The label domestic violence is not always correctly assigned to reports by the
registrating police o�cer. It is therefore desirable to recognize these cases post-
hoc automatically. Domestic violence has a complex de�nition where several
conditions need to be checked. This makes the automatic recognition of do-
mestic violence in police reports on the basis of textual cues a non-trivial task.
Current practice for �ltering out domestic violence cases from the full database
of incident reports is based on a manually crafted rule-based system. The
current rule set in use at RPAA generates a high number of false positives, ne-
cessitating a manual check. We compared two classi�ers: a baseline rule-based
classi�er2 using hand-crafted thesauri, and the ternary classi�er discussed in
Section 8.1.2. The rule-based classi�er uses both lexical and phrasal features,
such as ’my father beats’. The ternary classi�er architecture uses the same
lexical feature set as the baseline classi�er, but does not use the phrasal fea-
tures. Our main interest was to assess the e�ect of the ternary classi�er on
the reduction of manual checks, maintaining a required quality level. Training
data consisted of a collection of 1,736 reports, manually re-checked, with 1,101
positive cases. A random sample of 200 case �les was used for development, the
rest (1,536) for training. Test data consisted of a collection of 2,291 reports,
labeled by registrating o�cers, with 541 positive cases. The SVM and the Platt
function were trained on the training data. Subsequently, optimal upper and
lower decision score thresholds were computed using the development data with
a pre-speci�ed desired accuracy > 0:9.

Accuracy
Baseline classi�er 0.73
SVM 0.84

Table 8.2: Results for the detection of domestic violence on the full test set
using a single classi�er

Figure 8.1 shows the probability that the classi�er is correct as a function
of its Platt score. While the �t clearly is not optimal, the relation between
posterior probability and Platt score is an increasing function.

Table 8.2 lists the evaluation results (measured in terms of accuracy) for the
baseline rule-based ranking classi�er and the SVM. The SVM has a superior
performance compared to the rule-based system; however, its accuracy is still
too low for actual deployment at RPAA. For the ternary classi�er, however,
after score thresholds were tuned on the development data, we were able to

2This classi�er is actually a ranking system, where a decision threshold was chosen man-
ually.
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Figure 8.1: Posterior probability as a function of Platt score

automatically identify the reports where the classi�er decision is based on a low
con�dence score, meeting a pre-speci�ed accuracy level. We obtained a yield of
70% at an accuracy of 90%.

Accuracy Yield
Development set 0.90 0.70
Full test set 0.92 0.86
Test set sample A 0.93 0.86
Test set sample B 0.92 0.89
Test set sample C 0.93 0.86

Table 8.3: Results for the detection of domestic violence experiment using the
ternary classi�er.

Table 8.3 lists the accuracy and yield of the ternary classi�er for development
and test sets. As an additional diagnostic, three random samples of the test
set (sample size = 1,000) were evaluated. The obtained accuracy and yield
on the test set are both higher than on the development data. This could
be explained by the fact that the test set was obtained from cases from a
di�erent year, where annotation standards might have changed. Still, results of
the classi�er on development and test set show the potential of the proposed



108 Chapter 8. Classi�er calibration

approach, which seeks to minimize the amount of human labeling while meeting
pre-speci�ed quality standards. The results at various subsamples demonstrate
the robustness of the parameter settings. Related work on the same dataset
explores the possibility of involving a human expert for an interactive selection
and de�nition of complex features, based on formal concept analysis (Poelmans
et al. [2008]).

Spam detection

For our second experiment we used the ECML 2006 Discovery Challenge data
(see Section 7.1.3). We limited ourselves to task A, and divided the evaluation
sets in a development set of 500 emails (used to estimate the thresholds) and
an evaluation dataset consisting of the remaining 2,000 messages.

Binary accuracy Ternary accuracy Ternary yield
User 1 0.62 0.89 0.19
User 2 0.65 0.90 0.39
User 3 0.78 0.91 0.69

Table 8.4: Results for the detection of spam emails using a binary and ternary
classi�er

Table 8.4 lists the results of the spam detection experiment. The �rst column
lists the accuracy of the standard binary classi�er (SVM with NGD kernel). The
second and third column list the obtained accuracy and yield when the ternary
classi�er’s thresholds have been set for a minimum accuracy level of 0.90 using
the development subsets. The desired accuracy (0.9) can be achieved for about
20-70% of the email messages depending on the user, making this a much harder
task than the domestic violence detection.

Figure 8.2 illustrates the optimal operation curves for each user in a yield
plot, where the classi�er yield is plotted as a function of the desired accuracy
level. A yield plot can be used to decide visually on the desired trade-o� between
accuracy and yield, for a given task. For instance, it can be seen directly that
for user 1, yield at an accuracy of 90% is only 20%, but that, when the accuracy
constraint is relaxed to just under 80%, yield rises to around 60%.

8.1.4 Discussion and Conclusions
We have presented a new ensemble of evaluation measures for a situation where
a classi�er is used to partially replace human labelling e�ort. The measures
accuracy and yield relate well to a more task-oriented or extrinsic view on
evaluation, where the focus is on cost savings. Accuracy and yield can be seen
as workow-based measures for ’�delity’ and ’completeness’. The simplicity
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Figure 8.2: Yield as a function of (minimum) classi�er accuracy, in the ternary
classi�er setting

of our approach does have some shortcomings. Accuracy as an aggregated
measure hides the di�erent sources of classi�cation quality. It is well known
that accuracy is sensitive to class imbalance. An alternative ensemble based on
false alarm rate, false reject rate and yield would solve this problem. However,
this ensemble might be less intuitive for non-experts.

A second contribution of this section is the concept of a ternary classi�er
forwarding cases that cannot be classi�ed with a pre-speci�ed accuracy to a
human expert, thereby reducing the error rate of the classi�er. We demonstrated
the e�ect of the classi�er on two real-life datasets, demonstrating its possibilities
for factoring out hard cases from easy to classify cases with a high pre-speci�ed
accuracy.

8.2 Distance metric-based classi�er calibration
In this section, we show that the calibration technique of Section 8.1 can be
generalized to calibrate a classi�er using the geometry of the data it is trained
on. Given the assumption that a given dataset is best described by a hybrid
Euclidean/geodesic geometry, we would like to identify the circumstances under
which we can delegate our data to a Euclidean classi�er, and when we should
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deploy a geodesic classi�er. As explained in Chapter 6, application of the NGD
kernel is particularly e�ective for low-entropy, L1-normalized data.

The aim of this chapter is to gather evidence for the usefulness of entropy-
based thresholding using a prototypical classi�er. We expand the hybrid Eu-
clidean/geodesic perspective on document space we initiated in the previous
chapters, where the idea is that L1-normalized document representations allow
for a hybrid representation as both a curved manifold and a Euclidean, at man-
ifold. The calibration technique we develop allows us to identify the operating
point at which we switch from one manifold to the other.

8.2.1 Calibration procedure
The prototypical classi�er architecture we will use in our experiments consists
of a composite nearest neighbor classi�er: a classi�cation model that employs
three types of distance functions: Euclidean, geodesic, and hybrid. The moti-
vation for the k-nearest neighbor architecture stems from a desire for simplicity
and generality (see the description of memory-based learning in Section 2.1). In
order to determine which parts of the data are delegated to which classi�cation
strategy (Euclidean, geodesic, or hybrid), we will outline a procedure to thresh-
old the classi�cation model using the entropy of local nearest neighborhood sets.
The procedure is as follows.

Given a training dataset, we �rst estimate two SVM models: one based
on the NGD (geodesic) kernel, and one using a Euclidean distance metric (the
linear dot product)3. Subsequently, for every element in a test dataset, we �nd
its geodesic nearest neighbors in the reduced training dataset constituted by the
SVM model based on the NGD kernel, and, likewise, its Euclidean neighbors
using the linear kernel. Next, we calibrate the classi�er by determining two
thresholds �l and �u that demarcate the entropy of two subspaces: �l is an upper
bound for the geodesic data, that {as we motivated in Section 6.1{ displays
relatively low entropy. The threshold �u on the other hand is the lower bound
for datapoints best catered for by the Euclidean distance metric, which is most
e�ective for high entropy data. First, de�ne the average vector entropy of the
nearest neighborhood of data point x as

H(NN(x)) =
1

j NN(x) j

jNN(x)jX

i=1

�
dX

j=1

yij log2 yij (8.6)

where yij denotes the j-th component (feature) of the i-th vector y 2 NN(x).
For a given datapoint x, a relatively low-entropy geodesic neighborhood4

with average entropy H(NN(x)) � �l is essentially geodesic. In such a case,
we will use the geodesic neighbors for voting for the class prediction of x. On

3We used the default value of the C hyperparameter for both kernels.
4A neighborhood determined by the geodesic distance function.
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the other hand, any such neighborhood with relatively high average entropy
H(NN(x)) � �u is essentially Euclidean, and therefore useless from a geodesic
point of view. In such a case, we will back o� to the Euclidean neighborhood,
using only the Euclidean neighbors for class prediction. In the case of relatively
moderate entropy, we combine the Euclidean and geodesic neighborhood sets
for predicting the class of x by adding the respective votes. Votes for classes
are weighted. Every neighbor n with class c in the nearest neighborhood set
for a test point x brings out a distance-weighted vote for c with quantity q (cf.
Shepard [1987]).

q = e��(x;y) (8.7)

In order to make use of the negative geodesic distance metric as a weight, we
normalize it to values between 0 and 1. An optimal choice for the weighting
parameter  can be found by performing a grid search on development data,
running this algorithm and varying  until an optimum is found. In our case, we
used the development data for estimating thresholds. In most cases, thresholds
estimated directly from the test data were similar to thresholds estimated from
the development data. Algorithm C.15 describes the process of obtaining the
thresholds �l and �u from development data.

8.2.2 Experiments
We carried out the following experiments. First, for the sequential datasets
DIMIN, GPLURAL, PP, CHUNK and NER, we compared the e�ect of thresh-
olding on the position-aware and position-unaware pullbacks. Second, we ap-
plied the thresholding procedure to both the L1-normalized version of the AMI
subjectivity dataset (Section 6.3), and the position-unaware pullback applied
to this dataset5.

For all experiments, data was uniformly split into 1/3 development and 2/3
training+test partitions; the training+test and development partitions were
subsequently split into 1/3 test and 2/3 training partitions. We �xed as many
as experimental parameters as possible: we uniformly set  to 0.9, and we
limited the nearest neighbor set size to 7; it is not our intention to obtain
optimal classi�er performance, but rather to compare the e�ects of thresholding
on di�erent datasets using a uniform classi�er architecture.

Having a prespeci�ed accuracy (or a quality measure such as F-score) to
optimize for is not appropriate here: we want our thresholds to be optimally
chosen such as to produce the highest accuracy or F-score as possible, and we
have no speci�c interest in the size of the mixed neighborhood. Notice that it
makes no di�erence to either favor the Euclidean neighbor sets or the geodesic
neighbor sets for thresholding, as the thresholds are mutually exclusive, and the
process of thresholding converges to the same thresholds in either case.

5As this data is essentially non-sequential, the position-unaware pullback would make no
sense here.
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8.2.3 Results

Results for the sequential tasks are listed in Table 8.5. These results should

Position-unaware pullback
Euclidean geodesic calibrated %euclid %geo %hybrid

DIMIN 92 92.6 94.8 4 11 85
GPLURAL 85.6 84.9 86.2 7 3 90
PP 64.8 77 79.9 20.5 43.5 36
CHUNK (10K) 84.2 85.8 86 4 78 18
NER (10K) 41 45.7 45.8 0 88.2 11.8

Position-aware pullback
Euclidean geodesic calibrated %euclid %geo %hybrid

DIMIN 96.8 97.2 97.4 11.6 88.4 0
GPLURAL 87.7 88 88.9 1.2 0 98.8
PP 65.6 69.5 71.7 19.5 63.2 17.3
CHUNK (10K) 89.9 91 91 7.3 0 92.7
NER (10K) 82.3 78.7 83.4 1 0 99

Table 8.5: Accuracy results (best scores in bold) and average geometric distri-
bution (the distribution of the types of neighbors as used for classi�cation of the
test data) obtained with uncalibrated and calibrated classi�ers for sequential
data on �xed training/test splits.

be interpreted as follows. The accuracy scores for ’Euclidean’ and ’geodesic’
correspond to the scores an uncalibrated, fully Euclidean or geodesic k-nearest
neighbor classi�er (k = 7) would obtain. The ’calibrated’ score corresponds to
a calibrated, hybrid Euclidean-geodesic classi�er. As such, these scores cannot
be readily compared to the scores we obtained in Section 5.2, which were based
on support vector machines, nor to the results in Daelemans and van den Bosch
[2005], which were obtained with k-nearest distance classi�ers involving a more
advanced set-up (such as feature weighting, and the MVDM transform (see Sec-
tion 5.4)). Our results do however outline the e�ects of classi�er calibration on
accuracy, and show that in all experiments carefully thresholded hybrid classi-
�ers attain the best results. The percentages in the table are the average per-
centages of Euclidean (’Euclid’), geodesic (’geo’) and hybrid Euclidean-geodesic
neighbors used during the classi�cation of the test data.

Notice the relatively large proportion of Euclidean neighbors for PP; this
is in agreement with our previous �ndings for this dataset. For both pull-
backs, calibration is able to boost results. For NER, the situation is reversed:
the calibration procedure selects a predominantly large proportion of geodesic
neighbors for this dataset; this task does not bene�t much from the Euclidean
neighbors under the position-unaware pullback; the fact that the position-aware
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pullback achieves much better results underlines the essentially sequential or-
ganization of this task. Under the position-aware pullback, NER also appears
to be an essentially mixed task: 99% of the neighbor types fall into the hybrid
class, and within this class, neighbors are per de�nition dually represented as
both Euclidean and geodesic.

The position-aware pullback leads in general to an increase of the mixed area
between the two thresholds, at the expense of the number of geodesic neighbors
compared to the position-unaware pullback: the percentage of mixed neighbors
is increased from an average of 48.2% for the position-unaware pullback to
an average of 61.6% for the position-aware pullback. Likewise, the average
percentage of geodesic neighbors drops from 44.7% to 30%, and the average
percentage of Euclidean neighbors increases minimally from 7% to 8.1%. The
exceptions here are DIMIN, where the mixed category is reduced to zero, and
the geodesic neighbors see an increase of 77.4%, and PP, where the amount
of Euclidean neighbors remains the same, but the geodesic neighbors receive
an inux of 20% from the mixed neighbors. In the latter case, this increase
in geodesic neighbors appears to reduce performance considerably. When we
compare the average gain in accuracy of both pullbacks, we see no big di�erence:
on average, the mixed classi�er outperforms the best single source classi�er for
the position-unaware pullback with 1.2%, and with .9% for the position-aware
pullback (which attains much higher accuracy on average).

8.2.4 Non-sequential data

Next, we applied the thresholding algorithm to L1-normalized, essentially non-
sequential data: the AMI sentiment dataset (Section 6.3). We used three meet-
ings as development data, and applied 10-fold cross-validation to the remaining
10 meetings, using one meeting in turn as test data. We optimized the threshold
�nder for macro-averaged F-score, due to the class imbalanced nature of this
data (107,723 negative cases, and 56,628 positive cases). The results in Table 8.6
and Figure 8.3 show that for the AMI sentiment data, thresholding on standard
L1-normalized data does not signi�cantly increase F-score (+1.3%). The data
is of low entropy, and therefore the thresholding algorithm puts the majority of
datapoints (69.6%) in the geodesic bin, and only 3.9% in the Euclidean bin. It
is instructive to take a more detailed look at the AMI data. Many utterances in
this dataset are relatively short, often consisting of just a few words that often
have a frequency of 1 (they are, in the context of the utterance they occur in,
hapaxes). Yet, these rather uniform frequencies do not automatically produce
high entropy data in an absolute sense.
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Average Fmacro
Euclidean geodesic calibrated

L1 50.9 54.7 56
Pullback 51.1 57.5 61.3

Average geometric distribution
% Euclidean % geodesic % hybrid

L1 3.9 69.6 26.5
Pullback 44 46.7 9.3

Table 8.6: Macro-averaged F-scores and geometric distribution (averaged per-
centages) obtained with uncalibrated and calibrated classi�ers for the AMI data
(13-CV).

The breakdown of the data in terms of utterance length is given in Figure
8.4. It shows that most utterances are very short on average: 82.4% have a
length of maximally 10 words (31.2% of length 1, and 51.2% with a length of
2-10 words).
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Figure 8.4: Break-down of AMI sentiment data in terms of utterance length.

The relation between utterance length and entropy is illustrated by Figure
8.5: assuming all words are hapaxes (i.e. all words in a certain utterance occur
just once in that speci�c utterance), entropy as a function of utterance length
clearly is a logarithmic function. It would seem that this relationship between
utterance length and entropy leads to undesired e�ects: long utterances auto-
matically produce higher entropy data, and shorter utterances, even when they
are entirely made up of words with a frequency of 1, will produce low entropy
data.
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Figure 8.3: Average macro-averaged F-score (over 13 folds) for the AMI data,
for the homogeneous Euclidean and geodesic classi�ers, and the thresholded,
mixed classi�er.

Figure 8.5: Entropy as a function of utterance length.
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This situation changes when we apply the position-unaware pullback to the
data. For this type of non-ordered data, the pullback produces an ordered
sequence of probabilities for a document, where every i-th probability pi(w j C)
is the probability of observing the i-th word w in conjunction with class C.
The pullback appears to trigger an increase in entropy: the average increase
in entropy for the 13 folds of the AMI data is 59%. This is quite logical:
the pullback e�ectively ignores frequencies inside a bag of words, and, instead,
derives count information based on joint occurrences of features and classes
from outside the bag of words. This smoothing process will, in a number of
cases, lead to increased entropy: namely, those cases where frequencies of words
vary wildly across a certain document, but the co-occurrences of features and
classes are similar across classes. Apart from this, the pullback increases the
number of features as well: up to C �N for C classes and N features, which, in
the case of a at probability distribution, only serves to increase entropy, as we
saw in Figure 8.5.

Results �rst of all show that the pullback leads to signi�cantly higher macro-
averaged F-score (p < :01 with the non-parametric Wilcoxon test). Second,
we see from the distribution of neighbors (geodesic, Euclidean or mixed), as
produced by the thresholding, that the pullback generates many more Euclidean
neighbors. This is in agreement with the increase of entropy, and thresholding
proves to be particularly bene�ciary.

The calibration technique we outlined serves to focus the geodesic distance
measure on truly geodesic data. It demarcates the boundaries within which the
geodesic distance measures yields optimal performance. Calibrating a classi�er
on the basis of entropy of local neighborhoods addresses the two risks we iden-
ti�ed: the risk of dot products reaching 1 for strongly overlapping vectors, and
the risk of dot products producing low values for highly dissimilar vectors. As
noted in Section 6.2, these are the cases where the inverse cosine-based NGD
kernel performs poorly. Factoring out these cases and handing them over to a
Euclidean kernel turns out to be bene�ciary.

8.2.5 Related work

Our work is related to recent work on local metric learning in manifolds, e.g.
Abou-Moustafa and Ferrie [2008], who �t an ellipsoid neighborhood to test
points using a parametrized version of the Mahalanobis distance. As these
authors note, the Euclidean distance ignores the structure, scale, variance and
correlations in the data. Lebanon [2006a] states that, in the absence of clear
evidence of Euclidean geometry, metric structure should be inferred from the
data. We therefore can view Euclidean approaches to document classi�cation
as back-o� options as compared to the more intricate, structure-aware geodesic
approaches. This is in the same spirit as the division of labor between more
complex n-gram models and simple unigram models in language modeling which
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is known as a back-o� model (c.f. Katz [1987]). Along similar lines of reasoning,
the proposed calibration technique can be interpreted as a back-o� strategy for
document geometry estimation: whenever we determine that the information
in the curved manifold is unreliable for accurate classi�cation, we switch to the
dual representation of the data in terms of a Euclidean manifold, and perform
classi�cation based on Euclidean distances. Boundary cases are treated with a
mixed classi�cation strategy, combining information from both manifolds.

8.2.6 Kernelization
The thresholding approach can be kernelized, i.e. expressed as an operation
on kernels. One can construct a hyperkernel consisting of three linearly inter-
polated subkernels. The subkernels correspond to the Euclidean, geodesic and
mixed distance measures. The weights interpolating them are binary indica-
tors based on the two thresholds on the entropy of the local neighborhoods, as
follows. Given two data points x; y, with y in the local neighborhood of x:

KHY PER(x; y; �l; �u; ) = �1Kexp�NGD(x; y; )+
�2Kexp�NGD�EUCLID(x; y; )+
�3Kexp�EUCLID(x; y; )

(8.8)

The subkernels are de�ned as follows:

Kexp�NGD(x; y; ) = e��NGD(x;y)

Kexp�EUCLID(x; y; ) = e��EUCLID(x;y)

Kexp�NGD�EUCLID(x; y; ) = e��NGD(x;y)+e��EUCLID(x;y)

2

(8.9)

and the weights are based on the thresholds �l; �u:

�1 = 1 if H(NN(x)) � �l; 0 else
�2 = 1 if �l < H(NN(x)) < �u; 0 else
�3 = 1 if H(NN(x)) � �u; 0 else

(8.10)

8.3 A haversine kernel
In Chapter 6, we surmised that the poor performance of geodesic distance mea-
sures on high entropy data was related to the well-known fact that the arccos
function produces large rounding errors for small distances. Small distances
are inherent to high entropy data, where dot products of vectors can easily
produce small values. Further, non-linear behavior of the arccos functions for
distances close to 1 typically arises for strongly overlapping maximum entropy
vectors. In that chapter we also related entropy to distance: high entropy data
is represented on a manifold by compact regions with small distances between
points.
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In the previous sections, we have demonstrated that high entropy data can be
better delegated to a Euclidean kernel instead of the NGD kernel. We found that
thresholding the geodesic distance function e�ectively amounts to thresholding
the error component of the arccos function.

In this section, we investigate if there is any bene�t in using alternative
distance measures that do not su�er from inaccuracy for small distance data to
begin with. We will propose such an alternative kernel: a kernel based on the
so-called haversine distance. The haversine distance, de�ned on non-Euclidean
manifolds, stems from cartography and is widely known for its accuracy for
small distances (Sinnott [1984]). We compare a kernel based on the haversine
distance with the NGD kernel on a number of document classi�cation tasks,
investigating its adequacy for dense, high entropy data.

8.3.1 The haversine kernel
The versine function, de�ned as versine(x) = 1� cos(x), occurs historically in
navigation as the haversine, or half the versine: haversine(x) = 1

2versine(x).
Given two points A and B on a unit sphere, the haversine is de�ned on an-
gle � as illustrated by Figure 8.6. In general, for a sphere with radius R,
the haversine distance can be computed from the haversine function as 2R �
arcsin(haversine(�)). It can be kernelized as follows:

Figure 8.6: The versine on a unit circle.

KHAV (�; �0;R) = 2R � arcsin
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(8.11)

This kernel has one hyperparameter, R, the radius of the sphere. Since we
operate on the unit sphere (by L1-normalization), R = 1, and hence 2R = 2.
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Keeping R as a separate hyperparameter was observed to have clear e�ects in
the experiments reported below, however, and we therefore tune R � 1.

The cos function is applied to the dot product of the two vectors � and �0,
which, when they are of unit length6, is equal to the angle between them. In
the case of L1-normalized data, vectors are not guaranteed to be unit vectors7.

8.3.2 Positive de�niteness
Prior to proving that the haversine kernel is positive de�nite, we mention the
following (see Sch�olkopf and Smola [2002]):

8.3.1. Proposition. A kernel K(�; �0) = f(h�; �0i) de�ned on the unit sphere
in a Hilbert space of in�nite dimensions is positive de�nite (pd) if and only if
its Taylor series expansion has only nonnegative coe�cients:

f(t) =
1X

n=0

antn with an � 0 (8.12)

Analogous to the line of reasoning in Zhang et al. [2005] when proving pos-
itive de�niteness of the NGD kernel, we prove the following

8.3.2. Proposition. The kernel KHAV (�; �0) on the multinomial manifold is
positive de�nite.

Proof The Maclaurin series (the Taylor expansion of a function about 0) for
the arcsin function is

arcsin(x) =
1X

n=0

�(n+ 1
2 )

p
�(2n+ 1)n!

x2n+1 (8.13)

with �(x) the gamma function

�(z) =
Z 1

0

�
ln
�

1
t

��z�1

dt: (8.14)

The Maclaurin expansion for the cos function is

cos(x) =
1X

n=0

(�1)n

(2n)!
x2n (8.15)

6A vector v is of unit length if its magnitude or norm, de�ned as kv�vk=
q P

i v
2
i is 1.

Any vector can be converted to unit length by dividing every component by the magnitude.
7In the experiments reported below, we did not �nd bene�ts from normalizing vectors to

unit length.
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Since we are on the multinomial manifold, where all data is scaled between 0
and 1, the dot product h�; �0i is always between 0 and 1 as well. This is due
to the fact that x � y < x and x � y < y, 8 x; y 2

�
, which means that sincePn

i xi = 1 and
P
i yi = 1, 0 <

P
i xiyi � 1. Since cos(0) = 0 and cos(1) = 0:54,

the cos term will always be positive, and the argument of arcsin will be in
[
p

0:23;
p

0:5) = [0:5; 0:79]. Let

f(x) = 2R � arcsin(x) 8x 2 [0:5; 0:79]: (8.16)

We then set
KHAV (�; �0) = f(h�; �0i) (8.17)

and

f(x) =
1X

n=0

cnx2n+1 (8.18)

where

cn =
2R�(n+ 1

2 )
p
�(2n+ 1)n!

(8.19)

Since �(x) > 0 8x > 0, and R > 0, we have cn > 0 8n = 0; 1; 2; : : : . From
Proposition 8.3.1, it follows that the dot product f(h�; �0i) is pd, which makes
KHAV pd.

8.3.3. Corollary. The kernel KHAV (�; �0) on the multinomial manifold is
conditionally positive de�nite.

Proof Every pd kernel is cpd (Sch�olkopf and Smola [2002]).

The haversine kernel is based on the cosine, rather than the inverse cosine
of the NGD kernel. This means that, whenever the dot product between two
vectors approaches 1, the cosine approaches 0.5, its maximum for this type of
data. The arcsin function, taking values in the interval [0:5; 0:79], produces
distances in the range [0:5; 0:9], a compressed interval compared to the NGD
kernel, which produces distances in the range [ � �; 0]. This implies that the
haversine kernel represents distances on a more dense scale, for which it is
known to yield good performance. For high entropy data, this interval is further
compressed to an even narrower interval, with values approximating 0.79. Our
hypothesis is that the haversine kernel outperforms the NGD kernel on this type
of data, with its abundance of small scale distances.

8.3.3 Experiments and results
We performed four tests with the haversine and NGD kernels in order to validate
our hypothesis that the haversine kernel outperforms the NGD kernel on dense,
high entropy data. First, we compared the two kernels on the ECML 2006
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Task A NGD haversine
Accuracy 67.6 75.7
Recall 87.5 79
Precision 62.8 74.4
F1 73.1 76.6
AUC 82.9 81.6

Task B NGD haversine
Accuracy 61.5 66.9�
Recall 75.9 72.7
Precision 59.3 65.3�
F1 66.4 68.6��
AUC 61.5 74�

Table 8.7: Results for the ECML 2006 Spam Detection task. Results in bold
indicate better performance, and an asterisk indicates signi�cant improvement.
Signi�cance results are only reported for Task B (15 observations), as Task A
consists of just three observations. All signi�cance results were measured with
a paired t-test at p < :01 except the ��-case, where p < :1, and which indicates
a trend rather than a signi�cant result.

spam detection task (see Section 7.1.3). Second, we addressed the problem of
prepositional phrase (PP) attachment (Chapter 5.2). Subsequently, we applied
the kernels to subjectivity classi�cation of the AMI subjectivity data (Chapter
5). Finally, we measured the performance of the haversine kernel on random
data with varying entropy, in order to measure the e�ect of entropy on classi�er
performance. In our experiments, no special e�ort was made to produce optimal
feature sets or representations. Instead, our aim is to compare the NGD kernel
with the haversine kernel across a number of tasks. Therefore, we are interested
in relative performance rather than optimal performance. As mentioned in
Section 2.5.2, the NGD kernel is hyperparameter-free, and Zhang et al. [2005]
found no use in tuning the general cost hyperparameter C for this kernel (see
Section 2.1). Following Zhang et al. [2005], who did not observe any bene�ts
for optimizing C for the NGD kernel, we did not optimize this hyperparameter
for NGD either, but we did optimize it for the haversine kernel using heldout
development data, together with the R hyperparameter.

8.3.4 ECML 2006 Spam Detection Task

As our �rst experiment, we chose the ECML spam detection task introduced
in Section 7.1.3. The results for the ECML data, presented in Table 8.7, put
us on an average position compared to the o�cial results reported for this
challenge: for Task A, average AUC is 82.9 for all participants, and for Task
B the average AUC is 74.68. The area above the ROC curve (AAC, de�ned
as 1-AUC%) of the two kernels for the two tasks (17.1/18.4 for task A, and
38.5/26 for task B) can be compared to e.g. the ECML 2006 Task B winning
solution of Cormack [2006], who reports AAC scores of 7 and 24.8 for an SVM

8Ranked results are obtainable from the ECML 2006 Discovery Challenge website.
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PP NGD haversine
Accuracy 82.9 80.3
Recall 86.8 79.9
Precision 75.3 74.1
F1 80.6 76.9
AUC 91.2 72.4

Table 8.8: Results for the PP dataset.

optimized with Dynamic Markov Modeling. While this by itself is an interesting
result (we made no attempt to de�ne informative features, no feature selection
was attempted, and all features consisted just of normalized word frequencies),
more important is the observation that the haversine kernel outperforms the
NGD kernel on both tasks, producing (signi�cantly) higher accuracy, precision
and F-scores.

8.3.5 PP attachment

Recall that the PP attachment task put forward by Ratnaparkhi [1998a] and
introduced in Section 5.2, consists of deciding for verbal or nominal attachment
of a PP on the basis of a four-cell word-based window that contains a main
verb, a noun, a preposition, and a noun. We converted this data to L1-format,
which in general produces frequencies of 0.25, since every word occurs often
just once. Since the entropy of a probability distribution is logarithmic in the
number of variables, the short feature vector size of this data (4) leads, in terms
of bits, to a quite uniform low average vector entropy of 1.9 bits. Yet, the
maximum entropy representation of this type of data would produce an average
vector entropy of just 2 bits. In this experiment, we used the standard training
(20,801 instances) and test (3,097 instances) split of this data (Ratnaparkhi
[1998a]). The accompanying development data (4,039 instances) was used for
hyperparameter tuning.

As it turns out (see Table 8.8), the NGD kernel outperforms the haversine
kernel for this task, yielding consistently higher scores for recall and accuracy.
This can be explained by the fact that there is very little overlap between
the various feature vectors in this data, which means that the vector product
that is part of the NGD kernel uniformly produces values far below 1. So,
maximum entropy data increases the chance of dot products to approach 1, but
the overlap between feature vectors e�ectively is the most important factor for
this to happen. Apparently, the dot product values are also not very small,
which would have led the NGD kernel to produce rounding errors.



8.3. A haversine kernel 123

8.3.6 AMI subjectivity

For the AMI subjectivity classi�cation dataset, we used character trigrams as
feature representations. Three meetings were used as development data for
hyperparameter estimation. For two speci�c meetings, we measured the perfor-
mance of both kernels. The meetings were selected on the basis of their vector
entropy9 distributions, under the hypothesis that high entropy data will set
back the NGD kernel, and favor the haversine kernel.

We performed two experiments: one (condition ’A’ in Table 8.9) uses all
training data, and the other (condition ’H’) uses and classi�es only the data that
has vector entropy higher than average. Results obtained by the two kernels on
these two meetings are listed in Table 8.9. Using all training data shows that
the NGD kernel outperforms the haversine kernel, for both meetings. However,
after selection of the high entropy data for the �rst meeting, the haversine kernel
applied to this high entropy data outperforms the NGD kernel. For the second
meeting, with its even spread of entropy data, this e�ect predictably does not
occur, since most entropy values are around the average value.

Figure 8.7: Vector density estimation for two AMI meetings (subjectivity data).
The left picture displays the density for the high entropy data of Meeting 1,
and the right picture for Meeting 2.

In order to visualize the situation, Figure 8.7 displays the result of a bivariate
Gaussian parametric density estimation of the two distributions (Botev [2006])
under the condition ’H’. For all instances in the test data, the vector entropy is
plotted on the y-axis. Light-colored areas represent high density. Clearly, the
�rst meeting training data displays high-density entropy in the higher regions
only, with entropy values much higher than for the second meeting. For the
second meeting, entropy values are spread even across the spectrum, and values
are relatively low.

9See Eqn. 8.6.
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Meeting 1 (A) NGD HAV
Accuracy 52.5 49.1
Recall 21.9 24.3
Precision 46 40.6
F1 29.7 30.5
AUC 59.7 50.7

Meeting 2 (A) NGD HAV
Accuracy 70.9 66.4
Recall 51.3 46.4
Precision 71.7 64.2
F1 59.8 53.9
AUC 71.5 68.7

Meeting 1 (H) NGD HAV
Accuracy 45.8 47.1
Recall 31.8 42
Precision 61.4 59.8
F1 41.9 49.3
AUC 42.9 47.6

Meeting 2 (H) NGD HAV
Accuracy 67.3 60.5
Recall 62.4 56.9
Precision 72.8 65
F1 67.2 60.7
AUC 71.7 71.9

Table 8.9: Results for AMI subjectivity data (best results in bold). Condition
A uses all training data, and condition H only uses training data that has vector
entropy higher than average.

8.3.7 Random data

In order to closely investigate the relationship between entropy and classi�er
performance, we next generated 10 random, synthetic datasets consisting of
the ground truth of the Task A Spam training data (2,500 cases), and a vari-
able number of features (20-200, varied in steps of 20), with random frequency
counts. The random counts were L1-normalized. The entropy range we obtained
is from 4.1 (20 features) to 7.4 bits (200 features). We trained the haversine
kernel on the �rst 2,000 items of each dataset, and tested it on the last 500
items, where hyperparameters were estimated on heldout data. The resulting
F1-scores were paired with the entropy values computed for every dataset, and
were analyzed by the non-parametric Spearman test. This test produced a �
value of 0.69, which indicates a strong positive correlation between entropy and
classi�er performance: the higher the entropy, the better the resulting classi�er
performance. This is in line with our previous remarks on the applicability of
haversine-based distance measures to high entropy data. In Section 6, we mea-
sured for the NGD kernel an opposite trend: the higher the entropy, the lower
the classi�er performance.
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8.3.8 Conclusions
In this subsection, we have proposed a novel kernel based on the haversine dis-
tance. The haversine distance is known to be a more accurate estimator for small
distances than geodesic distance measures based on the inverse cosine, which
are known to su�er from relatively large rounding errors for short distances.
We proved positive de�niteness of the haversine kernel, and demonstrated its
compression e�ect on data. We subsequently showed its applicability to dense,
high entropy data, which, as we argued, produces the necessary precondition
of small distances. The results of the experiments support our hypothesis that
the haversine kernel is applicable to dense, high entropy data, just like the Eu-
clidean kernel. For the high entropy ECML spam data, the haversine kernel
outperforms the NGD kernel, as well as for the dense, high entropy part of the
AMI subjectivity data. The existence of these dense, high entropy regions of
a dataset can be veri�ed using e.g. a parametric density estimator, applied
to the vector entropy scores of the instances in the data. On the PP attach-
ment data, the NGD kernel outperforms the haversine kernel. The maximum
entropy representation of this data does not automatically produce ultrashort
distances: the maximum entropy representation theoretically leads to dot prod-
ucts approaching 1, which are in the non-linear part of the arccos function (see
Figure 6.2). This happens for strongly overlapping vectors. For other vectors,
the maximum entropy representation produces small values, which, when small
enough, trigger rounding errors of arccos. This apparently does not occur in
this data. The results on the synthetic data reveal a strong positive correlation
between classi�er performance and entropy: the higher the entropy, the better
the performance of the haversine kernel.

For future work, we are interested in developing a division of labor between
the NGD kernel and the haversine kernel similar to our approach for calibrating
the NGD and Euclidean kernels, as both the NGD and haversine kernel appear
to target di�erent substrata of data represented on the multinomial manifold.

8.4 Summary
In this chapter, we presented a classi�er calibration technique that is able to
calibrate a classi�er for a pre-speci�ed, given accuracy, factoring out hard cases
for manual inspection. We subsequently generalized this technique to a thresh-
olding procedure that calibrates a classi�er on the basis of distance metrics. We
demonstrated for a number of sequential tasks that this approach is bene�ciary,
and increases accuracy. For non-sequential data, the pullback transform we put
forward in Chapter 5 generates the prerequisites for this thresholding approach:
it e�ectively increases entropy, producing data amenable to thresholding. The
result is a signi�cant increase of classi�cation quality, as measured with macro-
averaged F-scores. We conclude from these results that distance-metric based
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thresholding is a viable technique, and the results support our central thesis:
the natural geometry of L1-normalized textual data is neither purely geodesic
nor Euclidean, but rather a mixture of both, depending on the entropy of local
neighborhoods. We subsequently demonstrated the use of the haversine kernel:
a novel kernel based on a distance measure that is known to be quite accu-
rate for small distances. We proved the positive de�niteness of this kernel, and
demonstrated its applicability to dense, high entropy data.



Chapter 9
Conclusions

In this chapter, we summarize the �ndings of our work by formulating answers
to the research questions raised in Section 1.1, and describe our ideas for future
work. The problem statement of this thesis, as formulated in Section 1.1, was
the following:

1. Can we extend the standard multinomial language learning apparatus to
heterogeneous data, and sequential, limited context classi�cations tasks?
(Research questions 1 and 2)

2. Can we motivate the existence of hybrid geometry in L1-normalized doc-
ument representations? (Research questions 3 and 4)

3. If such hybrid geometry can indeed be motivated, how can we calibrate
classi�ers operating on this document space such that their performance
is optimized? (Research question 5)

9.1 The Research Questions
In the next subsections, we formulate our answers to the research questions
presented in Section 1.1.

9.1.1 Research question 1: heterogeneous information
The multinomial framework presupposes L1-normalized frequency data. The
process of L1-normalization, working on bag representations of strings (fea-
tures), does not discriminate between di�erent sources of information: all strings
in the bag are treated on a par, irrespective of eventual subsumption relations
or di�erent informativeness.

In order to accommodate the combination of heterogeneous information in
one classi�er, we proposed the concept of hyperkernels, which implements the
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well-known idea of linear interpolation from the �eld of generative language
modeling. A hyperkernel consists of a number of subkernels that are combined
in a weighted manner. This weighting is a form of interpolation; hence, the
hyperkernel embodies a form of kernel interpolation.

We were able to demonstrate that kernel interpolation corresponds to a
pullback on the Fisher information, and implements Tikhonov regularization
of submanifolds. We empirically evaluated the bene�ts of kernel interpolation
for word unigrams and bigrams on polarity classi�cation (sentiment analysis) of
movie reviews. Our results rank this approach among the best performing on
this data, and show that discrimination between di�erent sources of information
within the multinomial framework is feasible, theoretically well-motivated, and
empirically desirable.

9.1.2 Research question 2: sequential and limited context
tasks

The multinomial approach to text classi�cation assumes data with a bag of
words structure: unordered collections of words with repetitions, making up for
discriminative frequencies. A large class of language learning tasks does not
meet this constraint, however: for instance, many analysis tasks are windowed,
feature-based tasks, such as part-of-speech tagging on the basis of a �xed win-
dow containing parts of speech of the left context of a target word, and the
word forms of the right context. Frequency counts would not make much sense
here, as most items occur once (e.g. a feature ’part of speech of the previous
word’).

In order to extend the multinomial classi�cation framework to sequential or
limited context tasks, we de�ned two data transforms

� A position-unaware transform, that counts co-occurrences of classes and
features, irrespective of the position of each feature in the feature vector.

� A position-aware transform, that counts co-occurrences of classes and fea-
tures, taking into account the exact position of a feature in a feature
vector.

These class-feature co-occurrence transforms allow us to escape from the data
bottleneck inherent to the limited information available for sequential or limited
context tasks: we now use global co-occurrence information about joint manifes-
tations of features and classes from the entire training data. We demonstrated
that the data transforms correspond to pullbacks of the Fisher information, and
produce competitive results on a number of sequential classi�cation tasks. In
addition, we proposed an interpolation strategy, allowing for backing-o� from
e.g. a bigram model to a unigram model. This interpolation strategy can be
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used to weigh di�erent sources of information. It establishes a direct relationsh-
iop between multinomial classi�cation and generative models of classi�cation,
such as language models, where this type of interpolation is quite common.

9.1.3 Research question 3: high entropy data and geodesic
distance

A formal and empirical analysis of the Euclidean and geodesic distance met-
rics revealed that they become isometric in the case of maximum entropy data,
which, as expected, displays maximum density (and hence ultrashort distances
between datapoints). Our analysis is based on the entropy of vectors, which, un-
der the multinomial framework, are probability distributions. We have demon-
strated that the use of the inverse cosine inherent to the geodesic distance
measures leads to undesired side e�ects on the two extrema of its domain: for
small values leading to long distances, large rounding errors occur, and for val-
ues close to 1, leading to short distances, non-linear behavior of the inverse
cosine becomes quite dominant, with steep descents in its output values. The
latter phenomenon produces unjusti�ed large di�erences between high-entropy
vectors that are actually quite similar. Maximum or high entropy data con-
tributes to both of these phenomena: we demonstrated that maximum entropy
data produces the lowest scores (and hence the longest distances) possible for
dissimilar vectors, and for similar vectors, maximum or high entropy frequencies
produce values close to 1 (and hence the closest distances).

9.1.4 Research question 4: hybrid geometry
On the basis of two suites of experiments (dimensionality reduction and man-
ifold denoising), we provided empirical evidence for the hypothesis that L1-
normalized documents should not be uniformly analyzed with geodesic distance
measures, but, depending on the entropy structure of the data, with either
Euclidean, geodesic, or hybrid distance measures, combining Euclidean and
geodesic distances. Our contributions are the following.

We proposed a dimensionality reduction approach based on geodesic and
hybrid (combined Euclidean/geodesic) Laplacian Eigenmaps. The geodesic fea-
ture selector outperforms the Euclidean feature selector on the two datasets
used. For one dataset, we obtained a signi�cant performance gain by using the
hybrid feature selector, which demonstrates that geometry is data dependent
{and not so much: data representation-dependent.

Subsequently, a manifold denoising method based on Euclidean and geodesic
distance measures also provided evidence for hybrid document geometry. Man-
ifolds can be cluttered by noisy data. For noise elimination methods to operate
optimally, awareness of the geometry of the manifold is important. We stud-
ied a recently proposed geometry-aware noise elimination algorithm based on
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the Euclidean distance measure, and created a variant based on geodesic dis-
tance, as well as a hybrid variant. After creating an evaluation strategy using
a transductive classi�er, we showed in a number of experiments the bene�ts of
averaging information from the Euclidean and geodesic noise elimination algo-
rithms. Together, these experiments support our hypothesis that L1-normalized
data should not be uniformly approached with geodesic distance measures, but
that Euclidean distance measures may under certain conditions be preferable.
These conditions, as we outlined, are related to the entropy of local neighbor-
hoods used during the classi�cation process.

9.1.5 Research question 5: classi�er calibration
After having established empirical evidence for the possibility of hybrid geom-
etry of L1- normalized data (or, put di�erently: evidence against a uniform
treatment of L1-normalized data with geodesic distance measures), in order to
determine the exact trade-o� between Euclidean and geodesic distance mea-
sures, we proposed a classi�er calibration technique.

First, we demonstrated that a carefully thresholded meta-classi�er is able
to factor out hard cases in a real-world workow, handing them over to man-
ual inspection. This thresholding procedure was subsequently generalized to
a general classi�er calibration approach. Under this approach, documents are
represented dually by both a Euclidean and a curved manifold, and, based on
thresholds on the entropy of the local neighborhood of a test point, the classi�er
uses either information from one of the manifolds, or a mixture of both. We
argued that this is an instance of locally adaptive metric learning, and demon-
strated the bene�ts of entropy-based classi�er calibration on a number of data
sets.

In addition, we proposed a novel kernel based on the haversine distance,
a distance measure that is particularly accurate for ultrashort distances. We
proved positive de�niteness of this kernel, and applied it to two datasets. Our
experiments demonstrate the usefulness of this kernel to dense, high entropy
data.

9.2 Future work
A logical continuation of our work is the implementation of the calibration mech-
anism outlined in Chapter 8 in full-edged classi�ers, such as Support Vector
Machines. In order to do so, we need to connect the idea of local neighborhood
we used for our prototypical k-NN classi�ers to the support vectors in Support
Vector Machines. Our conjecture is that the density of the support vectors on
the margins of the hyperplane can be used to do so. Apart from this, distance
measures that display less distortion on ultrashort distances akin to the haver-
sine distance measure may lead to interesting new kernels especially suited for
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mixed and high entropy textual data. The exact trade-o� between these types
of kernels and the standard geodesic kernels is still to be determined. Finally,
our sketch in Appendix D of the connection between document representations
and quantum information science may contribute to interesting new, massively
parallel algorithms for document classi�cation.
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Appendix A
Information geometry

A.1 The simplex
An n-simplex is the n-dimensional version of a triangle. It is usually represented
in n+ 1-dimensional space, and it is de�ned as

�n = f(x1; : : : ; xn) 2
� n+1 j

X

i

xi = 1g (A.1)

For instance, depicted in �gure A.1, is the 2-simplex, the set f(p1; p2; p3)g �
� 3.

L1-normalized data naturally forms a simplex of degree n for n-dimensional

Figure A.1: The 2d-simplex represented in 3d-space.

data.

A.2 Manifolds
Di�erentiable or smooth manifolds are topological spaces in which every point
has a local Euclidean neighborhood, but the relation between points in general
is not necessarily Euclidean. A trivial example is our globe. Two points on
the globe that are very close to each other can be assumed to have a Euclidean
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relationship, but for points that are far apart, the curvature of the globe should
be taken into account for accurate distance measurement. Put di�erently, for
estimating the distance between local points, Euclidean distance, a straight
line segment, is a good approximation. Distance between points much further
apart should be measured using geodesics: the shortest curve that connects
them. Formally, a topological space is a set of points P paired with a function
F : POW (P ) 7! f0; 1g, which is closed under union and intersection.

� F (;) = 1;F (S) = 1

� 8 si 2 F : F ([isi) = 1

� 8 si 2 F : F (\isi) = 1

If every point in the topological space has a local neighborhood then the space
is a manifold. A local neighborhood here means a collection of points on an
n-dimensional disk with a certain radius; if n > 3, the disk is actually a ball.
For this collection to qualify as a neighborhood for a point x, x must be the
center of the disk. A di�erentiable manifold that is equipped with a metric
tensor or Riemannian metric is called a Riemannian manifold. A Riemannian
metric g is a symmetric and positive de�nite distance measure:

g(X;Y ) = g(Y;X)g(X;X) > 0 if X 6= 0 (A.2)

A di�eomorphism is a map between two manifolds that is di�erentiable (i.e.
for every point in the domain, the derivative exists), and has a di�erentiable
inverse. This is basically the equivalent of a bijective, continuous, di�erentiable
function. Given F : M 7! N , a di�eomorphism between two manifolds M and
N . The tangent space TxM is the set of curves through the point x 2M , under
a suitable equivalence relation. These curves are called tangent vectors, and can
be interpreted as velocities. With F , one can associate a push-forward map F�
mapping the tangent spaces TxM;TyM to TxN;TyN :

F� : TxM 7! TF (x)N (A.3)

This is a map from velocity curves in one space to velocity curves in a space
associated through a di�eomorphism with the original space. A Riemannian
metric g on a manifold assigns to every point x 2 M the inner product of the
tangent space TxM . The length of a tangent vector v 2 TxM can now be
de�ned as k v kx=

p
gx(v; v). The length of a curve c between points a and b

is de�ned as

L(c) : [a; b] 7!M =
Z b

a
k c0(t) k dt (A.4)

with c0 the �rst derivative of c. The geodesic distance between two points a and
b on M is the length of the shortest curve connecting a and b. The combination
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of M and a geodesic distance measure turns M into a metric space. Given such
a distance measure, h, the pullback F �h is de�ned as

T �F (p)N 7! T �pM (A.5)

This triggers a pullback metric

F �hx(u; v) = hF (x)(F�(u); F�(v)) (A.6)

Here hx(u; v) is the function that returns the inner product of u and v if these
are in the tangent space of x (and zero else). We obtain isometry as follows:

dF�h(x; y) = dh(F (x); F (y)) (A.7)

Isometry means that the distances in the pushed forward and pulled-back spaces
are related through a di�eomorphism.





Appendix B
Classi�er evaluation

Classi�ers can be evaluated from several perspectives. Historically, the stan-
dard perspective is intrinsic: from the perspective of a number of datasets,
and a speci�c classi�er setup. As formulated by Sparck Jones and Galliers
(Jones and Galliers [1997]), intrinsic criteria are related to a system’s objective,
and extrinsic criteria apply to its function: its role in relation to its intended
use. Extrinsic measures often evaluate classi�er performance with task-speci�c
penalty systems.

A generic evaluation procedure for classi�ers is cross-validation (e.g. Kohavi
[1995]), where a data set is split into a number of training-test partitionings
called folds. Subsequently, a classi�er is trained on every training partition
and its corresponding test partition, after which performance is measured. The
separate performances are averaged upon completion. For instance, a 10-fold
cross-validation would partition a data set into 10 training-test folds, and run
10 experiments.

Familiar intrinsic evaluation measures are accuracy, recall and precision, and
combinations of recall and precision such as F-score. Some extrinsic measures
are linear utility and detection cost.

Intrinsic measures
Given a binary classi�er C that is applied to a labeled test set T , we de�ne in
table B.1 a number of basic notions. From these basic ingredients, the familiar
notions of accuracy, recall, and precision can be computed:

Accuracy = TP
TP+FP+TN+FN

Recall (True Positive Rate; Sensitivity) = TP
TP+FN

Precision or Positive Predictive V alue (PPV ) = TP
TP+FP

(B.1)
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Ground truth Prediction De�nition
+ + true positive TP
- + false positive FP
- - true negative TN
+ - false negative FN

Table B.1: TP, FP, TN, FN under a binary classi�er setting, from the perspec-
tive of the positive class.

The F-score, a harmonic mean of Recall and Precision, is de�ned as (van Rijs-
bergen [1979], Lewis [1995])

F� =
(�2 + 1) � Precision �Recall
�2 � Precision+Recall

(B.2)

or equivalently

F� =
(�2 + 1) � TPR � PPV
�2 � TPR+ PPV

(B.3)

where � usually is 11. Notice that the F-score only attains a high value if both
Recall and Precision are high. If � = 1, then Recall and Precision are treated
as equally important. If � = 0:5, then Precision is twice as important as Recall.

This view on the relationship between ground truth and predictions is purely
from the positive class. The corresponding version of F� is the so-called micro-
averaged version, which typically is computed only for one class (the positive)
for a binary classi�er (i.e. j C j, the number of classes, is treated as 1):

Fmicro = (�2+1)Precisionmicro�Recallmicro
�2�Precisionmicro+Recallmicro

Precisionmicro =
PjCj
i=1 TPiPjCj

i=1 TPi+FPi

Recallmicro =
PjCj
i=1 TPiPjCj

i=1 TPi+FNi

(B.4)

If we take the dual perspective from the negative class, then a prediction ’-’ for
a ’-’ ground truth class is equally a ’true positive’: a correct prediction for the
negative class.

Translating the de�nitions of Recall, Precision and F-score, we end up with
Recall and Precision from the perspective of the dual (negative) class:

Recallneg = Negative Predictive V alue (NPV ) =
TN

TN + FN
(B.5)

1In TREC 2003, � was 5, and in TREC 2004, � was 3 (see for some historical context e.g.
Lin and Demner-Fushman [2005]).
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Ground truth Prediction De�nition
+ + true negative TN
- + false negative FN
- - true positive TP
+ - false positive FP

Table B.2: TP, FP, TN, FN under a binary classi�er setting, from the perspec-
tive of the negative class.

Precisionneg = Specificityneg =
TN

TN + FP
(B.6)

The quantity

False Positive rate (FPR) =
FP

FP + TN
(B.7)

leads to the alternative de�nition of Speci�city as

Specificityneg = 1� FPR (B.8)

From this shifted class perspective we obtain an alternative F-measure from
the perspective of the negative class:

Fneg =
(�2 + 1) �NPV � Specificityneg
�2 �NPV + Specificityneg

(B.9)

When we average the two F-measures, we obtain a macro-averaged, two-class
version of the F-measure:

Fmacro = 1
2

h
(�2+1)�TPR�PPV
�2�TPR+PPV + (�2+1)�NPV �Specificityneg

�2�NPV+Specificityneg

i
=

1
2 (�2 + 1)

h
TPR�PPV

�2�TPR+PPV + NPV �Specificityneg
�2�NPV+Specificityneg

i
=

(�2+1)
2

h
TPR�PPV

�2�TPR+PPV + NPV �Specificityneg
�2�NPV+Specificityneg

i

(B.10)

Generalizing this to the multiclass setting, with more than 2 classes, table
(B.3) lists class-speci�c contingencies. We then de�ne class-speci�c versions of
Precision and Recall:

Precisionc = TPc
TPc+FPc

Recallc = TPc
TPc+FNc

(B.11)

Micro-averaging precision and recall is based on global counts for TP, FP, and
FN, after which precision and recall are computed, whereas macro-averaging
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Ground truth Prediction De�nition
c c true positive for c TPc

not c c false positive for c FPc
not c not c true negative for c TNc
c not c false negative for c FNc

Table B.3: TP, FP, TN, FN under a multiclass classi�er setting.

involves �rst computing precision and recall per class, and then averaging the
results. The latter approach is especially suited for class-imbalanced datasets,
as all class-speci�c scores for precision and recall are equally weighted. Micro-
averaging is a form of document-pivoted evaluation, whereas macro-averaging
can be seen as category-pivoted.

The macro-averaged F-score then is de�ned as

Fmacro = (�2+1)�Precisionmacro�Recallmacro
�2�Precisionmacro+Recallmacro

Precisionmacro = 1
jCj

jCjX

i=1

TPi
TPi + FPi

Recallmacro = 1
jCj

jCjX

i=1

TPi
TPi + FNi

(B.12)

Mean averaged precision (MAP) is a measure typically used in a ranked doc-
ument retrieval task, where the average precision for every query is computed,
and the mean is taken over all queries. This e�ectively is macro-averaging: all
queries are considered equal. Precision at R (R-PREC) is the precision when
exactly R documents are retrieved.

ROC curves
ROC curves plot the True Positive Rate (TPR) (y-axis) against the False Pos-
itive Rate (FPR)(x-axis). A common aggregate statistic for measuring clas-
si�cation is AUC: the Area Under (ROC) Curve (Fawcett [2006]). Discrete
classi�ers emit symbolic classi�cations, and therefore the quantities TPR and
FPR are single numbers, which together produce just one point in ROC space
(�gure B.1(a)). This point can be seen as an optimal operating point: the op-
timal classi�er attains maximal performance at the point (TPR; FPR). The
theoretically best performing classi�er has TPR=1, and FRP=0. Therefore,
any ROC curve should have its peak as close to the left top corner (the point
(0; 1)) as possible. For binary classi�ers that produce continuous output, such
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as class probabilities, or decision values, the output can be thresholded (above a
certain value produce class +1, below produce �1) by varying classi�er-speci�c
parameters. This will produce a smooth ROC curve (�gure B.1(b))

DET curves

Whereas ROC curves only plot one type of error (the False Alarm Rate), De-
tection Error Tradeo� (DET) curves (Martin et al. [1997]) depict the tradeo�
between two errors: Pmiss and PFA. This makes this type of plot more suitable
for assessing the performance of a classi�er when a trade-o� between two error
types needs to be investigated. A sample DET curve comparing two systems is
given in �gure B.2. Optimal curves are skewed towards the bottom left.

Extrinsic measures

The TREC �ltering task used a linear utility function for the adaptive �lter-
ing task, which is a rather complex classi�cation task where a system can use
feedback in order to set its optimal operating point (decision threshold) in a
dynamic fashion. The linear utility is de�ned as Hull and Robertson [1999]:

linear utility = �TP + �FP + FN + �TN (B.13)

This is essentially a cost function, where parameters must be chosen to �t a
particular user scenario. A more elegant way to model the cost of running a
certain classi�er on a dataset is the family of cost functions that were developed
in the Topic Detection and Tracking (TDT) framework Fiscus and Doddington
[2002]. The basic detection cost function is de�ned as follows:

Cdet = CMiss � PMiss � Ptarget + CFA � PFA � (1� Ptarget) (B.14)

where CMiss and CFA are �xed cost parameters that tax type II and type I
errors respectively (False Negatives and False Positives), PMiss and PFA are
the system-dependent probabilities of type II and type I errors, and 1�Ptarget
is the prior probability of a positive class label T=target. Usually, the detection
cost is measured at di�erent levels of Miss/False Alarm trade-o� by threshold
sweeping, thus generating a detection cost curve. The detection cost function is
motivated by the desire to quantify di�erent types of error and sum the complete
cost of a detection task for a certain data collection (taking into account the
relative proportion of the class population sizes). However, the detection cost
is based on a fully automatic scenario. Incorporating the cost of manually
assessing observations would make the detection cost function less intuitive.
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(a) Sample ROC curve based on a single point in ROC space.

(b) Sample ROC curve based on SVM decision values.

Figure B.1: ROC plots.
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Figure B.2: A sample DET curve comparing two systems.

Cost curves
As pointed out by Drummond and Holte [2006], ROC curves are not adequate
for cost-based evaluation of the performance of a classi�er. Also, the perfor-
mance di�erences between two classi�ers are not easily read o� from ROC
curves, as the ROC curves may cross on several points. The AUC measure par-
tially meets this problem, by integrating over the area under the ROC curve,
which should be maximal for best performing classi�ers. Cost curves on the
other hand (Drummond and Holte [2006]) do allow for a penalty-based evalua-
tion of a classi�er’s performance, which makes comparison of di�erent classi�ers
transparent and better motivated from a statistical point of view by allowing
for con�dence intervals related to performance. Given a binary classi�cation
problem, a cost curve plots the probability cost for the positive class (+) against
the normalized expected cost. Let p(+) be the a priori probability of observing
an element of the positive class in the training data. The cost terms C(+ j �)
and C(� j +) represent the costs of misclassi�cation (a � as a +, and vice
versa). These costs are task-dependent. The unbiased view is that they are
both 0.5. The Probability Cost for the positive class, PC(+), aggregates these
quantities as follows:

PC(+) =
p(+)C(� j +)

p(+)C(� j +) + (1� p(+))C(+ j �)
(B.15)

This is the cost component (a percentage) that is represented by misclassifying
positive cases as negative (type II errors). The actual classi�er performance
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quantity is the Normalized Expected Cost (NEC), de�ned as

NEC = FN � PC(+) + FP � (1� PC(+)) (B.16)

Setting PC(+) = 0 for x = 0, and PC(+) = 1 for y = 1, we obtain two points:
(0; FP ) and (1; FN). A cost curve (Holte and Drummond [2008]) for a classi�er
is simply drawn by connecting these two points with a straight line, after which
the normalized expected cost for the classi�er can be read o� directly. Figure
B �gure shows an example. Lower lines indicate better performance.

Figure B.3: A sample cost curve.

The line from (0; 0) to (1; 1) corresponds to a trivial classi�er always assign-
ing the negative class. The line from (0; 1) to (1; 0) corresponds to the dual
trivial classi�er that always assigns the positive class. See �gure B.4; the op-
timal performance for the classi�er depicted with the lowest line, compared to
the two trivial classi�ers, happens in the interval 0:18 < PC(+) < 0:85.
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Figure B.4: Combined cost curves for 4 classi�ers, and two trivial classi�ers.





Appendix C
Algorithms

Algorithm C.1 General CE algorithm for rare event simulation.
Choose initial parameters N , �. Choose an initial parameter vector u.
De�ne v̂0 = u. Set t = 1.
Generate a random sample X1; : : : ; Xn according to the pdf f(�; v̂t�1).
Compute the performance S(Xi) for every i and rank results S(1) � : : : �
S(n).
Compute t = S(d(1��)Ne).
Solve v̂t =

Pn
i=1 IfS(Xi)�tgW (Xi;u;v̂t�1)XijPn
i=1 IfS(Xi)�tgW (Xi;u;v̂t�1) using the sample X1; : : :Xn, and

set vt accordingly.
Reiterate from step 3 until stopping condition is met.

Upon stopping: estimate P (S(Xi) � ) = 1
N

NX

i=1

IfS(Xi)�gW (Xi;u; v̂t).

Algorithm C.2 Elitist CE algorithm (ECE).
Choose initial parameters N , �, and �, and generate an initial parameter
vector u.
De�ne v̂0 = E0 = u. Set time tick t = 1.
Generate a random sample X t

1; : : : ; Xt
n from X restricted by v̂t�1.

Compute the performance S(X t
i ) for every i and rank results S(1) � : : : �

S(n).
Compute t = S(d(1��)Ne). Find Et = argmaxv̂i=1;:::;t

i.

For every hyperparameter vj , set v̂t;j =
Pn
i=1 IfS(Xti )�tgW (Xti ;E

t)XtijPn
i=1 IfS(Xti )�tgW (Xti ;Et)

STATEt := t+ 1; reiterate from step 3 until stopping condition is met.
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Algorithm C.3 Threshold estimation for decision value discretization.
Require: dmin; dmax; �; Dtrain (decision values training data); P�; P+ (priors);
� (resolution); � (step size)
N+ ( 0;N� ( 0
�( �min
while � < �max do

for each d in Dtrain do
if d < � then
N� ( N� + 1

else
N+ ( N+ + 1

end if
end for
N+ ( N+

jDtrainj

N� ( N�
jDtrainj

if j N+ � P+ j� � and j N� � P� j� � then
return �

end if
�( �+ �

end while
Return �

Algorithm C.4 EM algorithm for smoothing L1-normalized conditional prob-
abilities.
Require: stopping criterion
�( rand()
k ( 1
while stopping citerion not met do

E-step:

E�ck (Ma j fn1 ) =
P
i P (Ma j fi)

=
P
i
P (Ma;fi)P
i P (fi)

=
P
i
P
c2C

�kPa(cjfai )
�kPa(cjfai )+(1��k)Pb(cjfbi )

M-step:
�k+1 = E�k (Majfn1 )

n

k ( k + 1
end while
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Algorithm C.5 Compute the Gram error for two Gram matrices
Require: Two Gram matrices G1; G2.

1. Solve G1 � z = G2

2. Compute G10 = G1 � z

3. Compute the Gram error EG =
nX

i=1

nX

j=1

(G10ij �G2ij)2

Algorithm C.6 Dimensionality reduction.
Require: Data matrix M ; � a distance measure de�ned on M ; desired dimen-

sion m
Compute weight matrix W , diagonal weight matrix M , and graph Laplacian
L = M �W , based on �.
Solve Lv = �Mv
Report m smallest non-zero eigenvectors.

Algorithm C.7 Normalize weights.
Require: M , a Laplacian Eigenmap; � = �1 : : : �c the computed eigenvalues
� ( 0
� ( 0
r ( #rows ofM
c( #columns ofM
for j = 1 : : : c do

for k = 1 : : : r do
� = � + [M(k; j)� �j ]

end for
Wj ( �

r
� ( 0

end for

Algorithm C.8 Compute Eigenvalues.
Require: Data matrix M ; � a distance measure de�ned on M

Compute weight matrix W , diagonal weight matrix M , and graph Laplacian
L = M �W , based on �.
Solve Lv = �Mv
Return all eigenvalues �
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Algorithm C.9 Blockwise feature weighting.
Require: rs: row step size; cs: column step size; k; data M ; �t a distance

measure with t 2 fNGD;EUCLIDg.
i( 0
r ( #rows ofM
c( #columns ofM
W ( [ ]
while i � c do
� ( 0
j ( 0
while j � r do
Msub = M(j : j + rs; i : i+ cs)
� =Compute-Eigenvalues(Msub; �t)
Wi : : :Wi+cs (Wi : : :Wi+cs+Normalize-Weights(Msub;�)
j ( j + rs
� ( � + 1

end while
i( i+ cs

end while
W ( W

�

Algorithm C.10 The Hein-Maier algorithm for Manifold Denoising.
Require: Data X = fXigni=1 � Rd.

Let �EUCLID(Xi) be the Euclidean distance of Xi to its k-nearest neighbor.
Choose �t; k.
while Stopping criterion not satis�ed do

Compute the k-NN distances �EUCLID(Xi),i = 1; : : : ; n
Compute the weights w(Xi; Xj) of the graph with

w(Xi; Xi) = 0

w(Xi; Xj) = exp
�
� kXi�Xjk2

(maxf�EUCLID(Xi);�EUCLID(Xj)g)2

�

if k Xi �Xj k� maxf�EUCLID(Xi); �EUCLID(Xj)g

Compute the graph Laplacian � = 1�D�1W
Let X� be the �-th component of vector X .
SolveX�(t+1)�X�(t) = ��t�X�(t+1)) X�(t+1) = (1+�t�)�1X�(t),
for � = 1; : : : ; d.

end while
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Algorithm C.11 A geodesic version of the Hein-Maier algorithm for Manifold
Denoising.
Require: Data X = fXigni=1 � Rd.

Choose �t; k.
Let �GD(Xi) be the geodesic distance of Xi to its k-nearest neighbor.
while Stopping criterion not satis�ed do

Compute the k-NN distances �GD(Xi),i = 1; : : : ; n
Compute the weights w(Xi; Xj) of the graph with

w(Xi; Xi) = 0

w(Xi; Xj) = exp
�
� KGD(Xi;Xj)

(maxf�GD(Xi);�GD(Xj)g)

�

if KGD(Xi; Xj) � maxf�GD(Xi); �GD(Xj)g

Compute the graph Laplacian � = 1�D�1W
Let X� be the �-th component of vector X .
SolveX�(t+1)�X�(t) = ��t�X�(t+1)) X�(t+1) = (1+�t�)�1X�(t),
for � = 1; : : : ; d.

end while

Algorithm C.12 Transductive learning through single method manifold de-
noising.
Require: ; Dtrain (training data); Dtest (test data); D0train (development

training data); D0test (development test data); �t(x;y) a distance function
with t 2 fGD;EUCLIDg; L(f) an empirical loss function evaluating the
function f .
Find arg min�t;k L(Manifold-Denoise(D0train [D0test;�t; k; �t))
(K;�)=Manifold-Denoise(Dtrain [Dtest;�t; k; �t)
for every test point t in Dtest do

Let NN(t) be the set of k nearest neighbors of t in K
if NN(t) consists entirely of neighbors that are in the test set then
Class(t)( arg maxc j c j (majority class)

else
for every nearest neighbor x 2 NN(t) with Class(x) = c such that
x 2 Dtrain do
� ( �t(x; t)
Increment v(c), the vote for c, with exp(��)

end for
Class(t)( arg maxc v(c)

end if
end for
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Algorithm C.13 Transductive learning through dual method manifold denois-
ing.
Require: ; Dtrain (training data); Dtest (test data); D0train (development

training data); D0test (development test data); �GD[EUCLID(x;y) a distance
function de�ned as 1

2 [�GD(x;y) + �EUCLID(x;y)]; L(f) an empirical loss
function evaluating the function f .
Find arg min�t1;k1 L(Manifold-Denoise(D0train [D0test;�t1; k1; �EUCLID))
Find arg min�t2;k2 L(Manifold-Denoise(D0train [D0test;�t2; k2; �GD))
(KEUCLID;�EUCLID)=
Manifold-Denoise(Dtrain [Dtest;�t1; k1; �EUCLID)
(KGD;�GD)=Manifold-Denoise(Dtrain [Dtest;�t2; k2; �GD)
for every test point t in Dtest do

Let NN(t) be the set of k1 + k2 nearest neighbors of t in KGD[KEUCLID
if NN(t) consists entirely of neighbors that are in the test set then
Class(t)( arg maxc j c j (majority class)

else
for every nearest neighbor x 2 NN(t) with Class(x) = c such that
x 2 Dtrain do
� ( �GD[EUCLID(x; t)
Increment v(c), the vote for c, with exp(��)

end for
Class(t)( arg maxc v(c)

end if
end for

Algorithm C.14 Accuracy optimization of yield.
Require: Training data Tr; test data Te; development dataD1, D2; stepsize �;

a �rst-level classi�er C1 and a meta-classi�er C2; a loss function L (accuracy);
pre-speci�ed maximum loss � (minimum accuracy).
Train �rst-level classi�er on training part of D1; apply to test part of D1.
Determine Platt mapping P from decision values to posterior class probabil-
ities on the basis of output of the previous step.
Using a two-parameter sweep with stepsize �, �nd
argmax�l;�u L(C2(D2; �l; �u)) � �.
Train C1 on Tr.
Apply C1 to Te.
Map decision values produced in the previous step to Platt scores using P .
Apply C2 to the output of the previous step and threshold according to �l; �u.
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Algorithm C.15 Obtaining thresholds �l; �u from development data, and op-
timizing for accuracy (x̂ denotes the true class of x).
Require: K ; Ddev (development data); � (stepsize);� t(x ; y ) a distance function with

t 2 f N GD ; E UCLI D g;  a weighting parameter; � min; � max
Split Ddev into training/test partitions D dev:train and Ddev:test

MNGD ( train SVM (NGD) on D dev:train

MEUCLID ( train SVM (linear kernel) on D dev:train

For every test point in D dev:test, �nd its K nearest Euclidean neighbors in MEUCLID

using � EUCLID(x ; y ) (N NEUCLID).
For every test point in D dev:test, �nd its K nearest geodesic neighbors in MNGD

using � NGD(x ; y ) (N NNGD).
� l ( � min
while � l � � max do

� u ( � max
while � u � � l do

for all datapoints x in D dev:test do
for every class c do

V otec ( 0
end for
if H (N NNGD(x)) � � l then

for all datapoints y in N NNGD(x) do
c ( ŷ
V otec ( V otec + e��NGD(x;y)

end for
else

if H (N NNGD(x)) � � u then
for all datapoints y in N NEUCLID(x) do

c ( ŷ
V otec ( V otec + e��EUCLID(x;y)

end for
else

if � l < H (N NNGD(x)) < � u then
for all datapoints y in N NNGD(x) do

c ( ŷ
V otec ( V otec + e��EUCLID(x;y) + e��NGD(x;y)

end for
end if

end if
end if
C ( arg maxc V otec
if C = x̂ then

C ( C + 1
else

E ( E + 1
end if

end for
� l ( � l + �

end while
� u ( � u � �

end while
Return: � l; � u and accuracy= C

C+E





Appendix D

Quantum interpretation

Quantum information science (e.g. Mermin [2007], and van Rijsbergen [2004])
is an exciting, rapidly expanding �eld that studies the design of algorithms
amenable to the architecture of quantum computers. While large-scale quan-
tum computing is not a reality yet, quantum information science is generally
accepted as an evolutionary next step in information science, where informa-
tion processing becomes a physical process subject to quantum laws. Quantum
computing opens up fresh perspectives on complexity, with new time-space
complexity classes such as BQP, bounded error quantum polynomial time. It
is assumed that BQP is a strict superset of P, the class of problems that are
solvable by a deterministic Turing Machine in polynomial time; see Watrous
[2009]). Several sub-exponential and polynomial quantum algorithms for di�-
cult problems have been proposed, e.g. Beals et al. [1998], Kuperberg [2005],
and the famous Shor [1997], who presents an algorithm for polynomial-time
prime factorization. Grover [1996] is another example of a fast quantum al-
gorithm for database search with favorable time complexity, compared to its
classical analogue. The latter two algorithm form the basis of many quantum
algorithms that were subsequently proposed,

Central to any quantum algorithm is the clever exploitation of superposition
and entanglement of information. Quantum computers use qubits or quantum
bits, units of information that unlike classical bits can be in three representa-
tional states at a time: they can be on, o�, or both. Classical bits, on the other
hand, are always either on or o�. A computer handling qubits can therefore
handle much more information at a certain time compared to a classical com-
puter: for n bits, a classical computer is in one of the 2n possible states, whereas
a quantum computer is in all of these states simultaneously. The superposition
of qubits leads to a description of qubits as a vector of amplitudes: the chance
that the qubit  is in one of its classical states 0 or 1 when we measure it (the

169
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following notation is called the ket notation (Mermin [2007]):

j i = �0 j0i+ �1 j1i =
�
�0
�1

�
(D.1)

Measurement produces a classical state jii, with probability j �i j2. The squared
amplitudes form a probability distribution, hence

X

i

j �i j2= 1 (D.2)

Entanglement is the phenomenon that two objects in a quantum setting are
correlated in the sense that measurement of the one directly determines the
state of the other. This correlation can be non-local.

One of the interpretations of quantum mechanics (the Kopenhagen interpre-
tation; e.g. Jammer [1966]) is that measurement of a quantum object automat-
ically destroys quantum superposition, and reduces the quantum object to a
classical object. This phenomenon has been described empirically by the double
slit experiments (e.g. Mittelstaedt et al. [1987]).

The connection between quantum information science and machine learning
has been investigated in a number of publications. Ventura and Martinez [2000]
propose a quantum-theoretic formulation of an associative memory, a neural net-
work architecture with content-addressable memory (i.e. memory is accessed
through matching operations of queries with stored samples, as opposed to
index-based memory access). Their quantum network has exponentially more
memory than a classical Hop�eld network. Quantum neural networks are more
thoroughly investigated in Ezhov and Berman [2003]. Ricks and Ventura [2003]
address the issue of training procedure for quantum multilayer perceptrons.
A��meur et al. [2006] and A��meur et al. [2007] present a quantum-theoretic re-
construction of divisive and k�medians clustering. The perspective o�ered by
quantum computing to information science consists of highly e�cient, massively
parallel algorithms that will lead to new possibilities for complex data analysis.

In this appendix we present a quantum-theoretic interpretation of the hybrid
representation of document geometry as presented in Chapter 8. As it turns out,
also the multinomial simplex that arises from L1-normalization is interpretable
in a quantum context. These interpretations may be viewed as a necessary
pre-condition for quantum algorithms.

D.1 Superposition of document geometry
The hybrid perspective we outlined so far on document geometry allows for
a quantum information-theoretic interpretation when we assume a certain test
point x is superimposed in three classical states until measurement occurs. Here,
the three classical states of x are the states de�ned by the thresholds �l and �u:
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the �rst state arises when H(NN(x)) � �l, the second when H(NN(x)) � �u,
and the third when �l < H(NN(x)) < �u. A test point is in either one of these
states with a state-dependent probability or amplitude. Let j01i denote the
classical state of ’x having a nearest neighborhood with curved geometry’, and
j10i the classical state of ’x having a nearest neighborhood with at geometry’.
Let j11i denote the classical state of ’x having a nearest neighborhood with
mixed geometry’; this state can be derived from the other two states, as we
will outline. The zero state j00i is the non-existent state where a document is
neither in one of the three other states.

A state  of a certain test point x can be described as

j i = �00 j00i+ �01 j01i = �10 j01i+ �11 j11i (D.3)

subject to the normalization constraint
X

i

j �i j2= 1 (D.4)

and treating �00 = 0.
Let

Hmin = minfH(NN(xi))g

Hmax = maxfH(NN(xi))g
(D.5)

Further

f�l(x) =

8
<

:

1
�l�Hmin

for Hmin � H(NN(x)) � �l

0 for x < Hmin or x > �l
(D.6)

f�u(x) =

8
<

:

1
Hmax��u for �u � H(NN(x)) � Hmax

0 for x < �u or x > Hmax

(D.7)

with x a test point. We have

f�l(x) � 0 8x ^
R inf
� inf f�l(x) = 1

f�u(x) � 0 8x ^
R inf
� inf f�u(x) = 1

(D.8)

This implies these functions are probability density functions. We then obtain
the following probabilities that describe the chance of being in respectively the
curved and Euclidean state:

P (�l) =
R �l
Hmin

f�l(x)dx

P (�u) =
R Hmax
�u f�u(x)dx

(D.9)
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Notice that the probability of being in the third state, both Euclidean and
curved geometry (which means the average entropy of the neighborhood of
point x is in between �k and �u) can be obtained as

P (�l � �u) = 1� P (�l)� P (�u) (D.10)

E.g., when �l and �u coalesce, there is no mixed region, and the probability
of ending up there is zero (P (�l) + P (�u) = 1). This means we are viewing
the thresholds �l and �u as amplitudes of classical states, and that a chance of
observing the third state arises when �l 6= �u.

The superposition state 	 can then be described as

j	i 7! 0 j00i+
p
P (�l) j01i+

p
P (�u) j10i+

p
P (�l � �u) j11i (D.11)

This can be expressed in terms of a quantum gate, which we specify by its
matrix operation:

R :

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA 7!

0

BB@

0 0 0 0
0
p
P (�l) 0 0

0 0
p
P (�u) 0

0 0 0
p
P (�l � �u)

1

CCA (D.12)

and the following quantum circuit can be drawn (where M is measurement,
producing classical information)

j0i R "%#$M (D.13)

Applying the gate R to state j	i we obtain
p
P (�l) j01i+

p
P (�u) j10i+

p
P (�l � �u) j11i (D.14)

Subsequent measurement produces either state 01, 10, or the mixed state 11
with respective probabilities

j
p
P (�l) j2= P (�l)

j
p
P (�u) j2= P (�u)

(D.15)

and, in case P (�l) + P (�u) < 1

1� P (�l)� P (�u) = P (�l � �u) (D.16)

D.2 A word drawing game
We can in fact give a quantum interpretation to the multinomial simplex as
well. Given a vocabulary V of n terms, a given document D of k words is an
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instantiation of V , representable as a bit sequence of n bits, where every bit
bi represents either that the word wi is in document D (bi = 1) or it is not
(bi = 0). Document space, the set of all possible instantiations of V , can then
be interpreted as the superposition of the n terms in V as both on and o�:

j	i = �1 j	1i+ : : :+ �2n j	2ni (D.17)

where 	 is the (huge) superposition of the 2n possible instantiations of the
lexicon1.

Similarly, L1-normalized document representations can be seen as super-
posed outcomes of a word drawing game. Given a document D of n words, a
quantum version of the L1-representation is

jw1 : : : wni =

s
j w1 jP
i j wi j

jw1i+ : : :+

s
j wn jP
i j wi j

jwni (D.18)

with
jwii = 1 (D.19)

for every word wi in D. For instance, given a vocabulary V = fa; b; cg, and a
document D = fa; a; b; c; cg, we have

jabci =
r

2
5
jai+

r
1
5
jbi+

r
2
5
jci (D.20)

and since
�1 =

q
2
5

�2 =
q

1
5

�3 =
q

2
5

(D.21)

we have X

i

j �i j2= 1 (D.22)

The superposed state jabci describes the simultaneous probability of drawing
words a; b; c, and a classical measurement would obtain either a, b, or c, with
a probability equal to its L1-normalized frequency. Therefore, in a quantum
context, the L1-representation of documents can be interpreted as superposition
of all states of n words, with the L1-normalized frequencies the amplitudes of the
classical states: the prior probability of observing a word w given a document
D, p(w j D).

1Notice that this holds for the view of documents as bags of words, i.e. unordered sets with
repetition. The space of all permutation variants {of which only a fraction is well-formed{ is
much bigger: 2n! permutations
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The reconstruction in terms of quantum data structures of both the calibra-
tion technique proposed in Chapter 8 and the multinomial simplex opens up
possibilities for the construction of quantum algorithms, a topic that is beyond
the scope of this thesis, but which, given the increasing awareness of quan-
tum information science in the �eld of machine learning, will undoubtedly gain
importance in the next years.



Summary

For quite some time, learning systems have been applied to the analysis of
language. learning systems, part of the discipline of machine learning, learn to
discriminate between objects of di�erent classes, on the basis of examples called
training data. Machine learning methods can be divided into roughly two types:
memory-based methods, storing all examples in memory, and comparing new
cases with these stored examples, and model-based methods, that concisely rep-
resent the set of examples in a succinct model in which, for instance, only the
boundary cases representing the separation between classes are stored. A learn-
ing system is trained on its training data, after which it is capable of labeling
{ with a variable degree of success { new (test) cases with a classi�cation. A
trained learning system is called a classi�er.

During both the learning stage and classi�cation stage, learning systems
deploy similarity measures. For instance, a memory-based system will measure
the similarity of a test case with cases stored in memory. The set of stored cases
that most closely resemble the test case determine the classi�cation of the latter.
This type of similarity can be expressed as a distance measure, according to
which the data can be described through a vocabulary of properties (features)
as a feature space. Every feature space comes equipped with corresponding
distance measures that be�t the intrinsic geometry of the space.

For the application of learning systems to the analysis of language, the
so-called vector space is traditionally used for representations. In this space,
linguistic objects such as texts are represented as vectors: points in a high-
dimensional space. Characteristic of this space is the fact that it possesses a
at structure, in which distances are measured along straight lines. From a
two-dimensional perspective, one can imagine this space as the space spanned
by linear functions of the form y = ax+ b. The vector space model has proved
to be quite successful for document retrieval (where distance plays a role in the
process of �nding documents that match a certain query) and machine learning.
The corresponding distance measures are called Euclidean distance measures.

Recently, the set of distance measures for the application of learning systems
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to language has been extended with measures that assume a curved space:
the so-called geodesic distance measures. These distance measures treat local
distances as Euclidean, and measure global distance along curved lines. This can
be compared to the practice of measuring distance on our globe: the curvature
of the globe does not come into play when measuring the distance between two
objects that are close to each other, but does play a role when measuring the
distance between objects that are thousands of miles apart. Documents can
be embedded into a geodesic space, through a simple transformation based on
normalized frequencies of e.g. words. For e�ective use of the resulting probability
distributions, it is necessary that documents possess a certain length; otherwise,
the notion of frequency would be meaningless. As it turns out, geodesic distance
measures yield highly accurate classi�ers.

In this thesis, we examine the conditions under which geodesic classi�ers
perform optimally. First, we carry out a number of experiments in which we
assess the accuracy of these classi�ers. We subsequently propose to extend the
standard technology with two new facilities:

� A method to apply geodesic classi�ers to very short texts, with an eventual
sequential relation between the constituting parts. Examples are certain
feature-based learning tasks with a limited length, such as the prediction
of the attachment of prepositional phrases to preceding verbs or nouns, or
the prediction of the diminutive su�x of a noun on the basis of a limited
number of phonetic properties its �nal syllables.

� A method to combine heterogeneous information (such as frequencies of
separate words and frequencies of word combinations) within one classi�er.

We demonstrate that the proposed modi�cations boost classi�er performance,
and that they correspond with standard formal operations on a geodesic space.

Next, we investigate in detail whether document data embedded in a geodesic
space should be uniformly analyzed with geodesic distance measures. We show
analytically that the inverse cosine, a crucial ingredient of geodesic distance
measures, displays weak performance on some regions in its spectrum. We re-
late this phenomenon to the notion of entropy: at probability distributions
of embedded data lead to suboptimal performance of geodesic classi�ers. On
the basis of two empirical studies, we explain this observation from an inverse
relationship between entropy and curvature: the higher the entropy of certain
data, the lower the amount of curvature representing this data. Our conclu-
sion is that textual data embedded in a geodesic space should not be uniformly
analyzed with geodesic methods.

Subsequently, we propose a calibration technique for classi�ers. This tech-
nique, based on the estimation on two thresholds on the class probabilities
emitted by a classi�er, allows the classi�er to factor out hard cases it cannot
classify with a pre-speci�ed accuracy. We generalize this technique to a method
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with which we can train a classi�er to switch from geodesic distance measures
back to Euclidean distance measures, depending on the entropy of the local
neighborhood of test data. In this way, we create a back-o� system that under
certain conditions backs o� from a more complex geodesic distance measure to
a less complex Euclidean distance measure. We demonstrate the bene�ts of
this method as compared to uncalibrated methods. In addition, we propose
an alternative distance measure based on a method from cartography that is
speci�cally well-suited for high-entropy data.





Samenvatting

Al geruime tijd worden lerende systemen toegepast op de analyse van taal.
Lerende systemen, ressorterend onder het vakgebied van de machine learn-
ing, leren het onderscheid tussen objecten, verdeeld in klassen, op basis van
voorbeelden (zogenaamde training data). Daarbij zijn er ruwweg twee soorten
methoden: geheugengebaseerde methoden, die alle voorbeelden opslaan in het
geheugen, en nieuwe gevallen vergelijken met die opgeslagen gevallen, en mod-
elgebaseerde systemen, die de verzameling voorbeelden beknopt samenvatten in
een gecondenseerd model waarin bijvoorbeeld alleen de grensgevallen { die de
scheiding tussen klassen markeren { worden opgenomen. Een lerend systeem di-
ent te worden getraind, waarna het in staat is met meer of minder succes nieuwe
(test) data te voorzien van een classi�catie. Een getraind lerend systeem wordt
een classi�er genoemd.

Lerende systemen maken bij het leren, en bij het toepassen van het geleerde,
gebruik van gelijkenismaten. Zo zal een geheugengebaseerd systeem voor het
bepalen van de klasse van een nieuw testgeval kijken naar de gelijkenis van
dat geval met opgeslagen voorbeelden. De voorbeelden die in de training data
het meest lijken op het testgeval bepalen de classi�catie van de laatste. Dit
soort gelijkenis kan worden uitgedrukt als een afstandsmaat, waarbij de data
kan worden beschreven via een vocabulaire van eigenschappen (features) als een
feature-ruimte. Bij elke feature-ruimte horen afstandsmaten die passen bij de
speci�eke structuur van de ruimte.

Bij de toepassing van lerende systemen op de analyse van taal wordt tradi-
tioneel gebruik gemaakt van een zogeheten vectorruimte. In deze ruimte worden
talige objecten zoals teksten gerepresenteerd als vectoren: punten in een hoogdi-
mensionale ruimte. Kenmerkend aan deze ruimte is dat zij een vlakke structuur
heeft, en dat afstanden worden gemeten langs rechte lijnen. Tweedimensionaal
is deze ruimte voor te stellen als de ruimte opgespannen door lineaire functies
van de vorm y = ax + b. Het vector space model is zeer succesvol gebleken in
de wereld van de document retrieval, (waar afstand een rol speelt bij het vin-
den van documenten die bij een zoekvraag passen) en de machine learning. De
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bijbehorende afstandsmaten worden Euclidische afstandsmaten genoemd.
Recentelijk is de verzameling afstandsmaten voor de toepassing van lerende

systemen op taal uitgebreid met maten die uitgaan van een gekromde ruimte:
de zogeheten geodetische afstandsmaten. Deze afstandsmaten behandelen strikt
lokale afstanden als Euclidisch, en meten globalere afstanden langs gekromde
lijnen. Dit is te vergelijken met de manier waarop men op onze globe afstanden
meet: voor het meten van de afstand tussen twee objecten op geringe afstand
van elkaar speelt de kromming van de globe geen rol, maar wel als die twee ob-
jecten enkele duizenden kilometers van elkaar verwijderd zijn. Documenten kun-
nen via een eenvoudige, op genormaliseerde (e.g. woord-)frequenties gebaseerde
transformatie worden ’ingebed’ in een geodetische ruimte. Voor een e�ectief
gebruik van deze aldus ontstane waarschijnlijkheidsdistributies is het nodig dat
de teksten een zekere lengte hebben, omdat anders de notie frequentie zinloos
zou zijn. Gebleken is dat geodetische afstandsmaten aanleiding geven tot zeer
nauwkeurige classi�ers.

In dit proefschrift onderzoeken we de condities waaronder geodetische clas-
si�ers optimaal presteren. Allereerst voeren we een aantal experimenten uit
waarin we de nauwkeurigheid van deze classi�ers evalueren. Vervolgens breiden
we de standaardtechnologie uit met twee nieuwe faciliteiten:

� Een methode om geodetische classi�ers toe te passen op zeer korte tek-
sten, met een eventueel sequenti�ele verhouding tussen de samenstellende
delen. Hierbij moet worden gedacht aan feature-gebaseerde leertaken met
een beperkte lengte, zoals het voorspellen van de aanhechting van prepo-
sitionele frases aan voorafgaande zelfstandige naamwoorden of werkwo-
orden, of aan het voorspellen van het verkleinsu�x van een zelfstandig
naamwoord op basis van een beperkt aantal fonetische eigenschappen van
zijn laatste lettergrepen.

� Een methode om heterogene informatie (zoals frequenties van losse wo-
orden en frequenties van woordcombinaties) te combineren binnen �e�en
classi�er.

We laten zien dat de voorgestelde modi�caties tot hogere prestaties van de
classi�ers leiden, en dat ze corresponderen met standaard formele operaties op
een geodetische dataruimte.

Vervolgens onderzoeken we in detail of document data ingebed in een geode-
tische ruimte uniform met geodetische afstandsmaten dient te worden benaderd.
We laten langs analytische weg zien dat de inverse cosinus, een cruciaal in-
gredient van geodetische afstandsmaten, op bepaalde plekken in zijn spectrum
zwakke prestaties levert. We relateren dit verschijnsel aan de notie van entropie:
vlakke waarschijnlijkheidsdistributies van ingebedde data leiden tot subopti-
male prestaties van geodetische classi�ers. Deze observatie verklaren we via
twee empirische studies vanuit een invers verband tussen entropie en krom-
ming: hoe hoger de entropie van bepaalde data, hoe lager de kromming van de



Samenvatting 181

ruimte die de data representeert. Onze conclusie is dat tekstdata ingebed in
een geodetische ruimte niet uniform kan worden geanalyseerd met geodetische
methodes.

Vervolgens stellen we een calibratietechniek voor classi�ers voor. Deze tech-
niek, gebaseerd op het schatten van twee drempelwaarden op de klassekansen
van een classi�er, stelt een classi�er in staat om zelf moeilijke gevallen te iden-
ti�ceren die niet met een vooraf gespeci�ceerde nauwkeurigheid kunnen worden
geclassi�ceerd. De calibratietechniek generaliseren we vervolgens tot een meth-
ode waarmee we een classi�er kunnen trainen op het zelf schakelen tussen geode-
tische en Euclidische afstandsmaten, al naar gelang de entropie van de lokale
omgeving van test data hoger of lager is. Op deze manier cre�eren we een back-o�
systeem dat onder bepaalde condities terugschakelt van een complexere geode-
tische afstandsmaat naar een minder complexe Euclidische afstandsmaat. We
demonstreren dat deze methode tot betere resultaten leidt dan ongecalibreerde
methoden. Ook stellen we een alternatieve afstandsmaat voor gebaseerd op een
methode uit de cartogra�e die met name geschikt is voor hoog-entropische data.
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