Graphs cospectral with distance-regular graphs
Haemers, W.H.; Spence, E.

Publication date:
1993

Link to publication

Citation for published version (APA):
GRAPHS COSPECTRAL WITH DISTANCE-REGULAR GRAPHS

W.H. Haemers
E. Spence

FEW 623

Communicated by Prof.dr. M.H.C. Paardekooper
Graphs Cospectral with Distance-Regular Graphs

W.H. Haemers and E. Spence

Abstract

We determine all graphs with the spectrum of a distance-regular graph with at most 30 vertices (except possibly for the Taylor graph on 28 vertices).

1. Introduction

The spectrum of a graph (i.e. the multiset of eigenvalues of its (0,1) adjacency matrix) gives much information about the structure of the graph. It indicates for instance if a graph is complete, regular, connected and regular, strongly regular, or bipartite. For a regular graph, the spectrum also determines the girth g as well as the number of g-gons through each vertex. See [4]. In general, however, it cannot be seen from the spectrum that a graph is distance-regular with diameter d when $d \geq 3$ (a distance-regular graph with $d \leq 2$ is complete or strongly regular). Counter-examples are given by Hoffman [8] for $d \geq 4$ (see also [1]) and by the first author [7] for $d = 3$. On the other hand, in some cases distance-regularity is determined by the spectrum even for $d \geq 3$. The present paper gives an (almost) precise state of these affairs for all spectra that are feasible for a distance-regular graph on n vertices for $n \leq 30$. For a spectrum Σ, let us denote by gr_Σ the number of graphs with this spectrum and by dr_Σ the number of distance-regular graphs with spectrum Σ. Clearly $gr_\Sigma \geq dr_\Sigma$ and equality means that distance regularity is recognizable from Σ. It is an easy and well-known result that $gr_\Sigma = dr_\Sigma = 1$ if Σ is the spectrum of an n-gon or a complete bipartite graph minus a complete matching. For all other feasible spectra for distance-regular graphs with $d \geq 3$ and $n \leq 30$ the values of dr_Σ and gr_Σ are exhibited in the table of Appendix 1.

As general references we use Brouwer Cohen and Neumaier [1] for distance-regular graphs and Cvetkovic, Doob and Sachs [4] for spectra of graphs. Both subject are also treated in the recent book of Godsil [5]. For the following four lemmas we refer to [7].

Lemma 1.1 If Γ is cospectral with a distance-regular graph Δ with one of the properties below, then Γ is distance-regular.

- Δ has diameter 3 and $\mu = 1$,
- Δ is bipartite with diameter 3, or
- Δ has diameter d and girth $g \geq 2d - 1$.

The parameter $\mu (= c_2)$ of Δ gives the number of common neighbours of two vertices at distance 2. A bipartite distance-regular graph with $d = 3$ is the incidence graph of a symmetric $2-(\nu, k, \lambda)$ design (abbreviated to: $IG(\nu, k, \lambda)$).

Lemma 1.2 Let Γ be a graph cospectral with a distance-regular graph with diameter 3 and k_2 vertices at distance 2 from each vertex.

i. Any vertex of Γ has at least k_2 vertices at distance 2.

ii. If a vertex γ of Γ has k_2 vertices at distance 2, then Γ is distance-regular around γ.

iii. If every vertex of Γ has k_2 vertices at distance 2, then Γ is distance-regular.

Lemma 1.3 Let Γ be a graph cospectral with a bipartite distance-regular graph with diameter d and k_i vertices at distance i from each vertex ($i = 0, \ldots, d$). If Γ has also k_i vertices at distance i from each vertex for $i = 0, \ldots, d$, then Γ is distance-regular.

Let Γ be a graph with a partition of the vertices into two parts V_1 and V_2 say. Consider the following operation. Delete each edge of Γ between V_1 and V_2, and insert an edge between V_1 and V_2 for each nonadjacent pair of vertices from Γ. (Adjacency within V_1 and V_2 is left unchanged.) This operation is called Seidel switching with respect to the given partition (see Seidel [11]). Two graphs are (Seidel) switching equivalent if one can be obtained from the other by Seidel switching with respect to some partition. The Seidel spectrum of Γ is the spectrum of the $+1$ adjacency matrix $J - 2A + I$, were A is the $(0,1)$-adjacency matrix of Γ (J denotes the all-one matrix and I the identity matrix). Switching equivalent graphs have the same Seidel spectrum. Also for the $(0,1)$-adjacency matrix there is a switching operation that leaves the spectrum invariant.

Lemma 1.4 Let A be a symmetric $(0,1)$-matrix, partitioned as follows:

$$A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,t} & S_{1,1} & \cdots & S_{1,m} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{t,1}^T & \cdots & A_{t,t} & S_{t,1} & \cdots & S_{t,m} \\ S_{1,1}^T & \cdots & S_{t,1}^T & B_{1,1} & \cdots & B_{1,m} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ S_{1,m}^T & \cdots & S_{t,m}^T & B_{1,m}^T & \cdots & B_{m,m} \end{bmatrix},$$

such that each block has constant row (and column) sum. Suppose that for each block $S_{i,j}$ all, none, or half of the entries are equal to 1. Then the matrix obtained from A by replacing each half-filled block $S_{i,j}$ by its complement is cospectral with A.

2
The switching of this lemma provides an important (but not the only) tool for the construction of graphs cospectral with a given graph. The concept is due to Godsil and McKay [6] (see also Godsil [5]) and is a special case of Seidel switching if all matrices $S_{i,j}$ are half filled.

2. Validation; theoretic part

In this section we will give an account for those results in the table of Appendix 1 that did not need a computer. The list of feasible spectra up to 30 vertices was kindly generated by A.E. Brouwer. The definition of feasible we use is the one given in Brouwer, Cohen and Neumaier [1] p.133. The same book gives the values of dr_{E}, except for case 21 and 22. For these cases we need to know that there exist precisely five symmetric $2-(15, 7, 3)$ designs, two of which are each others dual; see Nandi [9]. Therefore there are four non-isomorphic incidence graphs of such designs, and (of course) the same is true for the complementary designs.

For the cases 2, 3, 4, 10, 11, 12, 15, 16, 19, 21, 22 and 23 we have $dr_{E} = gr_{E}$ by Lemma 1.1. The cases 1, 6, and 9 are taken care of by the following proposition.

Proposition 2.1 The Icosahedron graph, the Pappus graph and the Dodecahedron graph are characterized by their spectra.

Proof. It suffices to prove that graphs with the given spectra are distance-regular. Suppose Γ has an adjacency matrix A with spectrum

$$\Sigma = \{5^1, \sqrt{5}^3, -1^5, -\sqrt{5}^3\}$$

which is the spectrum of the icosahedron graph. Then $C = A^2 + (1 - \sqrt{5})A - \sqrt{5}I$ is positive semi-definite. Suppose also that two non-adjacent vertices have μ common neighbours. Then C has a principal submatrix

$$\begin{bmatrix} 5 - \sqrt{5} & \mu \\ \mu & 5 - \sqrt{5} \end{bmatrix},$$

and hence $5 - \sqrt{5} - \mu \geq 0$, so that $\mu \leq 2$. For a vertex γ of Γ let Δ be the subgraph of Γ induced by the vertices at distance at least 2 from γ. Then we easily have that Δ has 6 vertices and 10 edges. Moreover $\mu \leq 2$ implies that Δ has no vertex of degree smaller than 3. Therefore the complement of Δ is one of the following four graphs: P_n (P_n is the path with n vertices), $K_3 + P_2$, $K_2 + C_4$ (C_n denotes the n-gon), or C_5 with an isolated vertex. For the first three cases there are non-adjacent vertices in Δ with at least three common neighbours, which contradicts $\mu \leq 2$. Hence γ has 5 vertices at distance 2 and one at distance 3. So Γ is distance regular by Lemma 1.2 (or by straightforward verification).

Next suppose that Γ has the spectrum of the Pappus graph. Since the Pappus graph is
3-regular and bipartite of girth 6, so is Γ. Hence each vertex of Γ has 6 vertices at distance 2 and therefore 6 vertices at distance 3 (since the diameter cannot exceed 4) and 2 vertices at distance 4. Now Lemma 1.3 gives that Γ is distance regular.

Finally we consider a graph Γ' cospectral with the dodecahedron graph. Then Γ' is 3-regular, has diameter at most 5, has girth 5 and has three pentagons through each vertex. The total number of closed walks of length 6 in Γ equals $\text{trace}(A^6)$, which can be derived from the spectrum. This implies that Γ has no hexagons, because the dodecahedron graph has no hexagons and because both graphs have the same number of trivial closed walks of length 6. So two pentagons have at most one edge in common and it follows that any two intersecting edges lie in a unique pentagon. Now it is straightforward to verify that there is a unique graph with all the mentioned properties.

The value of gr_Σ is due to Hoffman [8] for case 5 and due to Bussemaker and Cvetković [2] for case 8. For the remaining cases (7, 13, 14, 17, 18 and 20) we determined the values of gr_Σ by a computer search. But just to observe that $\text{gr}_\Sigma > \text{dr}_\Sigma$ there is an easy and computer free argument for most cases, which we give below. For the tetrahedral graph, the argument can be found in [7], but it seemed appropriate to give it here as well. The tetrahedral graph $J(v, 3)$ has as vertex set all 3-subsets of a v-set, where two subsets are adjacent whenever the intersection has size 2.

Proposition 2.2 For $v \geq 6$ there exists a graph cospectral with the tetrahedral graph $J(v, 3)$, but not distance-regular.

Proof. Fix a 4-subset X of the v-set. Partition the 3-subsets according the intersection sizes with X. This partition satisfies the hypotheses of Lemma 1.4 ($\ell = 1$ and $A_{1,1} = J - I$ corresponds to the four 3-subsets of X). It is easily checked that the graph obtained after switching is not distance-regular.

The Desargues graph is the bipartite double of the Petersen graph. This means that it has an adjacency matrix

\[
\begin{bmatrix}
0 & A \\
A & 0
\end{bmatrix}
\]

where A is the adjacency matrix of the Petersen graph.

Proposition 2.3 There exists a graph cospectral with the Desargues graph, but not distance-regular.

Proof. Partition the Petersen graph into a 4-coclique and the six remaining vertices. This gives a partition of the vertex set of the Desargues graph into four parts to which Lemma 1.4 applies (with $\ell = 1, m = 3$). It is easily checked that, after switching, two vertices that correspond to the same Petersen-vertex have 3 common neighbours. Therefore
the graph is not distance-regular.

See [2] for a picture of the graphs of the above proposition.

Hadamard graphs are distance-regular graphs with \(n = 8\mu \) vertices, degree \(k = 2\mu \) and the following spectrum and intersection array:

\[
\{k^1, \sqrt{k^k}, 0^{2k-1}, -\sqrt{k^k}, -k^1\}, \quad \{k, k-1, \mu, 1; 1, \mu, k-1, k\},
\]

respectively. They exist if and only if a Hadamard matrix of order \(k \) exists. Thus Hadamard graphs cannot exist if \(\mu \) is odd and greater than 1. The intersection array, however, is feasible for all \(\mu \), and in fact graphs with the above spectrum exist for infinitely many odd values of \(\mu \).

Proposition 2.4 Let \(D \) be a Hadamard 3-design corresponding to a Hadamard matrix of order \(4\mu \) and let \(D' \) be a subdesign of \(D \) consisting of all points and the blocks of \(2\mu \) arbitrary parallel classes. Then the incidence graph \(\Gamma \) of \(D' \) has the spectrum of a Hadamard graph of degree \(k = 2\mu \).

Proof. Let \(N \) be the point-block incidence matrix of \(D' \). Then \(N^TN = \mu(J_{2k} - K) + kI_{2k} \), wherein \(K = J_2 \otimes I_k \) (\(\otimes \) denotes the Kronecker product and the indices indicate the size). So the spectrum of \(N^TN \) is \(\{(k^2)^1, k^k, 0^{k-1}\} \). If \(A \) is the adjacency matrix of \(\Gamma \), then

\[
A = \begin{bmatrix}
0 & N \\
N^T & 0
\end{bmatrix}
\] and
\[
A^2 = \begin{bmatrix}
NN^T & 0 \\
0 & N^TN
\end{bmatrix}.
\]

Since \(NN^T \) and \(N^TN \) have the same spectrum, \(A^2 \) has spectrum \(\{(k^2)^2, k^2k, 0^{2k-2}\} \) and hence, because \(\Gamma \) is bipartite, \(A \) has spectrum \(\{k^1, \sqrt{k^k}, 0^{2k-2}, -\sqrt{k^k}, -k^1\} \). \(\square \)

Hadamard matrices of order \(4\mu \) exist for infinitely many values of \(\mu \) for odd as well as even \(\mu \). In particular there is a Hadamard matrix of order 12, which gives \(gr_\Sigma > d_{\Sigma} = 0 \) for case \#14 in the table (in fact we find two such graphs by this construction). Also if \(\mu \) is even we find non-distance-regular examples. For instance the graph of Hoffman (case 5 in the table) can be obtained in this manner. (There is a unique Hadamard 3-design with 8 points, constituted by the points and planes in \(AG(3,2) \). If we delete 3 parallel classes represented by 3 planes through a line we obtain the Hamming 4-cube, but if we delete 3 other parallel classes we get Hoffman’s graph.) Graphs constructed above are distance-regular around at least half of the vertices (as follows easily from Lemma 1.2(ii)). This means that for these constructions, transitivity of the automorphism group implies distance-regularity (and therefore is impossible for odd \(\mu > 1 \)). However, in general, having a transitive group and the correct spectrum is not sufficient for distance-regularity. This is illustrated by the following example.
Proposition 2.5 Let \(H'(d, q) \) be the graph defined on the \(dq^{d-1} \) lines (\(q \)-cliques) of the Hamming graph \(H(d, q) \), where two lines are defined to be adjacent if they intersect. Then \(H'(d, d) \) has the same spectrum as \(H(d, d) \), but is not distance-regular if \(d \geq 3 \).

Proof. Let \(N \) be the incidence matrix of points (vertices of \(H(d, d) \)) and lines (\(d \)-cliques of \(H(d, d) \)). Then \(N \) is a square matrix, \(NN^T - dI \) is the adjacency matrix of \(H(d, d) \) and \(N^T N - dI \) is the adjacency matrix of \(H'(d, d) \). Therefore the two graphs are cospectral. Take \(d \geq 3 \). Then there are in \(H'(d, d) \) two types of pairs of vertices at mutual distance two. They can correspond to parallel lines, in which case they have \(d \) common neighbours, or to skew lines, in which case there is just one common neighbour. So \(H'(d, d) \) is not distance-regular. \(\Box \)

In particular we find \(gr_\Sigma > dr_\Sigma \) if \(\Sigma \) is the spectrum of the cubic lattice graph \(H(3, 3) \) (case 17 of the table). This disproves a conjecture of Cvetović, Doob and Sachs [4], p.183.

For spectrum #5, 7 and 8, non-distance-regular graphs can be obtained by the switching procedure of Lemma 1.4 (see [7] for case 5). But if \(d \geq 3 \), \(H'(d, d) \) cannot be obtained from \(H(d, d) \) by switching. Indeed, switching does not change the number of common neighbours of two vertices in one side of the splitting and therefore, if switching would work, any two vertices of \(H(d, d) \) at distance 2 must lie in different parts, which is impossible because of the existence of three vertices at mutual distance 2.

As a last construction we mention that in some cases the distance \(i \) \((i \geq 2)\) graph of a given distance-regular graph is cospectral with a distance-regular graph, but not distance-regular. For example the distance 3 graph of \(H(3, 3) \) has the spectrum of \(GQ(2, 4) \) minus a spread, but has diameter 2 and therefore is not distance-regular. This shows that \(gr_\Sigma > dr_\Sigma \) for case #18.

3. Computer results

Although separate computer programs had to be written to deal with the cases 7, 13, 14, 17, 18 and 20, there were sufficient similarities among them that a separate discussion of these similarities is warranted. In the case of #20, (Taylor graph) however, it became clear that an exhaustive search was out of the question. Nevertheless we determined all graphs of diameter 3 that are cospectral with the Taylor graph on 28 vertices. We leave a discussion of this until the end.

Let \(A \) denote the adjacency matrix of a graph \(\Gamma \) on \(n \) vertices and let \(\nu(A) \) denote the binary integer (of length = \(\frac{1}{2}n(n-1) \)) obtained by concatenating the rows of the upper triangular part of \(A \). The standard form of \(A \), denoted by \(st(A) \), is the matrix such that

\[
\nu(st(A)) = \max \{ \nu(P^TAP) : P \in S_n \},
\]

where \(S_n \) is the set of all \(n \times n \) permutation matrices. In our computer search for graphs cospectral with distance regular graphs we constructed them by means of their adjacency
matrices which in the main were assumed to be in standard form. (An exception to this was \#14 where it was known from the spectrum that the graph was bipartite. See \textsection 3.2) A backtracking algorithm was used to construct such a matrix, one row at a time, beginning with the first. Suppose that after \(r \) rows of a possible candidate \(A \) have been found we have the following partially completed matrix

\[
\begin{bmatrix}
A_r & N_r \\
N_r^T & 0
\end{bmatrix},
\]

where \(A_r \) is a principal submatrix of order \(r \). A simple observation is that if (1) can be completed to an adjacency matrix in standard form, then (1) itself must be in standard form. Thus, to avoid going down a path in our computer search that might have been previously traversed, it was important, for small values of \(r \) at least, to verify that (1) was already in standard form. If it were, we would then proceed to the construction of the \((r + 1)\)st row of \(A \), but if not, we backtracked in an attempt to determine another possible \(r \)th row. This checking was done using a variant of F.C. Bussemaker's procedure \textsc{GraphPermutationStandard}. While this test was very important, there were several other that were performed first. These we now describe.

3.1. Using eigenvalues.

As above, let \(A \) denote the adjacency matrix of the required graph \(\Gamma \) (in standard form). In each of the cases we used the eigenvalues of \(\Gamma \) to find constants \(\alpha, \beta, \gamma \) and \(\delta \) such that the matrix \(C \) defined by

\[
C = \alpha A^2 + \beta A + \gamma I + \delta J,
\]

was positive semidefinite and had small rank, \(\rho \) say. Generally speaking, \(C \) itself would have two (or three) distinct eigenvalues, the greater (greatest) of which we denote by \(\theta \). Then clearly any principal submatrix of \(C \) must have rank at most \(\rho \) and have eigenvalues that lie between 0 and \(\theta \). Interpretating this in terms of (1) above, we see that, for each \(r \),

\[
C_r := \alpha (A_r^2 + N_r N_r^T) + \beta A_r + \gamma I + \delta J
\]

has rank at most \(\rho \) and eigenvalues that lie between 0 and \(\theta \). Thus, when (1) had been found as a possible candidate for completion to an appropriate adjacency matrix \(A \), the matrix \(C_r \) was tested to see if

\[
(a) \text{ rank}(C_r) \leq \rho \quad \text{and} \quad (b) \ 0 \leq \lambda_{\text{min}}(C_r) \leq \lambda_{\text{max}}(C_r) \leq \theta,
\]

where \(\lambda_{\text{min}}(C_r) \) and \(\lambda_{\text{max}}(C_r) \) are the smallest and largest eigenvalue of \(C_r \), respectively. Of course it was only necessary to apply (a) when \(r > \rho \), while (b) proved useful for small values of \(r \). In the case (a) the mechanics of the test depended on whether the coefficients \(\alpha, \beta, \gamma \) and \(\delta \) were all rational integers (as in \#7, \#13, \#17 and \#18), so that \(C \) is an integral matrix. When this was so the following simple observation gave rise to a very efficient test that avoided the possibility of integer overflow when calculating the rank:
For any integral matrix \(B \) and any prime \(p \), \(\text{rank}_p(B) \leq \text{rank}(B) \), where \(\text{rank}_p(B) \) denotes the rank of \(B \) over \(\mathbb{Z}_p \).

We thus replaced the condition (a) above by (a') \(\text{rank}_p(C_r) \leq \rho \), where \(p \) was given the (purely arbitrary) value 101. In the remaining two cases #14 and #20, the matrix \(C \) took the form

\[
C = D + \sqrt{d} E,
\]

where \(D \) and \(E \) are integral matrices and \(d \) is a squarefree integer. Here we treated \(C \) as a matrix of ordered pairs \((D_{ij}, E_{ij}) \) of integers and applied test (a'). In all cases the \(p \)-rank was determined using Gaussian elimination.

To see if (b) was satisfied an iterative procedure was used to determine \(\lambda_{\text{min}}(C_r) \) and \(\lambda_{\text{max}}(C_r) \). To avoid undue lengthening of the computational time a fixed number \(n = 500 \) of iterations was taken. If, after \(n \) steps, successive iterations differed by more than \(\epsilon \), where we took \(\epsilon = 10^{-8} \), the procedure was deemed not to converge and (b) was not applied. If, however, the procedure converged to within the limit \(\epsilon \) chosen, it was decided to check the following weaker form of (b)

\[
\lambda_{\text{min}}(C_r) \geq -10^{-3} \quad \text{and} \quad \lambda_{\text{max}}(C_r) \leq \theta + 10^{-3},
\]

simply to avoid the possibility of roundoff errors.

For each of the cases 7, 13, 14, 17, 18, the matrix \(C \), rank \(\rho \) and eigenvalue \(\theta \) used corresponding to (2) are given in the following list:

<table>
<thead>
<tr>
<th>Case</th>
<th>(C)</th>
<th>(\rho)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>(C = A^2 - 2A - 3I - 3J)</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>13.</td>
<td>(C = -4A^2 + 28I + 7J)</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>14.</td>
<td>(C = 4A^2 + 4\sqrt{6}A - (6 + \sqrt{6})J)</td>
<td>7</td>
<td>24(6 - \sqrt{6})</td>
</tr>
<tr>
<td>17.</td>
<td>(C = A^2 + 3A - 2J)</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>18.</td>
<td>(C = A^2 - A - 2I - 2J)</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

In some cases a variant of the argument given in the proof of Proposition 2.1 gave reasonable upper bounds \(\lambda_0 \) and \(\mu_0 \) to the values of \(\lambda \) and \(\mu \) (\(\lambda \) and \(\mu \) denote the number of common neighbours of two adjacent and nonadjacent vertices, respectively). However, in two of the cases, namely #17 and #18, better upper bounds to \(\lambda \) were obtained by looking at the Hoffman polynomial. We illustrate by considering #18. Here it is easily seen that \(A^3 + 3A^2 - 6A - 8I = 24J \), and from this it follows that \([A^3]_{ii} = 8 \). Since \([A^3]_{ii} \) is the number of closed walks of length 3 from the vertex \(i \) and this is just the number of edges in the neighbour graph \(\Gamma_i \), it follows that any two vertices that are joined can have at most 4 common neighbours. Thus \(\lambda \leq 4 \) in this case. Moreover, knowing the number of edges in \(\Gamma_i \) provided some information that enabled us to avoid some paths of the search tree and thus further shorten the computational time involved.
3.2. Case 14 – The Hadamard graph on 24 vertices.

Here the spectrum tells us that the graph must be bipartite so we assumed that its adjacency matrix \(A \) took the form

\[
A = \begin{bmatrix} 0 & N \\ N^T & 0 \end{bmatrix},
\]

where \(N \) is a \((0, 1)\) matrix of size 12. The only difference in our computer search for such matrices \(A \) between that of §3.1 was that instead of \(A \) being in standard form we assumed that \(N \) was in standard form. In this case the standard form of a \((0, 1)\) matrix \(M \) of size \(v \times b \), denoted also by \(\text{st}(M) \), is defined as follows. Let \(\nu(M) \) (previously defined for symmetric \((0, 1)\) matrices) denote the binary integer obtained from \(M \) by concatenating the rows of \(M \). Then \(\text{st}(M) \) is that \((0, 1)\) matrix such that

\[
\nu(\text{st}(M)) = \max\{\nu(PMQ) : P \in S_v,Q \in S_b\}.
\]

It is easy to verify that if \(M \) is in standard form then so also is the matrix \(M_r \) comprising the first \(r \) rows of \(M \). Thus before proceeding to the possible construction of an \((r + 1)\)st row of the matrix \(A \) above, we checked to see whether the matrix \(N_r \) was in standard form (using another procedure of F.C. Bussemaker).

3.3. Case 20 – Taylor graph on 28 vertices.

Taylor graphs are distance-regular graphs with intersection array \(\{k, \mu, 1; 1, \mu, k\} \). If \(k = 2\mu + 1 \) we will call them of conference type (because they are related to conference matrices). All Taylor graphs in our table (§1, 7 and 20) are of conference type.

Proposition 3.1 Let \(\Gamma \) be a graph cospectral with the Taylor graph on \(2q + 2 \) vertices of conference type which has spectrum

\[
\{q^1, -1^q, \sqrt{q} (q+1)/2, -\sqrt{q} (q+1)/2\}.
\]

Suppose further that \(\Gamma \) has diameter 3. Then \(\Gamma \) is switching equivalent to a graph \(\Gamma' \) with an adjacency matrix of the form

\[
A' = \begin{bmatrix} J_2 - I_2 & 0 \\ 0 & A_1 \end{bmatrix},
\]

where \(A_1 \), of size \(2q \) is the adjacency matrix of a regular graph of degree \(q \) with spectrum

\[
\{q^1, -1^q, \sqrt{q} (q-1)/2, -\sqrt{q} (q-1)/2\}. \tag{3}
\]
Proof. Since Γ has two vertices u and v at distance 3, we may assume that the adjacency matrix A of Γ takes the form
\[
\begin{bmatrix}
0 & 0 & 1 & \ldots & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & 0 & A_{1,1} & A_{1,2} & & & & \\
\vdots & \vdots & & & & & & \\
1 & 0 & & & & & & \\
0 & 1 & & & & & & \\
\vdots & \vdots & & & & & & \\
0 & 1
\end{bmatrix}
\]
Seidel switching with respect to rows (and columns) numbered 2 to $q + 2$ gives the desired form for A'. By Lemma 1.2(ii) Γ is distance-regular around u (and v) and therefore the blocks $A_{i,j}$ have constant row sum equal to $(q - 1)/2$. Hence, after switching, A_1 has constant row sum q. Since Γ and Γ' have the same Seidel spectrum it follows that $A - \frac{1}{2}J$ and $A' - \frac{1}{2}J$ have the same spectrum. Because Γ is regular, the spectrum of $A - \frac{1}{2}J$ is known and, since $\text{rank}(J) = 1$, an eigenvalue of $A' - \frac{1}{2}J$ with multiplicity m (say) is for $m > 1$ also an eigenvalue of A' with multiplicity at least $m - 1$. This yields that A' has eigenvalues $-1, \sqrt{q}$ and $-\sqrt{q}$ with multiplicity at least $q - 1$, $(q - 1)/2$ and $(q - 1)/2$, respectively. From the structure of A' we know that A' has eigenvalues 1 and q. So only two eigenvalues a and b (say) are not yet known. From $\text{trace}(A') = 0$ we have $a + b = -2$ and $\text{trace}(A'^2) = 2 + 2q^2$ gives $a^2 + b^2 = 2$. Hence $a = b = -1$. Thus we have found the spectrum of A' and the spectrum of A_1 follows.

It is a consequence of the above that in order to construct all graphs on $2q + 2$ vertices with diameter 3 and cospectral with a Taylor graph of conference type it is sufficient to adopt the following procedure.
(i) Find all regular graphs Γ_1 on $2q$ vertices having spectrum given by (3).
(ii) Construct a new graph Γ' by adjoining two new adjacent vertices to Γ_1 that are nonadjacent to all vertices of Γ_1.
(iii) Determine all regular graphs of degree q in the switching class of Γ'.

Remark. Using the methods of §3.1 we constructed all graphs cospectral with the Taylor graph of conference type in the cases $q = 5$ and 9 and discovered that they all have diameter 3, but we were unable to prove this for larger values of q. In fact we suspect it to be generally false, since it is false for the Gosset graph, which is a Taylor graph that is not of conference type (see [7]).

Since it rapidly became clear that when $q = 13$ an exhaustive search as outlined in §3.1 was not feasible, we used the above three steps to find all non-isomorphic graphs on 28 vertices cospectral with the Taylor graph and having diameter 3. The methods applied to
step (i) were similar to those described in §3.1 and therefore require no further explanation. However, a brief description of step (iii) might be in order.

Suppose we have a ∓ 1 adjacency matrix C of a graph Γ that has the Seidel spectrum of the Taylor graph. To switch C into the ∓ 1 adjacency matrix of a regular graph of degree q requires that we find a diagonal ± 1 matrix D, say, such that DCD has row sums 1. This may be rewritten as $DCDj = j$ (j denotes the all-one vector), or equivalently, $CDj = Dj$, which means that Dj is an eigenvector for C corresponding to the eigenvalue 1. Conversely, any ± 1 eigenvector X (corresponding to the same eigenvalue) yields a diagonal matrix $D = \text{diag}\{x_1, x_2, \ldots, x_{2q}\}$ that switches C into the ∓ 1 adjacency matrix of a regular graph of degree q. Thus the main part of step (iii) is to find all ± 1 vectors X such that $(C - I)X = 0$. To compute these vectors we basically followed the procedure used by Paulus [10] and subsequently by Bussemaker, Mathon and Seidel [3]. In total, when $q = 13$ we found 85 non-isomorphic graphs after step (i), these giving rise, by step (ii) to 36 equivalence classes under Seidel switching. Examination of each of these switching classes using the ± 1 eigenvectors X found by the method of step (iii) showed that they all had regular graphs (of degree q) in their switching classes, the total number found being 515. Since it is impractical to list all these graphs we content ourselves by giving only one representative of each of the 36 switching classes together with the number of regular graphs obtained from each. These and the other graphs found in §3.1 and §3.2 are listed in Appendix 2.

Acknowledgements. Part of the work for this paper was done while the second author was visiting the University of Tilburg and the Technical University of Eindhoven. He gratefully acknowledges the financial assistance he received from both institutions. Both authors are indebted to A.E. Brouwer for producing the list of feasible parameters for distance-regular graphs on at most 30 vertices.
Appendix 1

Table of all feasible spectra Σ for a distance-regular graph on $n \leq 30$ vertices with diameter $d > 2$ and degree $k > 2$ (except for the complete bipartite graphs minus a complete matching). The number gr_Σ gives the number of non-isomorphic graphs with spectrum Σ and dr_Σ indicates how many of these are distance-regular. The incidence graph of a symmetric 2-(v, k, λ) design is denoted by $IG(v, k, \lambda)$.

<table>
<thead>
<tr>
<th>#</th>
<th>n</th>
<th>k</th>
<th>Σ</th>
<th>distance regular name and intersection array</th>
<th>dr_Σ</th>
<th>gr_Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>5</td>
<td>${5^1, \sqrt{3^2}, -1^5, -\sqrt{5^3}}$</td>
<td>Icosahedron graph ${5, 2, 1; 1, 2, 5}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>3</td>
<td>${3^1, \sqrt{2^6}, -\sqrt{2^6}, -3^1}$</td>
<td>Heawood graph $= IG(7, 3, 1)$ ${3, 2, 2; 1, 1, 3}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>4</td>
<td>${4^1, \sqrt{2^6}, -\sqrt{2^6}, -4^1}$</td>
<td>$IG(7, 4, 2)$ ${4, 3, 2; 1, 2, 4}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>4</td>
<td>${4^1, 2^6, -1^4, -2^5}$</td>
<td>Line graph of Petersen graph ${4, 2, 1; 1, 1, 4}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>4</td>
<td>${4^1, 2^4, 0^6, -2^4, -4^1}$</td>
<td>$Hamming\ 4$-cube $= H(4, 2)$ ${4, 3, 2, 1; 1, 2, 3, 4}$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>3</td>
<td>${3^1, \sqrt{3^5}, 0^4, -\sqrt{3^5}, -3^1}$</td>
<td>Pappus graph ${3, 2, 2, 1; 1, 1, 2, 3}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>9</td>
<td>${9^1, 3^8, -1^9, -3^5}$</td>
<td>Tetrahedral graph $J(6, 3)$ ${9, 4, 1; 1, 4, 9}$</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>3</td>
<td>${3^1, 2^4, 1^5, -1^5, -2^4, -3^1}$</td>
<td>Desargues graph ${3, 2, 2, 1; 1, 1, 2, 3}$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>3</td>
<td>${3^1, \sqrt{3^5}, 1^5, 0^4, -2^4, -\sqrt{3^5}}$</td>
<td>Dodecahedron graph ${3, 2, 1; 1, 1, 1, 2, 3}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>4</td>
<td>${4^1, (1 + \sqrt{2})^6, (1 - \sqrt{2})^6, -2^8}$</td>
<td>Generalized hexagon $GH(2, 1)$ ${4, 2, 1; 1, 1, 2}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>5</td>
<td>${5^1, \sqrt{3^{11}}, -\sqrt{3^{11}}, -5^1}$</td>
<td>$IG(11, 5, 2)$ ${5, 4, 3, 1, 2, 5}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>6</td>
<td>${6^1, \sqrt{3^{11}}, -\sqrt{3^{11}}, -6^1}$</td>
<td>$IG(11, 6, 3)$ ${6, 5, 3; 1, 3, 6}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>7</td>
<td>${7^1, \sqrt{6^8}, -1^7, -\sqrt{6^8}}$</td>
<td>Klein graph ${7, 4, 1; 1, 2, 7}$</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>6</td>
<td>${6^1, \sqrt{6^6}, 0^11, -\sqrt{6^6}, -6^1}$</td>
<td>Hadamard graph ${6, 5, 3; 1, 1, 2, 3, 5, 6}$</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
<td>4</td>
<td>${4^1, \sqrt{3^{12}}, -\sqrt{3^{12}}, -4^1}$</td>
<td>$IG(13, 4, 1)$ ${4, 3, 3; 1, 1, 4}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>26</td>
<td>9</td>
<td>${9^1, \sqrt{3^{12}}, -\sqrt{3^{12}}, -9^1}$</td>
<td>$IG(13, 9, 6)$ ${9, 8, 3, 1, 6, 9}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>27</td>
<td>6</td>
<td>${6^1, 3^6, 0^12, -3^8}$</td>
<td>Cubic lattice graph $H(3, 3)$ ${6, 4, 2; 1, 2, 3}$</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>27</td>
<td>8</td>
<td>${8^1, 2^12, -1^8, -4^6}$</td>
<td>$GQ(2, 4)$ minus a spread ${8, 6, 1; 1, 3, 8}$</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>3</td>
<td>${3^1, 2^6, (-1 + \sqrt{2})^6, -1^7, (-1 - \sqrt{2})^6}$</td>
<td>Coxeter graph ${3, 2, 2, 1; 1, 1, 1, 2}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>13</td>
<td>${13^1, \sqrt{13^7}, -1^{13}, -\sqrt{13^7}}$</td>
<td>Taylor graph ${13, 6, 1; 1, 6, 13}$</td>
<td>1</td>
<td>515</td>
</tr>
<tr>
<td>21</td>
<td>30</td>
<td>7</td>
<td>${7^1, 2^14, -2^14, -7^1}$</td>
<td>$IG(15, 7, 3)$ ${7, 6, 4; 1, 3, 7}$</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>8</td>
<td>${8^1, 2^14, -2^14, -8^1}$</td>
<td>$IG(15, 8, 4)$ ${8, 7, 4; 1, 4, 8}$</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>30</td>
<td>3</td>
<td>${3^1, 2^6, 0^11, -2^9, -3^1}$</td>
<td>Tutte's 8-cage ${3, 2, 2, 2; 1, 1, 1, 3}$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix 2

In the following pages we list all graphs found in the computer search for graphs cospectral with numbers 7, 13, 14, 17 and 18 of the table. We give, for each graph, two lines of data. On the first is its standard form, while on the second we give the order of its automorphism group and its orbits. The binary integer representing the standard form is padded out with just sufficient zeros to make its length divisible by 3 and then it is written as an octal integer. The graphs of #7 arise from three Seidel switching classes, but in fact they can all be obtained from just one of them by the switching described in Lemma 1.4. In #14 the two graphs arising from the Hadamard matrix of order 12 (as described Proposition 2.2) correspond to numbers 14.1 and 14.4 while the distance regular graphs are identified as numbers 7.1, 13.10, 17.4, 18.12 and 18.13. Furthermore, 17.3 is the graph constructed in Proposition 2.3 and 18.11 is the distance 3 graph of 17.4. In the case #20 the format is different since it is not feasible to list all the graphs found. As mentioned in the text there are (at least) 36 switching classes that have the same Seidel spectrum as the Taylor graph and each of these possesses regular graphs in its switching class. In the listing of these below, we identify the switching class with the standard form that is the greatest of all the regular graphs in its switching class (as defined in §3.1). The notation $[x, y]$ means that there are x non-isomorphic regular graphs in the switching class with automorphism group of order y. Number 36 is the Taylor graph.

#7
1. 7770003607402314600317032506125146425121522460533245316252631774
 1440 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)
2. 7770003607403210700633005264273043415322302260471547451246731574
 96 (1 2 3 6 7 8 11 12 15 18 19 20)(4 5 9 10 13 14 16 17)
3. 777003746003053402241621341024317023462362641116661137535066654
 32 (1 2 7 8 13 14 16 17)(3 4 5 6 15 18 19 20)(9 10 11 12)
4. 777003746003053402231421443024257025462561700517232157633126474
 16 (1 2 7 8)(3 4 5 6 15 17 19 20)(9 10 11 12)(13 14 16 18)
5. 777003746003053402231421443024257025462562541036711317633126474
 48 (1 2 7 8 10 11 12 13 14 16 18)(3 4 5 6 15 17 19 20)
6. 7770037460030534022416113500636522146256251116661267272513364
 12 (1 2 4 6 7 8 13 14 15 16 18 20)(3 5 9 12 17 19)(10 11)

#13
1. 7740000161600001116000112300200360204160034300015122224422060047644112
 45031130504642202054
2. 77400001616000011160001103400210160404114002026005432203415100036332051
 3060123110304661005
 12 (1 5 6 7 10 11 12 14 16 20 22 24)(2 3 4 8 9 13 15 17 18 19 21 23)

13
| #20 | 1. 777400000777400007760740017400176062721401211324301017241551062345150133413674 |
| | [10, 1] [16, 2] |
| 2. 77740000077740000777400001707216007005117015041350425461221473026111513132025350 |
| [1, 1] [5, 2] [1, 6] |
| 3. 777400000777400001740007700621260700431611146067605146141526215035047170 |
| [4, 1] [16, 2] |
| 4. 77740000077607400174001760601714600701256025225067350051042363403143036 |
| [7, 1] [5, 2] [1, 3] [1, 6] |
| 5. 7774000007760740017072160064411170045513401155214243407712423403650334 |
| [10, 1] [16, 2] |
| 6. 77740000077607400174001760612147005162411436073420152045632037046164 |
| [10, 1] [16, 2] |
| 7. 77740000077607400174001760601714600704076023152065740415207503506146050 |
| [36, 1] |
| 8. 777400000776074001707216006405156005432230103076241274137310107306344270 |
| [10, 1] [16, 2] |
| 9. 7774000007776074001760017146007042530250652273500130423627426052014 |
| [1, 1] [5, 2] [1, 3] [1, 6] |
| 10. 77740000077607400170721600640515600513243002217627200132331207036264246 |
| [7, 1] [5, 2] [1, 3] [1, 6] |
References

IN 1992 REEDS VERSCHENEN

532 F.G. van den Heuvel en M.R.M. Turlings
Privatisering van arbeidsongeschiktheidsregelingen
Refereed by Prof.Dr. H. Verbon

533 J.C. Engwerda, L.G. van Willigenburg
LQ-control of sampled continuous-time systems
Refereed by Prof.dr. J.M. Schumacher

534 J.C. Engwerda, A.C.M. Ran & A.L. Rijkeboer
Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X + A^*XA = Q$.
Refereed by Prof.dr. J.M. Schumacher

535 Jacob C. Engwerda
The indefinite LQ-problem: the finite planning horizon case
Refereed by Prof.dr. J.M. Schumacher

536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs
Effectivity functions and associated claim game correspondences
Refereed by Prof.dr. P.H.M. Ruys

537 Jack P.C. Kleijnen, Gustav A. Alink
Validation of simulation models: mine-hunting case-study
Refereed by Prof.dr.ir. C.A.T. Takkenberg

538 V. Feltkamp and A. van den Nouweland
Controlled Communication Networks
Refereed by Prof.dr. S.H. Tijs

539 A. van Schaik
Productivity, Labour Force Participation and the Solow Growth Model
Refereed by Prof.dr. Th.C.M.J. van de Klundert

540 J.J.G. Lemmen and S.C.W. Eijffinger
The Degree of Financial Integration in the European Community
Refereed by Prof.dr. A.B.T.M. van Schaik

541 J. Bell, P.K. Jagersma
Internationale Joint Ventures
Refereed by Prof.dr. H.G. Barkema

542 Jack P.C. Kleijnen
Verification and validation of simulation models
Refereed by Prof.dr.ir. C.A.T. Takkenberg

543 Gert Nieuwenhuis
Uniform Approximations of the Stationary and Palm Distributions of Marked Point Processes
Refereed by Prof.dr. B.B. van der Genugten
544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen
Multi-Product Cycling with Packaging in the Process Industry
Refereed by Prof.dr. F.A. van der Duyn Schouten

545 J.C. Engwerda
Calculation of an approximate solution of the infinite time-varying LQ-problem
Refereed by Prof.dr. J.M. Schumacher

546 Raymond H.J.M. Gradus and Peter M. Kort
On time-inconsistency and pollution control: a macroeconomic approach
Refereed by Prof.dr. A.J. de Zeeuw

547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir
De Invloed van de Invoering van Preferente Beschermingsaandelen op Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen
Refereed by Prof.dr. P.W. Moerland

548 Sylvester Eijffinger and Eric Schaling
Central bank independence: criteria and indices
Refereed by Prof.dr. J.J. Sijb

549 Drs. A. Schmeits
Geïntegreerde investerings- en financieringsbeslissingen; Implicaties voor Capital Budgeting
Refereed by Prof.dr. P.W. Moerland

550 Peter M. Kort
Standards versus standards: the effects of different pollution restrictions on the firm's dynamic investment policy
Refereed by Prof.dr. F.A. van der Duyn Schouten

551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger
Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations
Refereed by Prof.dr. S.W. Douma

552 Ton Storcken and Harrie de Swart
Towards an axiomatization of orderings
Refereed by Prof.dr. P.H.M. Ruys

553 J.H.J. Roemen
The derivation of a long term milk supply model from an optimization model
Refereed by Prof.dr. F.A. van der Duyn Schouten

554 Geert J. Almekinders and Sylvester C.W. Eijffinger
Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance Tale in DM/$-Returns
Refereed by Prof.dr. A.B.T.M. van Schaik
555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas
"Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie
Refereed by Prof.dr. Th.M.M. Verhallen

556 Ton Geerts
Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems
Communicated by Prof.dr. J. Schumacher

557 Ton Geerts
Invariant subspaces and invertibility properties for singular systems: the general case
Communicated by Prof.dr. J. Schumacher

558 Ton Geerts
Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case
Communicated by Prof.dr. J. Schumacher

559 C. Fricker and M.R. Jaïbi
Monotonicity and stability of periodic polling models
Communicated by Prof.dr.ir. O.J. Boxma

560 Ton Geerts
Free end-point linear-quadratic control subject to implicit continuous-time systems: necessary and sufficient conditions for solvability
Communicated by Prof.dr. J. Schumacher

561 Paul G.H. Mulder and Anton L. Hempenius
Expected Utility of Life Time in the Presence of a Chronic Noncommunicable Disease State
Communicated by Prof.dr. B.B. van der Genugten

562 Jan van der Leeuw
The covariance matrix of ARMA-errors in closed form
Communicated by Dr. H.H. Tigelaar

563 J.P.C. Blanc and R.D. van der Mei
Optimization of polling systems with Bernoulli schedules
Communicated by Prof.dr.ir. O.J. Boxma

564 B.B. van der Genugten
Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables
Communicated by Prof.dr. M.H.C. Paardekooper

565 René van den Brink, Robert P. Gilles
Measuring Domination in Directed Graphs
Communicated by Prof.dr. P.H.M. Ruys
566 Harry G. Barkema
The significance of work incentives from bonuses: some new evidence
Communicated by Dr. Th.E. Nijman

567 Rob de Groof and Martin van Tuijl
Commercial integration and fiscal policy in interdependent, financially integrated
two-sector economies with real and nominal wage rigidity.
Communicated by Prof.dr. A.L. Bovenberg

568 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts
The value of information in a fixed order quantity inventory system
Communicated by Prof.dr. A.J.J. Talman

569 E.N. Kertzman
Begrotingsnormering en EMU
Communicated by Prof.dr. J.W. van der Dussen

570 A. van den Elzen, D. Talman
Finding a Nash-equilibrium in noncooperative N-person games by solving a
sequence of linear stationary point problems
Communicated by Prof.dr. S.H. Tijs

571 Jack P.C. Kleijnen
Verification and validation of models
Communicated by Prof.dr. F.A. van der Duyn Schouten

572 Jack P.C. Kleijnen and Willem van Groenendaal
Two-stage versus sequential sample-size determination in regression analysis of
simulation experiments
Communicated by Prof.Dr. F.A. van der Duyn Schouten

573 Pieter K. Jagersma
Het management van multinationale ondernemingen: de concernstructuur
Communicated by Prof.Dr. S.W. Douma

574 A.L. Hempenius
Explaining Changes in External Funds. Part One: Theory
Communicated by Prof.Dr.Ir. A. Kapteyn

575 J.P.C. Blanc, R.D. van der Mei
Optimization of Polling Systems by Means of Gradient Methods and the Power-Se-
ries Algorithm
Communicated by Prof.dr.ir. O.J. Boxma

576 Herbert Hamers
A silent duel over a cake
Communicated by Prof.dr. S.H. Tijs
577 Gerard van der Laan, Dolf Talman, Hans Kremers
On the existence and computation of an equilibrium in an economy with constant returns to scale production
Communicated by Prof.dr. P.H.M. Ruys

578 R.Th.A. Wagemakers, J.J.A. Moors, M.J.B.T. Janssens
Characterizing distributions by quantile measures
Communicated by Dr. R.M.J. Heuts

579 J. Ashayeri, W.H.L. van Esch, R.M.J. Heuts
Amendment of Heuts-Selen's Lotsizing and Sequencing Heuristic for Single Stage Process Manufacturing Systems
Communicated by Prof.dr. F.A. van der Duyn Schouten

580 H.G. Barkema
The Impact of Top Management Compensation Structure on Strategy
Communicated by Prof.dr. S.W. Douma

581 Jos Benders en Freek Aertsen
Aan de lijn of aan het lijntje: wordt slank produceren de mode?
Communicated by Prof.dr. S.W. Douma

582 Willem Haemers
Distance Regularity and the Spectrum of Graphs
Communicated by Prof.dr. M.H.C. Paardekooper

583 Jalal Ashayeri, Behnam Pourbabai, Luk van Wassenhove
Strategic Marketing, Production, and Distribution Planning of an Integrated Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten

584 J. Ashayeri, F.H.P. Driessen
Integration of Demand Management and Production Planning in a Batch Process Manufacturing System: Case Study
Communicated by Prof.dr. F.A. van der Duyn Schouten

585 J. Ashayeri, A.G.M. van Eijs, P. Nederstigt
Blending Modelling in a Process Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten

586 J. Ashayeri, A.J. Westerhof, P.H.E.L. van Alst
Application of Mixed Integer Programming to A Large Scale Logistics Problem
Communicated by Prof.dr. F.A. van der Duyn Schouten

587 P. Jean-Jacques Herings
On the Structure of Constrained Equilibria
Communicated by Prof.dr. A.J.J. Talman
IN 1993 REEDS VERSCHENEN

588 Rob de Groof and Martin van Tuijl
The Twin-Debt Problem in an Interdependent World
Communicated by Prof.dr. Th. van de Klundert

589 Harry H. Tigelaar
A useful fourth moment matrix of a random vector
Communicated by Prof.dr. B.B. van der Genugten

590 Niels G. Noorderhaven
Trust and transactions; transaction cost analysis with a differential behavioral assumption
Communicated by Prof.dr. S.W. Douma

591 Henk Roest and Kitty Koelmeijer
Framing perceived service quality and related constructs A multilevel approach
Communicated by Prof.dr. Th.M.M. Verhallen

592 Jacob C. Engwerda
The Square Indefinite LQ-Problem: Existence of a Unique Solution
Communicated by Prof.dr. J. Schumacher

593 Jacob C. Engwerda
Output Deadbeat Control of Discrete-Time Multivariable Systems
Communicated by Prof.dr. J. Schumacher

594 Chris Veld and Adri Verboven
An Empirical Analysis of Warrant Prices versus Long Term Call Option Prices
Communicated by Prof.dr. P.W. Moerland

595 A.A. Jeunink en M.R. Kabir
De relatie tussen aandeelhoudersstructuur en beschermingsconstructies
Communicated by Prof.dr. P.W. Moerland

596 M.J. Coster and W.H. Haemers
Quasi-symmetric designs related to the triangular graph
Communicated by Prof.dr. M.H.C. Paardekooper

597 Noud Gruijters
De liberalisering van het internationale kapitaalverkeer in historisch-institutioneel perspectief
Communicated by Dr. H.G. van Gemert

598 John Görtzen en Remco Zwetheul
Weekend-effect en dag-van-de-week-effect op de Amsterdamse effectenbeurs?
Communicated by Prof.dr. P.W. Moerland

599 Philip Hans Franses and H. Peter Boswijk
Temporal aggregation in a periodically integrated autoregressive process
Communicated by Prof.dr. Th.E. Nijman
600 René Peeters
On the p-ranks of Latin Square Graphs
Communicated by Prof.dr. M.H.C. Paardekooper

601 Peter E.M. Borm, Ricardo Cao, Ignacio García-Jurado
Maximum Likelihood Equilibria of Random Games
Communicated by Prof.dr. B.B. van der Genugten

602 Prof.dr. Robert Bannink
Size and timing of profits for insurance companies. Cost assignment for products with multiple deliveries.
Communicated by Prof.dr. W. van Hulst

603 M.J. Coster
An Algorithm on Addition Chains with Restricted Memory
Communicated by Prof.dr. M.H.C. Paardekooper

604 Ton Geerts
Coordinate-free interpretations of the optimal costs for LQ-problems subject to implicit systems
Communicated by Prof.dr. J.M. Schumacher

605 B.B. van der Genugten
Beat the Dealer in Holland Casino's Black Jack
Communicated by Dr. P.E.M. Borm

606 Gert Nieuwenhuis
Uniform Limit Theorems for Marked Point Processes
Communicated by Dr. M.R. Jaïbi

607 Dr. G.P.L. van Roij
Effectisering op internationale financiële markten en enkele gevolgen voor banken
Communicated by Prof.dr. J. Sijben

608 R.A.M.G. Joosten, A.J.J. Talman
A simplicial variable dimension restart algorithm to find economic equilibria on the unit simplex using \(n(n+1)\) rays
Communicated by Prof.Dr. P.H.M. Ruys

609 Dr. A.J.W. van de Gevel
The Elimination of Technical Barriers to Trade in the European Community
Communicated by Prof.dr. H. Huizinga

610 Dr. A.J.W. van de Gevel
Effective Protection: a Survey
Communicated by Prof.dr. H. Huizinga

611 Jan van der Leeuw
First order conditions for the maximum likelihood estimation of an exact ARMA model
Communicated by Prof.dr. B.B. van der Genugten
612 Tom P. Faith
 Bertrand-Edgeworth Competition with Sequential Capacity Choice
 Communicated by Prof. Dr. S.W. Douma

613 Ton Geerts
 The algebraic Riccati equation and singular optimal control: The discrete-time case
 Communicated by Prof. Dr. J.M. Schumacher

614 Ton Geerts
 Output consistency and weak output consistency for continuous-time implicit systems
 Communicated by Prof. Dr. J.M. Schumacher

615 Stef Tijs, Gert-Jan Otten
 Compromise Values in Cooperative Game Theory
 Communicated by Dr. P.E.M. Borm

616 Dr. Pieter J.F.G. Meulendijks and Prof. Dr. Dick B.J. Schouten
 Exchange Rates and the European Business Cycle: an application of a 'quasi-empirical' two-country model
 Communicated by Prof. Dr. A.H.J.J. Kolnaar

617 Niels G. Noorderhaven
 The argumentational texture of transaction cost economics
 Communicated by Prof. Dr. S.W. Douma

618 Dr. M.R. Jaïbi
 Frequent Sampling in Discrete Choice
 Communicated by Dr. M.H. ten Raa

619 Dr. M.R. Jaïbi
 A Qualification of the Dependence in the Generalized Extreme Value Choice Model
 Communicated by Dr. M.H. ten Raa

620 Dr. J.J.A. Moors
 Limiting distributions of moment- and quantile-based measures for skewness and kurtosis
 Communicated by Prof. Dr. B.B. van der Genugten

621 Job de Haan, Jos Benders, David Bennett
 Symbiotic approaches to work and technology
 Communicated by Prof. Dr. S.W. Douma

622 René Peeters
 Orthogonal representations over finite fields and the chromatic number of graphs
 Communicated by Dr. Ir. W.H. Haemers