On the short term objectives of daily intervention by the Deutsche Bundesbank and the federal reserve system in the U.S. Dollar-Deutsche Mark exchange market
Eijffinger, Sylvester; Gruijters, A.P.D.

Publication date:
1989

Link to publication

Citation for published version (APA):
ON THE SHORT TERM OBJECTIVES OF DAILY INTERVENTION BY THE DEUTSCHE BUNDESBANK AND THE FEDERAL RESERVE SYSTEM IN THE U.S. DOLLAR - DEUTSCHE MARK EXCHANGE MARKET

Dr. S. Eijffinger, Drs. A. Gruijters

FEW 393
ON THE SHORT TERM OBJECTIVES OF DAILY INTERVENTION BY THE DEUTSCHE BUNDESBANK AND THE FEDERAL RESERVE SYSTEM IN THE U.S. DOLLAR - DEUTSCHE MARK EXCHANGE MARKET.

by Dr. S.C.W. Eijffinger and Drs. A.P.D. Gruijters,

Department of Economics, Tilburg University.

Tilburg, April 1989 (Preliminary)
1. INTRODUCTION

In this study the objectives of official intervention by central banks in the U.S. dollar - Deutsche Mark exchange market will be examined, in particular for the short run.\(^1\) We will try to determine empirically the short term reaction functions with regard to the dollar-DM exchange market intervention by the Deutsche Bundesbank and/or the Federal Reserve System. Furthermore, we will study the degree of coordination between the exchange market interventions of both central banks.

Finally, we will examine the effect of exchange market uncertainty on the Bundesbank and/or Federal Reserve interventions in the short run.

The points of departure of this empirical study are the following four.

Firstly, the study concentrates on intervention of both central banks in the spot dollar-DM exchange market. Therefore, we take no account of intervention in the forward dollar-DM exchange market, nor intervention in member currencies by the Bundesbank as a consequence of the commitments within the European Monetary System (EMS).\(^2\)

Secondly, the study uses daily observations for the official interventions in the dollar-DM exchange market. In this respect it comprises an empirical novelty.

Thirdly, the study focuses only on the so-called 'active' intervention which takes place inside the dollar-DM exchange market and is intended to influence the spot dollar-DM exchange rate, although it may occasionally be motivated by a policy of the central bank to build up or replenish its foreign exchange reserves. Hence, 'passive' intervention which takes place outside the market is left out of consideration. Examples of such 'passive' intervention are the purchase of dollars from and compensation payments for the U.S. army in West Germany by the Bundesbank, the customer transactions for the U.S. and West German government and the interest payments on the Bundesbank dollar reserves at the Federal Reserve and on the Federal Reserve DM-reserves at the Bundesbank.

\(^1\) The effectiveness of official intervention by central banks in the dollar - DM exchange market is studied in: Eijffinger & Gruijters (1989).

\(^2\) An example of a reaction function for intervention on behalf of the EMS is given by: Eijffinger (1986), pp. 271-275 and 293-298.
FIGURE 1. THE OBJECTIVES OF EXCHANGE MARKET INTERVENTION BY CENTRAL BANKS (G-7)*

* This figure is based on: Report of the Working Group on Exchange Market Intervention (Jurgensen-Report), March 1983.

Objectives of exchange market intervention by central banks

→ short term objectives
 "countering disorder" (disorderly market conditions)
 size of bid-asked spreads, size of intraday rate movements, etc.
 essentially non-economic shocks
 short-term market psychology and "bandwagon"-effects
 sending a signal of determination to the market, or testing the market
 attempts to hold a rate level for very short periods
 resisting large short term movements or "erratic fluctuations"
 buying time for reassessment of economic policy
 "leaning against the wind" over short and longer periods
 resisting rate movements "which bear no relation to the fundamentals"
 resisting apparent overshooting
 bridging operation to enable markets to realise that fundamentals changed

→ medium term objectives

→ long term objectives
 attempts to give some leeway to domestic monetary policy and conditions
 resisting depreciation/appreciation because of inflation/competitiveness
 attempts to defend rate-level floors or ceilings over extended periods
 EMS marginal and intramarginal intervention to keep rates within parity bands
 attempts to acquire foreign currencies without depreciation of own currency
 dampening seasonality or offsetting very large transactions
 presenting the value of international holdings of assets in domestic currency

→ other objectives

Fourthly, the sample period of this study comprises the Plaza Agreement of September 1985, the Louvre Accord of February 1987, the Stock Market Crash of October 1987 and its aftermath.3)

It is our opinion that this period differs essentially from the preceding period of the early 1980s which has been characterized by a 'benign neglect' policy of the Federal Reserve regarding the dollar-DM rate.

2. THE OBJECTIVES OF EXCHANGE MARKET INTERVENTIONS BY CENTRAL BANKS

Before turning to an empirical study of the short term reaction functions for daily interventions by the Bundesbank and Federal Reserve, the objectives of exchange market intervention by central banks (G-7 countries) are examined in general and by the Bundesbank and Federal Reserve in particular.

Figure 1 summarizes the short term, medium term, long term and other objectives of interventions by central banks during the period of floating exchange rates. These objectives are not mutually exclusive and may have varied in weight in the course of the period.4)

3) An excellent survey of these events and their background is presented in: Funabashi (1988).

4) This summary draws upon the so-called 'Jurgensen-Report', made by an experts group from the G-7 countries on exchange market interventions in these countries: Working Group on Exchange Market Intervention (1983).
essentially non-economic shocks and self-sustaining exchange rate movements which may gain a momentum of their own ("bandwagon"-effects). The medium term objectives regard to resisting large short term exchange rate movements or "erratic fluctuations" which exceed a certain size, buying time by the central banks to reassess their policies and "leaning against the wind" which has been pursued by some over short periods and by others over longer periods. The frequency of this last strategy varies from occasional use in case of "disorderly market conditions" by the Federal Reserve System to more regular use by the Bundesbank. The Bundesbank '... has sought from the onset of floating to counter disorderly market conditions, dampen "erratic" short-term exchange rate fluctuations and smooth out excessive swings in the DM/US dollar rate over longer periods'.\footnote{From: Working Group on Exchange Market Intervention (1983), p. 13. This is confirmed by Gleske (1982): 'Die Interventionen am DM-$ Markt sind also in erster Linie auf die Glättung von Kursschwankungen gerichtet' (p. 266). See also Scholl (1983).}

The long term objectives vary from resisting exchange rate movements which are believed to be unjustified with respect to the fundamentals (inflation, money growth, balance of payments accounts, etc.) and attempts to give some leeway to monetary policy by lessening the foreign impact on domestic monetary conditions, to resisting depreciation because of its inflationary effects and resisting appreciation in order to maintain competitiveness. Other objectives are e.g. attempts to acquire foreign currencies without generating (renewed) downward pressure on the domestic currency.

Previous empirical studies to reaction functions of the Bundesbank and/or Federal Reserve\footnote{Examples of such empirical studies are: Artus (1976), Branson, Halttunen & Masson (1977), Lehment (1980), Dornbusch (1980), König & Gaab (1983) and Neumann (1984). Those studies cover the period of floating exchange rates from 1973 up to 1981.} refer to the longer term objectives of exchange market intervention and have used monthly or quarterly intervention data. However, these studies usually ignore or deduct from the short term strategy of "countering disorderly market conditions" which results in the smoothing of exchange rate volatility from day to day and even during the day.
On the contrary, our empirical study focuses deliberately on the shorter term objectives of intervention in the dollar-DM exchange market. As a consequence of that the study makes use of daily intervention data of the Bundesbank and Federal Reserve. The disadvantage of such an approach is the vanishing relation between intervention and the "fundamentals" which are measured on monthly or quarterly base. Nevertheless, this approach has an decisive advantage, because it captures better the frequency and pattern of exchange market intervention with respect to "countering disorder" and "leaning against the wind" over short periods. Our study is aiming at an explanation of the intervention behaviour of the Bundesbank and Federal Reserve from day to day and from week to week. Thereby it should be noticed that the intervention behaviour of central banks is not only reflected in the direction and volume, but also in the timing and technique of intervention.\(^7\) The timing refers to the question whether the exchange market is "thin" and uncertain or not, while the technique relates to the way in which a central bank implements its intervention, i.e. by domestic and possibly foreign commercial banks or by currency brokers with different announcement effects. Despite the importance of both timing and technique for intervention behaviour, these elements can not be taken into account by our study and will surely detract from the explanatory power of the intervention reaction functions.

3. AN EMPIRICAL STUDY OF THE REACTION FUNCTIONS OF THE DEUTSCHE BUNDESBANK AND FEDERAL RESERVE SYSTEM

An empirical study of the reaction functions for daily interventions by the Deutsche Bundesbank and Federal Reserve System in the spot U.S. dollar - Deutsche Mark exchange market must take account of the development of

\(^7\) This is clearly put by Gleske (1982): "In einer bestimmten Situation mögen bereits geringe Interventionsbeträge genügen, eine unerwünschte Kursentwicklung zu bremsen oder gar umzukehren. In einer anderen Situation können selbst hohe Interventionsbeträge das Gegenteil bewirken, wenn nämlich die Marktteilnehmer von der Stärke eines Grundtrends überzeugt sind ..." (p. 265).
FIGURE 2. Relative change of the dollar-DM opening and closing exchange rate

JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL MAY JUNE
1987 1988
OPENING CLOSING
RATE RATE
the dollar-DM exchange rate between successive days (interday), as well as in the course of these days (intraday). A complete representation of the intraday development of the dollar-DM rate would require an infinite number of observations per day causing technical problems. Therefore, in this study the intraday development is approximated by three observations per day:
1. the opening rate (primo) at 8.30 hours;
2. the fixing rate (official middle rate) at 13.00 hours;
3. the closing rate (ultimo) at 16.30 hours in Frankfurt time.

Because the opening and design rates are only available since February 1985, as sample is chosen the period from February 1985 until September 1988. Figure 2 gives an example of the intraday changes of the opening and closing dollar-DM rate from July 1987 to June 1988. This figure shows observable differences between the rates within the day.

Furthermore, the study takes daily observations for the official interventions in the dollar-DM exchange market, which can be divided in two parts:

a. U.S. dollar-interventions of the Deutsche Bundesbank expressed in DMs against the dollar-DM intervention rate of that day;
b. DM-interventions of the Federal Reserve Bank of New York, so far as these operations affect the net foreign position of the Bundesbank. This happens e.g. when the Federal Reserve finances its DM-sales by

9) Data for the official interventions of the Bundesbank and Federal Reserve were kindly provided by the Deutsche Bundesbank, Hauptabteilung Ausland on a confidential base. Therefore, this study comprises no exact data, nor any figures of these interventions.
calling on the swap agreement with the Bundesbank or from its DM-balances at the Bundesbank, or when the Federal Reserve invests its DM-purchases at the Bundesbank.

Despite of the fact that the sample period (February 1985 - September 1988) consists of 43 months, the majority of these months could not be used appropriate because of the very few number of interventions per month.

Consequently, as relevant subsamples have been selected thirteen months, which comprise at least four interventions by the Bundesbank and/or Federal Reserve each month. This seems an objective criterion. Finally, in this study the method of Ordinary Least Squares (OLS) is taken as estimation technique.

3.1. Exchange market interventions by the Bundesbank, Federal Reserve and both central banks

The interventions by the Deutsche Bundesbank (INV_{DBB}^t), the Federal Reserve System (INV_{FED}^t) or both central banks (INV_{TOT}^t) in the U.S. dollar - Deutsche Mark exchange market are explained by a constant and the difference between the opening rate of the dollar in DM (S_{P}^t) and a n-days moving average of the opening rate, fixing rate (S_{F}^t) and closing rate (S_{U}^t) of the dollar:

\[
\begin{align*}
INV_{DBB}^t &= a_0 + a_1 (S_{P}^t - \frac{1}{3n} \sum_{n} S_{P/F/U}^{t-n}) \\
INV_{FED}^t &= b_0 + b_1 (S_{P}^t - \frac{1}{3n} \sum_{n} S_{P/F/U}^{t-n}) \\
INV_{TOT}^t &= c_0 + c_1 (S_{P}^t - \frac{1}{3n} \sum_{n} S_{P/F/U}^{t-n})
\end{align*}
\]

with: \(INV_{TOT}^t = INV_{DBB}^t + INV_{FED}^t \)

The exchange market interventions of the Bundesbank and Federal Reserve are both expressed in billions of DMs. The interventions are positive if the central bank buys dollars in return for DMs and negative if the central bank sells dollars for DMs. The dollar-DM rate is defined as the spot
TABLE 1. EXCHANGE MARKET INTERVENTIONS BY THE DEUTSCHE BUNDESBANK (DBB)

<table>
<thead>
<tr>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{INV}{t}^{\text{DBB}} = a{0} + a_{1}(S_{t}^{\text{P}} - \frac{1}{3} \sum_{i=1}^{3} S_{t-n}^{\text{F/U}}))</td>
</tr>
<tr>
<td>(three days moving average)</td>
</tr>
<tr>
<td>(\text{INV}{t}^{\text{DBB}} = a{0} + a_{1}(S_{t}^{\text{P}} - \frac{1}{5} \sum_{i=1}^{5} S_{t-n}^{\text{F/U}}))</td>
</tr>
<tr>
<td>(five days moving average)</td>
</tr>
<tr>
<td>(\text{INV}{t}^{\text{DBB}} = a{0} + a_{1}(S_{t}^{\text{P}} - \frac{1}{7} \sum_{i=1}^{7} S_{t-n}^{\text{F/U}}))</td>
</tr>
<tr>
<td>(seven days moving average)</td>
</tr>
</tbody>
</table>

| Month | \(a_{0} \) | \(a_{1} \) | \(R^{2} \) | \(\overline{R^{2}} \) | \(DW \) | \(a_{0} \) | \(a_{1} \) | \(R^{2} \) | \(\overline{R^{2}} \) | \(DW \) | \(a_{0} \) | \(a_{1} \) | \(R^{2} \) | \(\overline{R^{2}} \) | \(DW \) |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| September 1985 | -0.026 | 0.642 | 0.320 | 0.284 | 0.877 | -0.026 | 0.630 | 0.525 | 0.500 | 1.024 | -0.024 | 0.535 | 0.564 | 0.541 | 1.101 |
| October 1985 | -0.096 | -1.832 | 0.087 | 0.043 | 1.141 | -0.103 | -2.154 | 0.136 | 0.095 | 1.197 | -0.114 | -2.282 | 0.197 | 0.159 | 1.281 |
| September 1986 | 0.100 | -7.349 | 0.114 | 0.072 | 2.390 | 0.096 | -6.112 | 0.119 | 0.077 | 2.348 | 0.093 | -4.396 | 0.094 | 0.051 | 2.310 |
| October 1986 | 0.071 | 1.488 | 0.063 | 0.014 | 1.900 | 0.081 | 1.414 | 0.088 | 0.040 | 2.123 | 0.102 | 1.755 | 0.151 | 0.106 | 2.271 |
| September 1987 | 0.026 | -2.719 | 0.202 | 0.160 | 1.785 | -0.025 | -1.895 | 0.183 | 0.140 | 1.850 | -0.026 | -1.585 | 0.194 | 0.151 | 1.910 |
| August 1987 | -0.026 | -2.719 | 0.202 | 0.160 | 1.785 | -0.025 | -1.895 | 0.183 | 0.140 | 1.850 | -0.026 | -1.585 | 0.194 | 0.151 | 1.910 |
| September 1987 | 0.021 | -1.827 | 0.106 | 0.061 | 1.495 | 0.021 | -1.977 | 0.191 | 0.150 | 1.608 | 0.021 | -1.706 | 0.195 | 0.155 | 1.625 |
| October 1987 | 0.014 | -5.698 | 0.248 | 0.210 | 1.391 | -0.156 | -5.998 | 0.377 | 0.346 | 1.490 | -0.099 | -5.430 | 0.346 | 0.314 | 1.464 |
| November 1987 | 0.043 | -2.940 | 0.219 | 0.175 | 1.639 | 0.031 | -2.798 | 0.309 | 0.270 | 1.834 | 0.016 | -2.756 | 0.392 | 0.358 | 2.058 |
| December 1987 | 0.048 | -6.193 | 0.279 | 0.241 | 1.227 | 0.041 | -4.920 | 0.241 | 0.201 | 1.270 | 0.035 | -4.408 | 0.203 | 0.161 | 1.216 |
| January 1988 | 0.040 | -1.233 | 0.058 | 0.005 | 0.922 | 0.048 | -1.651 | 0.127 | 0.078 | 0.946 | 0.057 | -2.098 | 0.203 | 0.159 | 1.071 |
| June 1988 | -0.106 | -3.084 | 0.038 | -0.16 | 1.870 | -0.718 | -4.463 | 0.118 | 0.069 | 2.095 | -0.800 | -1.821 | 0.257 | 0.218 | 2.111 |
| July 1988 | -0.333 | -14.092 | 0.284 | 0.247 | 2.127 | -0.314 | -12.404 | 0.270 | 0.232 | 2.194 | -0.293 | -11.461 | 0.257 | 0.218 | 2.111 |
| August 1988 | -0.157 | -3.981 | 0.079 | 0.035 | 1.597 | -0.155 | -3.669 | 0.089 | 0.046 | 1.585 | -0.150 | -3.262 | 0.077 | 0.033 | 1.556 |
| June 1988 | -0.106 | -3.084 | 0.038 | -0.16 | 1.870 | -0.718 | -4.463 | 0.118 | 0.069 | 2.095 | -0.800 | -1.821 | 0.257 | 0.218 | 2.111 |
| July 1988 | -0.333 | -14.092 | 0.284 | 0.247 | 2.127 | -0.314 | -12.404 | 0.270 | 0.232 | 2.194 | -0.293 | -11.461 | 0.257 | 0.218 | 2.111 |
| August 1988 | -0.157 | -3.981 | 0.079 | 0.035 | 1.597 | -0.155 | -3.669 | 0.089 | 0.046 | 1.585 | -0.150 | -3.262 | 0.077 | 0.033 | 1.556 |
value of one dollar expressed in DM at the Frankfurt exchange. The opening, fixing and closing exchange rates are taken at 8.30, 13.00 respectively 16.30 hours in Frankfurt time.

The constant \((a_0, b_0 \text{ or } c_0)\) reflects, when significant, a bias of the central bank(s) with respect to the dollar-DM rate based on the development of the "fundamentals", such as the long capital account, the current account, the inflation rate and the growth rate of the money stock in West Germany and the United States.

A positive constant represents an autonomous bias of the central bank(s) towards a dollar appreciation vis-à-vis the DM and a negative constant a bias in favor of a dollar depreciation, in the medium (and long) run.\(^{10}\)

The smoothing coefficient \((a_1, b_1 \text{ or } c_1)\) reflects the reaction of the central bank(s) by exchange market interventions on a deviation between the actual exchange rate - i.e. the opening rate of the day - and the desired exchange rate. As a proxy for the desired rate is chosen a moving average of the opening, fixing and closing rates during the previous three, five or seven days. While the Bundesbank and Federal Reserve are supposed to pursue a policy of 'leaning against the wind', the smoothing coefficient is expected to have a negative sign.

This means that the central banks try to smooth the volatility of the dollar-DM rate in the short run by exchange market intervention.\(^{11}\)

TABLE 1

Table 1 gives the results of the regressions for the dollar-DM exchange market interventions by the Deutsche Bundesbank on a constant and the

\(^{10}\) The constant is a consequence of the monthly or quarterly base of the data on "fundamentals" (inflation, money growth, balance of payments accounts, etc.). These data would lead to rather sticky regressors for the "fundamentals" in a daily model of exchange market intervention.

\(^{11}\) However, if the smoothing coefficient unexpectedly has a positive sign, then the central bank concerned actually reacts by a policy of 'leaning with the wind' and thus amplifies the exchange rate volatility in the short run. Such a policy is expected to be an exception.
Equation (OLS)	\(\text{INV}_{t}^{\text{Fed}} = b_{0} + b_{1}(S_{t}^{P} - \frac{1}{9} \sum_{t-n}^{3} S_{t-n}^{P/U}) \) (three days moving average)	\(\text{INV}_{t}^{\text{Fed}} = b_{0} + b_{1}(S_{t}^{P} - \frac{1}{15} \sum_{t-n}^{5} S_{t-n}^{P/U}) \) (five days moving average)	\(\text{INV}_{t}^{\text{Fed}} = b_{0} + b_{1}(S_{t}^{P} - \frac{1}{21} \sum_{t-n}^{7} S_{t-n}^{P/U}) \) (seven days moving average)											
Month	**Month**	**Month**												
b_{0}	**b_{1}**	**R^{2}**	**R^{2}**	**DW**	**b_{0}**	**b_{1}**	**R^{2}**	**R^{2}**	**DW**	**b_{0}**	**b_{1}**	**R^{2}**	**R^{2}**	**DW**
September 1985	No interventions by FED													
October 1985	No interventions by FED													
October 1986	No interventions by FED													
January 1987	No interventions by FED													
August 1987	\(-0.071 \) (-1.49)	\(-3.261 \) (-0.96)	\(0.046 \) 0.188	\(-0.004 \) 0.148	\(1.888 \)	\(-0.074 \) (-1.58)	\(-2.967 \) (-1.21)	\(0.072 \) 0.203	\(1.942 \)	\(-0.077 \) (-1.66)	\(-2.744 \) (-1.39)	\(0.093 \) 0.045	\(1.990 \)	No interventions by FED
September 1987	No interventions by FED													
October 1987	\(0.008 \) (0.38)	\(-2.642 \) (-2.15)	\(0.188 \) 0.188	\(0.148 \) 0.148	\(1.525 \)	\(-0.001 \) (-0.06)	\(-2.827 \) (-2.90)	\(0.296 \) 0.261	\(1.643 \)	\(-0.002 \) (-0.08)	\(-2.469 \) (-2.60)	\(0.253 \) 0.216	\(1.590 \)	No interventions by FED
November 1987	\(0.035 \) (1.10)	\(-3.226 \) (-1.74)	\(0.145 \) 0.145	\(0.097 \) 0.097	\(1.522 \)	\(0.022 \) (0.66)	\(-3.121 \) (-2.19)	\(0.211 \) 0.167	\(1.587 \)	\(0.010 \) (0.29)	\(-2.801 \) (-2.27)	\(0.223 \) 0.179	\(1.659 \)	No interventions by FED
December 1987	\(0.063 \) (1.58)	\(-4.244 \) (-1.46)	\(0.101 \) 0.101	\(0.054 \) 0.054	\(0.776 \)	\(0.046 \) (1.13)	\(-4.704 \) (-1.98)	\(0.171 \) 0.127	\(0.856 \)	\(0.037 \) (0.84)	\(-4.476 \) (-1.92)	\(0.162 \) 0.118	\(0.826 \)	No interventions by FED
January 1988	\(0.023 \) (0.91)	\(0.054 \) (0.66)	\(0.024 \) 0.024	\(-0.031 \) -0.301	\(1.866 \)	\(0.026 \) (0.96)	\(0.249 \) (0.21)	\(0.002 \) -0.053	\(0.794 \)	\(0.035 \) (1.26)	\(-0.630 \) (-0.54)	\(0.016 \) -0.039	\(1.810 \)	No interventions by FED
June 1988	\(-0.057 \) (-1.81)	\(-1.150 \) (0.56)	\(0.017 \) 0.017	\(-0.038 \) -0.333	\(0.333 \)	\(-0.039 \) (-1.12)	\(-0.638 \) (-0.38)	\(0.008 \) -0.047	\(0.462 \)	\(-0.021 \) (-0.56)	\(-1.506 \) (-1.03)	\(0.056 \) 0.056	\(0.559 \)	No interventions by FED
July 1988	\(-0.157 \) (-3.30)	\(-12.249 \) (-3.10)	\(0.335 \) 0.335	\(0.300 \) 0.300	\(1.163 \)	\(-0.134 \) (-2.94)	\(-12.564 \) (-3.80)	\(0.432 \) 0.402	\(1.356 \)	\(-0.110 \) (-2.32)	\(-12.051 \) (-3.89)	\(0.443 \) 0.413	\(1.364 \)	No interventions by FED
August 1988	\(-0.166 \) (-3.39)	\(-7.333 \) (-2.59)	\(0.242 \) 0.242	\(0.206 \) 0.206	\(1.623 \)	\(-0.162 \) (-3.41)	\(-7.028 \) (-2.96)	\(0.295 \) 0.261	\(1.666 \)	\(-0.152 \) (-3.09)	\(-6.265 \) (-2.68)	\(0.255 \) 0.220	\(1.617 \)	No interventions by FED
The constant \(a_0\) is for half of the regressions significant, but always relatively small. A positive constant reflects a bias of the Bundesbank towards a dollar appreciation, a negative constant indicates a bias in favor of a dollar depreciation vis-à-vis the DM. The smoothing coefficient \(a_1\) has in nearly all regressions the expected, negative sign and is in general significant, particularly in case of the five and seven days moving averages. This means that the Bundesbank was trying to smooth the dollar-DM rate in the short run by intervention.

The adjusted correlation coefficient varies for the five and seven days moving averages between 0.04 and 0.54, but exceeds mostly 0.15 and sometimes 0.35. This implies that the equations explain on average one fifth of the Bundesbank interventions.

The Durbin-Watson statistic lies - except for September 1985 and January 1988 - above 1.2 (lower limit) and is usually higher than 1.4 (upper limit), which means that there is generally no first-order autocorrelation among the residuals.

TABLE 2

Table 2 shows the outcomes of the regressions for the dollar-DM exchange market interventions by the Federal Reserve System on a constant and the difference between the opening dollar rate and a three, five respectively

12) The t-values are shown within brackets under the constant and coefficient(s). An asterisk (*) indicates that they are significant at a 95% confidence level (critical value: 1.725). Furthermore, the squared multiple correlation coefficient \(R^2\) and the Durbin-Watson statistic \(DW\) for first-order autocorrelation are given for each regression.
Table 3. Total Exchange Market Interventions by Both Central Banks (TOT)

<table>
<thead>
<tr>
<th>Equation (OLS)</th>
<th>(\text{INV}{t}^{\text{TOT}} = c_0 + c_1(S{t-3}^{P/F} - \frac{1}{9} \sum_{n=1}^{3} S_{t-n}^{P/F/U})) (three days moving average)</th>
<th>(\text{INV}{t}^{\text{TOT}} = c_0 + c_1(S{t-5}^{P/F} - \frac{1}{15} \sum_{n=1}^{5} S_{t-n}^{P/F/U})) (five days moving average)</th>
<th>(\text{INV}{t}^{\text{TOT}} = c_0 + c_1(S{t-7}^{P/F} - \frac{1}{21} \sum_{n=1}^{7} S_{t-n}^{P/F/U})) (seven days moving average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>(c_0)</td>
<td>(c_1)</td>
<td>(R^2)</td>
</tr>
<tr>
<td>September 1985</td>
<td>See table 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 1985</td>
<td>See table 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 1986</td>
<td>See table 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January 1987</td>
<td>See table 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 1987</td>
<td>(-0.096)</td>
<td>(-5.970)</td>
<td>0.096</td>
</tr>
<tr>
<td>September 1987</td>
<td>See table 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 1987</td>
<td>(-0.022)</td>
<td>(-8.340)</td>
<td>0.232</td>
</tr>
<tr>
<td>November 1987</td>
<td>(0.078)</td>
<td>(-6.165)</td>
<td>0.235</td>
</tr>
<tr>
<td>December 1987</td>
<td>(0.112)</td>
<td>(-10.437)</td>
<td>0.229</td>
</tr>
<tr>
<td>January 1988</td>
<td>(0.063)</td>
<td>(-0.379)</td>
<td>0.002</td>
</tr>
<tr>
<td>June 1988</td>
<td>(-0.163)</td>
<td>(-1.935)</td>
<td>0.007</td>
</tr>
<tr>
<td>July 1988</td>
<td>(-0.491)</td>
<td>(-26.341)</td>
<td>0.391</td>
</tr>
<tr>
<td>August 1988</td>
<td>(-0.323)</td>
<td>(-11.314)</td>
<td>0.207</td>
</tr>
</tbody>
</table>
seven days moving average of the opening, fixing and closing dollar rates. The constant \((b_0) \) is rarely significant and relatively poor. A positive or negative constant reflects a bias of the Federal Reserve towards a dollar appreciation respectively depreciation vi-á-vis the DM. The smoothing coefficient \((b_1) \) has in case of the five and seven days moving averages almost always the expected, negative sign and is often significant. Therefore, the Federal Reserve was aiming too at a policy of 'leaning against the wind', but intervened less than the Bundesbank. The volume of the Federal Reserve interventions was in general smaller than that of the Bundesbank interventions. The adjusted correlation coefficient exceeds for the five and seven days moving averages in most cases 0.12 and is in July 1988 even more than 0.40. On average the equations explain one tenth of the Federal Reserve interventions.

The Durbin-Watson statistic is mostly - except for December 1987 and June 1988 - higher than 1.4 (upper limit) and points to no first-order autocorrelation in these cases. Only in the two months mentioned the residuals are positively correlated among themselves.

TABLE 3

Table 3 comprises the results of the regressions for the total dollar-DM exchange market interventions by both central banks on a constant and the difference between the opening dollar rate and a three, five respectively seven days moving average of the opening, fixing and closing dollar rates. The constant \((c_0) \) is sometimes significant and relatively small. It equals by approximation the sum of both constants for the individual in-

13) No regressions are made for the Federal Reserve interventions in September and October 1985, October 1986, January and September 1987, because the number of interventions in these months is less than 4.

14) The regressions for the total interventions in September and October 1985, October 1986, January and September 1987 correspond with the Bundesbank interventions in those months (see table 1) because of the lack of Federal Reserve interventions.
Interventions \((a_0 + b_0)\) in the corresponding months. The smoothing coefficient \((c_1)\) has always the expected, negative sign and is usually significant, in particular for the seven days moving averages. Also, this coefficient approximates the sum of both smoothing coefficients for the individual interventions \((a_1 + b_1)\) in the months concerned. The adjusted correlation coefficient exceeds for the five and seven days moving averages generally 0.20 and in some cases even 0.35. Consequently, the equations explain on average one fifth of the total interventions and equal the explanatory power of the equations for the Bundesbank interventions (see table 1).

The Durbin-Watson statistic lies mostly - except for December 1987, January and August 1988 - above 1.4 (upper limit) and indicates no first-order autocorrelation in general. In August 1988 the residuals are somewhat positively correlated, while this was not the case for the regressions of the individual interventions.

3.2. Coordination of exchange market interventions by both central banks

In general, the regressions with the difference between the opening rate and five days moving average \((n = 5)\) proved to be most successful - in the sense of a statistical fit - for the individual and total interventions. Therefore, these equations are taken as a point of departure for additional variables or factors. First of all, the interventions of one central bank are added as an extra explanatory variable to the equation for the interventions of the other central bank, mutatis mutandis. So, the Bundesbank and Federal Reserve interventions are explained by a constant, the deviation between the opening rate and five days moving average and the Federal Reserve respectively Bundesbank interventions:

\[
\begin{align*}
(2a) \quad \text{INV}^\text{DBB}_t &= a_0 + a_1 (S^P_t - \frac{1}{3n} \sum_{n} S^P/F/U) + a_2 \cdot \text{INV}^\text{FED}_t \\
(2b) \quad \text{INV}^\text{FED}_t &= b_0 + b_1 (S^P_t - \frac{1}{3n} \sum_{n} S^P/F/U) + b_2 \cdot \text{INV}^\text{DBB}_t
\end{align*}
\]

The coordination coefficient \((a_2\) or \(b_2\)) reflects the degree of coordination between the interventions in the dollar-DM exchange market. Both
TABLE 4. COORDINATION OF EXCHANGE MARKET INTERVENTIONS BY BOTH CENTRAL BANKS

<table>
<thead>
<tr>
<th>Equation (OLS)</th>
<th>INV\textsubscript{DBB} = a_0 + a_1(S^P - \frac{1}{15}\sum_{t-n}^{5} S^P_{F/U}) + a_2.INV\textsubscript{t}</th>
<th>INV\textsubscript{FED} = b_0 + b_1(S^P - \frac{1}{15}\sum_{t-n}^{5} S^P_{F/U}) + b_2.INV\textsubscript{DBB}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(exchange market interventions by Bundesbank)</td>
<td>(exchange market interventions by Federal Reserve)</td>
</tr>
<tr>
<td>Month</td>
<td>a_0 a_1 a_2 R^2 \overline{R^2} DW</td>
<td>b_0 b_1 b_2 R^2 \overline{R^2} DW</td>
</tr>
<tr>
<td>September 1985</td>
<td>See table 1</td>
<td>No interventions by FED</td>
</tr>
<tr>
<td>October 1985</td>
<td>See table 1</td>
<td>No interventions by FED</td>
</tr>
<tr>
<td>October 1986</td>
<td>See table 1</td>
<td>No interventions by FED</td>
</tr>
<tr>
<td>January 1987</td>
<td>See table 1</td>
<td>No interventions by FED</td>
</tr>
<tr>
<td>August 1987</td>
<td>-0.010 -1.287 0.205 * 0.426 0.362 1.697</td>
<td>(-0.038 -0.213 1.454 * 0.348 0.276 1.789</td>
</tr>
<tr>
<td>September 1987</td>
<td>(-0.62) (-1.57) (2.76)</td>
<td>(-0.62) (-1.57) (2.76)</td>
</tr>
<tr>
<td>October 1987</td>
<td>-0.004 -1.409 1.623 * 0.902 0.891 2.793</td>
<td>-0.002 0.284 0.519 * 0.889 0.877 2.947</td>
</tr>
<tr>
<td>November 1987</td>
<td>(-0.23) (-1.68) (10.06)</td>
<td>(0.19) (0.56) (10.06)</td>
</tr>
<tr>
<td>December 1987</td>
<td>0.027 -2.158 0.205 * 0.369 0.295 1.555</td>
<td>-0.008 -1.928 0.427 0.280 0.195 1.308</td>
</tr>
<tr>
<td>January 1988</td>
<td>(1.17) (-1.98) (1.28)</td>
<td>(0.25) (-1.15) (1.28)</td>
</tr>
<tr>
<td>June 1988</td>
<td>0.026 -3.383 0.327 * 0.355 0.284 1.672</td>
<td>0.027 -2.436 0.461 * 0.296 0.217 1.249</td>
</tr>
<tr>
<td>July 1988</td>
<td>(0.78) (-1.62) (1.79)</td>
<td>(0.67) (-0.94) (1.79)</td>
</tr>
<tr>
<td>August 1988</td>
<td>0.047 -1.661 0.039 0.129 0.026 1.030</td>
<td>0.023 0.335 0.052 0.004 -0.113 1.878</td>
</tr>
<tr>
<td>(1.93)</td>
<td>(-1.58) (0.19)</td>
<td>(0.75) (0.26) (0.19)</td>
</tr>
<tr>
<td>June 1988</td>
<td>-0.031 -3.790 1.055 * 0.460 0.396 2.182</td>
<td>-0.013 1.003 0.368 * 0.393 0.321 0.549</td>
</tr>
<tr>
<td>(0.62)</td>
<td>(-1.63) (3.28)</td>
<td>(-0.43) (0.69) (3.28)</td>
</tr>
<tr>
<td>July 1988</td>
<td>-0.249 -6.243 0.490 0.358 0.286 2.060</td>
<td>-0.057 -9.530 0.245 0.500 0.445 1.222</td>
</tr>
<tr>
<td>(3.33)</td>
<td>(-1.04) (1.57)</td>
<td>(-0.86) (-2.56) (1.57)</td>
</tr>
<tr>
<td>August 1988</td>
<td>-0.089 -0.808 0.407 * 0.218 0.140 2.184</td>
<td>-0.107 -5.748 0.349 * 0.395 0.334 2.265</td>
</tr>
<tr>
<td>(-1.48)</td>
<td>(-0.28) (1.82)</td>
<td>(-2.00) (-2.44) (1.82)</td>
</tr>
</tbody>
</table>
central banks try to tune their interventions to each other in order to strengthen the effectiveness of both interventions. The announcement effect of coordinated intervention may be greater than the effect of non-coordinated intervention. If significant, the coordination coefficient represents to what extent the Bundesbank and Federal Reserve interventions are correlated. The coefficient is expected to have a positive sign and will not exceed 1 in case of equal, simultaneous interventions by both central banks.

TABLE 4

Table 4 gives the outcomes of the regressions for the dollar-DM exchange market interventions by the Bundesbank respectively Federal Reserve with each others interventions as an additional explanatory variable. The constant \((a_0 \text{ and } b_0)\) becomes even less significant for both interventions (see tables 1 and 2). The smoothing coefficient \((a_1 \text{ and } b_1)\) loses also significance, sometimes considerably, and diminishes, but keeps mostly the expected, negative sign. Obviously, explanatory power is pulled away from the smoothing variable.

The coordination coefficient \((a_2 \text{ and } b_2)\) has always the expected, positive sign and is generally significant (exactly the same t-value). This coefficient varies, when significant, from 0.2 to 1.6 for both interventions and usually does not exceed 1, except for August and October 1987 due to unequal interventions by both central banks. The adjusted correlation coefficient lies in most cases above 0.25. On average the equations "explain"

15) However, the causal relation between both interventions is not evident in practice. It is not clear which central bank leads and which central bank follows with intervention as a consequence of the daily concertation procedure between both banks.

16) No regressions are made for the total interventions of both central banks, because the constant and coefficients proved to be - by approximation - the sum of the constant and coefficients of the corresponding regressions for the Bundesbank and Federal Reserve (see tables 1, 2 and 3).
(see footnote 15) one third of the Bundesbank and Federal Reserve interventions. The Durbin-Watson statistic is mostly within the range of 1.5 to 2.5 (upper limits) and points to no first-order autocorrelation in general. Only in June 1988 the residuals are clearly positively correlated for the Federal Reserve interventions. In two cases the statistic is indecisive.

3.3. Effect of exchange market uncertainty on exchange market interventions

Furthermore, the equation with the difference between the opening rate and five days moving average as explanatory variable for the exchange market interventions can be extended with an additional factor representing the uncertainty at the dollar-DM exchange market. The degree of exchange market uncertainty is approximated by the variance of the opening, fixing and closing dollar rates in the past five days (σ^2_n with $n = 5$). So, the Bundesbank, Federal Reserve and total interventions are explained by a constant, the five days moving variance and the deviation between the opening rate and five days moving average:

\[
\begin{align*}
(3a) \quad \text{INV}_{DBB} & = a_0 + a_1 \cdot \sigma^2_n (S^p_t - \frac{1}{3n} \sum_{t-n}^{t} S^{P/F/U}) \\
(3b) \quad \text{INV}_{FED} & = b_0 + b_1 \cdot \sigma^2_n (S^p_t - \frac{1}{3n} \sum_{t-n}^{t} S^{P/F/U}) \\
(3c) \quad \text{INV}_{TOT} & = c_0 + c_1 \cdot \sigma^2_n (S^p_t - \frac{1}{3n} \sum_{t-n}^{t} S^{P/F/U}) \\
\end{align*}
\]

with: $\sigma^2_n = \sum_{n} (S^{P/F/U}_t - \frac{1}{3n} \sum_{t-n}^{t} S^{P/F/U})^2$

A higher degree of exchange market uncertainty (σ^2_n) is supposed to provoke relatively a greater volume of intervention by the Bundesbank, Federal Reserve or both, either positive or negative. Given their short term objectives, the central bank(s) then have a greater incentive to react on a divergence between the actual and desired exchange rate. The smoothing coefficient adjusted for uncertainty (a_1, b_1 or c_1) reflects also a policy
Table 5: Effect of Exchange Market Uncertainty on Exchange Market Interventions

<table>
<thead>
<tr>
<th>Equation</th>
<th>(\text{INV}{t}^{DBB} = a_0 + a_1 \sigma^2_t (S_t - \frac{1}{15} \sum{n=1}^{5} S_{t-n})) (Interventions by Bundesbank)</th>
<th>(\text{INV}{t}^{FED} = b_0 + b_1 \sigma^2_t (S_t - \frac{1}{15} \sum{n=1}^{5} S_{t-n})) (Interventions by Federal Reserve)</th>
<th>(\text{INV}{t}^{TOT} = c_0 + c_1 \sigma^2_t (S_t - \frac{1}{15} \sum{n=1}^{5} S_{t-n})) (Total interventions by both banks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>(a_0)</td>
<td>(a_1)</td>
<td>(R^2)</td>
</tr>
<tr>
<td>September 1985</td>
<td>-0.010</td>
<td>12.219</td>
<td>0.875</td>
</tr>
<tr>
<td>October 1985</td>
<td>-0.096</td>
<td>-219.68</td>
<td>0.029</td>
</tr>
<tr>
<td>October 1986</td>
<td>0.109</td>
<td>-1462.3</td>
<td>0.064</td>
</tr>
<tr>
<td>November 1987</td>
<td>0.071</td>
<td>18.17</td>
<td>0.100</td>
</tr>
<tr>
<td>December 1987</td>
<td>-0.020</td>
<td>-2722.8</td>
<td>0.160</td>
</tr>
<tr>
<td>December 1988</td>
<td>-0.003</td>
<td>-1321.7</td>
<td>0.600</td>
</tr>
<tr>
<td>November 1987</td>
<td>0.042</td>
<td>-585.62</td>
<td>0.212</td>
</tr>
<tr>
<td>December 1987</td>
<td>0.052</td>
<td>-1214.5</td>
<td>0.137</td>
</tr>
<tr>
<td>December 1988</td>
<td>0.046</td>
<td>-185.63</td>
<td>0.077</td>
</tr>
<tr>
<td>January 1988</td>
<td>0.100</td>
<td>-19.04</td>
<td>0.777</td>
</tr>
<tr>
<td>June 1988</td>
<td>-0.058</td>
<td>-1601.1</td>
<td>0.304</td>
</tr>
<tr>
<td>July 1988</td>
<td>-0.360</td>
<td>-3540.9</td>
<td>0.136</td>
</tr>
<tr>
<td>August 1988</td>
<td>-0.169</td>
<td>-1234.3</td>
<td>0.086</td>
</tr>
</tbody>
</table>
of 'leaning against the wind' of the central bank concerned and is expected to have a negative sign as a consequence of the positive moving variance. This implies that the Bundesbank and/or the Federal Reserve try to smooth the volatility of the dollar-DM rate depending the degree of exchange market uncertainty.

TABLE 5

Table 5 shows the results of the regressions for the dollar-DM interventions by the Bundesbank, Federal Reserve respectively both central banks with the five days moving variance of the opening, fixing and closing dollar rate as an additional factor to the difference between the opening dollar rate and a five days moving average.

The constant \((a_0, b_0 \text{ and } c_0)\) stays relatively small and sometimes significant for individual and total interventions (see tables 1, 2 and 3). The smoothing coefficient adjusted for uncertainty \((a_1, b_1 \text{ and } c_1)\) keeps almost always the expected, negative sign\(^{17}\) and stays overall mostly significant. The coefficient becomes considerably higher because of the moving variance and gains significance in months with a high level of exchange market uncertainty, such as October and December 1987 and June 1988 (see figure 2).

The adjusted correlation coefficient rises in these months with much uncertainty substantially, but diminishes in months with little uncertainty (e.g. August 1987). Hence, the equations explain on average one fifth of the Bundesbank, Federal Reserve and total interventions, which implies that the explanatory power for the Federal Reserve interventions has doubled on average (see table 2). The Durbin-Watson statistic exceeds in most cases 1.4 (upper limit) and indicates no first-order autocorrelation in

\(^{17}\) Evidently, the Bundesbank pursued a policy of 'leaning with the wind' in September 1985. The equation explains then nearly 90% of the interventions. A closer inspection of the data reveals that the Bundesbank interventions were guided by other objectives than smoothing - i.e. the development of "fundamentals" - as from 22 September 1985, when the Plaza Agreement was constituted by the G-5.
general. In this respect the outcomes of the regressions with the moving variance do not differ much from those without the moving variance.

4. CONCLUSION

In the previous section an empirical study has been made of the reaction functions for the dollar-DM exchange market interventions by the Bundesbank and/or Federal Reserve in thirteen relevant months during the period from February 1985 till September 1988. The most important conclusions of this empirical study are the following.

Firstly, the sometimes significant, but relatively small constant indicates a limited bias of the central banks towards a dollar appreciation or depreciation vis-à-vis the DM based on the development of the 'fundamentals'.

Secondly, the mostly significant, negative and relatively (very) high smoothing coefficient points to a policy of 'leaning against the wind' by both central banks in order to smooth the dollar-DM rate from day to day.

Thirdly, the generally significant, positive and variable coordination coefficients shows a rather divergent degree of coordination between the Bundesbank and Federal Reserve on top of a higher frequency of Bundesbank intervention.

Fourthly, the smoothing coefficient adjusted for exchange market uncertainty becomes more significant in months with much uncertainty and leads in these months to a higher adjusted correlation coefficient. It appears that both central banks take full account of exchange market uncertainty with respect to their intervention policy.18)

Finally, the equations explain on average one fifth and in case of a coordination variable one third of the exchange market interventions by the Bundesbank and/or Federal Reserve. It should be noticed that the equations

without a moving variance of opening, fixing and closing rates are relatively more successful in months with little exchange market uncertainty, while the equations with the moving variance have more explanatory power in months with much uncertainty. In the latter case the equations may explain 40% or more of the exchange market interventions in months with a high volatility of the dollar-DM exchange rate, e.g. October and December 1987. These general conclusions seem a sound base for future research of the short term reaction functions of the Deutsche Bundesbank and Federal Reserve System in the dollar-DM exchange market.
REFERENCES

IN 1988 REEDS VERSCHENEN

297 Bert Bettonvil
Factor screening by sequential bifurcation

298 Robert P. Gilles
On perfect competition in an economy with a coalitional structure

299 Willem Selen, Ruud M. Heuts
Capacitated Lot-Size Production Planning in Process Industry

300 J. Kriens, J.Th. van Lieshout
Notes on the Markowitz portfolio selection method

301 Bert Bettonvil, Jack P.C. Kleijnen
Measurement scales and resolution IV designs: a note

302 Theo Nijman, Marno Verbeek
Estimation of time dependent parameters in linear models using cross sections, panels or both

303 Raymond H.J.M. Gradus
A differential game between government and firms: a non-cooperative approach

304 Leo W.G. Strijbosch, Ronald J.M.M. Does
Comparison of bias-reducing methods for estimating the parameter in dilution series

305 Drs. W.J. Reijnders, Drs. W.F. Verstappen
Strategische bespiegelingen betreffende het Nederlandse kwaliteitsconcept

Regression sampling in statistical auditing

307 Isolde Woittiez, Arie Kapteyn
A Model of Job Choice, Labour Supply and Wages

308 Jack P.C. Kleijnen
Simulation and optimization in production planning: A case study

309 Robert P. Gilles and Pieter H.M. Ruys
Relational constraints in coalition formation

310 Drs. H. Leo Theuns
Determinanten van de vraag naar vakantiereizen: een verkenning van materiële en immateriële factoren

311 Peter M. Kort
Dynamic Firm Behaviour within an Uncertain Environment

312 J.P.C. Blanc
A numerical approach to cyclic-service queueing models
313 Drs. N.J. de Beer, Drs. A.M. van Nunen, Drs. M.O. Nijkamp
Does Morkmon Matter?

314 Th. van de Klundert
Wage differentials and employment in a two-sector model with a dual labour market

315 Aart de Zeeuw, Fons Groot, Cees Withagen
On Credible Optimal Tax Rate Policies

316 Christian B. Mulder
Wage moderating effects of corporatism
Decentralized versus centralized wage setting in a union, firm, government context

317 Jörg Glombowski, Michael Krüger
A short-period Goodwin growth cycle

318 Theo Nijman, Marno Verbeek, Arthur van Soest
The optimal design of rotating panels in a simple analysis of variance model

319 Drs. S.V. Hannema, Drs. P.A.M. Versteijne
De toepassing en toekomst van public private partnership's bij de grote en middelgrote Nederlandse gemeenten

320 Th. van de Klundert
Wage Rigidity, Capital Accumulation and Unemployment in a Small Open Economy

321 M.H.C. Paardekooper
An upper and a lower bound for the distance of a manifold to a nearby point

322 Th. ten Raa, F. van der Ploeg
A statistical approach to the problem of negatives in input-output analysis

323 P. Kooreman
Household Labor Force Participation as a Cooperative Game; an Empirical Model

324 A.B.T.M. van Schaik
Persistent Unemployment and Long Run Growth

325 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans
De lokale produktiestructuur doorgelicht.
Bedrijfstakverkenningen ten behoeve van regionaal-economisch onderzoek

Sampling for quality inspection and correction: AOQL performance criteria
327 Theo E. Nijman, Mark F.J. Steel
Exclusion restrictions in instrumental variables equations

328 B.B. van der Genugten
Estimation in linear regression under the presence of heteroskedasticity of a completely unknown form

329 Raymond H.J.M. Gradus
The employment policy of government: to create jobs or to let them create?

330 Hans Kremers, Dolf Talman
Solving the nonlinear complementarity problem with lower and upper bounds

331 Antoon van den Elzen
Interpretation and generalization of the Lemke-Howson algorithm

332 Jack P.C. Kleijn
Analyzing simulation experiments with common random numbers, part II: Rao's approach

333 Jacek Osiewalski
Posterior and Predictive Densities for Nonlinear Regression. A Partly Linear Model Case

334 A.H. van den Elzen, A.J.J. Talman
A procedure for finding Nash equilibria in bi-matrix games

335 Arthur van Soest
Minimum wage rates and unemployment in The Netherlands

336 Arthur van Soest, Peter Kooreman, Arie Kapteyn
Coherent specification of demand systems with corner solutions and endogenous regimes

337 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans
De lokale produktiestruktuur doorgelicht II. Bedrijfstatverkenningen ten behoeve van regionaal-economisch onderzoek. De zeescheepsniewbouw Industrie

338 Gerard J. van den Berg
Search behaviour, transitions to nonparticipation and the duration of unemployment

339 W.J.H. Groenendaal and J.W.A. Vingerhoets
The new cocoa-agreement analysed

340 Drs. F.G. van den Heuvel, Drs. M.P.H. de Vor
Kwantificering van ombuigen en bezuinigen op collectieve uitgaven 1977-1990

341 Pieter J.F.G. Meulendijks
An exercise in welfare economics (III)
W.J. Selen and R.M. Heuts
A modified priority index for Günther's lot-sizing heuristic under capacitated single stage production

Linda J. Mittermaier, Willem J. Selen, Jeri B. Waggoner, Wallace R. Wood
Accounting estimates as cost inputs to logistics models

Remy L. de Jong, Rashid I. Al Layla, Willem J. Selen
Alternative water management scenarios for Saudi Arabia

W.J. Selen and R.M. Heuts
Capacitated Single Stage Production Planning with Storage Constraints and Sequence-Dependent Setup Times

Peter Kort
The Flexible Accelerator Mechanism in a Financial Adjustment Cost Model

W.J. Reijnders en W.F. Verstappen
De toenemende importantie van het verticale marketing systeem

P.C. van Batenburg en J. Kriens
E.O.Q.L. - A revised and improved version of A.O.Q.L.

Drs. W.P.C. van den Nieuwenhof
Multinationalisatie en coördinatie
De internationale strategie van Nederlandse ondernemingen nader beschouwd

K.A. Bubshait, W.J. Selen
Estimation of the relationship between project attributes and the implementation of engineering management tools

M.P. Tummers, I. Woittiez
A simultaneous wage and labour supply model with hours restrictions

Marco Versteijne
Measuring the effectiveness of advertising in a positioning context with multi dimensional scaling techniques

Dr. F. Boekema, Drs. L. Oerlemans
Innovatie en stedelijke economische ontwikkeling

J.M. Schumacher
Discrete events: perspectives from system theory

F.C. Bussemaker, W.H. Haemers, R. Mathon and H.A. Wilbrink
A (49,16,3,6) strongly regular graph does not exist

Drs. J.C. Caanen
Tien jaar inflatieneutrale belastingheffing door middel van vermogensafgetrek en voorraadafgetrek: een kwantitatieve benadering
357 R.M. Heuts, M. Bronckers
A modified coordinated reorder procedure under aggregate investment and service constraints using optimal policy surfaces

358 B.B. van der Genugten
Linear time-invariant filters of infinite order for non-stationary processes

359 J.C. Engwerda
LQ-problem: the discrete-time time-varying case

360 Shan-Hwei Nienhuys-Cheng
Constraints in binary semantical networks

361 A.B.T.M. van Schaik
Interregional Propagation of Inflationary Shocks

362 F.C. Drost
How to define UMVU

363 Rommert J. Casimir
Infogame users manual
Rev 1.2 December 1988

364 M.H.C. Paardekooper
A quadratically convergent parallel Jacobi-process for diagonal dominant matrices with nondistinct eigenvalues

365 Robert P. Gilles, Pieter H.M. Ruys
Characterization of Economic Agents in Arbitrary Communication Structures

366 Harry H. Tigelaar
Informative sampling in a multivariate linear system disturbed by moving average noise

367 Jörg Glombowski
Cyclical interactions of politics and economics in an abstract capitalist economy
IN 1989 REEDS VERSCHENEN

368 Ed Nijssen, Will Reijnders
"Macht als strategisch en tactisch marketinginstrument binnen de distributieketen"

369 Raymond Gradus
Optimal dynamic taxation with respect to firms

370 Theo Nijman
The optimal choice of controls and pre-experimental observations

371 Robert P. Gilles, Pieter H.M. Ruys
Relational constraints in coalition formation

372 F.A. van der Duyn Schouten, S.G. Vanneste
Analysis and computation of \((n,N)\)-strategies for maintenance of a two-component system

373 Drs. R. Hamers, Drs. P. Verstappen
Het company ranking model: a means for evaluating the competition

374 Rommert J. Casimir
Infogame Final Report

375 Christian B. Mulder
Efficient and inefficient institutional arrangements between governments and trade unions; an explanation of high unemployment, corporatism and union bashing

376 Marno Verbeek
On the estimation of a fixed effects model with selective non-response

377 J. Engwerda
Admissible target paths in economic models

378 Jack P.C. Kleijnen and Nabil Adams
Pseudorandom number generation on supercomputers

379 J.P.C. Blanc
The power-series algorithm applied to the shortest-queue model

380 Prof. Dr. Robert Bannink
Management's information needs and the definition of costs, with special regard to the cost of interest

381 Bert Bettonvil
Sequential bifurcation: the design of a factor screening method

382 Bert Bettonvil
Sequential bifurcation for observations with random errors
383 Harold Houba and Hans Kremers
Correction of the material balance equation in dynamic input-output models

384 T.M. Doup, A.H. van den Elzen, A.J.J. Talman
Homotopy interpretation of price adjustment processes

385 Drs. R.T. Frambach, Prof. Dr. W.H.J. de Freytas
Technologische ontwikkeling en marketing. Een oriënterende beschouwing

386 A.L.P.M. Hendrikx, R.M.J. Heuts, L.G. Hoving
Comparison of automatic monitoring systems in automatic forecasting

387 Drs. J.G.L.M. Willems
Enkele opmerkingen over het inversificerend gedrag van multinationale ondernemingen

388 Jack P.C. Kleijnen and Ben Annink
Pseudorandom number generators revisited

389 Dr. G.W.J. Hendrikse
Speltheorie en strategisch management

390 Dr. A.W.A. Boot en Dr. M.F.C.M. Wijn
Liquiditeit, insolventie en vermogensstructuur

391 Antoon van den Elzen, Gerard van der Laan
Price adjustment in a two-country model

392 Martin F.C.M. Wijn, Emanuel J. Bijnen
Prediction of failure in industry
An analysis of income statements