Characterizing distributions by quantile measures
Wagemakers, R.T.A.; Moors, J.J.A.; Janssens, M.J.B.T.
R41

Statistical Distribution

DEPARTMENT OF ECONOMICS

RESEARCH MEMORANDUM
CHARACTERIZING DISTRIBUTIONS BY QUANTILE MEASURES

R.Th.A. Wagemakers, J.J.A. Moors, M.J.B.T. Janssens

FEW 578

Communicated by Dr. R.M.J. Heuts
CHARACTERIZING DISTRIBUTIONS BY QUANTILE MEASURES

R.Th.A. Wagemakers*
J.J.A. Moors*
M.J.B.T. Janssens*

Abstract. Modelling an empirical distribution by means of a simple theoretical distribution is an interesting issue in applied statistics. A reasonable first step in this modelling process is to demand that measures for location, dispersion, skewness and kurtosis for the two distributions coincide. Up to now, the four measures used hereby were based on moments.

In this paper measures are considered which are based on quantiles. Of course the four values of these quantile measures do not uniquely determine the modelling distribution. They do, however, within specific systems of distributions, like Pearson's or Johnson's.

This opens the possibility of modelling - within a specific system - an empirical distribution by means of quantile measures. Since moment-based measures are sensitive for outliers, this approach may lead to a better fit.

* Tilburg University, P.O. Box 90153, 5000 LE Tilburg, Netherlands.
1. A quantile measure for kurtosis

Consider a random variable \(x \) with mean \(\mu = E(x) \) and central moments

\[
\mu_i = E(x-\mu)^i, \quad i = 2, 3, ...
\]

The (very familiar) moment-based measures for location, dispersion, skewness and kurtosis now are

- the mean \(\mu \)
- the variance \(\mu_2 \)
- the third standardized moment \(\beta_1 = \mu_3/\mu_2^{3/2} \)
- the fourth standardized moment \(\beta_2 = \mu_4/\mu_2^2 \)

They all exist provided \(E(x^4) < \infty \).

For the first three measures quantile-based alternatives are well-known. Defining quartiles \(Q_i \) by

\[
P(x < Q_i) \leq i/4, \quad P(x > Q_i) \leq 1 - i/4
\]

for \(i = 1, 2, 3 \), they are given by

- the median \(Q = Q_2 \)
- the half interquartile range \(R = (Q_3 - Q_1)/2 \)
- Bowley's skewness measure \(S = (Q_3 - 2Q_2 + Q_1)/(Q_3 - Q_1) \)

provided that \(Q_3 \neq Q_1 \). Moors (1986, 1988) presented a new interpretation of kurtosis as well as a quantile-based alternative for \(\beta_2 \). Define octiles \(E_i \) by

\[
P(x < E_i) \leq i/8, \quad P(x > E_i) \leq 1 - i/8
\]

for \(i = 1, 2, \ldots, 7 \). Then the quantile measure \(T \) for kurtosis reads

\[
T = \frac{(E_7 - E_5) + (E_3 - E_1)}{E_6 - E_2}
\]
provided that \(E_6 \neq E_2 \). Note that \(T \) is much less sensitive for outliers than \(\beta_2 \); it can be calculated by graphical means. Furthermore, \(T \) exists even for distributions without finite moments; e.g. \(T = 2 \) for the Cauchy distribution.

The quartet \((Q,R,S,T)\) can be seen as an alternative to \((\mu, \mu_2, \beta_1, \beta_2)\). Like \(\beta_1 \) and \(\beta_2 \), \(S \) en \(T \) remain unchanged under linear transformations: these four quantities are location-scale-invariant. This is the main reason why in the sequel attention is focussed on the pair \((S,T)\).

2. The Pearson system of distributions

The Pearson system of distributions is based on the following differential equation:

\[
\frac{d \log f(x)}{dx} = \frac{x}{B_0 + B_1 x + B_2 x^2}
\]

Solutions \(f \) are densities within the Pearson system. These solutions depend on the zeros of the denominator or - more specifically - on the quantity

\[
K = \frac{B_1^2}{4B_0 B_2}
\]

For \(K < 0, 0 < K < 1, K > 1 \) three main types of distributions arise; the limiting cases \(K = 0, K = 1 \) or \(K \to \infty \) lead to transition types. Table 1 shows the details.
Table 1. Outline of the Pearson system.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Density*</th>
<th>Range</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K < 0$</td>
<td>Beta 1</td>
<td>$x^{p-1}(1-x)^{q-1}$</td>
<td>$[0,1]$</td>
<td>$p, q > 0$</td>
</tr>
<tr>
<td>$K = 0$</td>
<td>Student</td>
<td>$(1+x^2/n)^{-(n+1)/2}$</td>
<td>R</td>
<td>$n > 0$</td>
</tr>
<tr>
<td>$0 < K < 1$</td>
<td>Arctan</td>
<td>$(1+x^2)^{-m}\exp[v \arctan x]$</td>
<td>R</td>
<td>$m > 1/2$, $v \in R$</td>
</tr>
<tr>
<td>$K = 1$</td>
<td>Inverse gamma</td>
<td>$x^{-(p+1)}e^{-1/x}$</td>
<td>R^+</td>
<td>$\rho > 0$</td>
</tr>
<tr>
<td>$K > 1$</td>
<td>Beta 2</td>
<td>$x^{p-1}/(x+1)^{p+q}$</td>
<td>R^+</td>
<td>$p, q > 0$</td>
</tr>
<tr>
<td>$K \to \infty$</td>
<td>Gamma</td>
<td>$x^{p-1}e^{-x}$</td>
<td>R^+</td>
<td>$\rho > 0$</td>
</tr>
</tbody>
</table>

* up to normalizing constant.

The column 'Type' contains the Roman numbers originally used by Pearson to indicate the different classes of distributions. (The missing type II consists of the symmetrical Beta 1 distributions.) Location-scale parameters have been deleted from the densities, as well as normalizing constants. See for details about all this Stuart & Ord (1987), p. 210 ff.

Since the Arctan distributions are relatively unfamiliar, Figures 1 and 2 show some densities for type IV.
Figure 1. Densities of Pearson type IV; $v = 0.5$.

Figure 2. Densities of Pearson type IV; $m = 1$.
For our purposes, the main property of the Pearson system is that any (location-scale-free) distribution has a unique pair of values for the measures β_1 and β_2. In other words, there is a one-one relation between the distributions in Table 1 and points in the (β_1, β_2)-plane. Figure 3 shows this relation; the (symmetric) half-plane with $\beta_1 < 0$ is omitted. Compare Stuart & Ord (1987), p. 211.

Figure 3. The (β_1, β_2)-plane for the Pearson system.

The main types appear to occupy separate parts of the plane. Transition type III corresponds to the straight line $2\beta_2 - 3\beta_1 = 6$; the set of type V distributions is slightly curved. The Pearson system leaves unoccupied the upper righthand corner above the line $\beta_2 - \beta_1 = 1$.

In summary: all distributions in the Pearson system can be characterized by the quartet $(\mu_1, \mu_2, \beta_1, \beta_2)$. Hence, the empirical counterpart (\bar{x}, s^2, b_1, b_2) of this quartet corresponds with exactly one distribution within the Pearson system. This distribution can be taken as a simple model for the empirical distribution, based on moment measures. Note that from the quartet the parameters of the corresponding Pearson distribution can be found analytically.
3. Characterizing the Pearson system by quantile measures

In this section the behaviour is investigated of the pair \((S,T)\) for distributions in the Pearson system. First of all, convergence of distributions implies convergence of the pair \((S,T)\). In particular, the \((S,T)\)-values of a transition type arise as limits of the \((S,T)\)-values of main type distributions. This statement will be proved here for one limiting case only: I \(\rightarrow\) III.

Starting point is the following limiting property of the gamma function \(\Gamma\):

\[
\lim_{n \to \infty} \frac{\Gamma(n+\rho)}{n^\rho \Gamma(n)} = 1
\]

which can be proved by means of Stirling's formula. Let the distribution of a random variable \(x\) be denoted by \(L(x)\).

Lemma 1. If \(x_n \sim \text{Be}(\rho, n)\),

\[
L(nx_n) \to \Gamma(1, \rho)
\]

holds for \(n \to \infty\).

Proof. Let \(q_n\) be the density of \(nx_n\) and \(p\) that of \(\Gamma(1, \rho)\); then it is sufficient to show that \(q_n \to p\) pointwise if \(n \to \infty\). Now \(x_n\) has density

\[
B(\rho, n)^{-1} x_n^{\rho-1} (1-x_n)^{n-1}
\]

where \(B(\rho, n) = \Gamma(\rho)\Gamma(n) / \Gamma(\rho+n)\). For \(y = nx_n\) it follows:

\[
q_n(y) = \frac{1}{nB(\rho, n)} x_n^{\rho-1} (1-x_n)^{n-1}, \quad 0 < x_n < 1, \quad \text{with} \quad x_n = y/n,
\]

\[
= \frac{1}{nB(\rho, n)} (\frac{y}{n})^{\rho-1} (1-\frac{y}{n})^{n-1}, \quad 0 < y < n,
\]

\[
= \frac{1}{n^\rho B(\rho, n)} y^{\rho-1} (1-\frac{y}{n})^{n-1}.
\]

Now the limits
\[\lim_{n \to \infty} (1-y/n)^n = e^{-y}, \quad \lim_{n \to \infty} \frac{1}{n^p B(p,n)} = \frac{1}{\Gamma(p)} \]

imply

\[\lim_{n \to \infty} q_n(y) = \frac{1}{\Gamma(p)} y^{p-1} e^{-y} = p(y) \]

which proves the lemma. \qed

Theorem 1. Let \((S_n, T_n)\) and \((S_0, T_0)\) denote the quantile measures of skewness and kurtosis for \(Be(p,n)\) and \(\Gamma(1,p)\), respectively. Then

\[\lim_{n \to \infty} S_n = S_0, \quad \lim_{n \to \infty} T_n = T_0 \]

Proof. Since \(S\) and \(T\) are invariant under linear transformations, they are identical for \(x_n\) and \(nx_n\). Now, the theorem is an immediate result of the Lemma. \qed

So the conclusion is, that smooth transitions between the various types exist in the \((S,T)\)-plane - just as in the \((\beta_1, \beta_2)\)-plane.

Quantiles for the type I, III, V and VI can be found directly by means of the statistical computer package SAS, while for VII Smirnov (1961) was used. For type IV a special program was written which uses numerical integration. This led to outcomes that differed slightly from the values in Johnson et al (1963). Hence, another program was written, which confirmed our previous results. Table 2 is a brief abstract from the extensive results in Wagemakers (1991).
Table 2. Octiles and (S,T)-values for the Pearson system.

<table>
<thead>
<tr>
<th>Type</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(E_4)</th>
<th>(E_5)</th>
<th>(E_6)</th>
<th>(E_7)</th>
<th>(S)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.30</td>
<td>0.3</td>
<td>0.007</td>
<td>0.628</td>
<td>0.236</td>
<td>0.500</td>
<td>0.764</td>
<td>0.932</td>
<td>0.999</td>
<td>0.000</td>
<td>0.579</td>
</tr>
<tr>
<td>I</td>
<td>0.30</td>
<td>1.2</td>
<td>0.001</td>
<td>0.008</td>
<td>0.030</td>
<td>0.079</td>
<td>0.168</td>
<td>0.317</td>
<td>0.555</td>
<td>0.541</td>
<td>1.349</td>
</tr>
<tr>
<td>I</td>
<td>0.30</td>
<td>2.4</td>
<td>0.000</td>
<td>0.073</td>
<td>0.013</td>
<td>0.035</td>
<td>0.076</td>
<td>0.153</td>
<td>0.300</td>
<td>0.579</td>
<td>1.581</td>
</tr>
<tr>
<td>I</td>
<td>1.1</td>
<td>1</td>
<td>0.125</td>
<td>0.250</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
<td>0.750</td>
<td>0.875</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>I</td>
<td>1.4</td>
<td>8</td>
<td>0.033</td>
<td>0.069</td>
<td>0.111</td>
<td>0.159</td>
<td>0.218</td>
<td>0.293</td>
<td>0.405</td>
<td>0.197</td>
<td>1.190</td>
</tr>
<tr>
<td>I</td>
<td>1.8</td>
<td>1</td>
<td>0.017</td>
<td>0.035</td>
<td>0.057</td>
<td>0.083</td>
<td>0.115</td>
<td>0.159</td>
<td>0.230</td>
<td>0.230</td>
<td>1.244</td>
</tr>
<tr>
<td>III</td>
<td>0.30</td>
<td>1</td>
<td>0.001</td>
<td>0.007</td>
<td>0.027</td>
<td>0.073</td>
<td>0.165</td>
<td>0.343</td>
<td>0.740</td>
<td>0.608</td>
<td>2.004</td>
</tr>
<tr>
<td>III</td>
<td>0.75</td>
<td>1</td>
<td>0.058</td>
<td>0.153</td>
<td>0.283</td>
<td>0.454</td>
<td>0.688</td>
<td>1.034</td>
<td>1.650</td>
<td>0.317</td>
<td>1.347</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>1</td>
<td>0.134</td>
<td>0.288</td>
<td>0.470</td>
<td>0.693</td>
<td>0.981</td>
<td>1.386</td>
<td>2.079</td>
<td>0.262</td>
<td>1.306</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>1</td>
<td>2.617</td>
<td>3.369</td>
<td>4.020</td>
<td>4.671</td>
<td>5.390</td>
<td>6.274</td>
<td>7.599</td>
<td>0.104</td>
<td>1.243</td>
</tr>
<tr>
<td>IV</td>
<td>0.70</td>
<td>0.1</td>
<td>1.211</td>
<td>2.070</td>
<td>0.479</td>
<td>0.347</td>
<td>1.444</td>
<td>4.544</td>
<td>26.37</td>
<td>0.260</td>
<td>5.830</td>
</tr>
<tr>
<td>IV</td>
<td>0.70</td>
<td>0.5</td>
<td>1.862</td>
<td>0.014</td>
<td>0.869</td>
<td>2.150</td>
<td>5.020</td>
<td>14.62</td>
<td>44.46</td>
<td>0.704</td>
<td>5.617</td>
</tr>
<tr>
<td>IV</td>
<td>0.70</td>
<td>1.0</td>
<td>2.222</td>
<td>1.298</td>
<td>2.761</td>
<td>5.544</td>
<td>12.26</td>
<td>35.13</td>
<td>202.1</td>
<td>0.749</td>
<td>5.587</td>
</tr>
<tr>
<td>IV</td>
<td>1.0</td>
<td>0.1</td>
<td>2.605</td>
<td>0.822</td>
<td>2.682</td>
<td>0.124</td>
<td>0.553</td>
<td>1.193</td>
<td>2.802</td>
<td>0.061</td>
<td>2.001</td>
</tr>
<tr>
<td>IV</td>
<td>1.0</td>
<td>0.5</td>
<td>1.013</td>
<td>0.237</td>
<td>0.207</td>
<td>0.630</td>
<td>1.175</td>
<td>2.117</td>
<td>4.726</td>
<td>0.263</td>
<td>2.027</td>
</tr>
<tr>
<td>IV</td>
<td>1.0</td>
<td>1.0</td>
<td>-0.249</td>
<td>0.316</td>
<td>0.775</td>
<td>1.313</td>
<td>2.100</td>
<td>3.566</td>
<td>7.808</td>
<td>0.387</td>
<td>2.072</td>
</tr>
<tr>
<td>V</td>
<td>0.30</td>
<td>1</td>
<td>1.352</td>
<td>2.916</td>
<td>6.074</td>
<td>13.67</td>
<td>36.94</td>
<td>144.9</td>
<td>1.367</td>
<td>0.849</td>
<td>10.11</td>
</tr>
<tr>
<td>V</td>
<td>0.75</td>
<td>1</td>
<td>6.006</td>
<td>0.967</td>
<td>1.453</td>
<td>2.202</td>
<td>3.638</td>
<td>6.519</td>
<td>17.33</td>
<td>0.555</td>
<td>2.537</td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>1</td>
<td>0.481</td>
<td>0.721</td>
<td>1.020</td>
<td>1.443</td>
<td>2.126</td>
<td>3.476</td>
<td>7.489</td>
<td>0.476</td>
<td>2.142</td>
</tr>
<tr>
<td>V</td>
<td>5</td>
<td>1</td>
<td>0.132</td>
<td>0.159</td>
<td>0.186</td>
<td>0.214</td>
<td>0.249</td>
<td>0.297</td>
<td>0.382</td>
<td>0.204</td>
<td>1.362</td>
</tr>
<tr>
<td>VI</td>
<td>0.30</td>
<td>0.3</td>
<td>0.007</td>
<td>0.073</td>
<td>0.308</td>
<td>1.000</td>
<td>3.244</td>
<td>13.79</td>
<td>143.1</td>
<td>0.865</td>
<td>10.22</td>
</tr>
<tr>
<td>VI</td>
<td>0.30</td>
<td>1.2</td>
<td>0.001</td>
<td>0.008</td>
<td>0.031</td>
<td>0.086</td>
<td>0.202</td>
<td>0.465</td>
<td>1.255</td>
<td>0.660</td>
<td>2.370</td>
</tr>
<tr>
<td>VI</td>
<td>0.30</td>
<td>2.4</td>
<td>0.000</td>
<td>0.003</td>
<td>0.013</td>
<td>0.036</td>
<td>0.083</td>
<td>0.180</td>
<td>0.428</td>
<td>0.630</td>
<td>2.026</td>
</tr>
<tr>
<td>VI</td>
<td>1.1</td>
<td>1</td>
<td>0.143</td>
<td>0.333</td>
<td>0.600</td>
<td>1.000</td>
<td>1.667</td>
<td>3.000</td>
<td>7.000</td>
<td>0.500</td>
<td>2.171</td>
</tr>
<tr>
<td>VI</td>
<td>1.4</td>
<td>4</td>
<td>0.034</td>
<td>0.075</td>
<td>0.128</td>
<td>0.189</td>
<td>0.278</td>
<td>0.414</td>
<td>0.682</td>
<td>0.325</td>
<td>1.456</td>
</tr>
<tr>
<td>VI</td>
<td>1.8</td>
<td>8</td>
<td>0.017</td>
<td>0.037</td>
<td>0.061</td>
<td>0.091</td>
<td>0.130</td>
<td>0.189</td>
<td>0.297</td>
<td>0.294</td>
<td>1.377</td>
</tr>
<tr>
<td>VII</td>
<td>0.30</td>
<td>1</td>
<td>-1.486</td>
<td>-0.923</td>
<td>-0.439</td>
<td>0.000</td>
<td>0.439</td>
<td>0.923</td>
<td>1.486</td>
<td>0.000</td>
<td>1.135</td>
</tr>
<tr>
<td>VII</td>
<td>0.75</td>
<td>1</td>
<td>-2.177</td>
<td>-1.979</td>
<td>-0.733</td>
<td>0.000</td>
<td>0.732</td>
<td>2.179</td>
<td>9.279</td>
<td>0.000</td>
<td>3.888</td>
</tr>
<tr>
<td>VII</td>
<td>1</td>
<td>1</td>
<td>-2.414</td>
<td>-1.000</td>
<td>-0.414</td>
<td>0.000</td>
<td>0.414</td>
<td>1.000</td>
<td>2.414</td>
<td>0.000</td>
<td>2.000</td>
</tr>
<tr>
<td>VII</td>
<td>1.5</td>
<td>1</td>
<td>-1.134</td>
<td>-0.577</td>
<td>-0.258</td>
<td>0.000</td>
<td>0.258</td>
<td>0.577</td>
<td>1.134</td>
<td>0.000</td>
<td>1.517</td>
</tr>
</tbody>
</table>

There appears to be one-one relation between the (location-scale free) Pearson distributions and pairs of (S,T)-values. So, just like the \((\beta_1,\beta_2)\)-plane, the (S,T)-plane is subdivided into separate sets corresponding to the main types; the demarcation lines are given by the transition types. See Figure 4; compare it to Figure 3. The half-plane with \(S < 0 \) has been omitted.
Since within a given Pearson type the location-scale parameter is uniquely determined by \((Q,R)\), all distributions in the Pearson system can be characterized by the quartet \((Q,R,S,T)\). Hence, the empirical counterpart \((q,r,s,t)\) of this quartet determines exactly one distribution within the Pearson system. Again, this gives a simple model for the empirical distribution, now based on quantile measures. However, the parameters of the corresponding Pearson model have to be found numerically. This can be done by trial-and-error, using the programs mentioned above. Another possibility is to develop a nomogram from which for given \((S,T)\)-values the corresponding Pearson distribution can be read. In Figure 5 such a nomogram is sketched; of course, to attain numerical accuracy, a much more detailed nomogram is necessary.
In principle, there now are two ways to find a model within the Pearson system for a given frequency distribution. An interesting question is which model fits best; this question is discussed in some more detail in Section 6.
4. The Johnson system

Another subdivision of the \((\beta_1, \beta_2)\)-plane was obtained by Johnson (1949). His system of distributions consists of three different types of transformations of a standard normal variable \(z\). Using

\[x = (z - \gamma)/\delta \]

for given constants \(\gamma\) and \(\delta\), these transformations are

\[y = \varphi_L(x) = \exp(x) \]
\[y = \varphi_B(x) = \exp(x)/[1 + \exp(x)] \]
\[y = \varphi_U(x) = [\exp(x) - \exp(-x)]/2 \]

Details of the resulting distributions are shown in Table 3.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Density</th>
<th>Range Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lognormal</td>
<td>(S_L)</td>
<td>(\frac{1}{\sqrt{2\pi}} \frac{1}{y} \exp[-(6 \log y)^2/2])</td>
<td>(R^+) (\delta \in R^+)</td>
</tr>
<tr>
<td>Bounded range</td>
<td>(S_B)</td>
<td>(\frac{1}{\sqrt{2\pi}} \frac{1}{y(1-y)} \exp[-{y+6 \log(\frac{y}{1-y})}^2/2])</td>
<td>([0,1]) (y \in R, \delta \in R^+)</td>
</tr>
<tr>
<td>Unbounded range</td>
<td>(S_U)</td>
<td>(\frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1+y^2}} \exp[-{y+6 \log(y+\sqrt{1+y^2})}^2/2])</td>
<td>(R) (y \in R, \delta \in R^+)</td>
</tr>
</tbody>
</table>

For the lognormal distributions the location parameter \(\gamma\) has been deleted.
Like for the Pearson system, any distribution of the Johnson system has a unique pair of values for the measures β_1 and β_2. Figure 6 shows how the (β_1, β_2)-plane is split by the curve S_L in separate parts S_B and S_U. See for details Stuart & Ord (1987), p. 234 ff. The half-plane with $\beta_1 < 0$ has been omitted.

Figure 6. The (β_1, β_2)-plane for the Johnson system.

The quartet (\bar{x}, s^2, b_1, b_2) of empirical measures determines a unique distribution within the Johnson system, as was the case for the Pearson system.

5. Characterization of the Johnson system by quantile measures

The (S,T)-values of the transition type S_L arise as limits of the (S,T)-values of either S_U or S_B type distributions. E.g. for the latter type this is implied by the following property: if $x_n \sim S_B(n, \delta)$, $\mathcal{L}(x_n) \to S_L(\delta)$ for $n \to \infty$. So, in the (S,T)-plane the set defined by S_L is a smooth transition between the sets corresponding to S_U and S_B.

Since Johnson distributions are transformations of the standard normal, octiles are easily calculated. Table 4 gives a brief summary of the extensive tables in Wagemakers (1991).
Table 4. Octiles and (S,T)-values for the Johnson system.

<table>
<thead>
<tr>
<th>Type</th>
<th>(S)</th>
<th>(T)</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(E_4)</th>
<th>(E_5)</th>
<th>(E_6)</th>
<th>(E_7)</th>
<th>(S)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_L)</td>
<td>0.30</td>
<td>0.022</td>
<td>0.106</td>
<td>0.346</td>
<td>1.000</td>
<td>2.893</td>
<td>9.472</td>
<td>46.27</td>
<td>8.609</td>
<td>4.666</td>
<td></td>
</tr>
<tr>
<td>(S_L)</td>
<td>0.75</td>
<td>0.216</td>
<td>0.407</td>
<td>0.684</td>
<td>1.000</td>
<td>1.529</td>
<td>2.458</td>
<td>4.636</td>
<td>4.422</td>
<td>1.728</td>
<td></td>
</tr>
<tr>
<td>(S_L)</td>
<td>1</td>
<td>0.317</td>
<td>0.509</td>
<td>0.727</td>
<td>1.000</td>
<td>1.375</td>
<td>1.963</td>
<td>3.159</td>
<td>3.235</td>
<td>1.810</td>
<td></td>
</tr>
<tr>
<td>(S_L)</td>
<td>5</td>
<td>0.795</td>
<td>0.874</td>
<td>0.938</td>
<td>1.000</td>
<td>1.066</td>
<td>1.144</td>
<td>1.259</td>
<td>0.067</td>
<td>1.264</td>
<td></td>
</tr>
<tr>
<td>(S_B)</td>
<td>0.30</td>
<td>0</td>
<td>0.021</td>
<td>0.096</td>
<td>0.257</td>
<td>0.500</td>
<td>0.743</td>
<td>0.905</td>
<td>0.000</td>
<td>0.583</td>
<td></td>
</tr>
<tr>
<td>(S_B)</td>
<td>0.30</td>
<td>0.30</td>
<td>0.008</td>
<td>0.037</td>
<td>0.113</td>
<td>0.269</td>
<td>0.516</td>
<td>0.777</td>
<td>0.374</td>
<td>0.722</td>
<td></td>
</tr>
<tr>
<td>(S_B)</td>
<td>0.30</td>
<td>1.20</td>
<td>0.000</td>
<td>0.002</td>
<td>0.006</td>
<td>0.018</td>
<td>0.050</td>
<td>0.148</td>
<td>0.374</td>
<td>0.722</td>
<td></td>
</tr>
<tr>
<td>(S_B)</td>
<td>0.30</td>
<td>2.10</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.003</td>
<td>0.009</td>
<td>0.004</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>(S_B)</td>
<td>1</td>
<td>0</td>
<td>0.240</td>
<td>0.338</td>
<td>0.421</td>
<td>0.500</td>
<td>0.879</td>
<td>0.663</td>
<td>0.000</td>
<td>1.111</td>
<td></td>
</tr>
<tr>
<td>(S_B)</td>
<td>1</td>
<td>1</td>
<td>0.104</td>
<td>0.118</td>
<td>0.211</td>
<td>0.269</td>
<td>0.336</td>
<td>0.419</td>
<td>0.539</td>
<td>0.180</td>
<td>1.179</td>
</tr>
<tr>
<td>(S_B)</td>
<td>1</td>
<td>3</td>
<td>0.092</td>
<td>0.003</td>
<td>0.005</td>
<td>0.007</td>
<td>0.009</td>
<td>0.013</td>
<td>0.021</td>
<td>0.321</td>
<td>1.496</td>
</tr>
<tr>
<td>(S_B)</td>
<td>1</td>
<td>7</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.324</td>
<td>1.608</td>
</tr>
<tr>
<td>(S_U)</td>
<td>0.30</td>
<td>0.00</td>
<td>-23.12</td>
<td>-4.683</td>
<td>-1.273</td>
<td>0.000</td>
<td>1.273</td>
<td>4.683</td>
<td>23.12</td>
<td>8.000</td>
<td>4.666</td>
</tr>
<tr>
<td>(S_U)</td>
<td>0.30</td>
<td>0.12</td>
<td>-15.49</td>
<td>-3.096</td>
<td>-0.712</td>
<td>0.411</td>
<td>2.043</td>
<td>7.030</td>
<td>34.81</td>
<td>0.307</td>
<td>4.666</td>
</tr>
<tr>
<td>(S_U)</td>
<td>0.30</td>
<td>0.30</td>
<td>-8.482</td>
<td>-1.599</td>
<td>-0.062</td>
<td>1.175</td>
<td>3.868</td>
<td>12.85</td>
<td>62.88</td>
<td>0.616</td>
<td>4.666</td>
</tr>
<tr>
<td>(S_U)</td>
<td>0.30</td>
<td>1.00</td>
<td>-1.241</td>
<td>-0.677</td>
<td>-0.324</td>
<td>0.003</td>
<td>0.324</td>
<td>0.727</td>
<td>1.421</td>
<td>0.000</td>
<td>1.510</td>
</tr>
<tr>
<td>(S_U)</td>
<td>1</td>
<td>0.0</td>
<td>-0.697</td>
<td>-0.175</td>
<td>0.182</td>
<td>0.521</td>
<td>0.913</td>
<td>1.464</td>
<td>2.508</td>
<td>0.150</td>
<td>1.510</td>
</tr>
<tr>
<td>(S_U)</td>
<td>1</td>
<td>-1.0</td>
<td>-0.151</td>
<td>0.231</td>
<td>0.735</td>
<td>1.175</td>
<td>1.735</td>
<td>2.574</td>
<td>4.236</td>
<td>0.248</td>
<td>1.510</td>
</tr>
<tr>
<td>(S_U)</td>
<td>1</td>
<td>-2.0</td>
<td>0.996</td>
<td>1.749</td>
<td>2.593</td>
<td>3.627</td>
<td>8.032</td>
<td>7.218</td>
<td>11.63</td>
<td>0.313</td>
<td>1.510</td>
</tr>
</tbody>
</table>

Again, from the empirical measures \((q,r,s,t)\) a model can be found within the Johnson system. This may be done numerically or graphically, by means of a nomogram. Figure 7 sketches such a nomogram.
Figure 7. Sketch of nomogram for the Johnson system.

Again, there are two ways to find a suitable model within the Johnson system; an important question is whether the moment-based or the quantile-based approach is better.

6. Discussion and further research

In this paper an alternative method was developed to find a suitable model for an empirical frequency distribution within a given system of theoretical distributions. For this class of potential models both Pearson's and Johnson's system of distributions was considered. Our method is based on the four quantile measures.
(Q, R, S, T)

for location, dispersion, skewness and kurtosis; all of them can be calculated from the seven octiles.

Attention was concentrated on the behaviour of S and T; our main result is that both in Pearson's and in Johnson's system there is a one-one correspondence between the (location-scale free) distributions and the values of the pair (S, T).

An interesting next question is of course whether this quantile-based method gives a better fit than the classical approach, which is based on the moments

\((\mu, \mu_2, \beta_1, \beta_2) \)

As a first step in answering this question, the limit distributions of the empirical measures \((s, t)\) and \((b_1, b_2)\) are being investigated. For the standard normal distribution we obtained the following results:

\[
\sqrt{n} \begin{bmatrix} s - S \\ t - T \end{bmatrix} \xrightarrow{\mathcal{L}} N_2 \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1.839 & 0 \\ 0 & 3.153 \end{bmatrix} \right)
\]

\[
\sqrt{n} \begin{bmatrix} b_1 - \beta_1 \\ b_2 - \beta_2 \end{bmatrix} \xrightarrow{\mathcal{L}} N_2 \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 & 0 \\ 0 & 24 \end{bmatrix} \right)
\]

where \(\xrightarrow{\mathcal{L}} \) denotes convergence in distribution for \(n \to \infty \). Note that for \(N(0,1) \)

\((S, T) = (0, 1.233), \quad (\beta_1, \beta_2) = (0, 3) \)

holds. To check the (co)variances a simulation study was made. From \(N(0,1) \) 200 random sample of size \(n \) were drawn and for all of them the statistics

\((s, t), \quad (b_1, b_2) \)

were calculated. From the 200 replicated values the estimated variances and the covariance of each pair was found. Tables 5 and 6 present the results.
Table 5. Simulated means and (co)variance of (s, t); 200 replicated samples from N(0,1).

<table>
<thead>
<tr>
<th>n</th>
<th>Simulated value of</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>√nE(s)</td>
<td>√nE(t-1.233)</td>
<td>nV(s)</td>
<td>nV(t)</td>
<td>nCov(s,t)</td>
</tr>
<tr>
<td>50</td>
<td>-0.224</td>
<td>-0.149</td>
<td>1.887</td>
<td>3.940</td>
<td>0.256</td>
</tr>
<tr>
<td>100</td>
<td>0.103</td>
<td>0.395</td>
<td>1.746</td>
<td>3.378</td>
<td>-0.034</td>
</tr>
<tr>
<td>200</td>
<td>-0.039</td>
<td>0.395</td>
<td>1.931</td>
<td>3.487</td>
<td>-0.026</td>
</tr>
<tr>
<td>2000</td>
<td>-0.048</td>
<td>0.654</td>
<td>1.524</td>
<td>3.815</td>
<td>-0.283</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1.839</td>
<td>3.153</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6. Simulated means and (co)variance of (b1, b2); 200 replicated samples from N(0,1).

<table>
<thead>
<tr>
<th>n</th>
<th>Simulated value of</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>√nE(b1)</td>
<td>√nE(b2-3)</td>
<td>nV(b1)</td>
<td>nV(b2)</td>
<td>nCov(b1,b2)</td>
</tr>
<tr>
<td>50</td>
<td>-0.240</td>
<td>-0.893</td>
<td>5.068</td>
<td>15.099</td>
<td>-0.068</td>
</tr>
<tr>
<td>100</td>
<td>0.095</td>
<td>-0.840</td>
<td>4.683</td>
<td>17.781</td>
<td>-0.035</td>
</tr>
<tr>
<td>200</td>
<td>-0.013</td>
<td>-0.461</td>
<td>5.453</td>
<td>21.181</td>
<td>1.185</td>
</tr>
<tr>
<td>2000</td>
<td>0.296</td>
<td>0.570</td>
<td>5.180</td>
<td>23.137</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

A full report, with much more general results, is in preparation.

The simulation results appear to be in agreement with the theoretical values in the last lines of the two tables. Note that (S, T) can be estimated with a greater accuracy than (b1, b2). Of course, this does not imply that the quantile-based approach is to be preferred. To admit such a conclusion, some measure of fit will have to be chosen and compared for
both methods of modelling. We plan to make such a comparison in due course.

Apart from the Pearson and Johnson systems of distributions, other systems may be taken as the class of potential models. Interesting candidates are the Schmeiser-Deutsch (1978) system of distributions and Burr's system, cf. Stuart & Ord (1987), p. 242. A final question is how to select a suitable system to start with.

Acknowledgement
We are very grateful to an unknown referee who - by slashing the first draft of this paper - forced us to improve it considerably. Tables 5 and 6 are based on work by Victor Coenen.
References

Johnson, N.L., E. Nixon and D.E. Amos (1963), *Table of percentage points of Pearson curves, for given $\sqrt{\beta_1}$ and β_2, expressed in standard measure*, Biometrika 50, p. 459-498.

IN 1991 REEDS VERSCHENEN

466 Prof. Dr. Th. C. M. J. van de Klundert - Prof. Dr. A. B. T. M. van Schaik
Economische groei in Nederland in een internationaal perspectief

467 Dr. Sylvester C. W. Eijffinger
The convergence of monetary policy - Germany and France as an example

468 E. Nijssen
Strategisch gedrag, planning en prestatie. Een inductieve studie
binnen de computerbranche

469 Anne van den Nouweland, Peter Borm, Guillermo Owen and Stef Tijs
Cost allocation and communication

470 Drs. J. Grazell en Drs. C. H. Veld
Motieven voor de uitgifte van converteerbare obligatieleningen en
warrant-obligatieleningen: een agency-theoretische benadering

471 P. C. van Batenburg, J. Kriens, W. M. Lammerts van Bueren and
R. H. Veenstra
Audit Assurance Model and Bayesian Discovery Sampling

472 Marcel Kerkhofs
Identification and Estimation of Household Production Models

473 Robert P. Gilles, Guillermo Owen, René van den Brink
Games with Permission Structures: The Conjunctive Approach

474 Jack P. C. Kleijn en
Sensitivity Analysis of Simulation Experiments: Tutorial on Regression
Analysis and Statistical Design

475 C. P. M. van Hoesel
An O(nlogn) algorithm for the two-machine flow shop problem with
controllable machine speeds

476 Stephan G. Vanneste
A Markov Model for Opportunity Maintenance

477 F. A. van der Duyn Schouten, M. J. G. van Eijs, R. M. J. Heuts
Coordinated replenishment systems with discount opportunities

478 A. van den Nouweland, J. Potters, S. Tijs and J. Zarzuelo
Cores and related solution concepts for multi-choice games

479 Drs. C. H. Veld
Warrant pricing: a review of theoretical and empirical research

480 E. Nijssen
De Miles and Snow-typologie: Een exploratieve studie in de meubel-
branche

481 Harry G. Barkema
Are managers indeed motivated by their bonuses?
482 Jacob C. Engwerda, André C.M. Ran, Arie L. Rijkeboer
Necessary and sufficient conditions for the existence of a positive
definite solution of the matrix equation $X + AX^{-1}A = I$

483 Peter M. Kort
A dynamic model of the firm with uncertain earnings and adjustment
costs

484 Raymond H.J.M. Gradus, Peter M. Kort
Optimal taxation on profit and pollution within a macroeconomic
framework

485 René van den Brink, Robert P. Gilles
Axiomatizations of the Conjunctive Permission Value for Games with
Permission Structures

486 A.E. Brouwer & W.H. Haemers
The Gewirtz graph - an exercise in the theory of graph spectra

487 Pim Adang, Bertrand Melenberg
Intratemporal uncertainty in the multi-good life cycle consumption
model: motivation and application

488 J.H.J. Roemen
The long term elasticity of the milk supply with respect to the milk
price in the Netherlands in the period 1969-1984

489 Herbert Hamers
The Shapley-Entrance Game

490 Rezaul Kabir and Theo Vermaelen
Insider trading restrictions and the stock market

491 Piet A. Verheyen
The economic explanation of the jump of the co-state variable

492 Drs. F.L.J.W. Manders en Dr. J.A.C. de Haan
De organisatorische aspecten bij systeemontwikkeling
een beschouwing op besturing en verandering

493 Paul C. van Batenburg and J. Kriens
Applications of statistical methods and techniques to auditing and
accounting

494 Ruud T. Frambach
The diffusion of innovations: the influence of supply-side factors

495 J.H.J. Roemen
A decision rule for the (des)investments in the dairy cow stock

496 Hans Kremers and Dolf Talman
An SLSPP-algorithm to compute an equilibrium in an economy with
linear production technologies
497 L.W.G. Strijbosch and R.M.J. Heuts
Investigating several alternatives for estimating the compound lead
time demand in an (s,Q) inventory model

498 Bert Bettonvil and Jack P.C. Kleijnen
Identifying the important factors in simulation models with many
factors

499 Drs. H.C.A. Roest, Drs. F.L. Tijssen
Beheersing van het kwaliteitsperceptieproces bij diensten door middel
van keurmerken

500 B.B. van der Genugten
Density of the F-statistic in the linear model with arbitrarily
normal distributed errors

501 Harry Barkema and Sytse Douma
The direction, mode and location of corporate expansions

502 Gert Nieuwenhuis
Bridging the gap between a stationary point process and its Palm
distribution

503 Chris Veld
Motives for the use of equity-warrants by Dutch companies

504 Pieter K. Jagersma
Een etiologie van horizontale internationale ondernemingsexpansie

505 B. Kaper
On M-functions and their application to input-output models

506 A.B.T.M. van Schaik
Produktiviteit en Arbeidsparticipatie

507 Peter Borm, Anne van den Nouweland and Stef Tijs
Cooperation and communication restrictions: a survey

508 Willy Spanjers, Robert P. Gilles, Pieter H.M. Ruys
Hierarchical trade and downstream information

509 Martijn P. Tummers
The Effect of Systematic Misperception of Income on the Subjective
Poverty Line

510 A.G. de Kok
Basics of Inventory Management: Part 1
Renewal theoretic background

511 J.P.C. Blanc, F.A. van der Duyn Schouten, B. Pourbabai
Optimizing flow rates in a queueing network with side constraints

512 R. Peeters
On Coloring j-Unit Sphere Graphs
513 Drs. J. Dagevos, Drs. L. Oerlemans, Dr. F. Boekema
Regional economic policy, economic technological innovation and networks

514 Erwin van der Krabben
Het functioneren van stedelijke onroerend-goed-markten in Nederland - een theoretisch kader

515 Drs. E. Schaling
European central bank independence and inflation persistence

516 Peter M. Kort
Optimal abatement policies within a stochastic dynamic model of the firm

517 Pim Adang
Expenditure versus consumption in the multi-good life cycle consumption model

518 Pim Adang
Large, infrequent consumption in the multi-good life cycle consumption model

519 Raymond Gradus, Sjak Smulders
Pollution and Endogenous Growth

520 Raymond Gradus en Hugo Keuzenkamp
Arbeidsongeschiktheid, subjectief ziektegevoel en collectief belang

521 A.G. de Kok
Basics of inventory management: Part 2
The (R,S)-model

522 A.G. de Kok
Basics of inventory management: Part 3
The (b,Q)-model

523 A.G. de Kok
Basics of inventory management: Part 4
The (s,S)-model

524 A.G. de Kok
Basics of inventory management: Part 5
The (R,b,Q)-model

525 A.G. de Kok
Basics of inventory management: Part 6
The (R,s,S)-model

526 Rob de Groof and Martin van Tuijl
Financial integration and fiscal policy in interdependent two-sector economies with real and nominal wage rigidity
<table>
<thead>
<tr>
<th>Page</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>527</td>
<td>A.G.M. van Eijs, M.J.G. van Eijs, R.M.J. Heuts</td>
<td>Gecoördineerde bestelsystemen een management-georiënteerde benadering</td>
</tr>
<tr>
<td>528</td>
<td>M.J.G. van Eijs</td>
<td>Multi-item inventory systems with joint ordering and transportation decisions</td>
</tr>
<tr>
<td>529</td>
<td>Stephan G. Vanneste</td>
<td>Maintenance optimization of a production system with buffer capacity</td>
</tr>
<tr>
<td>530</td>
<td>Michel R.R. van Bremen, Jeroen C.G. Zijlstra</td>
<td>Het stochastische variantie optiewaarderingsmodel</td>
</tr>
<tr>
<td>531</td>
<td>Willy Spanjers</td>
<td>Arbitrage and Walrasian Equilibrium in Economies with Limited Information</td>
</tr>
</tbody>
</table>
IN 1992 REEDS VERSCHENEN

532 F.G. van den Heuvel en M.R.M. Turlings
Privatisering van arbeidsongeschiktheidsregelingen
Refereed by Prof.Dr. H. Verbon

533 J.C. Engwerda, L.G. van Willigenburg
LQ-control of sampled continuous-time systems
Refereed by Prof.dr. J.M. Schumacher

534 J.C. Engwerda, A.C.M. Ran & A.L. Rijkeboer
Necessary and sufficient conditions for the existence of a positive
definite solution of the matrix equation \(X + A^*X^{-1}A = Q \).
Refereed by Prof.dr. J.M. Schumacher

535 Jacob C. Engwerda
The indefinite LQ-problem: the finite planning horizon case
Refereed by Prof.dr. J.M. Schumacher

536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs
Effectivity functions and associated claim game correspondences
Refereed by Prof.dr. P.H.M. Ruys

537 Jack P.C. Kleijnen, Gustav A. Alink
Validation of simulation models: mine-hunting case-study
Refereed by Prof.dr.ir. C.A.T. Takkenberg

538 V. Feltkamp and A. van den Nouweland
Controlled Communication Networks
Refereed by Prof.dr. S.H. Tijs

539 A. van Schaik
Productivity, Labour Force Participation and the Solow Growth Model
Refereed by Prof.dr. Th.C.M.J. van de Klundert

540 J.J.G. Lemmen and S.C.W. Eijffinger
The Degree of Financial Integration in the European Community
Refereed by Prof.dr. A.B.T.M. van Schaik

541 J. Bell, P.K. Jagersma
Internationale Joint Ventures
Refereed by Prof.dr. H.G. Barkema

542 Jack P.C. Kleijnen
Verification and validation of simulation models
Refereed by Prof.dr.ir. C.A.T. Takkenberg

543 Gert Nieuwenhuis
Uniform Approximations of the Stationary and Palm Distributions
of Marked Point Processes
Refereed by Prof.dr. B.B. van der Genugten
544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen
Multi-Product Cycling with Packaging in the Process Industry
Refereed by Prof.dr. F.A. van der Duyn Schouten

545 J.C. Engwerda
Calculation of an approximate solution of the infinite time-varying LQ-problem
Refereed by Prof.dr. J.M. Schumacher

546 Raymond H.J.M. Gradus and Peter M. Kort
On time-inconsistency and pollution control: a macroeconomic approach
Refereed by Prof.dr. A.J. de Zeeuw

547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir
De Invloed van de Invoering van Preferente Beschermingsaandelen op Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen
Refereed by Prof.dr. P.W. Moerland

548 Sylvester Eijffinger and Eric Schaling
Central bank independence: criteria and indices
Refereed by Prof.dr. J.J. Sijben

549 Drs. A. Schmeits
Geïntegreerde investerings- en financieringsbeslissingen; Implicaties voor Capital Budgeting
Refereed by Prof.dr. P.W. Moerland

550 Peter M. Kort
Standards versus standards: the effects of different pollution restrictions on the firm's dynamic investment policy
Refereed by Prof.dr. F.A. van der Duyn Schouten

551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger
Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations
Refereed by Prof.dr. S.W. Douma

552 Ton Storcken and Harrie de Swart
Towards an axiomatization of orderings
Refereed by Prof.dr. P.H.M. Ruys

553 J.H.J. Roemen
The derivation of a long term milk supply model from an optimization model
Refereed by Prof.dr. F.A. van der Duyn Schouten

554 Geert J. Almekinders and Sylvester C.W. Eijffinger
Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance Tale in DM/$-Returns
Refereed by Prof.dr. A.B.T.M. van Schaik

555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas
"Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie
Refereed by Prof.dr. Th.M.M. Verhallen
556 Ton Geerts
Regularity and singularity in linear-quadratic control subject to
implicit continuous-time systems
Communicated by Prof.dr. J. Schumacher

557 Ton Geerts
Invariant subspaces and invertibility properties for singular sys-
tems: the general case
Communicated by Prof.dr. J. Schumacher

558 Ton Geerts
Solvability conditions, consistency and weak consistency for linear
differential-algebraic equations and time-invariant singular systems:
the general case
Communicated by Prof.dr. J. Schumacher

559 C. Fricker and M.R. Jaïbi
Monotonicity and stability of periodic polling models
Communicated by Prof.dr.ir. O.J. Boxma

560 Ton Geerts
Free end-point linear-quadratic control subject to implicit contin-
uous-time systems: necessary and sufficient conditions for solvabil-
ity
Communicated by Prof.dr. J. Schumacher

561 Paul G.H. Mulder and Anton L. Hempenius
Expected Utility of Life Time in the Presence of a Chronic Noncom-
municable Disease State
Communicated by Prof.dr. B.B. van der Genugten

562 Jan van der Leeuw
The covariance matrix of ARMA-errors in closed form
Communicated by Dr. H.H. Tigelaar

563 J.P.C. Blanc and R.D. van der Mei
Optimization of polling systems with Bernoulli schedules
Communicated by Prof.dr.ir. O.J. Boxma

564 B.B. van der Genugten
Density of the least squares estimator in the multivariate linear
model with arbitrarily normal variables
Communicated by Prof.dr. M.H.C. Paardekooper

565 René van den Brink, Robert P. Gilles
Measuring Domination in Directed Graphs
Communicated by Prof.dr. P.H.M. Ruys

566 Harry G. Barkema
The significance of work incentives from bonuses: some new evidence
Communicated by Dr. Th.E. Nijman
567 Rob de Groof and Martin van Tuijl
Commercial integration and fiscal policy in interdependent, financially integrated two-sector economies with real and nominal wage rigidity.
Communicated by Prof.dr. A.L. Bovenberg

568 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts
The value of information in a fixed order quantity inventory system
Communicated by Prof.dr. A.J.J. Talman

569 E.N. Kertzman
Begrotingsnormering en EMU
Communicated by Prof.dr. J.W. van der Dussen

570 A. van den Elzen, D. Talman
Finding a Nash-equilibrium in noncooperative N-person games by solving a sequence of linear stationary point problems
Communicated by Prof.dr. S.H. Tijs

571 Jack P.C. Kleijnen
Verification and validation of models
Communicated by Prof.dr. F.A. van der Duyn Schouten

572 Jack P.C. Kleijnen and Willem van Groenendaal
Two-stage versus sequential sample-size determination in regression analysis of simulation experiments

573 Pieter K. Jagersma
Het management van multinationale ondernemingen: de concernstructuur

574 A.L. Hempenius
Explaining Changes in External Funds. Part One: Theory
Communicated by Prof.Dr.Ir. A. Kapteyn

575 J.P.C. Blanc, R.D. van der Mei
Optimization of Polling Systems by Means of Gradient Methods and the Power-Series Algorithm
Communicated by Prof.dr.ir. O.J. Boxma

576 Herbert Hamers
A silent duel over a cake
Communicated by Prof.dr. S.H. Tijs

577 Gerard van der Laan, Dolf Talman, Hans Kremers
On the existence and computation of an equilibrium in an economy with constant returns to scale production
Communicated by Prof.dr. P.H.M. Ruys