Budget-Feasible Mechanism Design for Non-monotone Submodular Objectives: Offline and Online

Georgios Amanatidis, Pieter Kleer, Guido Schäfer
1. Introduction

We consider the problem of designing budget-feasible mechanisms for a natural model of procurement auctions. In this model, an auctioneer is interested in buying services (or goods) from a set of agents A. Each agent $i \in A$ specifies a cost c_i to be paid by the buyer for using his service; crucially, these costs are assumed to be private information. The auctioneer has a budget B and a valuation function $v(\cdot)$, where $v(S)$ specifies the value derived from the services of the agents in $S \subseteq A$. Given the (reported) costs of the agents, the goal of the auctioneer is to choose a budget-feasible subset $S \subseteq A$ of the agents, such that the valuation $v(S)$ is maximized. Budget feasibility here means that $\Sigma_{i \in S} p_i \leq B$, where p_i is the payment issued from the mechanism to agent i.

Note that the agents might try to extract larger payments from the mechanism by misreporting their actual costs—which of course is undesirable from the auctioneer’s perspective. The goal, therefore, is to design budget-feasible mechanisms that (i) elicit truthful reporting of the costs by all agents and (ii) achieve a good approximation with respect to the optimal value for the auctioneer. What makes the problem so intriguing is the fact that truthfulness and budget feasibility are two directly conflicting goals, because the former is achieved by paying as much as needed to make agents indifferent to lying (see Lemma 1). Indicatively, the use of the celebrated truthful Vickrey–Clarke–Groves mechanism in this setting completely fails with respect to keeping the payments bounded (Singer [45]).
The problem of designing budget-feasible mechanisms was introduced by Singer [45] and has received a lot of attention, because of both its theoretical appeal and its relevance to several emerging application domains. A prominent such application is in crowdsourcing marketplaces (such as Mechanical Turk, Figure Eight, and Clickworker) that provide online platforms to procure workforce (see Anari et al. [5], Goel et al. [29], Khalilabadi and Tardos [35]). Another application is in the context of influence maximization in social networks, where one seeks to select influential users (see Amanatidis et al. [1], Singer [46]).

We focus on the design of budget-feasible mechanisms for the general class of non-monotone submodular valuation functions. Submodular objectives constitute an important class of valuation functions as they satisfy the property of diminishing returns, which naturally arises in many settings. Most existing works make the assumption that the valuation functions are monotone (nondecreasing), that is, \(v(S) \leq v(T) \) for \(S \subseteq T \). Although the monotonicity assumption makes sense in certain applications, there are several examples where it is violated. For example, in the context of influence maximization in social networks, adding more users to the selected set may sometimes result in negative influence (see Borodin et al. [15]). The most prominent example of a non-monotone submodular objective studied in our setting is the budgeted max-cut problem (Amanatidis et al. [2], Dobzinski et al. [21]), where \(v(\cdot) \) is determined by the cuts of a given graph.

A natural generalization of this framework is to assume that the space of feasible sets has some structure, for example, the feasible sets form a matroid. This variant has been studied only for additive valuation functions (Amanatidis et al. [1], Leonardi et al. [39]), despite its wide range of applications varying from team formation to spectrum markets (see Leonardi et al. [39]). Here we study the problem for monotone and non-monotone submodular objectives under \(p \)-system constraints.

The purely algorithmic versions of these mechanism design problems ask for the maximization of a (non-monotone) submodular function subject to the constraint that the total cost of the selected agents does not exceed the budget, often referred to as a knapsack constraint. These problems are typically NP-hard; hence, our focus is on approximation algorithms that compute close-to-optimal solutions in polynomial time. From an algorithmic point of view, most of these problems are well understood and admit good approximations. However, it is not clear how to appropriately convert these algorithms into truthful, budget-feasible mechanisms, and, up to this work, this goal had been elusive for non-monotone submodular objectives. Our results illustrate that for the mechanism design problems, it is possible to achieve the same asymptotic guarantees that are known for their algorithmic counterparts in polynomial time.

It should be stressed that we are interested in computationally efficient mechanisms that only use value queries (see Section 2). This adds an extra layer of difficulty to the task at hand. Because of the challenges of dealing with incentives in this line of work, often the computational efficiency requirement is dropped completely and it is further assumed that the mechanisms have access to demand queries (Amanatidis et al. [2], Bei et al. [13], Chen et al. [20]). Note that, in general, a demand query cannot be simulated by a polynomial number of value queries (see, e.g., Blumrosen and Nisan [14]).

1.1. Our Contributions

Since the introduction of the problem, obtaining computationally efficient mechanisms for objectives that go beyond the class of monotone submodular functions has been open. We derive the first budget-feasible and \(O(1) \)-approximate mechanisms for non-monotone submodular objectives, both for the offline and online settings. Our results for the online setting hold for the well-studied random-arrival model, where the agents arrive in a uniformly random order, used in the numerous variants of the secretary problem. Our mechanisms run in polynomial time in the value query model. The highlights of this work are as follows:

- We obtain the first universally truthful, budget-feasible \(O(1) \)-approximation mechanism for non-monotone submodular objectives in the value query model.

- We derive the first universally truthful, budget-feasible \(O(1) \)-approximation online mechanism for non-monotone submodular objectives. As a consequence, we obtain an \(O(1) \)-approximation algorithm for the non-monotone submodular knapsack secretary problem (SKS), a budget-constrained variant of the famous secretary problem.

- We give universally truthful, budget-feasible \(O(p) \)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a \(p \)-system. Beyond the additive case, nothing was known for this constrained setting.

- We provide lower bounds illustrating that asymptotically our results are as general as one could hope for. On a high level, only trivial guarantees can be achieved with value queries in polynomial time if one imposes constraints beyond downward-closed systems or goes to a broader class of objectives like XOS functions.
1.2. Technical Challenges
It should be noted that for monotone submodular objectives all known mechanisms essentially use the same greedy subroutine introduced by Singer [45]: Sort all agents in decreasing order of marginal value per cost and pick as many agents as possible before hitting some carefully selected threshold. This is a simplified version of the optimal greedy algorithm of Sviridenko [49] and indeed gives nontrivial approximation guarantees. Furthermore, because of its simplicity, it also has the other desired properties of truthfulness, individual rationality, and budget feasibility. Although this whole framework might feel somewhat straightforward, the existing literature on budget-feasible mechanisms suggests that there is a frail balance between simplicity and performance here. Only “naive” algorithmic ideas, like greedy, seem to have any hope generating truthful mechanisms that are robust subject to cost changes and, thus, budget feasible.

Unfortunately, it is easy to construct examples where running such a greedy algorithm for a non-monotone objective results in a solution of arbitrarily poor quality. The algorithmic state of the art for non-monotone submodular maximization under a knapsack constraint, for example, Chekuri et al. [19], Feldman et al. [28], and Kulik et al. [36], provides us with quite involved algorithms on continuous relaxations of the problem that seem very unlikely to yield monotone allocation rules, and thus truthful mechanisms. The only simple (and deterministic) exception is the two-pass greedy algorithm of Gupta et al. [32], where it is shown that running Sviridenko’s greedy algorithm twice and then maximizing without the knapsack constraint is sufficient to get a deterministic 6-approximation algorithm. Despite being significantly simpler, however, this two-pass greedy algorithm still suffers with respect to monotonicity.

More recently, several simple randomized greedy approaches for maximizing non-monotone submodular objectives were proposed for a cardinality or a matroid constraint (Buchbinder et al. [17], Chekuri et al. [18], Feldman and Zenklusen [25], Feldman et al. [26]) and even for a knapsack constraint (Amanatidis et al. [4]). However, these approaches are also not applicable here. In its simplest version, such a random greedy algorithm would initially randomly discard half of the agents and then run a greedy algorithm for monotone submodular objectives. The issue is that even if a random greedy algorithm directly worked for a knapsack constraint in terms of approximate optimality and truthfulness—something that is not straightforward—budget feasibility crucially depends on the monotonicity of the objective function (Chen et al. [20], Singer [45]). So, one still needs to deal with the fact that for non-monotone objectives the payments of simple greedy algorithms (like the one by Singer [45]) can be unbounded.

At the heart of our approach lies a novel deterministic greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously, yet prevents agents from jumping from one solution to the other by changing their cost. To do the latter, we offer each agent a take-it-or-leave-it price based on an estimate of the optimal value, which we obtain by sampling. A crucial property of the resulting mechanism is that the agents are not ordered with respect to their marginal value per cost. Although the latter is a very simple property, this is the first mechanism using only value queries where the ordering of the agents is independent of their cost. This further allows us to appropriately modify the algorithm and adapt it to the online secretary setting and to settings with additional feasibility constraints, while maintaining all its desired properties.

All of our mechanisms are randomized and, in fact, random sampling is an essential building block in our approach. Obtaining a good estimate of the optimal value via random sampling has been crucial in previous works on budget-feasible mechanism design for monotone objectives as well (Amanatidis et al. [2], Badanidiyuru et al. [9], Bei et al. [13], Leonardi et al. [39]). Designing deterministic budget-feasible mechanisms seems very challenging. Beyond additive valuation functions (Chen et al. [20], Singer [45]), no deterministic, polynomial-time O(1)-approximation mechanisms are known, except for some specific well-behaved objectives (Amanatidis et al. [1,2], Dobzinski et al. [21], Horel et al. [33], Singer [46]). In order to obtain a constant approximation ratio while maintaining truthfulness, one would need to compare the single most valuable agent to an easy-to-calculate estimate of the optimal value that is also nonincreasing to each agent’s cost. Obtaining deterministic, budget-feasible, O(1)-approximation mechanisms is an intriguing topic for future research.

1.3. Related Work
As mentioned above, the study of budget-feasible mechanisms was initiated by Singer [45], who gave a randomized O(1)-approximation mechanism for monotone submodular functions. Later, Chen et al. [20] significantly improved the approximation ratio and also suggested a deterministic O(1)-approximation mechanism, albeit with superpolynomial running time. Several follow-up results modified this deterministic mechanism so that it runs in polynomial time for special cases, including coverage functions (Amanatidis et al. [1], Singer [46]) and information gain functions (Horel et al. [33]). For subadditive functions, Dobzinski et al. [21] suggested a O(log^2 n)-approximation mechanism and gave the first constant factor mechanisms for a special case of non-monotone objectives, namely, cut functions. The factor for subadditive functions was later improved to O(\log n/\log \log n)
by Bei et al. [13], who also gave a randomized $O(1)$-approximation mechanism for XOS functions, albeit in exponential time in the value query model (see Remark 1), initiated the Bayesian analysis in this setting, and gave an existential result for an $O(1)$-approximation mechanism for subadditive valuations. Amanatidis et al. [2] suggested $O(1)$-approximation mechanisms for a subclass of non-monotone submodular objectives, namely, symmetric submodular objectives; however, their approach does not seem to generalize beyond this subclass. For settings with additional combinatorial constraints, Amanatidis et al. [1] and Leonardis et al. [39] gave $O(1)$-approximation mechanisms for additive valuation functions subject to independent system constraints. There is also a line of related work under the large market assumption (where no participant can significantly affect the market outcome) that allows for mechanisms with improved performance (see, e.g., Anari et al. [5], Balkanski and Hartline [10], Goel et al. [29], Khaililabadi and Tardos [35], Singla and Krause [48]). Very recently, Gravin et al. [30] almost resolved the additive case by designing an optimal randomized mechanism and a near-optimal deterministic mechanism.

The online version of the problem was introduced and studied by Badanidiyuru et al. [9], who give an $O(1)$-approximation mechanism for monotone submodular functions. Singer and Mittal [47] also studied an online version of the problem for a cardinality objective, that is, for the case one wants to maximize the number of winning agents. The problem as introduced by Badanidiyuru et al. [9] is closely related to the purely algorithmic version of the problem (i.e., without the incentives), namely, the submodular knapsack secretary problem introduced by Bateni et al. [11] as a generalization of the knapsack secretary problem (Babaioff et al. [7]). Bateni et al. [11] studied the problem for monotone and non-monotone submodular objectives, although they provide a complete proof only for the former case. Although the monotone submodular case has been improved (Feldman et al. [27]) and generalized (Kesselheim and Tönnis [34]), there is no follow-up work on the non-monotone case to the best of our knowledge.

On maximization of submodular functions subject to knapsack or other types of constraints, there is a vast literature, going back several decades (see, e.g., Nemhauser et al. [43], Wolsey [50]). Focusing on knapsack constraints, there is a rich line of recent work on developing algorithms on continuous relaxations of the problem (see, e.g., Chekuri et al. [19], Ene et al. [23], Feldman et al. [28], Kulik et al. [36], and references therein) achieving an e-approximation for non-monotone objectives. However, the most relevant recent work to ours is that of Gupta et al. [32], who proposed a deterministic 6-approximation algorithm for the non-monotone case, related on a high level to our main approach. Gupta et al. [32] also gave algorithms for certain constrained secretary problems, although not with knapsack constraints. When ℓ knapsack constraints and a p-system constraint are both present, the algorithmic state of the art is a $(p + 2\ell + 1)$-approximation algorithm for the monotone submodular case due to Badanidiyuru and Vondrák [8] and a $(p + 1)(2p + 2\ell + 1)/p$-approximation algorithm for the non-monotone submodular case due to Mirzasoleiman et al. [41].

As mentioned above, there is a line of work that uses random greedy algorithms for maximizing non-monotone submodular objectives subject to other combinatorial constraints (Buchbinder et al. [17], Chekuri et al. [18], Feldman and Zenklusen [25], Feldman et al. [26]). Although not directly related to our work, there are underlying similarities, as the algorithms developed are simple, greedy, and often extend to online settings. Additionally, if one could resolve the issue of the payments being unbounded, a random greedy version of Singer’s [45] mechanism could lead to significantly improved approximation guarantees in our setting.

Remark 1 (On the $O(1)$-Approximation Mechanism of Bei et al. [13]). Bei et al. [13] propose an $O(1)$-approximation mechanism for **nondecreasing** XOS objectives that runs in polynomial time in the much stronger demand query model. However, they briefly discuss how to extend their result to general XOS functions via the use of \(\hat{v}(S) = \max_{T \subseteq \epsilon(T)} \). It is easy to see that \(\hat{v} \) is nondecreasing and that \(S \) is an optimal solution of \(v \) if and only if it is a minimal optimal solution for \(\hat{v} \). Moreover, Gupta et al. [31] proved that if \(v \) is general XOS, then \(\hat{v} \) is monotone XOS. It should be noted that this transformation does not work in the submodular case; that is, when \(v \) is submodular, \(\hat{v} \) is not necessarily submodular (Amanatidis et al. [2]). Therefore, known results for monotone submodular functions do not extend to the non-monotone case, even in the demand query model.

2. Preliminaries

We use \(A = [n] = \{1, 2, \ldots, n\} \) to denote a set of \(n \) agents. Each agent \(i \) is associated with a private cost \(c_i \) denoting the cost for participating in the solution. We consider a procurement auction setting, where the auctioneer is equipped with a valuation function \(v: 2^A \to \mathbb{Q}_{\geq 0} \) and a budget \(B > 0 \). For \(S \subseteq A \), \(v(S) \) is the value derived by the auctioneer if the set \(S \) is selected. (For singletons, we will often write \(v(i) \) instead of \(v(\{i\}) \)). Therefore, the algorithmic goal in all the problems we study is to select a set \(S \) that maximizes \(v(S) \) subject to the constraint \(\sum_{i \in S} c_i \leq B \). We assume oracle access to \(v \) via *value queries*; that is, we assume the existence of a polynomial time value oracle that returns \(v(S) \) when given as input a set \(S \).
A function \(v \) is nondecreasing (often referred to as monotone) if \(v(S) \leq v(T) \) for any \(S \subseteq T \subseteq A \). We consider general (i.e., not necessarily monotone), normalized (i.e., \(v(\emptyset) = 0 \)), nonnegative submodular valuation functions. Because marginal values are extensively used, we adopt the shortcut \(v(i \mid S) \) for the marginal value of agent \(i \) with respect to the set \(S \), that is, \(v(i \mid S) = v(S \cup \{i\}) - v(S) \). The following three definitions of submodularity are equivalent. Although definition \(i \) is the most standard, the other two alternative definitions will be useful later on.

Definition 1. A function \(v \), defined on \(2^A \) for some set \(A \), is submodular if and only if

i. \(v(S) + v(T) \geq v(S \cup T) + v(S \cap T) \) for all \(S,T \subseteq A \);

ii. \(v(S \cup T) \geq v(S) + v(T) \) for all \(S,T \subseteq A \);

iii. \(v(S) \leq v(S) + \sum_{i \in T} v(i \mid S) - \sum_{i \in T \setminus \{i\}} v(i \mid S \cup T \setminus \{i\}) \) for all \(S,T \subseteq A \).

In the special case where \(v(i \mid S) = v(i \mid \emptyset) \), for all \(i \in A \) and all \(S \subseteq A \), we say that \(v \) is additive.

In Section 6, we also deal with valuation functions that come from a superclass of submodular functions, namely, XOS or fractionally subadditive functions. In particular, it is known that nonnegative (monotone) submodular functions are a strict subset of (monotone) XOS functions (Gupta et al. [31], Lehmann et al. [37]).

Definition 2. A function \(v \), defined on \(2^A \) for some set \(A \), is XOS or fractionally subadditive if there exist additive functions \(a_1, \ldots, a_r \), for some finite \(r \) such that \(v(S) = \max_{i \in [r]} a_i(S) \).

We often need to argue about optimal solutions of subinstances of the original instance \((A, v, c, B)\). Given a cost vector \(c \) and a subset \(X \subseteq A \), we denote by \(c_X \) the projection of \(c \) on \(X \), and by \(c_X^\perp \) the projection of \(c \) on \(A \setminus X \). By \(\text{OPT}(X,c_X,B) \), we denote the value of an optimal solution to the problem restricted on \(X \). Similarly, \(\text{OPT}(X,v,\infty) \) denotes the value of an optimal solution to the unconstrained version of the problem restricted on \(X \). For the sake of readability, we usually drop the valuation function and the cost vector and write \(\text{OPT}(X,B) \) and \(\text{OPT}(X,\infty) \), respectively.

2.1. Mechanism Design

In the strategic version that we consider here, every agent \(i \in A \) has only his true cost \(c_i \) as private information. Hence, this is a single-parameter environment. A mechanism \(M = (f, p) \) in our context consists of an outcome rule \(f \) and a payment rule \(p \). Given a vector of cost declarations \(b = (b_i)_{i \in A} \), where \(b_i \) denotes the cost reported by agent \(i \), the outcome rule of the mechanism selects the set \(f(b) \subseteq A \). At the same time, it computes payments \(p(b) = (p_i(b))_{i \in A} \), where \(p_i(b) \) denotes the payment issued to agent \(i \). Hence, the final utility of agent \(i \) is \(p_i(b) - c_i \).

Unless stated otherwise, our mechanisms run in polynomial time in the value query model. Further properties we want to enforce in our mechanism design problem are the following.

Definition 3. A mechanism \(M = (f, p) \) is

- **truthful** if reporting \(c_i \) is a dominant strategy for every agent \(i \);
- **individually rational** if \(p_i(b) \geq 0 \) for every \(i \in A \) and \(p_i(b) \geq c_i \) for every \(i \in f(b) \);
- **budget feasible**, if \(\sum_{i \in A} p_i(b) \leq B \) for every \(b \).

For our randomized mechanisms, we use the strong notion of universal truthfulness, which means that the mechanism is a probability distribution over deterministic truthful mechanisms. As all the mechanisms we suggest are universally truthful, we will consistently use \(c = (c_i)_{i \in A} \) rather than \(b = (b_i)_{i \in A} \) for the declared costs in their description and analysis.

To design truthful mechanisms for single-parameter environments, we use a characterization by Myerson [42]. We say that an outcome rule \(f \) is monotone if for every agent \(i \in A \) and any vector of cost declarations \(b \), if \(i \in f(b) \), then \(i \in f(b_i', b_{-i}) \) for \(b_i' \leq b_i \). That is, if an agent \(i \) is selected by declaring cost \(b_i \), then he should still be selected by declaring a lower cost. Myerson’s [42] lemma, below, implies that monotone algorithms admit truthful payment schemes (often referred to as threshold payments). This greatly simplifies the design of truthful mechanisms, as one may focus on constructing monotone algorithms rather than having to worry about the payment scheme. For all of our mechanisms, we assume that the underlying payment scheme is given by Myerson’s [42] lemma.

Lemma 1 (Myerson [42]). Given a monotone algorithm \(f \), there is a unique payment scheme \(p \) such that \((f, p)\) is a truthful and individually rational mechanism, given by

\[
p_i(b) = \begin{cases}
\sup_{b_i' \in [c_i, \infty)} \{b_i' : i \in f(b_i', b_{-i})\} & \text{if } i \in f(b), \\
0 & \text{otherwise}.
\end{cases}
\]
2.2. Technical Assumptions

We may assume, without loss of generality, that in any given instance, all the costs are upper bounded by the budget. To see this, notice that neither our mechanisms nor the optimal offline solution will ever consider any agent with cost higher than \(B\). Furthermore, no agent has an incentive to misreport a very high true cost. Indeed, because of budget feasibility, if agent \(i\) reports a cost \(b_i \leq B\) instead of his true cost \(c_i > B\) and is selected, then he has utility \(p_i(b_i) - c_i < B - B = 0\). Thus, in all of our mechanisms, we implicitly assume a preprocessing step that removes all the agents with declared costs exceeding \(B\). The resulting instance (given as input to the corresponding mechanism) has the same set of optimal solutions subject to the budget constraint as the original one. Note that in the case of the online mechanism \textsc{GenSm-Online}, rejecting such agents as they arrive suffices.

We should stress that wherever tie-breaking is needed (e.g., in lines 3 and 10 of \textsc{Simultaneous Greedy}, during the execution of the auxiliary algorithms \textsc{Alg1}, \textsc{Alg2}, and \textsc{Alg3}, etc.), we assume the consistent use of a tie-breaking rule that is independent of the declared costs. An obvious such choice would be a deterministic lexicographic.

In our mechanisms, we often use randomized approximation algorithms for constrained submodular maximization as subroutines. In particular, \textsc{Alg1} in \textsc{Sample-Then-Greedy} and \textsc{GenSm-Online}, \textsc{Alg3} in \textsc{MonSm-Constrained}, and \textsc{Alg4} in \textsc{GenSm-Constrained} are all randomized. In our analyses, we need variants of these algorithms that almost achieve their guarantees with probability close to one. In particular, we use the fact that for any constants \(\delta, \eta\), a randomized \(p\)-approximation algorithm \textsc{Alg} can be modified so that with probability at least \(1 - \delta\) it returns a solution of value at least \((\frac{1}{p} - \eta) \cdot \text{OPT}\) in polynomial time. This is achieved by simply running \textsc{Alg} \(\Theta(\frac{1}{\eta} \log \frac{1}{\delta})\) times and keeping the best solution. For completeness, we prove this simple fact here.

\textbf{Lemma 2.} Let \textsc{Alg} be a randomized \(p\)-approximation algorithm for a constrained submodular maximization problem. Also, let \textsc{Alg'} be the algorithm that runs \(\textsc{Alg} \frac{1}{\eta} \log \frac{1}{\delta}\) times and outputs the best among these solutions, where \(\delta, \eta \in (0, 1)\). Then for any instance \(I\), with probability at least \(1 - \delta\), \(v(\textsc{Alg'}(I)) \geq (\frac{1}{p} - \eta) \cdot \text{OPT}(I)\), where \(\text{OPT}(\cdot)\) is the value of an optimal solution of the corresponding problem.

\textbf{Proof.} Let \(I\) be an arbitrary instance. By \(E_<\) we denote the event \(v(\textsc{Alg'}(I)) < (\frac{1}{p} - \eta) \cdot \text{OPT}(I)\), and by \(E_>\) its complement. We have

\[
\frac{1}{\rho} \cdot \text{OPT}(I) \leq \mathbb{E}(v(\textsc{Alg}(I))) = \mathbb{P}(E_<) \cdot \mathbb{E}(v(\textsc{Alg}(I)) \mid E_<) + \mathbb{P}(E_>\} \cdot \mathbb{E}(v(\textsc{Alg}(I)) \mid E_>\}
\leq \frac{1}{\rho} \cdot \delta \cdot \text{OPT}(I) + \mathbb{P}(E_>\} \cdot \text{OPT}(I).
\]

Thus it is easy to see that \(\mathbb{P}(E_>\} \geq \eta\), and thus, the probability that \textsc{Alg'} fails to produce a solution of value \((\frac{1}{p} - \eta) \cdot \text{OPT}(I)\) is

\[
\mathbb{P}(v(\textsc{Alg'}(I)) < (\frac{1}{p} - \eta) \cdot \text{OPT}(I)) \leq (1 - \eta)\frac{1}{\eta} \log \frac{1}{\delta} < (1 - \eta) \frac{1}{\eta} \log \frac{1}{\delta} = \delta,
\]

where verifying the last inequality for \(\eta \in (0, 1)\) is just a matter of simple calculations. \(\Box\)

Whenever we say that we use a known algorithm as a subroutine, we mean its \textit{concentrated version} suggested by Lemma 2 for appropriately small positive constants \(\delta, \eta\). Note that as long as \textsc{Alg} runs in polynomial time and \(\delta, \eta\) are constants, \textsc{Alg'} also runs in polynomial time.

As will become apparent by the proof of Theorem 1 (in particular, by the proofs of Lemma 7 and Corollary 2), technical nuances aside, \textsc{Alg1}—or any other concentrated randomized algorithm—can be used like a deterministic approximation algorithm in our analysis. To facilitate the presentation, in the proofs of Theorems 2 and 4, we treat \textsc{Alg1}, \textsc{Alg3}, and \textsc{Alg4} as if there were deterministic. This does not affect the achieved guarantees, as there is some slack in the approximation ratios derived in this work, and for small enough \(\delta, \eta\), any resulting increase can, in fact, be “hidden” in the current ratios.

3. An Efficient Mechanism for Submodular Objectives

The main result of this section is the first \(O(1)\)-approximation mechanism (termed \textsc{GenSm-Main} below) for non-monotone submodular valuation functions.
Theorem 1. \textsc{GenSM-Main} is a universally truthful, individually rational, budget-feasible $O(1)$-approximation mechanism.

At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint (\textsc{Simultaneous Greedy} below). As we mentioned in the introduction, all known mechanisms use the same greedy subroutine: sort all agents in decreasing order of marginal value per cost and pick as many agents as possible before hitting some threshold. Whereas for monotone submodular objectives this gives a nontrivial approximation guarantee, for non-monotone objectives this may result in arbitrarily bad solutions. Moreover, continuous algorithmic approaches for non-monotone submodular maximization under a knapsack constraint (Feldman et al. [28], Kulik et al. [36]) seem very unlikely to yield monotone allocation rules, and thus truthful mechanisms. The only algorithm that is conceptually close to our approach is the two-pass greedy algorithm of Gupta et al. [32], which runs Sviridenko’s [49] greedy algorithm twice and then maximizes without the knapsack constraint to get a deterministic 6-approximate solution. The intuition behind this approach is that submodularity prevents the greedy algorithm from getting stuck in consecutive “bad” local maxima. Despite being significantly simpler, however, this two-pass greedy algorithm still suffers irreparably with respect to monotonicity, as it allows agents to jump from one solution to the other by changing their costs.

The presentation of our mechanism resembles the presentation of other algorithms in the related literature (e.g., Badanidiyuru et al. [9], Bei et al. [13]), as it has a similar high-level structure (randomization between a best singleton and a greedy solution that needs a sampling preprocessing step).

First we introduce \textsc{Simultaneous Greedy}, a greedy mechanism that builds two candidate solutions simultaneously. Although the analysis of Gupta et al. [32] does not apply here (our solutions are neither built sequentially nor according to the standard greedy algorithm), the way we obtain our approximation guarantee is of the same flavor: at least one of the solutions will contain an approximately optimal set. At the same time, \textsc{Simultaneous Greedy} prevents agents from choosing their favorite candidate solution by misreporting their cost. To achieve that, we offer each agent a take-it-or-leave-it price based on an estimate of the optimal value, which we obtain by sampling. It is crucial that in our mechanism the agents are not ordered with respect to their marginal value per cost. This will further allow us to appropriately modify \textsc{Simultaneous Greedy} for the online setting of Section 4 while maintaining all its desired properties.

Note that in line 4 of the algorithm we introduce the parameter β. We later set β equal to 9.185 in order to get the approximation factor of Corollary 2 but, otherwise, our analysis is independent of β’s value. An analogous parameter will be used in all of our mechanisms in later sections, and each time it will be tuned differently. Auxiliary algorithm \textsc{Alg2} in line 9 can be any approximation algorithm for unconstrained non-monotone submodular maximization. In particular, we may use the best known approximation algorithm, that is, the 2-approximation algorithm of Buchbinder and Feldman [16].

Algorithm 1 \textsc{(Simultaneous Greedy})

\begin{align*}
1. & S_1 = S_2 = \emptyset; B_1 = B_2 = B; U = D \\
2. & \text{while } \max_{i \in U \setminus \{1,2\}} v(i | S_i) > 0 \text{ do} \\
3. & \quad \text{Let } (i, j) \in \arg \max_{i \in U \setminus \{1,2\}} v(i | S_i) \\
4. & \quad \text{if } c_i \leq \frac{\beta}{\beta + 1} v(i | S_j) \leq B_j \text{ then} \\
5. & \quad \quad S_j = S_j \cup \{i\} \\
6. & \quad \quad B_j = B_j - \frac{c_i}{\beta} v(i | S_j) \\
7. & \quad U = U \setminus \{i\} \\
8. & \quad \text{for } j \in \{1,2\} \text{ do} \\
9. & \quad \quad T_j = \text{\textsc{Alg2}}(S_j) \\
10. & \quad \text{let } S \text{ be the best solution among } S_1, S_2, T_1, T_2 \\
11. & \text{return } S
\end{align*}

Ideally, we would like the rate parameter γ to be close to $\text{OPT}(A, B)$ and also to be robust in the sense that no single agent can significantly affect its value. To achieve that, \textsc{Sample-Then-Greedy} randomly partitions the set of agents into two sets A_1 and A_2, then approximately solves the problem on A_1 to obtain an estimate of $\text{OPT}(A_1, B)$, and finally uses this γ to set the threshold rate for \textsc{Simultaneous Greedy} on A_2.

Auxiliary algorithm \textsc{Alg2} in line 2 can be the concentrated version (suggested by Lemma 2; see the discussion around the lemma) of any approximation algorithm for non-monotone submodular maximization subject to a knapsack constraint. Again, we may use the best known approximation algorithm, that is, the e-approximation algorithm of Kulik et al. [36]. The constants δ, η used for its concentrated version are given right before Lemma 7.
Algorithm 2 (SAMPLE-THEN-GREEDY(A, v, c, B))
1. Put each agent of A in either A_1 or A_2 independently at random with probability \(\frac{1}{2} \)
2. \(x = v(\text{ALG}_1(A_1)) \) /* (the concentrated version of) an \(\epsilon \)-approximation of \(\text{OPT}(A_1, v, c_{A_1}, B) \) */
3. return SIMULTANEOUS GREEDY(A_2, v, c_{A_2}, B, x)

Lemma 6 in Subsection 3.1, due to Bei et al. [12] and Leonardi et al. [38], guarantees that with high probability both \(A_1 \) and \(A_2 \) contain enough value subject to the budget constraint for things to work, as long as no agent is too valuable. The latter leads to the final mechanism GENSM-MAIN (for GENERAL SUBMODULAR-MAIN) that randomizes between all the above and just returning a best singleton.

Mechanism 1 (GENSM-MAIN(A, v, c, B))
1. With probability \(p = 0.2 \): return \(i^* \in \arg\max_{i \in A} v(i) \)
2. With probability \(1 - p \): return SAMPLE-THEN-GREEDY(A, v, c, B)
3. Pay the agents according to Myerson’s lemma (Lemma 1)

Remark 2 (Turning This into a (Nontruthful) Algorithm). Here it is necessary that SIMULTANEOUS GREEDY uses thresholds in order to achieve the properties stated in Theorem 1. Although this goes beyond the point of this work, one can follow the same approach of greedily building two solutions at the same time (using a variant of Sviridenko’s [49] algorithm), in order to design a deterministic \(7 \)-approximation algorithm for maximizing non-monotone submodular functions subject to a knapsack constraint. Although this does not improve the state of the art, the overall approach might be of independent interest for certain variants of the problem (like it was here for mechanism design).

3.1. Proving the Properties of GENSM-MAIN
We fix some additional notation to facilitate the presentation of the proofs. In particular, we want to be able to argue about \(S_1, S_2, B_1, B_2 \) on a per-iteration basis. We use \((D, v, c, B, x)\) for a generic instance given to SIMULTANEOUS GREEDY and \(S \) for the set returned. By \(i_1, i_2, \ldots, i_{\ell} \) we denote the sequence of agents of \(D \) that were examined (i.e., appeared in line 3 of the algorithm) during this execution of SIMULTANEOUS GREEDY in this exact order. All the agents of \(S \) clearly appear within this sequence, so for any particular \(\ell \in S \), we have that \(\ell = i_k \) for some \(k \). By \(j_k \) we denote the index \(j \) picked during the \(k \)th execution of line 3 of SIMULTANEOUS GREEDY, whereas by \(S_{j_k}^{(k)} \) and \(B_{j_k}^{(k)} \) we denote the set \(S_{j_k} \) and its remaining budget, respectively, at that time. Conventionally, we use notation like \(S_{j_k}^{(k+1)} \) to denote \(S_{j_k} \) right after the \(k \)th execution of line 7, even if line 3 is never executed more than \(k \) times. Recall that we use a tie-breaking rule that is independent of the costs, as mentioned in Section 2.

Lemma 3. The allocation rule defined by SIMULTANEOUS GREEDY is monotone. Thus, using the threshold payments of Lemma 1, the resulting mechanism is truthful and individually rational.

Proof. We need to show that a winning agent remains a winner if he decreases his cost; then the statement follows by Lemma 1. In fact, we show something stronger, namely, that no winning agent can affect the output of SIMULTANEOUS GREEDY by lowering his bid.

Let \(S \) be the set returned when the input is \((D, v, c, B, x)\) and fix some agent \(i_k \in S \); that is, during the \(k \)th execution of line 3, \((i, j) = (i_k, j_k)\). Fix the vector \(c_{-i_k} \) for the other agents, and suppose that agent \(i_k \) declares \(c_{i_k}' < c_{i_k} \). Clearly, the execution of SIMULTANEOUS GREEDY \((D, v, (c_{-i_k}, c_{i_k}'), B, x)\) will be exactly the same as before for agents \(i_1, \ldots, i_{k-1} \). Furthermore, \(j \) will again be \(j_k \). Thus, \(i_k \) will again be added to the \(S_{j_k}^{(k)} \) because

\[
c_{i_k}' < c_{i_k} \leq \frac{\beta B}{x} v(\mathcal{I}_k \mid S_{j_k}^{(k)}) \leq B_{j_k}^{(k)}.
\]

After updating \(B_{j_k}^{(k)} \) to \(B_{j_k}^{(k)} - \frac{\beta B}{x} v(\mathcal{I}_k \mid S_{j_k}^{(k)}) \), everything is exactly the same as in the beginning of the \((k+1)\)th iteration of the original execution of SIMULTANEOUS GREEDY \((D, v, c, B, x)\), and, therefore, the algorithm will proceed in exactly the same way to produce the same output \(S \). In particular, agent \(i_k \) will still be a winner. \(\Box \)

In all the following statements, when we refer to mechanisms, we always assume threshold payments. Before we study the total payment, we should point out that enforcing budget feasibility has been the main source of technical difficulties in the budget-feasible mechanism design literature. A significant advantage of the posted
price approach used in threshold mechanisms like \textsc{Simultaneous Greedy} is that the budget feasibility becomes much more manageable. To some extent, this comes at the expense of the approximation guarantee and its analysis, but also offers some additional flexibility that will be explored in Sections 4 and 5.

Lemma 4. The mechanism \textsc{Simultaneous Greedy} is budget feasible.

Proof. Let S be the set returned given the instance (D, v, c, B, x) and fix $i_k \in S$. We claim that the payment $p_{i_k}(c)$ is exactly $\pi_k = \frac{\beta B}{x} \mathbb{E} (i_k \mid S^{(i_k)})$, that is, $i_k \in S$ if and only if he bids $c' \leq \pi_k$. First note that i_k cannot affect the time when he is examined by the mechanism or which agents come before him. So, because c_{i_k} is fixed, during the kth execution of line 3, he is always "offered" π_k; either he accepts, that is, $c' \leq \pi_k$, and the algorithm proceeds in the exact same way as with $c'_k = c_k$ (see also the proof of Lemma 3), or he rejects, that is, $c'_k > \pi_k$, and he is removed from the active set of agents. Once an agent is removed, however, he is never reexamined, and thus, if $c'_k > \pi_k$, then i_k is not in the winning set.

Recall that S can be any of S_1, S_2, T_1, T_2. We will show that all four sets are budget feasible. Let $T_1 = \{i_{b_1}, i_{b_2}, \ldots, i_{b_{|T_1|}}\}$ and $S_1 = \{i_{b_1}, i_{b_2}, \ldots, i_{b_{|S_1|}}\}$, where $(a_i)_{i=1}^{\beta \| i \|}$ is a subsequence of $(b_i)_{i=1}^{\beta \| i \|}$, which is a subsequence of $1, 2, \ldots, t$. Recall that t is the total number of agents examined during this particular execution of \textsc{Simultaneous Greedy}. Also notice that the budget of T_1 for S_1 never becomes negative. We have

$$\sum_{i=1}^{|T_1|} \pi_{i_k} \leq \sum_{i=1}^{|S_1|} \pi_{i_k} = \sum_{i=1}^{|S_1|} \frac{\beta B}{x} (i_{b_i} \mid S_{b_i}) = B - B_1^{S_1|+1|} \leq B.$$

The first and second sums represent the total payment when $S = T_1$ and when $S = S_1$, respectively. The budget feasibility of T_2 and S_2 is proved in the exact same way. □

Corollary 1. The mechanism \textsc{GenSm-Main} is universally truthful, individually rational, and budget feasible.

Proof. Given that \textsc{Alg}_1 and \textsc{Alg}_2 run in polynomial time, and that it is straightforward to determine the payments (Lemma 4), it is clear that \textsc{GenSm-Main} is a polynomial-time mechanism.

Furthermore, \textsc{GenSm-Main} is a probability distribution over the mechanism that returns $i^* \in \arg \max_{i \in \mathcal{A}} v(i)$ and \textsc{Simultaneous Greedy}$(D, v, c_D, B, v(\textsc{Alg}_1(A \setminus D)))$ for all $D \subseteq A$. The simple mechanism that returns i^* and pays him the threshold payment is truthful and individually rational. Also, it is clear that the threshold payment is exactly B, so this mechanism is budget feasible as well.

The desired properties of \textsc{GenSm-Main} now follow from Lemmata 3 and 4 and the above observations. □

Lemma 5. If there is a positive integer ℓ such that $\max_{i \in \mathcal{D}} v(i) < \frac{\ell x}{\ell + 1}$, then \textsc{Simultaneous Greedy}(D, v, c, B, x) outputs a set S such that

$$v(S) \geq \min \left\{ \frac{\ell x}{(\ell + 1)^2}, \frac{1}{6} \left(\text{opt}(D, B) - \frac{2x}{\ell} \right) \right\}.$$

Proof. Let t be the number of times line 3 was executed. At the end of the tth iteration, U is the set of agents never examined; that is, U only contains agents that have nonpositive marginal utilities with respect to $S_1^{(t+1)}$ and $S_2^{(t+1)}$. For the sake of readability, we henceforth use S_1 and S_2 to denote $S_1^{(t+1)}$ and $S_2^{(t+1)}$, respectively. Let $R = D \setminus (U \cup S_1 \cup S_2)$ be the agents i_k that were considered at some point by the mechanism but were rejected, that is, not added to either $S_1^{(k)}$ or $S_2^{(k)}$. We first partition R into two sets depending on why the corresponding agents were rejected. The set

$$R_c = \left\{ i_k \mid \frac{\beta B}{x} \mathbb{E} (i_k \mid S_{i_k}^{(k)}) < c_l \right\}$$

contains the agents rejected because the first inequality in line 4 was violated during the corresponding iteration. Similarly, the set

$$R_B = \left\{ i_k \mid b^{(k)}_i < \frac{\beta B}{x} \mathbb{E} (i_k \mid S_{i_k}^{(k)}) \right\}$$

Downloaded from informs.org by [154.59.124.143] on 31 October 2022, at 08:19. For personal use only, all rights reserved.
contains the agents rejected because the second inequality in line 4 was violated. Clearly, \(R = R_c \cup R_g \). We consider two cases, depending on whether \(R_g \) is empty or not.

Case 1. Assume that \(R_g \neq \emptyset \), and let \(i_k \in R_g \); that is, during the \(k \)th execution of line 3, \((i, j) = (i_k, j_k)\), but \(\frac{\beta}{\tau} v(i_k | S_h^{(k)}) > B_h^{(k)} \). Let \(S_h^{(k)} = \{a_i, a_{i_2}, \ldots, a_i\} \), where \((a_i)_\ell=1^t \) is a subsequence of 1, 2, \ldots, \(t \). Furthermore, notice that, by its definition, \(B_h^{(k)} = B - \sum_{\ell=1}^{s} \frac{\beta}{\tau} v(i_\ell | S_h^{(\ell)}) \). We have

\[
\frac{\beta}{\tau} v(i_k | S_h^{(k)}) = \sum_{\ell=1}^{s} v(i_\ell | S_h^{(\ell)}) = \frac{\beta}{\tau} (B - B_h^{(k)})
\]

and therefore, we conclude that \(|S_h^{(k)}| = s \geq \ell \). Now we repeat the same argument for the average marginal value in the sum \(\sum_{\ell=1}^{s} v(i_\ell | S_h^{(\ell)}) \). Using the simple observation that the smallest term of a sum cannot exceed the average of the remaining terms, we get

\[
\frac{\beta}{\tau} v(S_h^{(k)}) + v(i_k | S_h^{(k)}) \leq \frac{1}{s} \sum_{\ell=1}^{s} v(i_\ell | S_h^{(\ell)}) + v(i_k | S_h^{(k)}) \leq s + 1 \cdot v(S_h^{(k)}) \leq \frac{\ell + 1}{\ell} \cdot v(S_h^{(k)}),
\]

where the last inequality follows from the fact that \(f(z) = \frac{z+1}{z} \) is decreasing.

Finally, to get the approximation guarantee for this case, we combine (2) with the fact that \(S \) is at least as good as each greedy solution:

\[
v(S) \geq v(S_h^{(k)}) \geq v(S_h^{(k)}) \geq \frac{\ell}{\ell + 1} \cdot v(S_h^{(k)}).
\]

Case 2. Now assume that \(R_g = \emptyset \), that is, \(R = R_c \). Let \(C' \) be an optimal solution for the given instance, and define \(C_1 = C' \cap S_1 \), \(C_2 = C' \cap S_2 \) and \(C_3 = C' \setminus (C_1 \cup C_2) \). By subadditivity, we have

\[
\text{OPT}(D, B) = v(C') \leq v(C_1) + v(C_2) + v(C_3).
\]

Recall that \(T_j = \text{ALG}_2(S_j), j \in \{1, 2\} \), is a 2-approximate solution with respect to \(\text{OPT}(S_j, \infty) \). Thus, \(v(C_j) \leq \text{OPT}(S_j, B) \leq 2 \cdot v(T_j) \), for \(j \in \{1, 2\} \), and inequality (3) gives

\[
\text{OPT}(D, B) \leq 2v(T_1) + 2v(T_2) + v(C_3).
\]

Upper bounding \(v(C_3) \) in terms of \(S_1, S_2, T_1, T_2 \), and \(x \) is somewhat more involved. We begin by invoking the nonnegativity of \(v \), as well as its submodularity (as defined in Definition 1ii) on \(S_1 \cup C_3 \) and \(S_2 \cup C_3 \). We have

\[
v(C_3) \leq v(C_3) + v(S_1 \cup C_3 \cup S_2) \leq v(S_1 \cup C_3) + v(S_2 \cup C_3).
\]

In order to upper bound \(v(S_1 \cup C_3) \), we again use the submodularity of \(v \), together with a couple of facts about the marginal utilities of agents outside of \(S_1 \). Because the mechanism stopped after \(t \) iterations, \(\max_{i \in D \setminus (S_1 \cup S_2 \cup R_g)} v(i | S_1) \leq 0 \). Also, given that \(R = R_c \), for all agents that got rejected at some point, we know that
they had very low marginal value per cost ratio with respect to both S_1 and S_2. In particular, if $i_k \in R$, then $c_i > \frac{\beta}{x} v(i_k | S_1^{(k)})$, for both $j \in \{1, 2\}$. We may now rely on Definition liii to get

$$v(S_1 \cap C_3) \leq v(S_1) + \sum_{i_k \in C_3} v(i_k | S_1)$$

$$\leq v(S_1) + \sum_{i_k \in C_3 \cap R} v(i_k | S_1)$$

$$\leq v(S_1) + \sum_{i_k \in C_3 \cap R} v(i_k | S_1^{(k)})$$

(by submodularity, $v(i_k | S_1) \leq v(i_k | S_1^{(k)})$ for $i_k \in D$)

$$\leq v(S_1) + \sum_{i_k \in C_3 \cap R} \left(\frac{\beta}{x} v(i_k | S_1^{(k)}) < c_i \text{ for } i_k \in R \right).$$

Similarly, $v(S_2 \cup C_3) \leq v(S_2) + \sum_{i_k \in C_3 \cap R \cup C} \frac{\beta}{x} c_i$. Also, recall that $\sum_{i \in C_1} b_i \leq B$ to get

$$v(S_j \cap C_3) \leq v(S_j) + \frac{x}{\beta}, \text{ for } j \in \{1, 2\}. \quad (6)$$

Finally, we may combine (4), (5), and (6) to get

$$\text{OPT}(D, B) \leq 2v(T_1) + 2v(T_2) + v(S_1 \cup C_3) + v(S_2 \cup C_3) \leq 2v(T_1) + 2v(T_2) + v(S_1) + v(S_2) + \frac{2x}{\beta} \leq 6 \cdot v(S) + \frac{2x}{\beta},$$

or, equivalently, $v(S) \geq \frac{1}{6} (\text{OPT}(D, B) - \frac{2x}{\beta})$.

Combining Case 1 and Case 2, we obtain the claimed guarantee. \hfill \square

So far, unless $x = \Theta(\text{OPT}(D, B))$, the approximation guarantee seems to be rather weak. In fact, the way SIMULTANEOUS GREEDY is used within SAMPLE-THEN-GREEDY requires that both $x = v(\text{ALG}_1(A_1))$ and $\text{OPT}(A_2, B)$ are $\Theta(\text{OPT}(A, B))$. The next technical lemma guarantees that this happens with high probability, unless there is an extremely valuable agent; it follows from lemma 2.1 of Bei et al. [13] or lemmata 6.1 and 6.2 of Leonardi et al. [38].

Lemma 6 (Bei et al. [13], Leonardi et al. [38]). Consider any submodular function $v(\cdot)$. For any given subset $T \subseteq A$ and a positive integer k, assume that $v(T) \geq k \cdot \max_{i \in T} v(i)$. Furthermore, suppose that T is divided uniformly at random into two subsets T_1 and T_2. Then, with probability at least $\frac{1}{2}$, we have that $v(T_1) \geq \frac{k-1}{4k} v(T)$ and $v(T_2) \geq \frac{k-1}{4k} v(T)$.

We are now ready to lower bound the approximation guarantee of SAMPLE-THEN-GREEDY. This is the first step where Lemma 2 is necessary. We set δ and η of Lemma 2 to be appropriate constants and, thus, ALG_1 runs in polynomial time. For the sake of presentation, we use $\delta = 2\epsilon$ and $\eta = \frac{\epsilon}{\varepsilon + \xi}$ in the lemma below, where $\varepsilon = \xi = 10^{-4}$, as discussed later in Corollary 2.

Lemma 7. Let $\varepsilon, \xi \in (0, 1)$, and assume that for some positive integer k, $\text{OPT}(A, B) > k \cdot \max_{i \in A} v(i)$. Then with probability at least $\frac{1}{2} - \varepsilon$, SAMPLE-THEN-GREEDY($A, v, c, B$) outputs a set S such that

$$v(S) \geq \min \left\{ \frac{1-k-1}{4(e+\xi)} \left(\frac{k-1}{4(e+\xi)} - 1 \right), \frac{1}{4ek} \cdot \text{OPT}(A, B) \right\}.$$

Proof. We choose $\delta = 2\varepsilon$ and $\eta = \frac{\epsilon}{\varepsilon + \xi}$ in defining ALG_1 as described in Lemma 2. Let C^* be an optimal solution for the given instance. The random partition of A into A_1 and A_2 induces a uniformly random partition of C^* into $A_1 \cap C^*$ and $A_2 \cap C^*$. As a result, Lemma 6 applies for $T = C^*$. Thus, with probability at least $\frac{1}{2}$, it holds that $v(A_i \cap C^*) \geq \frac{k-1}{4k} v(C^*)$ for both $i \in \{1, 2\}$. Independently, with probability at least $1 - 2\varepsilon$, we have that $v(\text{ALG}_1(A_1)) \geq \frac{1}{e+\xi} \text{OPT}(A_1, B) = \frac{1}{e+\xi} \text{OPT}(A_1, B)$. Therefore, with probability at least $\frac{1}{2}(1 - 2\varepsilon) = \frac{1}{2} - \varepsilon$, both these “good” events happen simultaneously. In what follows, we assume that this is indeed the case. Thus, $\text{OPT}(A, B) \geq x = v(\text{ALG}_1(A_1)) \geq \frac{1}{e+\xi} \text{OPT}(A_1, B) \geq \frac{k-1}{4(e+\xi)k} \text{OPT}(A, B)$, and also $\text{OPT}(A_2, B) \geq \frac{k-1}{4k} \text{OPT}(A, B)$.
The lower bound on x paired with the upper bound on $\max_{i \in A} v(i)$ implies that

$$\max_{i \in A} v(i) < \frac{1}{k} \cdot \OPT(A, B) \leq \frac{1}{k} \cdot \frac{4(e + \xi)k \beta}{k - 1} \cdot \frac{x}{\beta} \leq \frac{1}{k \cdot 4(e + \xi)\beta} \cdot \frac{x}{\beta}. $$

Thus, we can use Lemma 5 with $D = A_2$, $x = v(\text{ALG}_1(A_1))$, and $\ell = \lfloor \frac{k - 1}{4(e + \xi)\beta} \rfloor$. Therefore, $\text{SIMULTANEOUS GREEDY}(A_2, v, c_{A_j}, B, x)$ outputs S such that

$$v(S) \geq \min \left\{ \frac{k - 1}{4(e + \xi)\beta} \cdot \frac{(k - 1)}{4(e + \xi)\beta} + 1, \frac{1}{6} \cdot \OPT(A_2, B) - \frac{2x}{\beta} \right\} \geq \min \left\{ \frac{k - 1}{4(e + \xi)\beta} \cdot \OPT(A, B), \frac{1}{6} \cdot \OPT(A, B) - \frac{2 \OPT(A, B)}{\beta} \right\} \geq \min \left\{ \frac{k - 1}{4(e + \xi)\beta} \cdot \OPT(A, B) - \frac{8k}{6}, \frac{1}{4\beta k} \cdot \OPT(A, B) \right\}. $$

\textbf{Corollary 2.} The set S returned by $\text{GENSM-MAIN}(A, v, c, B)$ satisfies

$$505 \cdot \mathbb{E}(v(S)) \geq \OPT(A, B).$$

\textbf{Proof.} Suppose that $\max_{i \in A} v(i) \geq \frac{1}{101} \cdot \OPT(A, B)$. Then, with probability p, at least $1/101$ of the optimal value is returned. Hence,

$$\mathbb{E}(v(S)) \geq p \cdot \max_{i \in A} v(i) \geq \frac{0.2}{101} \cdot \OPT(A, B) = \frac{1}{505} \cdot \OPT(A, B).$$

Next suppose that $\max_{i \in A} v(i) < \frac{1}{101} \cdot \OPT(A, B)$. We may apply Lemma 7 with $k = 101$ and $\epsilon = \xi = 10^{-4}$. As discussed after the description of mechanism $\text{SIMULTANEOUS GREEDY}$, the parameter β is equal to 9.185. This implies that $\lfloor \frac{k - 1}{4e\beta} \rfloor = 1$. By substituting the values of $\epsilon, \xi, k,$ and β to the bound of Lemma 7, we get that with probability at least $(1 - p)(0.5 - 10^{-4})$,

$$v(S) \geq \min \left\{ \frac{50}{e + 10^{-4}}, \frac{110.5}{6} \right\} \cdot \frac{1}{3710.74} \cdot \OPT(A, B) \geq \frac{1}{201.75} \cdot \OPT(A, B),$$

and thus,

$$\mathbb{E}(v(S)) \geq (1 - 0.2)(0.5 - 10^{-4}) \cdot \frac{1}{201.75} \cdot \OPT(A, B) \geq \frac{1}{505} \cdot \OPT(A, B). $$

Notice that Corollaries 1 and 2 complete the proof of Theorem 1.

\section{4. Online Procurement}

Note that the mechanism presented in the last section already bares some resemblance to online algorithms for variants of the secretary problem (although truthfulness is rarely a requirement there); namely, a part of the input is only used to estimate the quality of the optimal solution and then, based on that estimation, some threshold is set for the remaining instance. On a high level, this is straightforward to adjust for the random-arrival model; we use the first (roughly) half of the stream of agents to find an estimate of $\OPT(A, B)$ and then set a threshold similar to the one in $\text{SIMULTANEOUS GREEDY}$. However, there are a few issues one has to deal with.

First, $\text{SIMULTANEOUS GREEDY}$ goes through the agents in a specific order (in decreasing order of the maximum marginal value with respect to either one of the two constructed sets). Even though this fact is indeed used in the proof of Lemma 5, we show that even examining agents in arbitrary order works well, albeit with a somewhat
worse approximation factor. Note that this is not true when there are other constraints on top of the budget-feasibility requirement, as in Section 5.

Second, toward the end, in line 9, SIMULTANEOUS GREEDY runs an unconstrained submodular maximization algorithm on S_1 and S_2 to possibly reveal a subset of them with much higher value. For this critical step, we rely on a very elegant result of Feige et al. [24]: a uniformly random set gives a 4-approximation for the unconstrained problem. Thus, every agent that passes the threshold and is added to S_i is only accepted to T_j with probability $1/2$. The actual output of the mechanism is a random choice of S between S_1, S_2, T_1, and T_2 made before the arrival of the first agent. So, while the four sets are built obliviously with respect to the choice of S, and the agents added to S are irrevocably chosen, whereas everyone else is irrevocably discarded.

One last issue is that we want the mechanism to occasionally return the single most valuable agent. This, however, is easily resolved by running Dynkin’s [22] algorithm with constant probability instead. This mechanism samples the first n/e agents and then it picks the first agent i', among the remaining agents, who is at least as good as the best agent in the sample, that is, $v(i') \geq \max_{k \leq \lfloor n/e \rfloor} v(i_k)$. This guarantees that $E(v(i')) \geq 2/3 \max_{i \in A} v(i)$, where the expectation is over the order of the agents.

The mechanism GENSM-ONLINE below incorporates all these adjustments, yet maintains all the good properties of GENSM-ONLINE. We assume a secretary setting, where the agents arrive uniformly at random. In particular, agents have no control over their arrival time, so this is still a single-parameter environment, and truthfulness still means universal truthfulness; that is, if we fix the random bits of the mechanism, then for any arrival order, no agent has an incentive to lie. Moreover, note that GENSM-ONLINE is order oblivious (Azar et al. [6]), and thus it does not fully exploit the randomness in the arrival of agents. Roughly, this means that after A_1 and A_2 are determined but not yet observed, that is, right after randomly selecting ξ, an adversary is allowed to determine the order in which the mechanism observes the elements of A_1 and, separately, the order in which it observes the elements of A_2. A somewhat weaker, but intuitively more clear, interpretation is that the agents arrive uniformly at random up until the sampling phase is over, and after that the order is adversarial.

Again, ALG_1 is the ϵ-approximation algorithm of Kulik et al. [36]. The parameter β is set to 8.725 and, like the parameter in SIMULTANEOUS GREEDY, is only relevant for the approximation factor.

Theorem 2. GENSM-ONLINE is a universally truthful, individually rational, budget-feasible online mechanism and achieves an $O(1)$-approximation in the random-arrival model.

Proof. Fix any particular arrival order i_1, i_2, \ldots, i_n of the agents.

By fixing the sequence ρ of the random bits of the mechanism, we get a deterministic allocation rule GENSM-ONLINE(ρ). In the case where this is Dynkin’s [22] algorithm, it is straightforward that—coupled with the threshold payment of B to the possible winner—it is truthful, individually rational, and budget feasible. Otherwise, that is, if lines 4–16 are executed, the proof of monotonicity, and thus of truthfulness and individual rationality, of GENSM-ONLINE(ρ) is virtually identical to the proof of Lemma 3. Similarly, the budget feasibility is proved exactly like the budget feasibility of SIMULTANEOUS GREEDY in Lemma 4.

Mechanism 2 (GENSM-ONLINE(A, v, c, B))

1. **With probability $q = 0.4$:**
2. **Run Dynkin’s algorithm and return the winner**
3. **With probability $1 - q$:**
4. $S_1 = S_2 = T_1 = T_2 = \emptyset; B_1 = B_2 = B$
5. $S = \begin{cases} S_j, & \text{with probability } 1/10, \text{for each } j \in \{1, 2\} \\ T_j, & \text{with probability } 2/5, \text{for each } j \in \{1, 2\} \end{cases}$
6. Draw ξ from the binomial distribution $B(n, 0.5)$
7. Let A_1 be the set of the first ξ agents, and $A_2 = A \setminus A_1$
8. Reject all the agents in A_1 and calculate $x = v(\text{ALG}_1(A_1))$
9. **for each $i \in A_2$ as he arrives do**
10. **Let $j = \arg \max_{j \in \{1, 2\}} v(i \mid S_j)$**
11. **if $\xi_i \leq \frac{B_B}{\max_{i \in A} v(i \mid S_j)}$ then**
12. $S_j = S_j \cup \{i\}$
13. $B_j = B_j - \frac{B_B}{\max_{i \in A} v(i \mid S_j)}$
14. **With probability $1/2$, $T_j = T_j \cup \{i\}$ (otherwise, T_j remains the same)**
15. **Update S */ the update is consistent to the choice made in line 5 /*
16. return S
17. Pay the agents according to Myerson’s lemma (Lemma 1)
Because \textbf{GenSm-Online} is a probability distribution over \textbf{GenSm-Online}(\(\rho \)) for all possible \(\rho \), we conclude that it is universally truthful, individually rational and budget feasible. Also, given that Dynkin’s [22] algorithm and \(\text{ALG}_1 \) run in polynomial time and that the payments are easily determined, \textbf{GenSm-Online} runs in polynomial time.

It remains to show that the solution returned by the mechanism is a constant approximation of the offline optimum. It is not hard to see that when the most valuable agent is comparable to the optimal solution, then Dynkin’s [22] algorithm suffices to guarantee an overall good performance. In particular, suppose that \(\max_{i \in A} v(i) \geq \frac{1}{250} \cdot \opt(A, B) \).

Then, with probability \(q \) at least \(1/e \) of the 1/250 of the optimal value is returned in expectation (with respect to the arrival order). Hence, if \(X \) is the (possibly empty) set returned by \textbf{GenSm-Online}

\[
\mathbb{E}(v(X)) \geq \frac{q}{e} \cdot \max_{i \in A} v(i) \geq \frac{q}{e} \cdot \frac{1}{250} \cdot \opt(A, B) \geq \frac{1}{1,710} \cdot \opt(A, B).
\]

For the case where \(\max_{i \in A} v(i) < \frac{1}{250} \cdot \opt(A, B) \), we are going to prove the analog of Lemma 7. First, notice that randomly ordering the elements of \(A \) and then picking the first \(\xi \), where \(\xi \) follows the binomial distribution \(B(n, 0.5) \), is equivalent to just picking each element of \(A \) with probability \(1/2 \). This simple observation is crucial, because it allows to still use Lemma 6. So, assume it is the case that \(\opt(A_i, B) \geq \frac{k-1}{4k^2} \cdot \opt(A, B) \) for \(i \in \{1, 2\} \), where \(k = 250 \). Unless stated otherwise, all expectations below are conditioned on this fact. Recall that this happens with probability at least \(1/2 \) as discussed in the beginning of the proof of Lemma 7.

We will follow a similar case analysis as in the proof of Lemma 5, depending on whether the set \(R_B \) defined below, is empty or not. Similarly to the notation used in Section 3, let \(i_1, i_2, \ldots, i_{n-\xi} \) be the agents of \(A_2 \) ordered according to their arrival. Also, let \(S^{(k)}_1, B^{(k)}_1, S^{(k)}_2, B^{(k)}_2 \) denote \(S_1, B_1, S_2, B_2 \), respectively, at the time \(i_k \) arrives. We will use \(S_1 \) and \(S_2 \) exclusively for their final versions. Let \(R = A_2 \setminus (S_1 \cup S_2) \) be the agents \(i_k \) that were rejected, that is, not added to either \(S^{(k)}_1 \) or \(S^{(k)}_2 \). We again partition \(R \) depending on why the agents were rejected, that is, \(R_b \) (respectively, \(R_b \)) contains everyone rejected because the first (respectively, the second) inequality in line 11 was violated.

Case 1. Assume that \(R_b \neq \emptyset \), and let \(i_k \in R_b \). If \(j_k \) is the value of \(j \) chosen in line 10, then \(\frac{\beta_j}{x} \cdot v(i_k \mid S^{(k)}_j) > B^{(k)}_j \).

Using the exact same argument leading to (1) (see the proof of Lemma 5), we get

\[
v(S^{(k)}_j) \geq \frac{x}{\beta} - v(i_k \mid S^{(k)}_j) \geq \frac{x}{\beta} - \max_{i \in A} v(i).
\]

Given the known lower bound on \(x \) and upper bound on \(\max_{i \in A} v(i) \), this leads to

\[
v(S^{(k)}_j) \geq \frac{k-1}{4ek^2} \cdot \opt(A, B).
\]

Before we lower bound \(\mathbb{E}(v(S)) \), it not hard to see that \(\mathbb{E}(v(T_j)) \geq \frac{1}{2} v(S) \), where the expectation is over the random choices made in line 14. In fact, this is a direct corollary of the nonnegativity of \(v \) and the following well-known probabilistic property of submodular functions.

Lemma 8 (Feige et al. [24]). Let \(g : 2^X \rightarrow \mathbb{R} \) be submodular. Denote by \(A[p] \) a random subset of \(A \) where each element appears with probability \(p \). Then \(\mathbb{E}(g(A[p])) \geq (1 - p) \cdot g(\emptyset) + p \cdot g(A) \).

By taking the expectation of \(v(S) \) over the random choices made in lines 14 and 5, we get

\[
\mathbb{E}(v(S)) \geq \frac{1}{10} \cdot v(S_1) + \frac{1}{10} \cdot v(S_2) + \frac{2}{5} \cdot \mathbb{E}(v(T_1)) + \frac{2}{5} \cdot \mathbb{E}(v(T_2)) \geq \frac{1}{10} \cdot v(S_1) + \frac{2}{5} \cdot \frac{1}{2} \cdot v(S_2) \geq \frac{3}{10} \cdot \left(\frac{k-1}{4ek^2} - \frac{1}{k} \right) \cdot \opt(A, B) \geq \frac{1}{512} \cdot \opt(A, B).
\]

Case 2. Assume that \(R_b = \emptyset \). Let \(C' \) be an optimal solution for the instance \((A_2, v, c_{A_2}, B)\) and \(C_1 = C' \cap S_1, C_2 = C' \cap S_2, C_3 = C' \setminus (C_1 \cup C_2) \). Recall inequality (3) (see the proof of Lemma 5):

\[
\opt(A_2, B) = v(C') \leq v(C_1) + v(C_2) + v(C_3).
\]

To upper bound the value of \(C_1 \) and \(C_2 \), we need the following result by Feige et al. [24].
Theorem 3 (Feige et al. [24]). Let \(v : 2^A \rightarrow \mathbb{R}_{\geq 0} \) be a submodular function, and let \(T \) denote a random subset of \(A \), where each element is sampled independently with probability \(1/2 \). Then \(\mathbb{E}(v(T)) \geq \frac{1}{513} \cdot \text{opt}(A, \infty) \).

By the definition of \(T_1 \) and \(T_2 \) and Theorem 3, we get
\[
v(C_j) \leq \text{opt}(S_j, B) = \text{opt}(S_j, \infty) \leq 4 \cdot \mathbb{E}(v(T_j)), \quad \text{for } j \in \{1, 2\}. \tag{9}
\]

For upper bounding \(v(C_3) \), recall inequality (5) (see proof of Lemma 5):
\[
v(C_3) \leq v(S_1 \cup C_3) + v(S_2 \cup C_3).
\]

Using the same arguments leading to (6) (see the proof of Lemma 5), we get
\[
v(S_j \cup C_3) \leq v(S_j) + \frac{x}{\beta}, \quad \text{for } j \in \{1, 2\}. \tag{10}
\]

We may now combine (3), (9), (5), and (10). Note that \(\mathbb{E}(v(T_j)), j \in \{1, 2\} \), are over the random choices in line 14, whereas \(\mathbb{E}(v(S_j)), j \in \{1, 2\} \), are over the random choices in both line 14 and line 5:
\[
\frac{k-1}{4k} \cdot \text{opt}(A, B) \leq \text{opt}(A_2, B)
\]
\[
\leq 4 \cdot \mathbb{E}(v(T_1)) + 4 \cdot \mathbb{E}(v(T_2)) + v(S_1) + v(S_2) + \frac{2x}{\beta}
\]
\[
= 10 \cdot \mathbb{E}(v(S)) + \frac{2x}{\beta}
\]
\[
\leq 10 \cdot \mathbb{E}(v(S)) + \frac{2}{\beta} \cdot \text{opt}(A, B),
\]

or, equivalently,
\[
\mathbb{E}(v(S)) \geq \frac{1}{10} \left(\frac{k-1}{4k} - \frac{2}{\beta} \right) \cdot \text{opt}(A, B)
\]
\[
\geq \frac{1}{513} \cdot \text{opt}(A, B). \tag{11}
\]

Therefore, given that both \(A_1 \) and \(A_2 \) contain a good fraction of the optimal budget-feasible solution, the expectation of \(v(S) \) is always at least \(\frac{1}{513} \cdot \text{opt}(A, B) \). Coupled with Lemma 6, this means that the unconditional expectation of \(v(S) \) is at least \(\frac{1}{2} \cdot \frac{1}{513} \cdot \text{opt}(A, B) \).

Hence, if \(X \) is the set returned by \textsc{GenSM-Online}, by the law of total expectation, we have
\[
\mathbb{E}(v(X)) \geq (1 - p) \cdot \frac{1}{2} \cdot \frac{1}{513} \cdot \text{opt}(A, B) = \frac{1}{1,710} \cdot \text{opt}(A, B).
\]

We conclude that \textsc{GenSM-Online} achieves, in expectation, an 1,710-approximation.

One immediate consequence of Theorem 2 is the existence of an \(O(1) \)-approximation algorithm for the non-monotone submodular knapsack secretary problem (SKS). Bateni et al. [11] proposed an \(O(1) \)-approximation algorithm for SKS. Although they give a proof for the monotone case, the nontrivial details of extending their analysis to the non-monotone case are omitted. Thus, we think that Corollary 3, which provides a complete proof of the existence of an \(O(1) \)-approximation algorithm for the non-monotone SKS, is of independent interest.

Formally, an instance of SKS consists of a ground set \(A = [n] \), a nonnegative submodular objective \(v : A \rightarrow \mathbb{R}_+ \), and a given budget \(B \). The elements of \(A \) arrive in a uniformly random order, and each element must be accepted or rejected immediately upon arrival. An algorithm for SKS has access to \(n = |A| \), to the costs of elements that have arrived (i.e., each cost is revealed upon arrival), and to a value oracle that, given a subset \(S \subseteq A \) of elements that have already arrived, returns \(v(S) \). The objective is to accept a set of elements maximizing \(v \) without exceeding the budget.

It is straightforward to see that the only difference between SKS and the online procurement problem studied in this section is the information about the costs. In SKS, there is no notion of misreporting a cost, and thus it can be seen as a special case of our online problem where agents are guaranteed to always reveal their true costs.

Corollary 3. There is an \(O(1) \)-approximation algorithm for the non-monotone SKS.
5. Adding Combinatorial Constraints

To illustrate the applicability of our approach, we turn to the case where the solution has to satisfy some additional combinatorial constraint. With the exception of additive valuation functions (Amanatidis et al. [1], Leonardi et al. [39]), even for monotone submodular objectives, no polynomial-time mechanisms using only value queries are known. Here we show that the general approach of \textsc{GenSM-Main} can be utilized to achieve an $O(p)$-approximation when the set of feasible solutions—even before taking budget feasibility into consideration—forms a p-system, that is, an independence system with rank quotient at most p. In particular, as stated in Corollary 4, this implies constant factor approximation for cardinality, matroid, and bipartite matching constraints. As shown in Section 6, going beyond independence systems is hindered by strong impossibility results. For an example that makes this distinction more concrete, suppose that a given instance had a graph representation. Requiring that the solution forms a spanning forest is an example of a matroid constraint and admits a constant approximation (Corollary 4), whereas requiring that the solution forms a spanning tree instead does not admit any bounded approximation (Theorem 8).

Definition 4. An independence system or a downward-closed system is a pair (U, I), where U is a finite set and $I \subseteq 2^U$ is a family of subsets, whose members are called the independent sets of U and satisfy the following:

i. $\emptyset \in I$, and
ii. if $B \in I$ and $A \subseteq B$, then $A \in I$.

Given a set $S \subseteq U$, a maximal independent set contained in S is called a basis of S. The upper rank $ur(S)$ (respectively, the lower rank $lr(S)$) is defined as the cardinality of a largest (respectively, smallest) basis of S. A p-system (U, I) is an independence system such that $\max_{S \subseteq U} \frac{ur(S)}{lr(S)} \leq p$.

Remark 3 (Special Cases of p-Systems). A number of well-studied combinatorial constraints are special cases of p-systems for small values of p. A cardinality constraint requires that the solution contains at most k agents for a given $k \in \mathbb{N}$. It is easy to see that a cardinality constraint induces a 1-system, as all maximal independent sets in this case have size exactly $\min(k, n)$. A matroid constraint requires that the solution belongs to a given matroid. A matroid is an independence system that also has the exchange property: if $A, B \in I$ and $|A| < |B|$, then there exists $x \in B \setminus A$ such that $A \cup \{x\} \in I$. The exchange property ensures that all maximal independent sets have the same size, and thus a matroid is a 1-system; a cardinality constraint is a special case of a matroid constraint. A bipartite matching constraint requires that the solution is a matching in a bipartite graph representation of the instance (where agents are edges). It is not hard to see that a bipartite matching constraint induces a 2-system, as the sizes of any two maximal matchings in a bipartite graph are always within a factor of two of each other. In fact, a bipartite matching is an example of an intersection of two matroids (Schrijver [44]). More generally, the constraint imposed by the intersection of k matroids is a k-system.

For the sake of readability, we present the case of monotone submodular objectives here; the non-monotone case is deferred to the appendix. A technical highlight of our analysis, later used for the non-monotone case as well, is Claim 1. The claim crucially depends on the order in which we consider the agents, in order to bound the value lost because of the p-system constraint.

As usual, we assume the existence of an independence oracle. In particular, when we write that I is part of the input of the mechanism, we mean that the mechanism has access to a membership oracle for I. The parameter β is later set to $13/3$. Auxiliary algorithm Alg_{3} in line 5 can be any polynomial-time approximation algorithm for monotone submodular maximization subject to a knapsack and a p-system constraint. Here we assume the $(p + 3)$-approximation algorithm of Badanidiyuru and Vondrak [8].

Theorem 4. Assuming that the solution has to be an independent set of a p-system, there is a universally truthful, individually rational, budget-feasible $O(p)$-approximation mechanism that runs in polynomial time for (non-monotone) submodular objectives.

Proof. The proof of the theorem for the non-monotone case is deferred to the appendix. Here we prove that \textsc{MonSM-Constrained} below has all the stated properties for monotone submodular objectives. First, we observe that S starts as an independent set, namely, the empty set, and it is expanded only if it remains an independent set. Hence, at the end, \textsc{MonSM-Constrained} does return a feasible solution; that is, S is in I.
Mechanism 3 (MONSM-CONSTRAINED(A, I, v, c, B))

1. With probability $q = 0.2$:
 2. return $\tilde{i} \in \arg \max_{i \in \calA} v(i)$
3. With probability $1 - q$:
 4. Put each agent of \calA in either \calA_1 or \calA_2 independently at random with probability $\frac{1}{2}$
5. $x = v(\text{ALG}_3(A_1))$ /* a $(p + 3)$-approximation of $\max \calA v(i)$ */
6. $S = \emptyset; B_R = B; U = A_2$
7. while $U \neq \emptyset$ do
 8. Let $\tilde{i} \in \arg \max_{i \in U} v(i | S)$
 9. if $c_{\tilde{i}} \leq \frac{\beta B}{x} v(\tilde{i} | S) \leq B_R$ and $S \cup \{\tilde{i}\} \in \calI$ then
 10. $S = S \cup \{\tilde{i}\}$
 11. $B_R = B_R - \frac{\beta B}{x} v(\tilde{i} | S)$
 12. $U = U \setminus \{\tilde{i}\}$
 13. return S

4. Pay the agents according to Myerson’s lemma (Lemma 1)

At this point, following the same reasoning used for GENSM-MAIN and GENSM-ONLINE, it should be easy to see that MONSM-CONSTRAINED is universally truthful, individually rational, budget feasible, and runs in polynomial time.

Next we show that the solution returned by the mechanism is an $O(p)$-approximation of the optimum. First, suppose that $\max_{\calA} v(i) \geq \frac{1}{2} \cdot \max \calA v(i) \geq \frac{1}{2} \cdot \max \calA v(i)$ and $\max \calA v(i) \geq \frac{1}{2} \cdot \max \calA v(i)$, then for the set S returned by MONSM-CONSTRAINED, we have $\EE(v(S)) \geq q \cdot \max_{\calA} v(i) \geq \frac{1}{2} \cdot \max \calA v(i) \geq \frac{1}{2} \cdot \max \calA v(i)$.

For the case where $\max_{\calA} v(i) < \OPT(A, B) / (26(p + 10))$, we follow the same notation and the same high-level approach as with the approximation guarantees of GENSM-MAIN and GENSM-ONLINE. So, $i_1, i_2, \ldots, i_{\calA}$ are the agents of \calA in the order considered by the mechanism. By $S^{(k)}$ and $B_R^{(k)}$ we denote S and B_R, respectively, at the time i_k arrives, and we only use S for the final set returned. The set $R = A_2 \setminus S$ contains the agents i_k that were not added to $S^{(k)}$, and it is further partitioned to

$$R_c = \{ i_k \left\lfloor \frac{\beta B}{x} v(i_k | S^{(k)}) < c_1 \right\rfloor \}, \quad R_b = \{ i_k \left\lfloor \frac{\beta B}{x} v(i_k | S^{(k)}) \right\rfloor \} \quad \text{and} \quad R_\calI = R \setminus (R_c \cup R_b).$$

Assume that $\OPT(A, B) \geq \frac{k - 1}{26} \OPT(A, B)$ for $i \in [1, 2]$, where $k = 26(p + 10)$. Thus, $x = v(\text{ALG}_1(A_1)) \geq \frac{k - 1}{26(p + 10)} \OPT(A, B)$. Recall that this does happen with probability at least $\frac{1}{2}$ as discussed in the beginning of the proof of Lemma 7.

Case 1. Assume that $R_B \neq \emptyset$. Let $i_k \in R_B$, that is, $\frac{\beta B}{x} v(i_k | S^{(k)}) > B_R^{(k)}$. Using the same argument as in the proof of Lemma 5, we get $v(S^{(k)}) \geq \frac{1}{2} \cdot \max_{\calA} v(i)$ and, given the known bounds on x and $\max_{\calA} v(i)$, this leads to $v(S) \geq \left(\frac{k - 1}{4p + 3k} \right) \cdot \OPT(A, B)$.

By substituting $k = 26(p + 10)$ and $\beta = \frac{13}{3}$, it is a matter of simple calculations to get

$$v(S) \geq \frac{5}{276(p + 10)} \cdot \OPT(A, B). \quad (12)$$

Case 2. Assume that $R_B = \emptyset$, and let C^* be an optimal solution for the instance (A_2, v, c_{A_2}, B). By monotonicity, we have

$$\OPT(A_2, B) = v(C^*) \leq v(S \cup C^*). \quad (13)$$

Because of the p-system constraint, however, deriving the analog of inequality (6) needs some extra work. By Definition 1ii, we have

$$v(S \cup C^*) \leq v(S) + \sum_{i \in C \setminus S} v(i_k | S) \leq v(S) + \sum_{i \in C \cap R_c} v(i_k | S) + \sum_{i \in C \cap R_c} v(i_k | S). \quad (14)$$

We may upper bound the first sum using the fact that all agents involved got rejected because they had very low marginal value per cost ratio; that is,

$$\sum_{i \in C \cap R_c} v(i_k | S) \leq \sum_{i \in C \cap R_c} v(i_k | S^{(k)}) < \frac{x}{\beta B} \sum_{i \in C \cap R_c} c_k \leq \frac{x}{\beta} \leq \frac{\OPT(A, B)}{\beta}. \quad (15)$$

For the second sum, we prove the following result, which crucially relies on the fact that agents are examined in decreasing marginal value.
Claim 1. $\sum_{i \in C \cap R \cap T} v(i | S) \leq p \cdot v(S)$.

Proof of Claim 1. Recall that when we index agents, we follow the ordering imposed by the mechanism, that is, i_k is always the agent picked at the kth execution of line 8 of MonSm-Constrained.

Suppose that there is a mapping $f : C \cap R \to S$ such that
i. if $f(i) = i_r$, then $v(i_r | S^{(k)}) \leq v(i_r | S^{(f)})$ for all $i_r \in C \cap R \cap T$, and
ii. $|f^{-1}(i)| \leq p$ for all $i_r \in S$.

We slightly abuse the notation and write $S^{(i)}$ instead of $S^{(f)}$ when $f(i) = i_r$. The existence of f implies that
$$\sum_{i \in C \cap R \cap T} v(i | S) \leq \sum_{i \in C \cap R \cap T} v(i | S^{(k)}) \leq \sum_{i \in C \cap R \cap T} v(f(i_r) | S^{(k)}) \leq p \cdot \sum_{i \in S} v(i_r | S^{(f)}) = p \cdot v(S).$$

The first inequality follows from the submodularity of v, whereas the second and third inequalities follow from i and ii, respectively.

Next, we are going to construct such an f. Let $S = \{i_1, i_2, \ldots, i_q\}$ and $C \cap R = \{i_{b_1}, i_{b_2}, \ldots, i_{b_j}\}$, where both $(a_i)_{i=1}^j$ and $(b_i)_{i=1}^j$ are subsequences of $1, 2, \ldots, |A_2|$. We are going to map the first p elements of $C \cap R$, $i_{b_1}, i_{b_2}, \ldots, i_{b_p}$, to i_{a_1}, the next p elements $i_{a_{p+1}}, \ldots, i_{a_{2p}}$, to i_{b_2}, and so on; that is, $f(i) = i_{a_{(i-1)p+1}}$.

It is straightforward that f satisfies property ii. In order to prove property i, it suffices to show that for all $j \in \{1, 2, \ldots, t\}$, agent i_j is considered by MonSm-Constrained after agent $f(i_{b_j})$. Indeed, if that was the case, by the definition of i in line 8 and submodularity, we would get
$$v(i_{b_j}) \leq v(i_{b_j} | S^{(i_{b_j})}) \geq v(i_{b_j} | S^{(i_{a_{(j-1)p+1}})}) \geq v(i_{b_j} | S^{(i_{b_{j+1}})}),$$

for all $i_j \in C \cap R \cap T$, as desired. Suppose, toward a contradiction, that there is some $k \in \{1, 2, \ldots, t\}$ such that $b_k < a_{(k-1)p}$; in fact, suppose k is the smallest such index. Consider the sets $T = \{i_{a_1}, i_{a_2}, \ldots, i_{a_{kp-1}}\} \subseteq S$ and $Q = \{i_{b_1}, i_{b_2}, \ldots, i_{b_k}\} \subseteq C \cap R \cap T$. By construction, $T \in \mathcal{I}$. Moreover, we claim that T is maximally independent in $T \cup Q$. Indeed, each $i_{b_j} \in Q$ was rejected because $S^{(b_j)} \cup \{i_{b_j}\} \notin \mathcal{I}$, and because $S^{(b_k)} \subseteq T$, we get $T \cup \{i_{b_k}\} \notin \mathcal{I}$. This implies that $\mathcal{I}(T \cup Q) \subseteq \mathcal{I}|T$. On the other hand, $Q \in \mathcal{I}$ because $Q \subseteq C \in \mathcal{I}$. As a result, $\mathcal{I}(T \cup Q) \geq |Q|$. However, notice that
$$p \cdot |T| = p(k/p - 1) - k(p/k - 1) = k = |Q|. $$

Thus, $\mathcal{I}(T \cup Q) \geq |Q| > p$, contradicting the fact that (A, \mathcal{I}) is a p-system. We conclude that f satisfies both i and ii, and, therefore, $\sum_{i \in C \cap R \cap T} v(i | S) \leq p \cdot v(S).$ \hspace{1cm} \square

Now, combining (13), (14), and Claim 1, we have $\text{opt}(A_2, B) \leq (p + 1) \cdot v(S) + \frac{\text{opt}(A, B)}{\beta}$, and using the lower bound on $\text{opt}(A_2, B)$, $v(S) \geq \frac{1}{p+1} \cdot \left(\frac{k+1}{4k} - 1 \right) \cdot v(A, B)$. Again, by substituting k and β, it is a matter of calculation to get
$$v(S) \geq \frac{5}{276(p+10)} \cdot v(A, B).$$

By Lemma 6, both (12) and (16) hold with probability at least 1/2. Hence,
$$\mathbb{E}(v(S)) \geq (1 - q) \cdot \frac{1}{2} \cdot \frac{5}{276(p+10)} \cdot \text{opt}(A, B) = \frac{1}{138(p+10)} \cdot \text{opt}(A, B).$$

As we already mentioned, for matroid constraints, we have $p = 1$, and for bipartite matching constraints, $p = 2$. Because cardinality constraints are a special case of matroid constraints, we directly get the following.

Corollary 4. For cardinality, matroid, and bipartite matching constraints, there is a universally truthful, budget-feasible $O(1)$-approximation mechanism for (non-monotone) submodular objectives.

6. Lower Bounds

In the value query model, there is a strong lower bound on the number of queries for deterministic algorithms for monotone XOS objectives due to Singer [45]. This result is based on a lower bound of Mirrokni et al. [40] on welfare maximization in combinatorial auctions. As the latter also holds for randomized algorithms, so does Singer’s [45] result, essentially with the same proof. We restate it here for completeness. Note that it holds even when the costs are public knowledge.
Theorem 5 (Singer [45]). For any fixed $\varepsilon > 0$, any (randomized) $n^{1/2-\varepsilon}$-approximation algorithm for monotone XOS function maximization subject to a budget constraint requires exponentially many value queries (in expectation).

When one moves to non-monotone objectives, as is the case in this work, it is possible to prove even stronger lower bounds. Below, we show that for general XOS objectives, exponentially many value queries are needed for any nontrivial approximation even without the budget constraint. As this result applies to the purely algorithmic setting, it is of independent interest.

It is known that in many settings there is a separation between the power of value and demand queries of polynomial size; see, for example, Blumrosen and Nisan [14]. To stress this difference in our setting, recall that in the demand query model, the class of XOS objectives admits a truthful $O(1)$-approximation mechanism with a polynomial number of queries.

Theorem 6. For any fixed $\varepsilon > 0$, any (randomized) $n^{1-\varepsilon}$-approximation algorithm for XOS function maximization requires exponentially many value queries (in expectation).

Proof. We follow, on a high level, the approach in Mirrokni et al. [40]. Recall that $A = [n]$, and choose a set R of size $|R| = \rho = n/4$ uniformly at random among all the subsets of A of size ρ. We are going to construct two XOS functions, v_1 and v_2, that are hard to tell apart; that is, to distinguish between them with constant probability, an exponential number of value queries will be required.

For any $T \subseteq A$, let α_T be the additive function that assigns the value one to each $i \in T$ and the value zero to each $i \notin T$. For $\tau = n^{\varepsilon/2}/4$, we define v_1 as the maximum over all such additive functions on sets of size τ:

$$v_1(S) = \max_{T \subseteq A, |T| = \tau} \alpha_T(S), \text{ for all } S \subseteq A.$$

Furthermore, let β be the additive function that assigns the value one to each $i \in R$ and the value $-\rho$ to each $i \notin R$. We define v_2 as the maximum between v_1 and β:

$$v_2(S) = \max\{v_1(S), \beta(S)\}, \text{ for all } S \subseteq A.$$

Clearly, both v_1 and v_2 are XOS functions because each of them is defined as the maximum of a finite number of additive functions. Also notice that for any $S \subseteq R$, we have $v_2(S) = v_1(S)$. However, $\text{OPT}(A, v_1, \infty) = \tau$ and $\text{OPT}(A, v_2, \infty) = \rho = n^{1-\varepsilon}/\tau > n^{1-\varepsilon} \cdot \tau$. Hence, any (possibly randomized) algorithm that achieves an approximation ratio smaller than or equal to $n^{1-\varepsilon}$ cannot distinguish between the two functions.

Consider a value query for some set S. This query can distinguish between v_1 and v_2 if and only if $S \subseteq R$ and $|S| > \tau$, and otherwise it will reveal no information about R. We will call such an S a distinguishing set. For a given S with $|S| > \tau$, the probability that $S \subseteq R$, over the random choice of R, is

$$\left(\frac{\rho}{|S|}\right)^{|S|} \leq \binom{\rho}{|S|} \left(\frac{\rho}{|S|}\right)^{|S|} < \left(\frac{\rho}{|S|}\right)^{n^{\varepsilon/2}}$$

using the well-known fact that for $1 \leq k \leq m$ we have $(\frac{m}{k})^k \leq \left(\frac{m}{k}\right)^k$.

Now, let $q(\cdot)$ be a polynomial and $p \in (0, 1]$ be a constant. Suppose first that there is a deterministic algorithm that asks queries $S_1, S_2, \ldots, S_q(n)$ and distinguishes between v_1 and v_2 with probability at least p. Note that the choice for S_i can depend on all previous queries S_1, \ldots, S_{i-1} as well as the answers of the value query oracle obtained for those sets. Also, the choices made by the algorithm are the same for all nondistinguishable queries regardless of whether we present v_1 or v_2 to the algorithm. Using a union bound, it then follows that the probability that we distinguish between v_1 and v_2 is at most

$$\frac{q(n)}{n} \sum_{i=1}^{q(n)} \left(\frac{\rho}{|S_i|}\right)^{|S_i|} < q(n) \left(\frac{\rho}{|S_i|}\right)^{n^{\varepsilon/2}} = o(1),$$

which contradicts p being constant. In the case of a randomized algorithm, we can condition on the random bits of the algorithm. Averaging over the choices of the random bits, we are still only able to distinguish between v_1 and v_2 with exponentially small probability. □
One immediate consequence of Theorem 6 is that when we care for constant approximation ratios, the result of Theorem 1 is (asymptotically) the best possible for budget-feasible mechanism design. General submodular objectives are the broadest class of well-studied non-monotone functions one could hope for, even for randomized mechanisms.

6.1. Combinatorial Constraints

We now turn to the problem of maximizing subject to additional constraints on top of the budget constraint. To further motivate our restriction to p-system constraints, we restate here a lower bound of Badanidiyur and Vondrak [8]: for independence system constraints, one cannot achieve an approximation factor better than $\max_{\mathcal{S} \subseteq \mathcal{U}} \frac{\ln(n)}{\ln(\mathcal{S})}$ with a polynomial number of queries. Thus, the result of Theorem 4 is asymptotically optimal.

Theorem 7 (Badanidiyur and Vondrak [8]). For any fixed $\varepsilon > 0$, any (randomized) $(p + \varepsilon)$-approximation algorithm for additive function maximization subject to p-system constraints requires exponentially many independence oracle queries (in expectation).

As we mentioned in the beginning of Section 5, we cannot really go beyond independence systems and have any nontrivial approximation guarantee in polynomial time. This is illustrated in Theorem 8 and Corollary 5 below. Theorem 8 generalizes Singer’s [45] strong impossibility result for deterministically hiring a team of agents to any constraint that is not downward closed below. Note that it holds even for superconstant approximation ratios, even for the special case of additive objectives, irrespectively of any complexity assumptions.

Theorem 8. Let $\mathcal{F} \subseteq 2^A$ be any collection of feasible sets that is not downward closed. Then there is no deterministic, truthful, individually rational, budget-feasible mechanism achieving a bounded approximation when restricted on \mathcal{F}, even for additive objectives.

Proof. Because \mathcal{F} is not downward closed, there is some $F \in \mathcal{F}$ with $|F| \geq 2$ that is minimally feasible, that is, if $S \subseteq F$ and $S \in \mathcal{F}$, then $S = F$.

Toward a contradiction, suppose that there is a deterministic, truthful, budget-feasible a-approximation mechanism ALG for additive objectives, where $a = a(n) > 1$. Consider the following instance on A where a is additive: for each agent $i \in F$, $v(i) = 1/|F|$, $c_i = \varepsilon \ll B/|F|$, whereas for each agent $i \in A \setminus F$, $v(i) = \delta < 1/a, c_i = B$. All the \mathcal{F}-feasible and budget-feasible solutions are F and, possibly, some of the singletons outside of F. If ALG returns any solution other than F, then $\varepsilon(\text{ALG}(A, v, c, B)) \leq \delta < \frac{1}{a} \cdot \OPT(A, B)$, which contradicts the approximation guarantee of ALG. So, ALG should return F.

However, the latter is true even if we slightly modify the instance, so that for a specific $j \in F$, $c_j = B - (|F| - 1) \cdot \varepsilon$. Therefore, in the original instance, the threshold payment for j is at least $B - (|F| - 1) \cdot \varepsilon$. In fact, because of symmetry, all the threshold payments in the original instance should be at least $B - (|F| - 1) \cdot \varepsilon$. Because $|F| \geq 2$ and $B - (|F| - 1) \cdot \varepsilon \approx B$, this contradicts the budget feasibility of ALG. □

The next corollary of Theorem 7 states that under general combinatorial constraints, it is not possible to achieve any nontrivial approximation with polynomially many queries. Although it is not hard to prove it directly, given Theorem 7, it suffices to notice that such a lower bound holds even for general independence systems. Indeed, there are cases where $\text{w}(\text{solution})$ is $\Theta(n)$, like the $(n - 1)$-systems of independent sets of star graphs.

Corollary 5. For any fixed $\varepsilon > 0$, any (randomized) $n^{1+\varepsilon}$-approximation algorithm for additive function maximization subject to general feasibility constraints requires exponentially many queries (in expectation).

7. Discussion

We already discussed in the introduction that designing deterministic budget-feasible mechanisms has been elusive. Positive results are known only for specific well-behaved objectives (Amanatidis et al. [1, 2], Chen et al. [20], Dobzinski et al. [21], Horel et al. [33], Singer [45, 46], Singer and Mittal [47]), and, even worse, beyond monotone submodular valuation functions, no deterministic $O(1)$-approximation mechanism is known, irrespective of time or query complexity. We consider obtaining deterministic, budget-feasible $O(1)$-approximation mechanisms—or showing that they do not exist—the most intriguing related open problem.

Although our results provide a proof of concept with respect to what is asymptotically possible with polynomial-time, truthful mechanisms, the constants involved are very far from being practical. Although we do not claim that the different parameters appearing in the description and the analysis of our mechanisms are optimized, they had to be carefully chosen, and we suspect there is not much room for improvement. Bringing down these approximation factors is another interesting direction.
Finally, it is mentioned in Remark 2 that the high-level approach of **Simultaneous Greedy** can be turned into a deterministic 7-approximation algorithm. We believe that it is worth exploring other possible applications of the high-level approach of **Simultaneous Greedy**, both in mechanism design and in constrained non-monotone submodular maximization.

Appendix. Proof of Theorem 4 for the Non-monotone Case

For the reader’s convenience, we repeat the statement of the theorem.

Theorem 4. Assuming that the solution has to be an independent set of a p-system, there is a universally truthful, individually rational, budget-feasible, $O(p)$-approximation mechanism that runs in polynomial time for (non-monotone) submodular objectives.

Proof. We now move on to the case of non-monotone submodular objectives. Algorithm **GenSm-Constrained** is a modification of **GenSm-Main** that maintains a set F of “feasible” pairs, that is, of pairs (i,j) such that $S_j \cup \{i\}$ is an independent set. In each step, the best such pair (i,j) is chosen and, given that $\nu(i|S_j)$ is neither too high nor too low, i is added to S_j. The parameter β is 8.5, and α_{48} in line 5 can be any polynomial time approximation algorithm for non-monotone submodular maximization subject to a knapsack and a p-system constraint. Here we assume the $(1+\frac{\beta}{2}p+\frac{1}{2p+3})$-approximation algorithm of Mirzasoleiman et al. [41] for $\epsilon = 10^{-3}$. \square

Mechanism A.1 (GenSm-Constrained(A, T, ν, c, B))

1. With probability $q = 1/3$:
 -

2. Return $i' \in \arg\max_{i \in A} \nu(i)$.
 - With probability $1 - q$:
 -

4. Put each agent of A in either A_1 or A_2 independently at random with probability $1/2$.

5. Let $(i,j) \in \arg\max_{(i,j) \in E} \nu(i,S_j)$.

6. Set $S = \emptyset, B_1 = B_2 = B_3 = A_1$.

7. While $F = \emptyset$ do
 -

8. Return S.

Clearly, S_1 and S_2 start as independent sets, and they are expanded only if they remain independent sets. As subsets of independent sets, T_1 and T_2 are independent sets as well. Hence, **GenSm-Constrained** does return a solution $S \in I$.

Like in the monotone case, following the reasoning used for **GenSm-Main** and **GenSm-Online**, it is easy to prove universal truthfulness, individual rationality, budget feasibility, and—given polynomial-time oracles—polynomial running time. What is left to show is that $\mathbb{E}(\nu(S))$ is an $O(p)$-approximation of $\text{opt}(A, B)$.

First, suppose that $\max_{i \in A} \nu(i) \geq \frac{1}{136(p+6)} \cdot \text{opt}(A, B)$. Then, for the set S returned by **GenSm-Constrained**,

\[
\mathbb{E}(\nu(S)) \geq q \cdot \max_{i \in A} \nu(i) \geq \frac{1}{3} \cdot \frac{1}{136(p+6)} \cdot \text{opt}(A, B) > \frac{1}{41(3p+6)} \cdot \text{opt}(A, B).
\]

When $\max_{i \in A} \nu(i) < \frac{1}{136(p+6)} \cdot \text{opt}(A, B)$, we may follow the same approach as with the other proofs. Recall the notation, that is, $i_1, i_2, \ldots, i_{|A_1|}$ are the agents of A_2 in the order considered by the mechanism, and $i_1, \ldots, i_{|A_2|}$ are the corresponding i selected in the kth execution of line 9. In case not all agents are considered, what remains in F is arbitrarily indexed and paired with some j. This is as if we had a few dummy iterations at the end of the “while” loop in order to exhaust all agents by rejecting them one by one. By $S_{i_1}^{(k)}$ and $B_{i_1}^{(k)}$ we denote S_j and B_j, respectively, at the time i_k is selected. We only use S_1, S_2, B_1, B_2 for the final version of the corresponding set or quantity. The set $R = A_2 \setminus (S_1 \cup S_2)$ contains the agents i_k that were not added to $S_{i_k}^{(k)}$ and it is further partitioned to $R_1 = \{i_k | \frac{\beta}{2p+3} \nu(i_k | S_{i_k}^{(k)}) < c_j\}$, $R_2 = \{i_k | B_{i_k}^{(k)} \leq \frac{\beta}{2p+3} \nu(i_k | S_{i_k}^{(k)})\}$, and $R_3 = R \setminus (R_1 \cup R_2)$.

Recall that Lemma 6 guarantees that $\text{opt}(A, B) \geq \frac{k-1}{p} \cdot \text{opt}(A, B)$ for $i \in \{1, 2\}$, where $k = 136(p+6)$, happens with probability at least 1/2. Assume this is indeed the case. Therefore, $x = \nu(\text{alg}(A_1)) \geq \frac{(k-1)p}{41(3p+6)} \cdot \text{opt}(A, B)$.

\[\text{opt}(A, B) \geq \frac{1}{41(3p+6)} \cdot \text{opt}(A, B).\]
Case 1. Assume that \(R_B \neq \emptyset \). By repeating the analysis of Case 1 in the proof of Lemma 5, we get

\[
v(S) \geq \frac{(k-1)p}{4k(1+\varepsilon)(p+1)(2p+3)\beta} \cdot \text{OPT}(A,B).
\]

By substituting \(k = 136(p+6) \), \(\beta = 8.5 \) and \(\varepsilon = 10^{-3} \), it is a matter of simple calculations to get

\[
v(S) \geq \frac{1}{136(p+6)} \cdot \text{OPT}(A,B).
\]

Case 2. Next, assume that \(R_B = \emptyset \). Let \(C^* \) be an optimal solution for the instance \((A_2,v,c,A_2,B)\) and \(C_1 = C^* \cap S_1, C_2 = C^* \cap S_2, \) and \(C_3 = C^* \setminus (C_1 \cup C_2) \). By subadditivity (recall inequality \((3)\)) and the fact that \(T_j = \text{ALG2}(S_j), j \in \{1,2\} \), is a 2-approximate solution with respect to \(\text{OPT}(S_j, \infty) \), we get

\[
\text{OPT}(A_2,B) = v(C^*) \leq v(C_1) + v(C_2) + v(C_3) \leq 2v(T_1) + 2v(T_2) + v(C_3).
\]

For \(v(C_3) \), recall inequality \((5)\) (see the proof of Lemma 5):

\[
v(C_3) \leq v(S_1 \cup C_3) + v(S_2 \cup C_3).
\]

To upper bound \(v(S_j \cup C_3) \), we work like in the proof of Theorem 4 because of the \(p \)-system constraint. By Definition 1 iii, we have

\[
v(S_j \cup C_3) \leq v(S_j) + \sum_{i \in C_3} v(i|S_j)
\]

\[
\leq v(S_j) + \sum_{i \in C_3 \cap R_j} v(i|S_j) + \sum_{i \in C_3 \setminus R_j} v(i|S_j).
\]

We upper bound the first sum exactly as in \((15)\):

\[
\sum_{i \in C_3 \cap R_j} v(i|S_j) \leq \sum_{i \in C_3 \cap R_j} v(i|S_j^*) \leq \frac{x}{\beta} \sum_{i \in C_3 \cap R_j} \beta_i \leq \frac{x}{\beta} \frac{\text{OPT}(A_2,B)}{\beta}.
\]

For the second sum, we have the analog of Claim 1. Recall that we never used the monotonicity of \(v \) in the proof of Claim 1. With just minor changes in notation, we can prove the following.

Claim A.1. For both \(j \in \{1,2\} \), \(\sum_{i \in C_3 \cap R_j} v(i|S_j) \leq p \cdot v(S_j) \).

Now, combining \((A.2),(5),(A.3),(A.4)\), and Claim A.1, we have

\[
\text{OPT}(A_2,B) \leq 2v(T_1) + 2v(T_2) + (p+1)v(S_1) + (p+1)v(S_2) + 2 \frac{\text{OPT}(A_2,B)}{\beta},
\]

and, using the definition of \(S \) and the lower bound on \(\text{OPT}(A_2,B) \),

\[
v(S) \geq \frac{1}{2p+6} \left(\frac{k-1}{4k} - \frac{2}{\beta} \right) \text{OPT}(A,B).
\]

By substituting \(k \) and \(\beta \), it is a matter of calculations to get

\[
v(S) \geq \frac{1}{136(p+6)} \cdot \text{OPT}(A,B).
\]

Because, due to Lemma 6, both \((A.1)\) and \((A.5)\) hold with probability at least 1/2, we have

\[
\mathbb{E}(v(S)) \geq (1-q) \cdot \frac{1}{2} \cdot \frac{1}{136(p+6)} \cdot \text{OPT}(A,B) > \frac{1}{410(p+10)} \cdot \text{OPT}(A,B),
\]

thus concluding the proof. \(\square \)

Endnote

\(^1\) In fact, that algorithm has an approximation ratio of \(4 + \alpha \), where \(\alpha \) is the approximation ratio of any deterministic algorithm for the unconstrained maximization of non-monotone submodular functions. Recently, Buchbinder and Feldman [16] suggested a deterministic 2-approximation algorithm for the unconstrained problem, hence the ratio of 6.

References

