Increased emotional distress in type-d cardiac patients without a partner
van den Broek, C.C.L.T.; Martens, E.J.; Nyklicek, Ivan; van der Voort, P.H.; Pedersen, Susanne
Published in:
Journal of Psychosomatic Research

Document version:
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 29. Dec. 2017
Increased emotional distress in type-D cardiac patients without a partner

Krista C. van den Broeka,*, Elisabeth J. Martensa, Ivan Nyklíčeka, Pepijn H. van der Voortb, Susanne S. Pedersena

aCoRPS—Center of Research on Psychology in Somatic diseases, Tilburg University, Tilburg, The Netherlands

bDepartment of Cardiology, Catharina Hospital Eindhoven, Eindhoven, The Netherlands

Received 25 October 2006; received in revised form 6 March 2007; accepted 20 March 2007

Abstract

Objective: The distressed (type-D) personality is an emerging risk factor in coronary artery disease that has been associated with adverse prognosis, impaired health status, and emotional distress. Little is known about factors that may influence the impact of type-D personality on health outcomes. Therefore, the aim of this study was to determine the combined effect of type-D and not having a partner on symptoms of anxiety and depression.

Methods: Patients (n=554) hospitalized for acute myocardial infarction or implantable cardioverter defibrillator implantation completed the 14-item type-D Scale (DS14) during hospitalization and the State–Trait Anxiety Inventory and Beck Depression Inventory at 2 months follow-up. Results: Stratifying by personality and partner status showed that type-D patients without a partner had a higher risk of both anxiety [odds ratio (OR)=8.27; 95% confidence interval (CI)=2.50–27.32] and depressive symptoms (OR=6.74; 95% CI=2.19–20.76) followed by type-D patients with a partner (OR=3.73; 95% CI=2.16–6.45 and OR=3.81; 95% CI=2.08–6.99, respectively) and non-type-D patients without a partner (OR=2.04; 95% CI=1.05–3.96 and OR=3.03; 95% CI=1.46–6.31, respectively) compared to non-type-D patients with a partner, adjusting for demographic and clinical baseline characteristics, indicating a dose–response relationship. Conclusion: Lack of a partner further exacerbated the risk of symptoms of anxiety and depression in the already distressed type-D patients. In clinical practice, it is important to identify type-D patients without a partner and carefully monitor them, as they may be less likely to alter health-related behaviors due to their increased levels of distress.

Keywords: Type-D personality; Depression; Anxiety; Partner; Myocardial infarction; Implantable cardioverter defibrillator

Introduction

There is increasing emphasis on patient-centered outcomes in cardiovascular disease (CVD), such as quality of life and emotional distress [1]. Knowledge of the determinants of these outcomes is also important in order to facilitate identification of high-risk patients in clinical practice [1]. The distressed (type-D) personality may be an important determinant of individual differences in outcomes, as this personality disposition has been associated with an increased risk of adverse prognosis [2–5], impaired quality of life and health status [6,7], exhaustion and fatigue [8], and a wide range of emotional distress, including anxiety [9], depressive symptoms [9,10], and posttraumatic stress disorder [11]. Type-D has been shown to be a risk factor for adverse health outcomes across different types of CVD, including peripheral arterial disease [6], coronary artery disease (CAD) [12], chronic heart failure [10], arrhythmias [9], and heart transplantation [13,14]. The risk associated with type-D in relation to clinical outcome is on par with established biomedical risk factors such as left ventricular dysfunction [3,4,15].
Type-D personality is characterized by the two stable personality traits negative affectivity (the tendency to experience negative emotions across time and situations) [16] and social inhibition (the tendency to inhibit the expression of emotions and behaviors in social interactions to avoid disapproval by others) [17]. The prevalence of type-D ranges from 24–34% in patients with CAD [3,4] and arrhythmias [9] to 33–53% in patients with hypertension [18], peripheral arterial disease [6], and chronic heart failure [10,19].

Little is known about factors that may influence the impact of type-D personality on prognosis, quality of life, and emotional distress. Knowledge of these factors is important for optimizing risk stratification in clinical practice and may also point to targets for intervention. There are several pathways that may link type-D to adverse health outcomes, including physiological and behavioral pathways. As for physiological pathways, they may comprise inflammation [19,20], blood pressure reactivity to stress [21], and hyperactivity of the hypothalamic–pituitary–adrenal axis, including increased levels of cortisol [21,22]. Potential behavioral pathways comprise health-related behaviors, including failure to change risk factors, such as smoking, and poor treatment adherence [3,23]. In addition, because type-D patients inhibit behavior in social interactions, it is likely that communication with doctors is impaired, which may also hinder effective treatment [24]. However, to date, these potential mechanisms have not been examined in type-D patients.

A potentially important behavioral factor influencing the relationship between type-D and health outcomes is social support. Since social support has been shown to buffer the effects of stress on both well-being [25] and cardiovascular function [26,27], lack of support may enhance the adverse effects of type-D personality on health outcomes, including emotional distress. By analogy, since type-D patients have been shown to have fewer social ties and to experience less social support than non-type-D patients [3], type-D patients who have a fulfilling relationship with a partner may be at less risk for adverse health outcomes than patients without a partner.

Therefore, the aim of this study was to determine the combined effect of type-D personality and not having a partner on symptoms of anxiety and depression across different CVD treatment groups, that is, in patients with acute myocardial infarction (MI) or patients who received an implantable cardioverter defibrillator (ICD). An additional advantage of pooling data was to enhance the statistical power of the study, which has also been advocated by others [28].

Methods

Patient population and design

Patients hospitalized for acute MI or ICD implantation between May 2003 and December 2005 were included from five hospitals in the Netherlands (Catharina Hospital, Eindhoven; Amphia Hospital, Breda; St. Elisabeth Hospital, Tilburg; TweeSteden Hospital, Tilburg; and St. Anna Hospital, Geldrop). Inclusion criteria were hospitalization for acute MI (n=452) or ICD implantation (n=210). Exclusion criteria were significant cognitive impairments (e.g., dementia) and severe life-threatening comorbidities (e.g., cancer). Criteria for diagnosis of acute MI were troponin I levels that are more than twice the upper limit, typical ischemic symptoms (e.g., chest pain) lasting for more than 10 min, and ECG evidence of ST segment elevation or new pathological Q waves. ICDs were implanted for primary or secondary prevention of ventricular arrhythmias, according to accepted criteria [29].

Patients completed self-report measures on type-D personality at baseline as well as measures on anxiety and depressive symptoms at 2 months follow-up. The 2-month follow-up period was adopted due to logistic reasons. Two months after acute MI or ICD implantation, patients visited the outpatient clinic for a routine control. To minimize patient burden, we combined our study with these visits to the hospital. Demographic and clinical variables were obtained from the medical records. Of the original 662 patients, 554 patients were included in the final analyses (i.e., 390 MI patients and 164 ICD patients; see Fig. 1). The 108 patients who were excluded comprised 62 MI patients and 46 ICD patients. Excluded patients differed signifi-
cantly from included patients regarding type-D/no partner [9.2% vs. 3.6%, χ²(1)=6.01, P=.014], female gender [28.0% vs. 18.2%, χ²(1)=5.43, P=.020], history of ischemic heart disease [47.9% vs. 34.1%, χ²(1)=6.52, P=.011], treatment [ICD implantation; 43.0% vs. 29.6%, χ²(1)=7.42, P=.006], diabetes [23.2% vs. 13.2%, χ²(1)=6.35, P=.012], use of anticoagulants [62.8% vs. 75.9%, χ²(1)=7.14, P=.008], and use of psychotropics [25.2% vs. 13.6%, χ²(1)=9.35, P=.002].

The study was approved by the ethics committees of the participating hospitals. The study was conducted in accordance with the Helsinki Declaration, and all patients provided written informed consent.

Measures

Demographic and clinical characteristics

Demographic variables included partner status (i.e., not having a partner), gender, age, and educational level. Clinical variables included comorbidity (arthritis, renal insufficiency, or chronic obstructive pulmonary disease), history of ischemic heart disease [previous MI, percutaneous coronary intervention (PCI), or coronary artery bypass graft (CABG) surgery), multivessel disease and left ventricular ejection fraction (for MI patients), ICD indication and history of shocks (for ICD patients), diabetes mellitus, smoking (self-report), cardiac medication (beta-blockers, anticoagulants, statins, and aspirin), and psychotropic medication (self-report).

Personality

The 14-item Type-D Scale (DS14) was used to assess type-D personality [18]. Items are answered on a 5-point Likert scale from 0 to 4. The scale consists of two 7-item subscales: negative affectivity (e.g., “I often feel unhappy”) and social inhibition (e.g., “I am a closed person”). Only patients scoring high on both subscales according to a standardized score ≥10 are categorized as type-D [18]. The DS14 is a valid and reliable scale with Cronbach’s α of .92 [32]. Elevated scores on the STAI have been associated with poor prognosis in patients with CAD [33].

The Beck Depression Inventory (BDI) is a 21-item self-report measure developed to assess the presence and severity of depressive symptoms [34]. Each item is rated on a Guttman scale from 0 to 3. The BDI is a reliable and validated measure of depressive symptomatology [35,36], with a Cronbach’s α of .81 in non-psychiatric samples [35], and the most frequently used self-report measure of depressive symptomatology in cardiac patients. We used the standardized cutoff ≥10, indicative of at least mild to moderate symptoms of depression, which has also been associated with poor prognosis in patients with CAD [37–39]. In addition, this cutoff has good sensitivity and specificity to screen for major depression, that is, 81.8% and 78.7%, respectively [40].

Scores on anxiety and depression measures were dichotomized in order to enhance clinical interpretability, which is also advocated by others [41].

Statistical analysis

To examine differences in baseline characteristics stratified by personality type (type-D vs. non-type-D) and partner status (partner vs. single), we used the chi-square test (Fisher’s Exact Test when appropriate) for nominal variables and analysis of variance (ANOVA) for continuous variables. In the ANOVA, we used Tukey’s test for post hoc comparisons. The impact of type-D personality and partner status on symptoms of anxiety and depression was examined by means of logistic regression analysis with non-type-D/partner as the reference category. In multivariable analysis, we adjusted for gender, age, educational level, smoking status, cardiac history, treatment (MI vs. ICD implantation), days between MI or ICD implantation and history of shocks (for ICD patients), diabetes mellitus, smoking (self-report), cardiac medication (beta-blockers, anticoagulants, statins, and aspirin), and psychotropic medication (self-report).

Symptoms of anxiety and depression

The State–Trait Anxiety Inventory (STAI) was used to assess symptoms of anxiety [31]. The STAI is a self-report measure consisting of two 20-item scales developed to measure the level of general state and trait anxiety [31]. In the current study, we only used the state measure, as the objective was to assess the current presence of anxiety symptoms at 2 months follow-up, rather than anxiety as a stable trait. Each item is rated on a 4-point Likert scale from 1 to 4. We used the cutoff ≥39, which represents clinical levels of anxiety [31]. The STAI has been demonstrated to have adequate validity and reliability, with a Cronbach’s α of .92 [32]. Elevated scores on the STAI have been associated with poor prognosis in patients with CAD [33].

Results

Patient characteristics

No significant differences between ICD patients and MI patients were found for either type-D personality or partner status, although type-D personality was slightly more
Table 1
Patient characteristics stratified by type-D personality and partner status

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Non-type-D/partner (n=364)</th>
<th>Non-type-D/no partner (n=69)</th>
<th>Type-D/partner (n=101)</th>
<th>Type-D/no partner (n=20)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>14</td>
<td>28</td>
<td>19</td>
<td>55</td>
<td><.0001</td>
</tr>
<tr>
<td>Age, mean (S.D.)</td>
<td>61 (10)</td>
<td>61 (14)</td>
<td>60 (11)</td>
<td>60 (11)</td>
<td>.91</td>
</tr>
<tr>
<td>Low educationa</td>
<td>43</td>
<td>50</td>
<td>53</td>
<td>70</td>
<td>.06</td>
</tr>
<tr>
<td>Clinical variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of ischemic heart diseaseb</td>
<td>33</td>
<td>33</td>
<td>39</td>
<td>40</td>
<td>.65</td>
</tr>
<tr>
<td>Treatmentc</td>
<td>71</td>
<td>78</td>
<td>61</td>
<td>75</td>
<td>.10</td>
</tr>
<tr>
<td>Daysd, mean (S.D.)</td>
<td>7 (9)</td>
<td>9 (8)</td>
<td>8 (10)</td>
<td>10 (12)</td>
<td>.44</td>
</tr>
<tr>
<td>Comorbiditye</td>
<td>20</td>
<td>18</td>
<td>22</td>
<td>25</td>
<td>.86</td>
</tr>
<tr>
<td>Diabetes</td>
<td>13</td>
<td>19</td>
<td>10</td>
<td>10</td>
<td>.46</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>39</td>
<td>40</td>
<td>39</td>
<td>25</td>
<td>.65</td>
</tr>
<tr>
<td>Hypertension</td>
<td>39</td>
<td>43</td>
<td>33</td>
<td>35</td>
<td>.64</td>
</tr>
<tr>
<td>Current smoking</td>
<td>29</td>
<td>40</td>
<td>36</td>
<td>45</td>
<td>.17</td>
</tr>
<tr>
<td>Invasive treatment MIf</td>
<td>65</td>
<td>41</td>
<td>61</td>
<td>67</td>
<td>.01</td>
</tr>
<tr>
<td>Multivessel diseaseg</td>
<td>42</td>
<td>32</td>
<td>26</td>
<td>47</td>
<td>.13</td>
</tr>
<tr>
<td>LVEFh, mean (S.D.)</td>
<td>52 (13)</td>
<td>50 (13)</td>
<td>52 (13)</td>
<td>55 (12)</td>
<td>.48</td>
</tr>
<tr>
<td>Shocksi</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>.76</td>
</tr>
<tr>
<td>Secondary indication for ICD implantationi</td>
<td>65</td>
<td>53</td>
<td>54</td>
<td>40</td>
<td>.44</td>
</tr>
</tbody>
</table>

Data are presented as percentages (χ^2 test), unless specified as mean (S.D.) (ANOVA).

a No education completed, first level (primary school), or secondary level (first phase).

b Previous MI, PCI, or CABG.

c Mean (S.D.) (ANOVA).

d Days between MI or ICD implantation and completion of baseline questionnaire.

e Lung, renal, or rheumatic disease.

f MI patients (n=389).

g MI patients (n=318).

h MI patients (n=309 MI patients).

i ICD patients (n=164).

prevalent in ICD patients than in MI patients [27% vs. 20%, $\chi^2(3)=3.40$, $P=.07$]. In the total patient group, 121 patients (22%) were classified as type-D and 89 patients (16%) had no partner. Partner status did not differ in type-D versus non-type-D patients [17% vs. 16%, $\chi^2(1)=0.25$, $P=.68$].

Patient characteristics stratified by personality and partner status are presented in Table 1. The groups differed significantly with respect to female gender [14%, 28%, 19%, and 55%; $\chi^2(3)=25.97$, $P<.0001$] and current use of psychotropic medication [9%, 13%, 22%, and 35%; $\chi^2(3)=20.85$, $P<.0001$]. Type-D patients without a partner were more likely to be female, to have had an invasive treatment for MI, and to use psychotropic medication compared with the other three groups. No other significant differences were found between groups on baseline characteristics.

In the ICD group, seven patients received a shock, but this number did not differ significantly between groups (Fisher’s Exact Test = 1.12, $P=.76$). Likewise, no significant differences were found for secondary indication for ICD implantation [$\chi^2(3)=2.72$, $P=.44$]. In MI patients, multivessel disease [$\chi^2(3)=5.59$, $P=.13$] and left ventricular ejection fraction [$F(3, 305)=0.83$, $P=.48$] did not differ significantly between groups, whereas invasive treatment did [$\chi^2(3)=11.37$, $P=.01$]. However, because invasive treatment and the other four group-specific indices were not significantly related to anxiety and depression (all P values >.10), they were omitted from further analyses.

Group differences on anxiety and depressive symptoms

Both type-D personality and partner status had main effects on anxiety (OR=4.01; 95% CI=2.63–6.11 and OR=1.88; 95% CI=1.19–2.97, respectively) and depressive symptoms (OR=3.91; 95% CI=2.53–6.05 and OR=2.44; 95% CI=1.50–3.96, respectively) in unadjusted analyses.

When stratifying by personality type and partner status, statistically significant differences were found between the four groups on anxiety [$\chi^2(3)=52.92$, $P<.0001$] and depression scores [$\chi^2(3)=53.67$, $P<.0001$] (Fig. 2). Type-D patients without a partner had the highest prevalence of symptoms of anxiety and depression compared to the other three groups.
Univariable predictors of anxiety and depressive symptoms

In univariable logistic regression analysis, non-type-D/no partner (OR=1.76; 95% CI=1.03–3.03), type-D/partner (OR=3.78; 95% CI=2.39–5.97), and particularly type-D/no partner (OR=11.66; 95% CI=3.80–35.75) had an increased risk of anxiety at 2 months follow-up compared with non-type-D/partner patients (Table 2, left). Other significant predictors were female gender, low level of education, comorbidity, and the use of psychotropic medication.

Similarly, non-type-D/no partner (OR=2.81; 95% CI=1.56–5.04), type-D/partner (OR=4.27; 95% CI=2.61–6.99), and type-D/no-partner patients (OR=9.00; 95% CI=3.51–23.08) had an increased risk of depressive symptoms compared to non-type-D/partner patients (Table 2, right). Female gender, current smoking, comorbidity, and psychotropic medication were also significantly related to an increased risk of depressive symptoms in univariable logistic regression analysis. For both anxiety and depressive symptoms, type-D/no partner patients had the highest risk followed by type-D/partner patients and non-type-D/no-partner patients.

When analyzing the data separately for the two treatment groups, the results remained the same, with non-type-D/partner having the lowest risk and type-D/no partner having the highest risk.

Multivariable predictors of anxiety and depressive symptoms

In multivariable analysis, non-type-D/no partner (OR=2.04; 95% CI=1.05–3.96), type-D/partner (OR=3.73; 95% CI=2.16–6.45), and type-D/no partner (OR=8.27;...
95% CI=2.50–27.32) remained significant predictors of anxiety symptoms, adjusting for all other variables (Table 3, left). Other independent variables related to anxiety symptoms were female gender, low education, and use of psychotropic medication.

Similar results were found for depressive symptoms, where non-type-D/no partner (OR=3.03; 95% CI=1.46–6.31), type-D/partner (OR=3.81; 95% CI=2.08–6.99), and type-D/no partner (OR=6.74; 95% CI=2.19–20.76) remained as significant predictors, adjusting for all other variables (Table 3, right). Other independent variables associated with depressive symptoms were female gender, treatment, comorbidity, use of aspirin, and psychotropic medication. For both anxiety and depressive symptoms, there was a dose–response relationship, with the presence of both risk factors (type-D and no partner) incurring the highest risk.

Discussion

This is the first study to examine the combined effect of type-D personality and not having a partner on emotional distress in cardiac patients. Stratifying by personality and partner status showed that non-type-D patients without a partner had a twofold increased risk of both anxiety and depressive symptoms followed by type-D patients with a partner with a threefold risk and, most importantly, type-D patients without a partner having a six- to eightfold risk compared to non-type-D patients with a partner, adjusting for demographic and clinical baseline characteristics. This shows that there was a dose–response relationship between the two risk factors (type-D personality and having no partner) and emotional distress, with type-D patients without a partner having the highest risk. It is important to note that the effect of the two risk factors on emotional distress was consistent across treatment group (i.e., MI vs. ICD).

Previous research has demonstrated that type-D personality is a cardiotoxic factor that is associated not only with adverse prognosis [2–5] and impaired health status [6–8] but also with increased levels of emotional distress [9–11]. It is important to include indices of emotional distress, such as symptoms of anxiety and depression, as outcome measures since these symptoms are associated with adverse prognosis [42], impaired health-related quality of life [43], increased health care consumption [42,44], and reduced compliance [45,46].

Traditionally, depression but not anxiety has been studied as an important psychosocial risk factor for adverse outcomes in CVD, despite the co-occurrence of anxiety and depression [42,47,48]. Recent studies have demonstrated the detrimental effect of anxiety for adverse outcomes in
CVD over and above the effect of depression [42,47,48]. Our results also show that anxiety may be an important person-centered outcome; the dose–response relationship of the combination of type-D personality and having no partner was found for both depressive and anxiety symptoms. In this context, it is important to note that type-D personality is not equivalent to anxiety or depressive symptoms. This was verified in a recent prospective study of patients treated with PCI who were all anxious at 6 months [49]. Another study of PCI patients showed that type-D personality predicted adverse prognosis above and beyond symptoms of anxiety and depression, which was due to the combined effect of high negativity and social inhibition and not to the main effects of anxiety and depressive symptoms [30].

As shown in the current study, not all type-D patients experience similar levels of risk, suggesting that within the group of type-D patients, there is some heterogeneity. This heterogeneity is also supported in a recent study of PCI patients, which showed that type-D patients with diabetes were at increased risk of onset of depressive symptoms at 12 months when compared to patients with a type-D personality or diabetes alone [50].

Although our findings indicate the importance of having a partner, the results also suggest that partner status does not completely buffer the effects of type-D on distress since type-D patients with a partner still had a significantly higher risk compared to non-type-D patients with or without a partner. In a recent study of ICD patients, type-D personality was also shown to have a larger impact on distress than shocks [9], emphasizing the importance of personality as an independent determinant of distress. In the present study, lack of a partner showed a further elevated risk of emotional distress in the already distressed type-D patients.

It is important to note that in the current study, disease severity was not related to emotional distress at 2 months follow-up, indicating that emotional distress is not just a consequence of disease severity, which is in line with some [51,52] but not all [53] studies.

In view of our results, in clinical practice, it is important to screen for and identify patients with a type-D personality, particularly those type-D patients who do not have a partner. Type-D personality has been associated with adverse prognosis [2–5], and other studies have shown that patients without a partner are less compliant [54,55], less physically active [56], and at increased risk of CVD mortality [57,58]. Cardiologists and nurses should therefore carefully monitor type-D patients without a partner, as they may be less likely to adhere to medication, participate in cardiac rehabilitation, and attend regular checkups. In this context, nurses could serve as an important source of support. In addition, these patients may benefit from psychosocial intervention in order to prevent the development of anxiety and depressive symptoms, as these symptoms are associated not only with reduced compliance [44,45] and impaired health-related quality of life [42] but also with worse prognosis [33].

This study has some limitations. First, the number of patients in the type-D/no partner group was relatively small, which may have led to reduced power. Therefore, replication of these results is warranted in future studies. Nevertheless, we still found significant and consistent results across patient groups and psychological symptomatology. Second, the 2-month follow-up period was relatively short. Future studies need to replicate our findings using a longer follow-up period. Third, we had no information on the psychological and physical status of the partner or on marital quality or marital satisfaction. Marital status may have an impact on quality of life. Nevertheless, we were able to show that not having a partner was associated with increased risk of anxiety and depressive symptoms in both non-type-D and type-D patients. Fourth, we had no information on behavioral risk factors and compliance with medical regimens, which may serve as confounders. Fifth, excluded patients differed from included patients with respect to several demographic and clinical indices, which may result in limited generalizability of the findings. However, since excluded patients appeared to be more ill, the adverse effect of type-D personality and having no partner found in this study is more likely to be an underestimation rather than an overestimation. Finally, the two pooled cardiac patient groups differed on indices of disease severity. However, disease severity was not associated with either the independent or the outcome variables.

Despite these limitations, this study also has several strengths. This is the first study to examine partner status as a potentially important factor in the link between type-D personality and anxiety and depressive symptoms. In addition, results are based on a heterogeneous patient group with acute MI or ICD implantation, showing that results are generalizable across CVD patient groups.

In conclusion, these results show that there was a dose–response relationship between the two risk factors (type-D personality and having no partner) in relation to anxiety and depressive symptoms, with type-D patients without a partner having the highest risk 2 months after hospitalization for acute MI or ICD implantation. Given the fact that this is the first study to show that lack of a partner in patients with a type-D personality is associated with a particularly high risk of emotional distress, future studies that replicate these findings are warranted. In clinical practice, it is important to screen for type-D personality to monitor type-D patients without a partner particularly carefully. These patients may be less likely to comply with medication, take part in cardiac rehabilitation, and change health-related behaviors that are detrimental to their health due to their increased levels of emotional distress.

Acknowledgments

This research was supported by a VENI grant (451-05-001) to Dr. S.S. Pedersen from the Netherlands Organization
for Scientific Research (NWO), The Hague, The Netherlands. No financial support or conflict of interest exists for any of the other authors.

References

[20] Conraads VM, Denollet J, De Clerck LS, Stevens WJ, Bredts C, Vrints CJ. Type-D personality is associated with increased levels of tumour necrosis factor (TNF)- α and TNF-α receptors in chronic heart failure. Int J Cardiol 2006;113:34–8.

[33] Frasure-Smith N, Lespéreance F, Talajic M. Type-D personality is associated with increased levels of tumour necrosis factor (TNF)- α and TNF-α receptors in chronic heart failure. Int J Cardiol 2006;113:34–8.

[40] Lespéreance F, Frasure-Smith N, Talajic M, Bourassa MG. Five-year risk of cardiac mortality in relation to initial severity and one-year