I versus we
Wiekens, C.J.; Stapel, D.A.

Published in:
Social Cognition

Publication date:
2008

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.
I VERSUS WE: THE EFFECTS OF SELF-CONSTRUAL LEVEL ON DIVERSITY

Carina J. Wiekens and Diederik A. Stapel
Tilburg University

In two studies it is demonstrated that people's self-construal level may influence the extent to which they spontaneously produce divergent ideas. In Study 1, it is shown that construing the self at a personal level ("I") induces the motivation to be independent, alone, and different, whereas construing the self at a social level ("we") induces the motivation to be accepted, together, and to conform. In Study 2, it is shown that—in the absence of explicit instructions to be different—personal self-construals lead to more diversity (e.g., drawing a golf cart as an example of a motor vehicle), whereas social self-construals lead to less diversity (e.g., drawing a car as an example of a motor vehicle). Possible implications for brainstorm sessions in groups and other group-based ventures in which diversity is desired are discussed.

Why do individual members of a group often come up with more unique and divergent ideas when working alone than when working together as a group? This question has troubled many researchers, and not in the least those who study the often found productivity losses when people are brainstorming in groups (e.g., Mullen, Johnson, & Salas, 1991; Paulus, Larey, & Ortega, 1995). Since researchers started their search for reasons that individuals in groups seem to produce less divergent ideas, many suggestions have been offered, including “production blocking” (Diehl & Stroebe, 1987; Nijstad, Stroebe, & Lodewijkx, 2003), “social anxiousness” (Camacho & Paulus, 1995), and “conforming to norms” (Adarves-Yorno, Postmes, & Haslam, 2006).

Notwithstanding the idea that social anxiety, production blocking, and conformance to norms may repress the expression of divergent ideas, in the current article we will explore an additional mechanism that may explain why people in groups often come up with less unique, divergent ideas than when working alone.
More specifically, we will argue that construing the self as an individual ("I") or as part of a group ("we") may determine whether people are prone to, respectively, think “different” (and may therefore come up with unique, divergent ideas) or “similar” (and may therefore come up with common, convergent ideas).

SELF-CONSTRUAL LEVEL THEORY

A basic premise of self-construal level theory is that people have distinctive levels of self-representation (e.g., Brewer, & Gardner, 1996; Gardner, Gabriel, & Lee, 1999). Depending on culture and context, people may represent themselves in relationship with others (social self-construals) or as individuals (personal self-construals). Cross-cultural research, for example, has shown that due to socialization processes, people from Western countries construe themselves at a more independent, personal level (in terms of “I” and individual differences) than people from Eastern countries, who construe themselves at a more interdependent, social level (in terms of “we” and inter-individual similarities), (e.g., Gardner, Gabriel, & Lee, 1999; Markus & Kitayama, 1991; 2003). Whereas members of individualistic (Western) countries learn to place emphasis on characteristics that make them unique and separate from others, members of collectivistic (Eastern) countries learn to place emphasis on characteristics that make them similar and well-suited to maintain harmony with others (Lee, Aaker, & Gardner, 2000).

Although substantial inter-cultural differences have been found, Gardner, Gabriel, and Lee (1999) demonstrated that depending on context, individual members of both cultures are able to construe themselves at different levels. More specifically, Gardner and colleagues (1999) have shown that priming a social identity (“we-priming” by means of encircling the words “we,” “us,” “our” and “ours” in a text) in members of an individualistic country produced a shift towards more social values (e.g., belongingness, friendships, family safety), whereas priming a personal identity (“I-priming” by means of encircling the words “I,” “me,” “my,” and “mine” in a text) in members of a collectivistic country produced a shift towards more individualistic values (e.g., freedom, independence, choosing one’s own goals). Thus, depending on context, individuals within each culture seem to be able to construe themselves flexibly, which may subsequently determine which “basic motivation” (autonomy, independence or belonging, interdependence) will guide their behavior (Baumeister & Leary, 1995; Gardner et al., 1999).

Construing the self as an autonomous being or as a social being may exert influence on the way social information is being processed. As Stapel and Koomen (2001) showed, the level at which people represent themselves (“I” versus “we”) may influence whether people engage in contrastive or assimilative social comparisons (see also, Kühnen & Hannover, 2000). More specifically, they showed that I-priming activates a differentiation mindset (“I am different from others”), whereas we-priming activates an integration mindset (“I am similar to others”). When personal self-construals (“I”) were accessible, participants emphasized self-distinctiveness and were prone to contrast the self away from others, whereas when social self-construals (“we”) were accessible, participants emphasized similarities and were prone to assimilate the self to others. Hence, people’s self-construals influence the way social information is being processed.
Likewise, Van Baaren, Horgan, Chartrand, and Dijkmans (2004) have argued that “information processing styles,” which they operationalized as a focus on relationships between components (interdependent processing style) versus a focus on individual components (independent processing style), may influence the reaction to social information. They showed that an interdependent processing style fosters mimicry, whereas an independent processing style represses mimicry. Based on these results, Van Baaren and colleagues (2004) concluded that people’s cognitive style (either chronically available or temporarily induced) may increase or decrease synchronization of one’s behavior with the behavior of an interaction partner, which may increase or decrease interconnectedness.

Interesting for the current argument is that a “state of mind” exerts influence on the way social information is being processed. A similarity mindset (or interdependent cognitive thinking style) may focus attention on similarities and, by doing so, increases interconnectedness, whereas a differentiation mindset (or independent cognitive thinking style) may focus attention on differences and decreases interconnectedness. In the current article we will take this research one step further and explore the influence these different self-construal levels have on relatively non-social behaviors. If self-construal levels are indeed related to specific mindsets, self-construal effects may not be confined to the processing of social information, but may as well influence the way non-social information is being processed.

More specifically, we expect that personal self-construals will lead not only to differentiating the self from others, but also to more divergent (non-social) behavior. Conversely, we expect that the activation of social self-construals will lead not only to assimilating the self to others, but, more generally, to more convergent behavior.

In summary, in two experiments we will test whether self-construal level affects people’s motivation and behavior. Our hypotheses are that I-priming activates the motivation to be “autonomous” and “different,” and thus increases divergent behavior, whereas we-priming increases the motivation to be similar, and thus increases convergent behavior.

STUDY 1

The first study was designed to examine the influence of I-priming and we-priming on motivation. Our hypotheses are that personal self-construals will lead to the motivation to be different, whereas social self-construals will lead to a motivation to be similar.

METHOD

Participants. A total of 61 undergraduate students were randomly assigned to the conditions of a three between-subjects factorial design (priming condition: I, we, neutral).

Materials and Procedure. All participants, regardless of condition, received a word search task. This priming task was modeled after Brewer and Gardner (1996; see also Stapel & Koomen, 2001). In the priming conditions, participants were instructed to circle all first-person pronouns that appeared in a text. In the I-priming
condition, all of the pronouns referred to *I, me, my,* and *mine.* In the we-priming condition, these pronouns were replaced by *we, us, our.* In the control condition the pronouns were replaced by the letter combinations *abc* and *xyz.*

Next, participants received a questionnaire entitled “motivation.” Participants were asked to indicate to what extent they were motivated to be independent, different, and alone, to be together, accepted and to conform (all items were measured on a scale ranging from *1 = strongly disagree,* *7 = strongly agree*). Correlation analyses showed that the motivations to be accepted and to conform were highly correlated. Therefore, we calculated a compound score (Cronbach’s *α = .71*). Similarly, we calculated a compound score for the motivations to be independent and to be different (Cronbach’s *α = .70*). After filling out the motivation questionnaire, participants were thanked and fully debriefed.

RESULTS AND DISCUSSION

We conducted a three between-subjects analysis of variance on the motivation-questionnaire (I-priming, we-priming, neutral). This ANOVA yielded a significant effect for the motivation to be independent/different, *F*(2, 59) = 13.28, *p* < .001, to be accepted/conform, *F*(2, 59) = 11.26, *p* < .001, to be together, *F*(2, 59) = 13.38, *p* < .001, and to be alone, *F*(2, 59) = 10.02, *p* < .001.

Planned comparison analyses showed, consistent with hypotheses, that participants whose personal self was activated were more motivated to be independent/different (*M* = 5.3, *SD* = .82) than participants in the control condition (*M* = 4.7, *SD* = .87), *t*(59) = 2.80, *p* < .01. Participants in the control condition (*M* = 4.7, *SD* = .87), in turn, were more motivated to be independent/different than participants whose social self was activated (*M* = 3.9, *SD* = .73), *t*(59) = 3.00, *p* < .01.

Planned comparison analyses on the motivation to be accepted/conform showed, consistent with hypotheses, that participants whose personal self was activated, were less motivated to be accepted (*M* = 3.2, *SD* = .98) than participants in the control condition (*M* = 3.9, *SD* = .77), *t*(59) = -2.70, *p* < .01. Participants in the control condition, in turn, were less motivated to be accepted/conform than participants whose social self was activated (*M* = 4.7, *SD* = .99), *t*(59) = -2.66, *p* < .01.

Planned comparison analyses showed, consistent with hypotheses, that participants whose personal self was activated, were less motivated to be together (*M* = 3.0, *SD* = 1.04) than participants in the control condition (*M* = 4.4, *SD* = 1.57), *t*(59) = -1.37, *p* < .01. Participants in the control condition, in turn, were less motivated to be together than participants whose social self was activated (*M* = 5.3, *SD* = .91), *t*(59) = -.90, *p* < .05.

Conversely, and consistent with hypotheses, participants whose personal self was activated were more motivated to be alone (*M* = 5.0, *SD* = 1.15) than participants in the control condition (*M* = 4.2, *SD* = 1.32), *t*(59) = .90, *p* < .05. Participants in the control condition, in turn, were more motivated to be alone than participants whose social self was activated (*M* = 3.0, *SD* = 1.44), *t*(59) = 1.15, *p* < .01.

In summary, consistent with hypotheses we found that participants whose personal self was activated by I-priming were more motivated to be independent/different and to be alone, and less motivated to be accepted/to conform and to be together. Conversely, participants whose social self was activated by we-priming were more motivated to be accepted/to conform and to be together, and less motivated to be independent/different and alone.
These results show that, consistent with previous research (e.g., Gardner et al., 1999), participants whose social self is activated, are motivated to be interconnected with other people, whereas participants whose personal self is activated are motivated to be autonomous and independent. Moreover, this study is the first to demonstrate that activating the personal self increases the motivation to be different. In the next study we will measure whether personal or social self-construals are able to influence divergent thinking.

STUDY 2

The second study was designed to examine the influence of self-construal level on divergent thinking, and, more specifically, on the spontaneous expression of divergent ideas. We expect participants whose personal self is activated, to produce more divergent ideas and products than participants whose social self is activated.

To measure the degree in which people produce “divergent products,” we asked them to draw a “motor vehicle” and to give an example of three categories (furniture, tools, and clothing). We expect participants whose personal self is activated, to draw less common motor vehicles (e.g., less cars), and to come up with more unusual examples of the three categories given, whereas we expect the opposite to happen in participants whose social self is activated.

METHOD

Participants. A total of 107 undergraduate students were randomly assigned to the conditions of a three between-subjects factorial design (priming condition: I, we, neutral).

Materials and Procedure. All participants, regardless of condition, received the same priming task as was used in Study 1. Next, participants were asked to draw a motor vehicle on a blank piece of paper. Subsequently, they were asked to name one example of the following categories: furniture, tools, and clothing. After each category, one line was left open for a response. After filling out the questionnaire, participants were thanked and debriefed.

RESULTS AND DISCUSSION

Results showed that 72% of all drawings depicted a car, and 14% of all drawings a motorcycle. Other drawings depicted (school-)buses, trains, tanks, trucks, golf carts, and agricultural vehicles. These latter examples each constituted less than 3% of the total amount of drawings. To measure the extent to which participants produced divergent products, we coded drawings of a car as 1 (common), whereas we coded other drawings as 2 (unusual).¹

¹ Considering a drawing of a motorcycle as a common drawing (and therefore creating two categories: 1 = car or motorcycle, and 2 = other motor vehicles) did not change the results.
We conducted a Chi-square test to examine whether participants in the priming conditions differed in their responses. This test produced a highly significant effect ($\chi^2 = 12.05$, df = 2, $p < .01$). In the I-priming condition participants drew relatively more “other vehicles” ($N = 16, 46\%$ of total amount of drawings within condition) than participants in the control condition ($N = 11, 30\%$). Participants in the control condition, in turn, drew relatively more other vehicles than participants in the we-priming condition ($N = 3, 9\%$). In other words, in line with our hypotheses, we found that participants whose personal self was activated produced more divergent drawings than participants in the control condition, whereas participants whose social self was activated, produced less divergent drawings.

Examples of Furniture. Results showed that the two most often given examples of furniture are a couch ($N = 42$) and a chair ($N = 30$), which together constituted 67% of all mentioned examples. Other examples were closets ($N = 10$), tables ($N = 10$), sofa’s ($N = 6$), bookcases ($N = 3$), beds ($N = 3$), bar stools ($N = 2$), and a divan ($N = 1$), which each constituted less than 10% of the total amount of mentioned examples. We coded a couch and a chair as 1 (common), and other examples as 2 (unusual). A Chi-square test on the participants’ responses showed a significant effect ($\chi^2 = 7.86$, df = 2, $p < .05$). Consistent with hypotheses, we found that in the I-priming condition, relatively more participants gave a divergent example of furniture ($N = 17, 49\%$ of all given examples within condition) than in the control condition ($N = 12, 32\%$). In the control condition, relatively more participants gave an unusual example ($N = 12, 32\%$) than in the we-priming condition ($N = 6, 17\%$). In other words, participants in the we-priming condition were least divergent in their responses, whereas participants in the I-priming condition were most divergent.

Examples of Tools. Results showed that a hammer was the most often given example ($N = 73, 68\%$). Among other examples were screw drivers ($N = 11$), axes ($N = 3$), saws ($N = 3$), pincers ($N = 2$), a drill ($N = 1$), and a chisel ($N = 1$), which each constituted less than 10% of the total amount of examples. We coded a hammer as 1 (common), and other examples as 2 (unusual). A Chi-square test indicated a significant effect ($\chi^2 = 11.25$, df = 2, $p < .01$). Consistent with hypotheses, we found that in the I-priming condition, relatively more participants gave an unusual example of a tool ($N = 18, 51\%$ of all given examples within condition) than in the control condition ($N = 11, 30\%$). In the control condition, in turn, relatively more participants gave an unusual example ($N = 11, 30\%$) than in the we-priming condition ($N = 5, 14\%$).

Examples of Clothes. Results showed that the most often mentioned examples were trousers ($N = 39, 37\%$ of all given examples), skirts ($N = 19, 18\%$), and jumpers ($N = 19, 18\%$). Among other examples were dresses ($N = 9, 9\%$), jackets ($N = 5, 5\%$), shirts ($N = 2, 2\%$), socks ($N = 2, 2\%$), pyjamas ($N = 1, 1\%$), a suit ($N = 1, 1\%$), and a jogging suit ($N = 1, 1\%$), which each constituted less than 10% of the total amount of examples. We coded trousers, skirts, and jumpers as 1 (common), and other examples as 2 (unusual). A Chi-square test indicated a significant effect ($\chi^2 = 8.65$, df = 2, $p < .01$). Consistent with hypotheses, we found that in the I-priming condition relatively more participants gave an unusual example of clothes ($N = 15, 43\%$) than in the control condition ($N = 11, 30\%$). In the control condition, in turn, more participants gave an unusual example ($N = 11, 30\%$) than in the we-priming condition ($N = 4, 11\%$).
These results show that, consistent with our hypotheses, participants whose personal self was activated, drew relatively more unusual examples of a motor vehicle and gave relatively more unusual examples of a piece of furniture, tools, and a piece of clothing. Conversely, participants whose social self was activated gave relatively more standard examples. Our hypothesis that social self-construals repress divergent thinking, whereas personal self-construals enhance divergent thinking, was thus confirmed.

GENERAL DISCUSSION

Why do individual members of a group often come up with more unique and divergent ideas when working alone than when working together as a group? Our results show that social self-construals ("we-ness") increase the motivation to be similar, and decrease the spontaneous report of divergent ideas. Conversely, individual self-construals ("I-ness") increase the motivation to be different, and therefore increase divergent thinking.

More specifically, in Study 1 we demonstrated that personal self-construals increase the motivation to be different, independent, and alone, and decrease the motivation to be together, accepted and to conform. In Study 2 we demonstrated that personal self-construals increase divergent responses: Although not being asked explicitly to be different, people drew, for example, a golf cart when asked to draw a motor vehicle and answered "pyjamas" when asked to give an example of clothing.

On the contrary, we found that social self-construals increase the motivation to conform, to be accepted, and together, and decrease the motivation to be independent, different, and alone. Personal self-construals also decreased divergent responses: People drew a car when asked to draw a motor vehicle and answered "trousers" when asked to give an example of clothing.

These results show that self-construal level not only influences the way people respond to social information (e.g., Kühnen & Hannover, 2000; Stapel & Koomen, 2001; Van Baaren et al., 2004), but it also influences the way people respond to non-social information. The current findings offer further support for the conception that personal and social self-construals involve specific mindsets, which, when activated, determine the way we process information.

LIMITATIONS OF THE CURRENT EXPERIMENTS

In this research we have argued and showed that self-construal level influences motivation and behavior. These results are consistent with previous research establishing the relation between mindsets and motivation (Gardner et al., 1999), and mindsets and behavior (Concalo & Staw, 2006; Stapel & Koomen, 2001; Van Baaren et al., 2004). Based upon current and past results, however, it is not yet clear whether motivation is a prerequisite for behavior. Whereas it has been shown that mindsets may influence behavior relatively automatically (see, for example, Bargh, Chen, & Burrows, 1996; Dijksterhuis & Van Knippenberg, 1998), future research has to determine whether (and, if so, in which degree) motivation mediates the relation between mindset and behavior.
Furthermore, although it may seem plausible to assume that “working in groups” (as opposed to working alone) elicits social self-construals, in the current studies we did not measure self-construals as a function of group-membership. In previous research, however, it has been demonstrated that social self-construals are evoked easily when being in a group (Brewer & Gardner, 1996). Furthermore, research on the minimal group paradigm has shown that random assignment to a group influences the allocation of resources in favor of the newly formed group (e.g., Amichai-Hamburger, 2005; Billig & Tajfel, 1973), which may be interpreted as an indication of a feeling of “we-ness.” These results would argue in favor of the assertion that a feeling of “we-ness” is relatively common in groups. Nevertheless, these results do not provide direct evidence that being in a group elicits social self-construals. In which degree a group may foster feelings of “we-ness” and with which results remains therefore an important question for future research.

IMPLICATIONS OF THE CURRENT FINDINGS

Following the logic of the current findings, an implication would be that people of collective, Eastern, societies might be less able to come up with new and unique ideas than people of individual, Western, societies. As politically incorrect as this may sound, these findings are consistent with the results of a study conducted by Concalo and Staw (2006), in which they showed that the manipulation of cultural orientation (“standing out from other people” versus “being like other people”) influenced group creativity. Given that “divergent thinking” is an important component of creativity (Amabile, 1983), these results are in correspondence with the assumption that collectivism will indeed hinder divergent thinking.

It is important to note, however, that this does not mean that individualism is “better” than collectivism. As Concalo and Staw (2006) argue, collectivistic values may lead to more interpersonal cooperation, which facilitates mobilizing people’s efforts. Even though individualistic societies may indeed be more adept at innovation, collectivistic societies may be more adept at high work performance and efficiency.

Also, as Gardner and colleagues (1999) have shown, depending on context, people in both cultures construe themselves at different levels. Whereas Easterners may be less creative in general, they can construe themselves at a more individualistic level, which may then foster creativity. Whether this is indeed the case has to be established in future research.

Another implication that stems from the current research is that these results may provide a theoretical underpinning of the proverbial wisdom that it is sometimes wise to invite outsiders to “take a fresh look” at things. Although the international electronics company Philips (which drives on being innovative) has eleven locations around the world in which large numbers of professional designers and innovators are employed, when a new idea is needed, people from external design studios are sometimes invited to participate in brainstorm sessions. Based on the current findings, it may be argued that people who do not “belong” to an existing group (i.e., designers from an external design studio) and therefore may not share a feeling of “we-ness,” may indeed be evoked to think “differently” and come up with new ideas. Besides not sharing the norms of for example the “Philips-group,”
these individual designers may construe themselves at a personal level, which—in itself—promotes being different and may generate divergent, innovative thoughts. The same logic may of course apply to many environments, including other businesses (“Why are outsiders sometimes better at providing solutions or coming up with new ideas than people who know the business from inside-out?”), science (“Why do outsiders sometimes have the most innovative ideas?”), arts (“Why do many artists and writers create their best work in relative isolation?”), and perhaps even personal relationships (“Why do outsiders sometimes have to indicate what goes wrong and provide solutions, when both partners are intelligent enough to be able to figure out what is happening?”). Whenever people are together and experience a feeling of “we-ness,” they may be at risk of not being inventive. This does not only mean that they will conform to social norms and therefore think similarly, but, as we have shown, it may block divergent, new ideas altogether.

CONCLUSION

In the current research we showed that the subtle activation of social self-construals (“we”) instigated being similar, whereas the subtle activation of personal self-construals (“I”) instigated being different. These results add to the impressive amount of answers given to the question why people in groups often come up with less unique and divergent ideas than they would have come up with when working alone, a suggestion concerning the underlying process. Simply construing the self in terms of “we” may be enough to decrease divergent thinking, even when no other people are around. Similarly, construing the self in terms of “I” may increase the spontaneous production of divergent ideas. Even though the boundaries of these effects have yet to be explored, the here reported findings offer a new and exciting look on the process of divergent thinking.
REFERENCES

