A Method of Moments Estimator of Tail Dependence in Elliptical Copula Models
Krajina, A.

Publication date:
2009

Link to publication

Citation for published version (APA):
No. 2009–42

A METHOD OF MOMENTS ESTIMATOR OF TAIL DEPENDENCE IN ELLIPTICAL COPULA MODELS

By Andrea Krajina

May 2009

ISSN 0924-7815
A Method of Moments Estimator of Tail Dependence in Elliptical Copula Models

Andrea Krajina∗

Department of Econometrics & OR, CentER, Tilburg University, Tilburg, The Netherlands

Abstract

An elliptical copula model is a distribution function whose copula is that of an elliptical distribution. The tail dependence function in such a bivariate model has a parametric representation with two parameters: a tail parameter and a correlation parameter. The correlation parameter can be estimated by robust methods based on the whole sample. Using the estimated correlation parameter as plug-in estimator, we then estimate the tail parameter applying a modification of the method of moments approach proposed in the paper by J.H.J. Einmahl, A. Krajina and J. Segers [Bernoulli 14(4), 2008, 1003-1026]. We show that such an estimator is consistent and asymptotically normal. Also, we derive the joint limit distribution of the estimators of the two parameters. By a simulation study, we illustrate the small sample behavior of the estimator of the tail parameter and we compare its performance to that of the estimator proposed in the paper by C. Klüppelberg, G. Kuhn and L. Peng [Scandinavian Journal of Statistics 35(4), 2008, 701-718].

Key words: asymptotic normality, elliptical copula, elliptical distribution, meta-elliptical model, method of moments, semi-parametric model, tail dependence

JEL codes: C13, C14, C16

1. Introduction

The bivariate elliptical distributions, see for example [11], are frequently used in various areas of statistical application, mainly in different branches of financial mathematics, such as risk management, see [8, 20, 15]. They are a natural extension of Gaussian and t-distributions, and a family wide enough to capture many traits of real-life problems. A number of recent papers have studied the tail behavior of bivariate elliptical distributions, see [1, 2, 12, 5]. An estimator of the tail dependence function of elliptical distributions was suggested in [18]. To model the tail dependence, a wider class of so-called elliptical copula models can be considered instead of the elliptical distributions, since the (tail) dependence structure does not depend on the marginal distributions. The distribution function from an elliptical copula model is a distribution function which has the copula of an elliptical distribution. The tail dependence of the elliptical copula models was estimated in [19].

Let \((X, Y)\) be a random vector with continuous distribution function \(F\) and marginals \(F_1, F_2\). To study the upper tail dependence structure, the tail dependence function of \((X, Y)\) is defined as

\[
R(x, y) = \lim_{t \to 0} t^{-1} \mathbb{P} \left(1 - F_1(X) \leq tx, 1 - F_2(Y) \leq ty \right),
\]

where \(x \geq 0\) and \(y \geq 0\), see for example [3, 4, 9, 13]. The function \(R\) is concave; \(1 \leq R(x, y) \leq \min\{x, y\}\), for all \(x \geq 0\) and \(y \geq 0\); and \(R\) is homogeneous of order one: \(R(tx, ty) = tR(x, y)\), for...
all $x \geq 0$, $y \geq 0$ and $t \geq 0$. The upper tail dependence coefficient, $R(1,1)$, is often used as a simple measure of tail dependence.

For an elliptical copula model the tail dependence function depends only on the distribution function, through its copula. Since the copula of an elliptical distribution, and hence the tail dependence function of an elliptical copula model too, belongs to a two-parameter family, the estimation of the tail dependence function reduces to the estimation of the two copula parameters: the correlation parameter and the tail parameter.

The correlation can be estimated using the whole sample, from the rank correlations, which are independent of the precise model. In [19], the tail parameter was estimated by matching the empirical tail dependence function and the theoretical one, after plugging in the estimated correlation. Using the estimated correlation coefficient as plug-in estimator, in the present paper we apply the method of moments procedure from [7] to estimate the tail parameter. The method provides a computationally straightforward estimator which is obtained as a solution of a single equation. The estimator is consistent and asymptotically normal. An interesting result that does not appear in the similar literature, namely the joint limit distribution of the tail parameter and correlation parameter, is derived. A simulation study shows that the small sample behavior of the estimator of the tail parameter is comparable to and competitive with the small sample behavior of the estimator derived in [19].

Our paper is organized as follows. In Section 2 we state and describe the model. We formulate the problem and present the estimation method in Section 3. The main results are given in Section 4. In Section 5 the performance of the estimator is illustrated using simulated data. All proofs are deferred to Section 6.

2. Tail dependence in elliptical copula models

Let (Z_1, Z_2) be an elliptically distributed random vector, that is, it satisfies the distributional equality

$$(Z_1, Z_2) \overset{d}{=} GAU,$$

where $G > 0$ is the generating random variable, A is a 2×2 matrix such that $\Sigma = AA^\top$ is of full rank, and U is a 2-dimensional random vector independent of G and uniformly distributed on the unit circle $\{ (z_1, z_2) \in \mathbb{R}^2 : z_1^2 + z_2^2 = 1 \}$. In this case, the matrix Σ can be written as

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix},$$

where $\sigma_1 > 0$, $\sigma_2 > 0$, and $-1 < \rho < 1$. The parameter ρ is called the correlation coefficient and coincides with the usual correlation, if second moments exist.

A distribution function F follows an elliptical copula model if the copula of F is the same as the copula of some elliptical distribution with generating random variable G and correlation coefficient ρ. This model is also known as the meta-elliptical model, as introduced in [10]. If G is regularly varying with index $\nu > 0$ and if $|\rho| < 1$, the expression (2.1) for the tail dependence function R was derived in [18]. (Recall that a random variable G is regularly varying with index $\nu > 0$ if $P(G > x) = x^{-\nu}L(x)$, and L is a slowly varying function.) Setting $f(x, y; \rho, \nu) = \arctan((x/y)^{1/\nu} - \rho)/\sqrt{1 - \rho^2})$ in $[-\arcsin \rho, \pi/2]$ for $x, y > 0$, we have

$$R(x, y; \rho, \nu) = \frac{x \int_{\arcsin \rho}^{\pi/2} (\cos \phi)^\nu d\phi + y \int_{-\arcsin \rho}^{\arcsin \rho} (\sin(\phi + \arcsin \rho))^\nu d\phi}{\int_{-\pi/2}^{\pi/2} (\cos \phi)^\nu d\phi}$$

(2.1)

$$= \frac{x \int_{\arcsin \rho}^{\pi/2} (\cos \phi)^\nu d\phi + y \int_{-\arcsin \rho}^{\arcsin \rho} (\cos \phi)^\nu d\phi}{\int_{-\pi/2}^{\pi/2} (\cos \phi)^\nu d\phi}$$

(2.2)

$$= \int_{-\arcsin \rho}^{\arcsin \rho} \min \{ x(\cos \phi)^\nu, y(\sin(\phi + \arcsin \rho))^\nu \} d\phi,$$

(2.3)
The expression in (2.2) was derived in [19]. The one in (2.3) is easily obtained from the above formulas.

An expression for Pickands dependence function $A(x) := 1 - R(1 - x, x)$ of the bivariate t-distribution was derived in [5],

$$A(x) = xF_{t(\nu+1)} \left(\frac{(1-x)^{\frac{1}{2}} - \rho \sqrt{\nu + 1}}{\sqrt{1-\rho^2}} \right) + (1-x)F_{t(\nu+1)} \left(\frac{(1-x)^{\frac{1}{2}} - \rho \sqrt{\nu + 1}}{\sqrt{1-\rho^2}} \right),$$

where $F_{t(\nu+1)}$ is the distribution function of t-distributed random variable with $\nu + 1$ degrees of freedom.

It was shown in [2] that Pickands dependence function of an elliptical distribution for which the generating variable G is regularly varying with index $\nu > 0$ is the same. Despite the different appearance, expressions (2.1)-(2.3) lead to the same Pickands dependence function.

3. Estimation

Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be a random sample from a continuous distribution function F with marginals F_1 and F_2. Assume that F follows an elliptical copula model with underlying generating variable $G > 0$ and correlation coefficient ρ. To estimate the tail dependence function R, we will estimate the unknown parameters, namely the correlation coefficient ρ and the tail index ν, under the assumptions that $|\rho| < 1$ and that G is regularly varying with index $\nu > 0$.

The above assumption corresponds to asymptotic dependence. If $\rho = 1$ or $\rho = -1$, we get complete dependence, $R(1-x, x) = \min \{1-x, x\}$, for any ν. In case of $-1 < \rho < 1$ and $\nu \downarrow 0$ we have a mixture between complete dependence and independence, $R(1-x, x) = \pi^{-1}(\pi/2 + \arcsin \rho) \min \{1-x, x\}$. If $\nu \uparrow \infty$, then for any ρ we are in the case of asymptotic independence, since then $R(1-x, x) \downarrow 0$.

The estimation consists of two steps. We first estimate the correlation coefficient ρ using Kendall’s τ, see [16, 17], and the relation $\tau = (2/\pi) \arcsin \rho$ obtained in [22], see also Theorem 4.2 in [14]. Then, using expression (2.1) with the consistent estimator $\hat{\rho}$ from the previous step plugged in for the true correlation coefficient ρ, we apply the method of moments estimation procedure introduced in [7] to estimate ν. A similar approach appears in [19], where the tail parameter is estimated using the pointwise inverse of $R(x, y; \rho, \nu)$ with respect to ν, after the correlation coefficient ρ in R has been replaced by the same consistent estimator as above.

3.1. Estimation of the correlation parameter

Kendall’s τ of two random variables X and Y is defined by

$$\tau = \mathbb{P}((X - X')(Y - Y') > 0) - \mathbb{P}((X - X')(Y - Y') < 0),$$

where (X', Y') is independent of and identically distributed as (X, Y). To estimate τ, we will use the classical estimator

$$\hat{\tau} = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \text{sign}((X_i - X_j)(Y_i - Y_j)),$$

and define the estimator of ρ by

$$\hat{\rho} := \sin \left(\frac{\pi}{2} \hat{\tau} \right).$$

This is a consistent and asymptotically normal estimator of ρ, with rate of convergence $1/\sqrt{n}$, which follows from the corresponding properties of $\hat{\tau}$, see for instance [21].
3.2. Estimation of the tail parameter

Denote by R_X^i and R_Y^i the rank of X_i among X_1, \ldots, X_n and the rank of Y_i among Y_1, \ldots, Y_n, respectively. Then for $1 \leq k \leq n$,

$$\hat{R}_n(x, y) := \frac{1}{k} \sum_{i=1}^{n} \mathbf{1}\left\{ R_X^i > n + \frac{1}{2} - kx, \ R_Y^i > n + \frac{1}{2} - ky \right\}$$

is a nonparametric estimator of R. When studying the asymptotic properties of this estimator, $k = k_n$ is an intermediate sequence, that is, $k \to \infty$ and $k/n \to 0$ as $n \to \infty$.

Denote the parameter space by $\bar{\Theta} := \bar{\Theta}_\rho \times \bar{\Theta}_\nu$, with $\bar{\Theta}_\rho = (-1, 1)$ and $\bar{\Theta}_\nu = (0, \infty)$. Its elements are pairs $\bar{\theta} := (\rho, \nu)$. The tail dependence function of an elliptical copula model belongs to a parametric family $\{R(\cdot, \cdot; \bar{\theta}): \bar{\theta} \in \bar{\Theta}\}$. Given the correlation parameter ρ, it reduces to a single-parameter family $\{R(\cdot, \cdot; \rho, \nu): \nu \in \bar{\Theta}_\nu\}$. We use the approach from [7] to estimate ν for a given ρ and an integrable function $g: [0, 1]^2 \to \mathbb{R}$, the method of moments estimator of ν is defined as the solution to

$$
\iint_{[0,1]^2} g(x, y)\hat{R}_n(x, y)dxdy = \iint_{[0,1]^2} g(x, y)R(x, y; \rho, \hat{\nu}_n)dxdy. \tag{3.1}
$$

We can simplify the above equation by an appropriate choice of the function g. Choosing $g(x, y) = \mathbf{1}\{x + y \leq 1\}$, $(x, y) \in [0, 1]^2$, reduces the area of integration from the unit square to the triangle $\{(x, y) \in [0, 1]^2: x + y \leq 1\}$.

Due to homogeneity of R, see for instance [3, 4], we get that

$$
\iint_{[0,1]^2} \mathbf{1}\{x + y \leq 1\}R(x, y; \rho, \nu)dxdy = \frac{1}{3} \int_{[0,1]} R(1 - x, x; \rho, \nu)dx.
$$

Instead of solving the equation (3.1), for a given ρ we define the estimator of ν as the solution to

$$
\int_{[0,1]} \hat{R}_n(1 - x, x)dx = \int_{[0,1]} R(1 - x, x; \rho, \hat{\nu})dx.
$$

That is, for a given $\rho \in \bar{\Theta}_\rho$, we define the estimator of ν as the inverse of the function $\bar{\varphi}_\rho: \bar{\Theta}_\nu \to \mathbb{R}$, defined by

$$
\bar{\varphi}_\rho(\nu) := \int_{[0,1]} R(1 - x, x; \rho, \nu)dx,
$$

in the point $\int_{[0,1]} \hat{R}_n(1 - x, x)dx$. However, if $\rho > 0$ this is not possible for all ν, since for positive ρ the function $\bar{\varphi}_\rho$ is not invertible on its whole domain $(0, \infty)$. For each $\rho > 0$ there exists a point $\nu^* = \nu^*(\rho)$, such that the function $\nu \mapsto \bar{\varphi}_\rho(\nu)$ is increasing on $(0, \nu^*(\rho))$ and decreasing on $(\nu^*(\rho), \infty)$, see Figure 1.

We will restrict the parameter space so to avoid the fact that ν^* changes with ρ, while retaining as much flexibility as possible. We choose some $\rho^* < 1$, numerically approximate the value of $\nu^*(\rho^*)$, and restrict $\bar{\Theta} = (-1, 1) \times (0, \infty)$ to $(-1, \rho^*) \times (\nu^*, \infty) := \Theta_\rho \times \Theta_\nu := \Theta$. For example, if $\rho^* = 0.9$, we can take $\nu^* = 0.66$, what leads to a parameter space that is appropriate for applications.

For every $\rho \in \Theta_\rho$ denote by φ_ρ the restriction of $\bar{\varphi}_\rho$ to Θ_ν, that is, for every $\rho \in \Theta_\rho$,

$$
\varphi_\rho(\nu) := \int_{[0,1]} R(1 - x, x; \rho, \nu)dx, \quad \nu \in \Theta_\nu.
$$

Finally, for $\hat{\rho} \in \Theta_\rho$, we define $\hat{\nu}_n$, the moment estimator of the tail parameter ν, as the solution to

$$
\int_{[0,1]} \hat{R}_n(1 - x, x)dx = \int_{[0,1]} R(1 - x, x; \hat{\rho}, \hat{\nu})dx,
$$

4
that is,
\[
\hat{\nu}_n := \varphi_\rho^{-1} \left(\int_{0.1} \hat{R}_n(1 - x, x) \, dx \right).
\] (3.2)

The estimator is well-defined with probability tending to one, as a consequence of the consistency of \(\hat{\rho} \) and the uniform consistency of \(\hat{R}_n \).

Remark 3.1. (i) In the central part of the interval \([0, 1]\) the functions \(x \mapsto R(1 - x, x; \rho, \nu) \), \(\rho > 0 \), behave in a favorable way, that is, they are decreasing in \(\nu \), see Figure 2(a). To keep the parameter space as large as possible, we could restrict the area of integration from \([0, 1]\) to \([1/2 - \delta, 1/2 + \delta]\), for some \(\delta \in (0, 1/2] \), see Figure 2(b). However, this may result in a less efficient estimator.

(ii) Note that the set \(\Theta = \Theta_\rho \times \Theta_\nu \) is not unique. For any fixed \(\rho^* \) we can take \(\Theta = (-1, \rho^*) \times (\nu, \infty) \), with \(\nu \geq \nu^*(\rho^*) \), see Figure 2(b), the solid line. Also, one could fix \(\nu^* > 0 \) in advance, and appropriately restrict \(\rho \) to the interval \((-1, \rho^*(\nu^*))\).

4. **Main results**

Let \(\hat{\rho} \) and \(\hat{\nu}_n \) be as in Section 3 and let \(\rho_0 \in \Theta_\rho \) and \(\nu_0 \in \Theta_\nu \) be the true values of the correlation coefficient and the tail index, respectively. The basic assumption is that

(C0) \(g \) is integrable and \(\Theta = \Theta_\rho \times \Theta_\nu \) are such that \(\varphi_\rho \) is a homeomorphism between \(\Theta_\nu \) and its image, for every \(\rho \in \Theta_\rho \).

For some of the results, we will need the following conditions:

(C1) there exists an \(\alpha > 0 \) such that as \(t \to 0 \),
\[
t^{-1} \mathbb{P}(1 - F_1(X_1) \leq tx, 1 - F_2(Y_1) \leq ty) - R(x, y) = O(t^\alpha),
\]
uniformly on \(\{(x, y) \in (0, \infty)^2 : x + y = 1\} \);
Proposition 4.1. Assume an elliptical copula model in \(\mathbb{R}^2 \) with \((\rho_0, \nu_0) \in \Theta\). If (C0) holds, then

\[
H(\rho, \nu) := \left(\rho, \int_{[0,1]} R(1-x, x; \rho, \nu) \, dx \right),
\]

is continuously differentiable at \((\rho_0, \nu_0)\) and its differential in this point is regular.

An application of the inverse mapping theorem yields the following consequence of Proposition 4.1. Let \(D_f (x) \) denote the differential of \(f \) in \(x \).

Corollary 4.2. Assume the situation as in Proposition 4.1. Then there exist open neighborhoods \(U \subseteq \Theta \) of \((\rho_0, \nu_0)\) and \(V \subseteq H(\Theta) \) of \(H(\rho_0, \nu_0) \) such that the restriction \(H|_U : U \to V \) is one-to-one. Moreover, its inverse

\[
K := (H|_U)^{-1} : V \to U
\]

is continuously differentiable and for the differential of \(K \) in \(H(\rho_0, \nu_0) \) we have

\[
D_K (H (\rho_0, \nu_0)) = (D_H(\rho_0, \nu_0))^{-1}.
\]

Next we present the consistency and asymptotic normality results for \(\hat{\nu}_n \) and \((\hat{\nu}_n, \hat{\rho})\), respectively.

Theorem 4.3 (Consistency of \(\hat{\nu}_n \)). Assume the situation as in Proposition 4.1. It holds that

\[
\hat{\nu}_n \xrightarrow{p} \nu_0, \quad \text{as } n \to \infty, \ k \to \infty, \ k/n \to 0.
\]

Denote by \(W \) a mean-zero Wiener process on \([0, \infty)^2\) with covariance function

\[
E_W(x_1, y_1)W(x_2, y_2) = R(x_1 \land x_2, y_1 \land y_2; \rho_0, \nu_0),
\]

(4.3)
and for $x, y \in [0, \infty)$ denote
\[W_1(x) := W(x, \infty), \quad W_2(y) := W(\infty, y). \] (4.4)
Further, for $(x, y) \in [0, \infty)^2$ let $\dot{R}_1(x, y)$ and $\dot{R}_2(x, y)$ be the partial derivatives of R in the point (x, y) with respect to the first and second coordinates, respectively.

Finally, define the stochastic process B on $[0, \infty)^2$ by
\[B(x, y) := W(x, y) - \dot{R}_1(x, y)W_1(x) - \dot{R}_2(x, y)W_2(y). \] (4.5)

Let $N_\rho \sim \mathcal{N}(0, \sigma_\rho^2)$ be the normal limiting random variable of $\sqrt{n}(\hat{\rho} - \rho_0)$ and denote by $N_\nu \sim \mathcal{N}(0, \sigma_\nu^2)$ the normal random variable $N_\nu := c^{-1}\int_{[0,1]}R(1-x,x;\rho_0,\nu)dx$, where
\[c := \partial/\partial \nu \int_{[0,1]} R(1-x,x;\rho_0,\nu)dx \bigg|_{\nu=\hat{\rho}}. \] (4.6)

Theorem 4.4 (Asymptotic normality of $(\hat{\nu}, \hat{\rho})$). Let $k/n \to 0$. Assume the situation as in Proposition 4.1 and assume that the conditions $(C1)$ and $(C2)$ hold. Then as $n \to \infty$ and $k \to \infty$,
\[\left(\sqrt{k}(\hat{\nu} - \nu_0), \sqrt{n}(\hat{\rho} - \rho_0) \right) \overset{d}{\to} (N_\nu, N_\rho), \]
where N_ν and N_ρ are independent.

Remark 4.5. The above results are not tied to the Kendell’s tau based estimator of ρ. The results in Theorem 4.3 and Theorem 4.4 hold whenever the rate of convergence of an estimator of ρ is faster than $1/\sqrt{k}$.

5. Simulation Study

We simulated 50 random samples of size $n = 1000$ from two elliptical copula models with correlation coefficient $\rho_0 = 0.3$ and tail parameter $\nu_0 \in \{1, 5\}$.

The two estimators that we compare are the MoME, the method of moments estimator $\hat{\nu}_n$ defined in (3.2), and the KKP estimator of tail parameter from [19] with the weight function $m(\psi) = 1 - (4\psi/\pi - 1)^2$, $0 \leq \psi \leq \pi/2$. The KKP estimator is defined by
\[\hat{\nu}_{KKP} := \frac{1}{M(\hat{Q} \cap \hat{Q}^*)} \int_{\hat{Q} \cap \hat{Q}^*} \hat{\nu}(\sqrt{2}\cos \psi, \sqrt{2}\sin \psi) M(d\psi), \]
where M is the measure defined by m, $\hat{\nu}(x, y)$ is the inverse of $R(x, y; \hat{\rho}, \nu)$ with respect to ν in the point $\hat{R}_n(x, y)$, for $x > 0$, $y > 0$, and the sets \hat{Q} and \hat{Q}^* are the subsets of $[0, \pi/2]$ defined in such a way so that $\hat{\nu}_{KKP}$ is well-defined and that it has desired asymptotic properties, see [19].

In Figure 3 we plot for those two estimators the bias and the root mean squared error (RMSE) against the effective sample size k.

The plots show that the MoME has much smaller bias than the KKP estimator. Further, it appears to be more robust with respect to the choice of k, and better than the KKP estimator for k large enough. Also, the value of k after which the MoME performs better gets smaller as the tail parameter that is estimated gets larger.

6. Proofs

Proof of Proposition 4.1. To show that the function H is continuously differentiable we will show that its partial derivatives exist and are continuous on Θ. Since $H(\rho, \nu) = (H_1(\rho, \nu), H_2(\rho, \nu))$, where $H_i : \Theta \to \mathbb{R}$, $i = 1, 2$, are given by
\[H_1(\rho, \nu) = \rho, \]
\[H_2(\rho, \nu) = \int_{[0,1]} R(1-x,x;\rho,\nu)dx, \]
(a) Elliptical copula model with $\rho_0 = 0.3$ and $\nu_0 = 1$.

(b) Elliptical copula model with $\rho_0 = 0.3$ and $\nu_0 = 5$.

Figure 3: The bias and the RMSE of two different estimators of tail coefficient ν; MoME ($\cdots\cdots$), KKP ($\cdot\cdot\cdot\cdot$).
we have
\[
\frac{\partial H_1}{\partial \rho}(\rho, \nu) = 1, \quad \frac{\partial H_1}{\partial \nu}(\rho, \nu) = 0,
\]
\[
\frac{\partial H_2}{\partial \rho}(\rho, \nu) = c_0^2(1 - \rho^2)^{\nu/2} \int_{[0,1]} \frac{x(1 - x)}{(x^2/\nu + (1 - x)^2/\nu - 2\rho x^{1/\nu}(1 - x)^{1/\nu})^{\nu/2}}dx,
\]
\[
\frac{\partial H_2}{\partial \nu}(\rho, \nu) = c_0^2 \int_{[0,1]} (1 - x)C\left(\nu, \arctan \frac{1 - x}{\sqrt{1 - \rho^2}}\right)dx.
\]
The last partial derivative relies on a similar result in [19]; the notation used above also comes from that paper:
\[
c_0 = \int_{-\pi/2}^{\pi/2} (\cos \phi)^\nu d\phi, \quad c_1 = \int_{-\pi/2}^{\pi/2} (\cos \phi)^\nu \ln(\cos \phi)d\phi,
\]
\[
D(\nu, z) = c_0 \int_z^{\pi/2} (\cos \phi)^\nu \ln(\cos \phi)d\phi - c_1 \int_z^{\pi/2} (\cos \phi)^\nu d\phi,
\]
\[
C(\nu, z) = D(\nu, z) + (\rho + \sqrt{1 - \rho^2} \tan z)^{-\nu}D(\nu, \arccos \rho - z).
\]
All four partial derivatives exist and are continuous functions on Θ.

It can be shown that the partial derivative $\partial H_2/\partial \nu$ is negative for all $(\rho, \nu) \in \Theta$, which implies that the differential is regular in every point in Θ. □

Proof of Theorem 4.3. Let $p_2: \mathbb{R}^2 \to \mathbb{R}$ denote the projection to the second coordinate and let H and K be the mappings introduced in (4.1) and (4.2), respectively. Note that ν_0 can be written as
\[
\nu_0 = (p_2 \circ K)\left(\rho_0, \int_{[0,1]} R(1 - x, x; \rho_0, \nu_0)dx\right).
\]
Moreover, the estimator $\hat{\nu}_n$ has the representation
\[
\hat{\nu}_n = (p_2 \circ K)\left(\hat{\rho}, \int_{[0,1]} \hat{R}_n(1 - x, x)dx\right). \tag{6.1}
\]
The uniform consistency of \hat{R}_n, see the proof of Theorem 2.2 in [6], and the equation (3.1) in [7] imply
\[
\int_{[0,1]} \hat{R}_n(1 - x, x)dx \overset{P}{\to} \int_{[0,1]} R(1 - x, x)dx. \tag{6.2}
\]
Hence the right-hand side of (6.1) is well defined with probability tending to one. Further, from the continuous mapping theorem and [21] we know that
\[
\hat{\rho} \overset{P}{\to} \rho_0, \tag{6.3}
\]
as $n \to \infty$. Using (6.2), (6.3) and continuity of $p_2 \circ K$, we obtain $\hat{\nu}_n \overset{P}{\to} \nu_0$, as $n \to \infty$, $k \to \infty$ and $k/n \to 0$. □

Some more notation and technical results are needed for the proof of Theorem 4.4. For $i = 1, \ldots, n$ denote $U_i := 1 - F_1(X_i)$ and $V_i := 1 - F_2(Y_i)$. Let $U_{1:n} \leq \cdots \leq U_{n:n}$ and $V_{1:n} \leq \cdots \leq V_{n:n}$
be the corresponding order statistics and by \([a]\) denote the smallest integer not smaller than \(a\). Define

\[
\hat{R}_n(x, y) := \frac{1}{k} \sum_{i=1}^{n} 1 \{ \hat{R}^X_i > n + 1 - kx, \hat{R}^Y_i > n + 1 - ky \},
\]

\[
R_n(x, y) := \frac{n}{k} \mathbb{P} \left(U_1 \leq \frac{kx}{n}, V_1 \leq \frac{ky}{n} \right),
\]

\[
T_n(x, y) := \frac{1}{k} \sum_{i=1}^{n} 1 \left\{ U_i < \frac{kx}{n}, V_i < \frac{ky}{n} \right\},
\]

and note that

\[
\hat{R}_n(x, y) = T_n \left(\frac{n}{k} U_{\lfloor kx \rfloor}; n, \frac{n}{k} V_{\lfloor ky \rfloor}; n \right).
\]

It is easily seen that

\[
\sup_{(x, y) \in [0, n/k]^2} \frac{\sqrt{k} \left| \hat{R}_n(x, y) - R_n(x, y) \right|}{1} \leq \frac{1}{\sqrt{k}} \to 0,
\]

as \(n \to \infty\).

Let \(W, W_1\) and \(W_2\) be as in (4.3) and (4.4). Write \(v_n(x, y) = \sqrt{k} (T_n(x, y) - R_n(x, y))\), \(v_{n,1}(x) := v_n(x, \infty)\) and \(v_{n,2}(y) := v_n(\infty, y)\). Proposition 3.1 in [6] shows that for any \(T > 0\)

\[
(v_n(x, y), (x, y) \in [0, T]^2; v_{n,1}(x), x \in [0, T]; v_{n,2}(y), y \in [0, T])
\]

\[
\xrightarrow{d} (W(x, y), (x, y) \in [0, T]^2; W_1(x), x \in [0, T]; W_2(y), y \in [0, T]),
\]

in the topology of uniform convergence, as \(n \to \infty\).

Let \(F_n(x, y) = (1/n) \sum_{i=1}^{n} 1 \{ X_i \leq x, Y_i \leq y \}\) be the empirical distribution function of \(F\), and let \(F_{n,1}\) and \(F_{n,2}\) be the empirical distribution functions of the marginals \(F_1\) and \(F_2\), respectively.

Define the empirical process \(r_n(x, y) := \sqrt{n} (F_n(x, y) - F(x, y))\), \((x, y) \in [-\infty, \infty]^2\), and denote by \(W_{B}\) a Brownian bridge on \([-\infty, \infty]^2\) with covariance structure

\[
\mathbb{E} W_{B}(x_1, y_1) W_{B}(x_2, y_2) = F(\min\{x_1, x_2\}, \min\{y_1, y_2\}) - F(x_1, y_1) F(x_2, y_2).
\]

We know, see e.g. [23], that \(r_n \xrightarrow{d} W_{B}\) in the topology of uniform convergence, as \(n \to \infty\). Hence we obtain for the marginal processes, \(r_{n,j} \xrightarrow{d} W_{B,j}\), where \(r_{n,j}(x) := \sqrt{n} (F_{n,j}(x) - F_j(x))\), \(j = 1, 2\), \(W_{B1}(x) = W_{B}(x, \infty)\) and \(W_{B2}(x) = W_{B}(\infty, x)\).

Lemma 6.1. For fixed \((x, y) \in [0, \infty]^2\) and \((t, w) \in [-\infty, \infty]^2\) it holds that as \(n \to \infty, k \to \infty, k/n \to 0\),

\[
\mathbb{E} v_n(x, y) r_n(t, w) \to 0.
\]

Proof. Fix \((x, y) \in [0, \infty]^2\) and \((t, w) \in \mathbb{R}^2\). Then,

\[
\mathbb{E} v_n(x, y) r_n(t, w) = \mathbb{E} \left[\sqrt{k} (T_n(x, y) - R_n(x, y)) \cdot \sqrt{n} (F_n(x, y) - F(x, y)) \right]
\]

\[
= \frac{1}{\sqrt{k n}} \mathbb{E} \sum_{i=1}^{n} \left(1 \left\{ U_i < \frac{kx}{n}, V_i < \frac{ky}{n} \right\} - \mathbb{P} \left(U_1 \leq \frac{kx}{n}, V_1 \leq \frac{ky}{n} \right) \right)
\]

\[
\cdot \sum_{j=1}^{n} \left(1 \{ X_j \leq t, Y_j \leq w \} - F(t, w) \right)
\]
Let \(\{X_j \leq t, Y_j \leq w\} \) be independent.

From the weak convergence, and hence tightness, of the process \(W \) in Lemma 6.2.

Using independence of the sample, we get

\[
E_1 = \frac{1}{\sqrt{k n}} \sum_{i,j=1, i \neq j}^{n} \mathbb{E} \left[\mathbf{1} \left\{ U_i < \frac{k x}{n}, V_i < \frac{k y}{n} \right\} - \mathbb{P} \left(U_i \leq \frac{k x}{n}, V_i \leq \frac{k y}{n} \right) \right]
\]

\[
+ \frac{1}{\sqrt{k n}} \sum_{i=1}^{n} \mathbb{E} \left[\mathbf{1} \left\{ U_i < \frac{k x}{n}, V_i < \frac{k y}{n} \right\} - \mathbb{P} \left(U_i \leq \frac{k x}{n}, V_i \leq \frac{k y}{n} \right) \right]
\]

\[
=: E_1 + E_2.
\]

Using independence of the sample, we get

\[
E_1 = \frac{1}{\sqrt{k n}} \sum_{i,j=1, i \neq j}^{n} \mathbb{E} \left[\mathbf{1} \left\{ U_i < \frac{k x}{n}, V_i < \frac{k y}{n} \right\} - \mathbb{P} \left(U_i \leq \frac{k x}{n}, V_i \leq \frac{k y}{n} \right) \right]
\]

\[
\mathbb{E} \left[\mathbf{1} \left\{ X_j \leq t, Y_j \leq w\right\} - F(t, w) \right]
\]

\[
= 0.
\]

Denote the indicators and probabilities associated with \(v_n(x, y) \) and \(r_n(t, w) \) by \(\mathbf{1}_1, p_1 \) and \(\mathbf{1}_2, p_2 \), respectively. Using the fact that all the factors in the sum in \(E_2 \) have the same distribution, we get

\[
E_2 = \sqrt{\frac{n}{k}} \mathbb{E} \left[\mathbf{1} \left\{ U_i < \frac{k x}{n}, V_i < \frac{k y}{n} \right\} - \mathbb{P} \left(U_i \leq \frac{k x}{n}, V_i \leq \frac{k y}{n} \right) \right] \cdot \left(\mathbf{1} \left\{ X_1 \leq t, Y_1 \leq w\right\} - F(t, w) \right)
\]

\[
= \sqrt{\frac{n}{k}} \mathbb{E} \left[\mathbf{1} \left\{ U_i < \frac{k x}{n}, V_i < \frac{k y}{n} \right\} \mathbf{1}\left\{ X_1 \leq t, Y_1 \leq w\right\} - \mathbb{P} \left(U_i \leq \frac{k x}{n}, V_i \leq \frac{k y}{n} \right) F(t, w) \right]
\]

\[
\leq \sqrt{\frac{n}{k}} \mathbb{E} \left[\mathbf{1} \left\{ U_i < \frac{k x}{n}, V_i < \frac{k y}{n} \right\} \right]
\]

\[
\leq \sqrt{\frac{k}{n}} \mathbb{P} \left(U_1 < \frac{k x}{n}, V_1 < \frac{k y}{n} \right) \leq \sqrt{\frac{k}{n}} \min\{x, y\} \to 0,
\]

as \(n \to \infty, k \to \infty \) and \(k/n \to 0 \).

\[
\square
\]

Lemma 6.2. Let \(T > 0 \). In the topology of uniform convergence, as \(n \to \infty, k \to \infty, k/n \to 0 \), the process

\[
(v_n(x, y), (x, y) \in [0, T]^2; v_{n1}(x), x \in [0, T]; v_{n2}(y), y \in [0, T], r_n(x, y), (x, y) \in \mathbb{R}^2)
\]

converges in distribution to

\[
(W(x, y), (x, y) \in [0, T]^2; W_1(x), x \in [0, T]; W_2(y), y \in [0, T], W_B(x, y), (x, y) \in \mathbb{R}^2),
\]

with \((W(x, y), (x, y) \in [0, T]^2; W_1(x), x \in [0, T]; W_2(y), y \in [0, T]) \) and \((W_B(x, y), (x, y) \in \mathbb{R}^2) \) independent.

Proof. From the weak convergence, and hence tightness, of

\[
(v_n(x, y), (x, y) \in [0, T]^2; v_{n1}(x), x \in [0, T]; v_{n2}(y), y \in [0, T])
\]

and \((r_n(x, y), (x, y) \in \mathbb{R}^2) \), we get the tightness of the process in (6.4).
By the Cramér-Wold device, see for example [24], and the univariate Lindeberg-Feller central limit theorem, using Lemma 6.1, we get convergence of the finite-dimensional distributions. □

Using the Skorohod construction we get a probability space containing all processes \(\tilde{v}_n, \tilde{v}_{n1}, \tilde{v}_{n2}, \tilde{r}_n, \tilde{W}, \tilde{W}_1, \tilde{W}_2 \) and \(\tilde{W}_B \), where

\[
(\tilde{v}_n, \tilde{v}_{n1}, \tilde{v}_{n2}, \tilde{r}_n) \overset{d}{=} (v_n, v_{n1}, v_{n2}, r_n),
(\tilde{W}, \tilde{W}_1, \tilde{W}_2, \tilde{W}_B) \overset{d}{=} (W, W_1, W_2, W_B),
\]

and it holds that as \(n \to \infty, k \to \infty, k/n \to 0, \)

\[
\sup_{(x,y)\in[0,T]^2} |\tilde{v}_n(x, y) - \tilde{W}(x, y)| \to 0 \text{ a.s.,} \tag{6.6}
\]

\[
\sup_{(x,y)\in\mathbb{R}^2} |\tilde{r}_n(x, y) - \tilde{W}_B(x, y)| \to 0 \text{ a.s.,} \tag{6.7}
\]

and the analogous statements hold for marginal processes \(v_{n1}, v_{n2}, r_n \) and \(r_{n1} \) as well. We work on this space from now on, but keep the old notation (without tilde’s).

Lemma 6.3. Assume the situation as in Theorem 4.4. On the probability space of the Skorohod construction

\[
\left(\sqrt{k} \left(\int_{[0,1]} \tilde{R}_n(1 - x, x) \, dx - \int_{[0,1]} R(1 - x, x) \, dx \right), \sqrt{n}(\hat{\rho} - \rho_0) \right) \overset{p}{\to} \left(\int_{[0,1]} B(1 - x, x) \, dx, \mathcal{N}_\rho \right),
\]

as \(n \to \infty, k \to \infty \) and \(k/n \to 0 \), where \(\int_{[0,1]} B(1 - x, x) \, dx \) and \(\mathcal{N}_\rho \) are independent, and \(B \) is the process defined in (4.5).

Proof. By Lemma 6.2 it is sufficient to show that

\[
\sqrt{k} \left(\int_{[0,1]} \tilde{R}_n(1 - x, x) \, dx - \int_{[0,1]} R(1 - x, x) \, dx \right) \overset{p}{\to} \int B(1 - x, x) \, dx, \tag{6.9}
\]

and

\[
\sqrt{n}(\hat{\rho} - \rho_0) \overset{p}{\to} \mathcal{N}_\rho, \tag{6.10}
\]

since \(\mathcal{N}_\rho \) is a functional of \(W_B \), by (6.12) and the delta method.

For the convergence in (6.10) we will first show that \(\sqrt{n}(\hat{\tau} - \tau_0) \overset{p}{\to} \mathcal{N}_\tau \), where \(\mathcal{N}_\tau \) is the limiting normal random variable for \(\hat{\tau} \), see for example [17] or [21]. By the Hoeffding representation of U-statistics and its properties, see for example [21], we get that

\[
\sqrt{n}(\hat{\tau} - \tau_0) = 2\sqrt{n} \left(\int_{\mathbb{R}^2} \Phi(x, y) \, dF_n(x, y) - \int_{\mathbb{R}^2} \Phi(x, y) \, dF(x, y) \right) + o_P(1),
\]

where \(\Phi(x, y) = 1 - 2F_1(x) - 2F_2(y) + 4F(x, y) \). Let \(\tau_n, \tau_{n1}, \tau_{n2}, W_B, W_{B1}, W_{B2} \) be as defined before Lemma 6.1. From integration by parts we get

\[
\sqrt{n}(\hat{\tau} - \tau_0) = -8 \int_{\mathbb{R}^2} \tau_n(x, y) \, dF(x, y) + 4 \int_{\mathbb{R}} \tau_{n1}(x) \, dF_1(x) + 4 \int_{\mathbb{R}} \tau_{n2}(y) \, dF_2(y) + o_P(1). \tag{6.11}
\]

Denote

\[
\mathcal{N}_\tau := -8 \int_{\mathbb{R}^2} W_B(x, y) \, dF(x, y) + 4 \int_{\mathbb{R}} W_{B1}(x) \, dF_1(x) + 4 \int_{\mathbb{R}} W_{B2}(y) \, dF_2(y). \tag{6.12}
\]

The result in (6.7), its marginal versions and (6.11) yield that \(\sqrt{n}(\hat{\tau} - \tau_0) \overset{p}{\to} \mathcal{N}_\tau \). Since \(\hat{\rho} = \sin(\pi/2)\hat{\tau} \), the delta method yields (6.10), where \(\mathcal{N}_\rho \) is an appropriate function of \(\mathcal{N}_\tau \). Note that \(\mathcal{N}_\rho \) is a normally distributed random variable with mean zero and some variance, \(\sigma^2_\rho \), say. □
Lemma 6.4. Assume the situation as in Proposition 4.1. As $n \to \infty$, $k \to \infty$ and $k/n \to 0$,
\[
\frac{\varphi_{\hat{\rho}}^{-1}(\int_{[0,1]} \hat{R}_n(1-x,x)dx) - \varphi_{\hat{\rho}}^{-1}(\int_{[0,1]} R(1-x,x;\rho_0,\nu_0)dx)}{\int_{[0,1]} \hat{R}_n(1-x,x)dx - \int_{[0,1]} R(1-x,x;\rho_0,\nu_0)dx} \to c, \tag{6.13}
\]
where c is defined in (4.6), and
\[
\sqrt{k} \left(\varphi_{\hat{\rho}}^{-1}\left(\int_{[0,1]} R(1-x,x;\rho_0,\nu_0)dx \right) - \varphi_{\rho_0}^{-1}\left(\int_{[0,1]} R(1-x,x;\rho_0,\nu_0)dx \right) \right) \to 0. \tag{6.14}
\]

Proof. Throughout the proof we omit writing the region of integration, $[0,1]$. As before, let H be the function on Θ given by $H(\rho,\nu) = (\rho, \varphi_\rho(\nu))$, let K be its local inverse, and let p_2 be the projection to the second coordinate. Since $K(\rho,\mu) = (\rho,\nu)$, where ν is such that $\mu = \int_{[0,1]} R(1-x,x;\rho,\nu)dx$, we see that $(p_2 \circ K)(\rho,\mu) = \varphi_{\rho}^{-1}(\mu)$. Denote $\mu_0 := \int R(1-x,x;\rho_0,\nu_0)dx$.

First we prove (6.13). Define the function $f: [0,1] \to \mathbb{R}$ by
\[
f(t) := (p_2 \circ K)\left(\hat{\rho}, \mu_0 + t \left(\int \hat{R}_n(1-x,x)dx - \mu_0 \right) \right).
\]
Using the mean value theorem for f on $[0,1]$ we get
\[
f(1) - f(0) = (1 - 0) \cdot f'(t)|_{t=t^*}, \quad t^* \in (0,1).
\]
Since $f(1) = (p_2 \circ K)(\hat{\rho}, \int \hat{R}_n(1-x,x)dx) = \varphi_{\hat{\rho}}^{-1}(\int \hat{R}_n(1-x,x)dx)$ and $f(0) = (p_2 \circ K)(\hat{\rho},\mu_0) = \varphi_{\rho_0}^{-1}(\mu_0)$, we get
\[
\varphi_{\hat{\rho}}^{-1}(\int \hat{R}_n(1-x,x)dx) - \varphi_{\rho_0}^{-1}(\mu_0) = \frac{\partial}{\partial \mu} (p_2 \circ K)(\hat{\rho},\mu)|_{\mu=\mu^*} \cdot \left(\int \hat{R}_n(1-x,x)dx - \mu_0 \right),
\]
with $\mu^* = \mu_0 + t^*(\int \hat{R}_n(1-x,x)dx - \mu_0)$. Because μ^* is between $\int \hat{R}_n(1-x,x)dx$ and μ_0, the consistency of $\int \hat{R}_n(1-x,x)dx$ implies that $\mu^* \xrightarrow{P} \mu_0$, as $n \to \infty$, $k \to \infty$ and $k/n \to 0$. This, together with the consistency of $\hat{\rho}$ and the continuous differentiability of K, see Corollary 4.2, implies that the left-hand side of (6.13) converges in probability to $(\partial/\partial \mu)(p_2 \circ K)(\rho_0,\mu_0) = (\partial/\partial \mu)\varphi_{\rho_0}^{-1}(\mu_0)$. By the inverse mapping theorem, this constant equals c.

Next we show that (6.14) holds. Similarly, we define the function $f: [0,1] \to \mathbb{R}$ by
\[
f(t) := (p_2 \circ K)(\rho_0 + t(\hat{\rho} - \rho_0),\mu_0).
\]
The mean value theorem applied to f on $[0,1]$ yields
\[
f(1) - f(0) = (1 - 0) \cdot f'(t)|_{t=t^*}, \quad t^* \in (0,1).
\]
Write $\rho^* := \rho_0 + t^*(\hat{\rho} - \rho_0)$. Since $f(1) = \varphi_{\hat{\rho}}^{-1}(\mu_0)$, and $f(0) = \varphi_{\rho_0}^{-1}(\mu_0)$, the left-hand side of (6.14) is equal to
\[
\frac{\partial}{\partial \rho} \varphi_{\rho}^{-1}(\mu_0)|_{\rho=\rho^*} \sqrt{k}(\hat{\rho} - \rho_0). \tag{6.15}
\]
By Corollary 4.2, $\rho \mapsto (\partial/\partial \rho)\varphi_{\rho}^{-1}(\mu_0)$ is continuous, hence it is bounded on a closed neighborhood of ρ_0. The consistency of $\hat{\rho}$ then implies that $(\partial/\partial \rho)\varphi_{\rho}^{-1}(\mu_0)|_{\rho=\rho^*}$ is bounded with probability tending to one. Since the rate of convergence of $\hat{\rho}$ is $1/\sqrt{n}$, the expression in (6.15) converges to zero in probability as $n \to \infty$, $k \to \infty$ and $k/n \to 0$. \qed
Proof of Theorem 4.4. Here we again omit writing the region of integration, [0,1], and we write \(R(1-x,x) \) instead of \(R(1-x,x; \rho_0, \nu_0) \). We have

\[
\sqrt{k} (\hat{\nu}_n - \nu_0) = \frac{\varphi^{-1}_\hat{\rho}(\int \hat{R}_n(1-x,x)dx) - \varphi^{-1}_\hat{\rho}(\int R(1-x,x)dx)}{\int \hat{R}_n(1-x,x)dx - \int R(1-x,x)dx} \cdot \sqrt{k} \left(\int \hat{R}_n(1-x,x)dx - \int_{[0,1]} R(1-x,x)dx \right) \\
+ \sqrt{k} \left(\varphi^{-1}_\hat{\rho}(\int R(1-x,x)dx) - \varphi^{-1}_{\rho_0}(\int R(1-x,x)dx) \right).
\]

By Lemma 6.4 it follows that

\[
\sqrt{k} (\hat{\nu}_n - \nu_0) = c(1 + \omega P(1)) \sqrt{k} \left(\int \hat{R}_n(1-x,x)dx - \int R(1-x,x)dx \right) + \omega P(1). \tag{6.16}
\]

Combining (6.8) and (6.16) we conclude that

\[
\left(\sqrt{k} (\hat{\nu}_n - \nu_0), \sqrt{n}(\hat{\rho} - \rho_0) \right) \overset{d}{\to} (N_{\nu}, N_{\rho}),
\]

where \(N_{\nu} \) and \(N_{\rho} \) are independent, and if \(\sigma^2_R \) is the variance of \(\int B(1-x,x)dx \), we have that \(\sigma^2_{\nu} = c^2 \sigma^2_R \). \qed

Acknowledgments

This research is supported by an Open Competition grant from the Netherlands Organization for Scientific Research (NWO). The author would like to thank Claudia Klüppelberg for the hospitality at Technische Universität München, and for her useful comments to the paper, and to John H.J. Einmahl and Johan Segers for their time and valuable help.

References

