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Determination of optimal penalties

for antitrust violations in a dynamic setting.�

Evgenia Motchenkovay

Abstract

We analyze a di¤erential game describing the interactions between a �rm that might

be violating competition law and the antitrust authority. The objective of the authority is

to minimize social costs (loss in consumer surplus) induced by an increase in prices above

marginal costs. It turns out that the penalty schemes which are used now in EU and US

legislation appear not to be as e¢ cient as desired from the point of view of minimization

of consumer loss from price-�xing activities of the �rm. In particular, we prove that full

compliance behavior is not sustainable as a Nash Equilibrium in Markovian strategies over

the whole planning period, and, moreover, that it will never arise as the long-run steady-

state equilibrium of the model. We also investigate the question which penalty system

enables us to completely deter cartel formation in a dynamic setting. We found that this

socially desirable outcome can be achieved in case the penalty is an increasing function of

the degree of o¤ence and is negatively related to the probability of law enforcement.

JEL-Classi�cation: L41, K21, C73 .

Keywords: Antitrust Policy, Antitrust Law, Dynamic games

1 Introduction.

In this paper we incorporate speci�c features of antitrust law enforcement, which are in practice

now in the US and the European Union, into a dynamic framework of utility maximization with

two players having con�icting objectives. In the particular case of violations of antitrust law,

those two players are the �rm of regulated monopoly type, which rises prices above marginal

costs level or the �rm, which participates in cartel agreements, and the Antitrust Authority,

whose aim is to prevent price-�xing or cartel formation in the industry.
�The author thanks Eric van Damme and Peter Kort for stimulating discussions and valuable comments.
yTilburg University, Department of Econometrics & Operations Research and CentER, tel: (+31) 134663244,

e-mail: E.I.Motchenkova@uvt.nl.
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According to the US sentencing guidelines for organizations (2001) and the guidelines on the

method of setting �nes imposed for violations of competition law in Europe (1998), the penalty

schemes for antitrust violations are based mainly on the gravity of the violations, which is

determined on the basis of the turnover involved in the infringement. To be more precise,

in the European regulation the penalty imposed depends on the gravity and duration of the

infringement in a linear manner. The level of o¤ence is measured by the turnover involved

in the infringement, which is de�ned as the total sales of the product involved over the whole

period of existence of the cartel. In the US sentencing guidelines for organizations the system of

�ne imposition for antitrust violations is di¤erent. There we observe that the penalty schedule

for the base �ne is represented by a convex increasing function of the level of o¤ence.

In order to investigate the e¢ ciency of the current penalty schemes we incorporate these two

features of penalty systems for antitrust law violations into a dynamic model of intertemporal

utility maximization by modelling penalty schedule in the stylized form as a linear or quadratic

functions of the degree of price-�xing and time. Similar to Feichtinger (1983) the set up of

the problem leads to a di¤erential game. The authorities attempt to minimize the social loss

caused by price-�xing, whereas the �rm wants to maximize the pro�t gained from price-�xing.

It is found that the stylized form of the existing penalty schemes would not succeed, in the

sense that it cannot provide complete deterrence. Therefore, we try to �nd a more e¢ cient

functional form of penalty schedule for violations of antitrust law. Finally, we suggest a new

penalty system which is most e¢ cient from the point of view of complete deterrence of cartel

formation in dynamic settings.

We relate our analysis to the general literature on crime and punishment, starting with

Becker (1968). In his seminal paper, Becker (1968) studied the problem of how many resources

and how much punishment should be used to enforce di¤erent kinds of legislation. The decision

instruments are the expenditures on police and courts in�uencing the probability that the

o¤ender is convicted, and the type and size of punishment for those convicted. The goal was

to �nd those expenditures and punishments that minimize the total social loss. This loss is the

sum of damages from o¤ences, costs of apprehension and conviction, and costs of carrying out

the punishment imposed.

The main contribution of Becker�s work was to demonstrate that the best policies to combat

illegal behavior were part of an optimal allocation of resources. Becker (1968) investigates this

problem using a static economic approach to crime and punishment. He derives that in a static

environment the optimal �ne should be a multiple of the social cost of the crime and inversely
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related to the probability of detection. So, since an increase in the probability of control causes

an increase in the costs of detection, the least costly policy for the antitrust authority would

be to decrease the probability of control and increase the �ne itself. But in this case legal

limitations concerning the upper bound of �ne can exist. And this poses the problem. Later, in

Leung (1991), Feichtinger (1983), Fent et al. (1999) and (2003) dynamic (intertemporal) trade-

o¤s between the damages generated from the o¤ences and the costs of the control instruments

were studied. More precisely, there papers try to determine a mix of policy variables, like

prevention, treatment and law enforcement, which minimize the discounted stream of total

social loss.

Now we give a more detailed review of the papers related to the problem, addressed in the

current paper. Leung (1991) introduces a dynamic model of optimal punishment, where the

optimal �ne is calculated as a solution to an optimal control problem. This model considerably

improves the e¢ ciency and cost e¤ectiveness if compared to the static mechanism of Becker

(1968). It was found that the optimal �ne is negatively related to the o¤ender�s returns from en-

gaging in some criminal activity and positively related to the social cost of the crime. Moreover,

the author �nds that the �ne which would block the crime can actually be less than the harm

induced by the infringement, which contradicts the result of Becker. Leung argues that Becker�s

approach will not generate the optimal outcome, i.e. the outcome which maximizes welfare,

in a dynamic environment. In fact, according to Leung (1991) it would cause overcomplience

because the multiple �ne imposes too heavy a penalty on the o¤ender.

A considerably di¤erent approach was suggested in Fent et al. (1999) and (2003). They

investigated optimal law enforcement strategies in case punishment is modelled as a function

depending not only on the intensity of crime (o¤ence rate) but also on the o¤enders prior

criminal record. This idea was adopted in Fent et al. (1999) in an optimal control model with

the aim to discover the optimal intertemporal strategy of a pro�t maximizing o¤ender under

a given, static punishment policy in the model with only one agent. In Fent et al.(2003) the

framework described above was extended to an intertemporal approach of utility maximization,

considering two players with con�icting objectives. The authorities attempt to minimize the

social loss caused by criminal o¤ences, whereas the o¤ending individual wants to maximize

the pro�t gained from o¤ending. This leads to a di¤erential game, which makes it possible to

study competitive interactions in a dynamic framework. The criminal record takes the role of

a state variable. A high record increases the punishment an o¤ender expects in case of being

convicted.
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Modelling intertemporal trade-o¤s requires application of tools like dynamic programming,

optimal control theory and, if there is strategic interaction between players, di¤erential games.

All the papers mentioned above investigate the problem of optimal dynamic law enforcement

and minimization of social loss from crime by modelling the interactions between the o¤ender,

who commits the crime, and the authority, whose aim is to prevent the crime. In this paper

we suggest a similar approach. We analyze a di¤erential game between the o¤ender and the

authority, whose aim is to prevent the crime, to study the situation of violation of antitrust law

by the �rm, which performs price-�xing activities or participates in a cartel.

Technically our analysis will be close to the paper by Feichtinger (1983), in which he studies

violations of criminal law by means of a di¤erential game solution to a model of competition

between a thief and the police. We extend his framework by allowing for the penalty for

violation to vary over time. Moreover, we introduce the �ne as a function of the current degree

of o¤ence and probability of law enforcement at each instant of time.

The paper is organized as follows. In section 2 we set up the model describing the intertem-

poral game played between a �rm engaged in price-�xing and the antitrust authority, and recall

the modi�ed static microeconomic model of price-�xing. In section 3 the di¤erential game will

be solved and we show that it is impossible to have complete deterrence under current European

and US systems of penalties for antitrust violations. In section 4 a new penalty scheme, which

gives the desired outcome with no collusion, will be suggested. Section 5 provides a summary

of our results and outlines possible extensions and generalizations of the model. Finally, in

appendixes we provide proofs of the main results of the paper.

2 Description of the problem.

A model is designed to determine optimal penalty schemes for antitrust violations and cartel

deterrence in the framework of di¤erential games. There are two types of agents. First, there

are the �rms, which can perform illegal activities, such as price-�xing and cartel formation or

violations of the price limits imposed by the authority on the regulated monopoly. They obtain

strictly positive gains from price-�xing in each period, that the cartel was present in the market.

Second, we have the antitrust authority, which can inspect those �rms, and, in case violation is

detected, punish them by imposing a �ne s(t), where t re�ects the time index.. The interactions

of the agents are modelled as a continuous time problem with planning horizon (0; T ); where

T <1:
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The aim of the �rm is to dynamically maximize its total expected gain from increase of

price above competitive level over time by choosing q(t): We will call this variable the degree

of illegal activities with respect to price-�xing ( analogous to the �pilfering rate�in the model

of competition between thief and police in Feichtinger (1983)). This variable will be described

in more detail in the subsection 2.1, which deals with the microeconomic model underlying the

problem of �ghting price-�xing agreements.

The antitrust authority is modelled as a second decision maker. It also has one instrument,

which is the �rate of law enforcement� (or probability of control by the antitrust authority)

p(t) . The aim of the antitrust authority is to maximize welfare. This implies that the rents

from collusion for the �rms need to be reduced. So the aim of the antitrust authority is to

prevent cartel formation at the lowest possible costs.

The pro�t of the �rm in each period or the rent from collusion per period above the com-

petitive pro�t (�c = 0) is �(t) > 0.

Moreover, in order to be able to set up the model and determine the objective functionals

of both players, we �rst describe the static microeconomic model of price-�xing and de�ne our

terms.

2.1 Static microeconomic model of price-�xing.

Let us consider an industry with M symmetric �rms engaged in a price �xing agreement.

Assume that they can agree and increase prices from P c = c to P > c each; where c is the

marginal cost in the industry. Since �rms are symmetric, each of them has equal weight in the

coalition and consequently total cartel pro�ts will be divided equally among them.1 Hence, the

whole market for the product (in which the price-�xing agreement has been achieved) will be

divided equally among M �rms, so each �rm operates in a speci�c market in which the inverse

demand function equals P (Q) = 1 � Q. They are identical in all submarkets. Under these

assumptions we can simplify the setting by considering not the whole cartel (group of violators)

but only one �rm, and apply similar sanctions to all the members of cartel.2

Let Pm be the monopoly price in the industry under consideration, and P = 1 � Q is the

1We also assume that there is no strategic interaction between the �rms in the coalition in the sense that we

abstract from the possibility of self-reporting or any other non-cooperative behavior of the �rms towards each

other.
2Of course, in these settings the incentives of the �rms to betray the cartel can not be taken into account and

the possibility to in�uence the internal stability of the cartel is not feasible. But this is the topic for another

paper.
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inverse demand for a particular �rm. In order to be able to represent consumer surplus and

extra pro�ts from price �xing for the �rm (�) in terms of the degree of collusion, we specify the

variable q; which denotes the degree of price-�xing. Let q = P�c
Pm�c ;where P is the price level

agreed by the �rms. Then it holds that q 2 [0; 1] and extra pro�ts from price �xing for this

particular �rm will be determined according to the following formula:

� = q(
(1� c)
(Pm � c) � q)(P

m � c)2:

Let (Pm � c)2 = A: With linear demand P = 1 � Q we observe that Pm = 1+c
2 ; so that

1�c
Pm�c = 2 and, consequently, it holds that A =

(1�c)2
4 = �m (monopoly pro�t in this particular

market).

The producer surplus, consumer surplus and net loss in consumer surplus are represented

in Figure 1.

P
     a         CS
                               net loss in CS
p   b               c

c                                              rents from
                                              price-fixing

                                                Q

Figure 1: Representation of producer and consumer surpluses and net loss of consumer

surplus in the price-quantity diagram.

The Producer Surplus equals

PS(q) = �(q) = �mq(2� q) ;

the Net Loss of Consumer Surplus is the area of the right triangle

NLCS =
1

2
�mq2 ;

while the Consumer Surplus is determined by the area of triangle abc:

CS(q) =
1

2
�m(2� q)2 :

Under the assumption that �m is equal to 1
4 (or c = 0), these three functions are presented in

Figure 2.
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Figure 2: Consumer surplus, producer surplus and net loss of consumer surplus as continuous

di¤erentiable functions of the degree of price-�xing.

The consumer surplus is lower the higher the degree of collusion. The loss in consumer

surplus is higher the higher the degree of collusion, while the rents from cartel for the �rm are

higher the higher the degree of collusion.

It should be mentioned that in the literature two main objectives of the authority are

considered. First, the authority aims to maximize total welfare, i.e. the sum of consumer and

producer surpluses. Second, the authority�s aim could be to maximize consumer surplus and

at the same time minimize the rents from collusion for the �rm. The second approach can be

justi�ed by the fact that the rents obtained through illegal activities are lost for society in most

of the cases. So they should not be included in the regulator�s maximization function.

Let us consider the �rst problem in a static setting. The antitrust authority is aimed to

maximize (CS + PS) i.e. to maximize f12�
m(2 � q)2 + �mq(2 � q)g s.t. q 2 [0; 1]: So, given

q 2 [0; 1] the total welfare is maximized when q = 0: Note, that this is equivalent to the

minimization of NLCS.

Let us consider now the second problem in a static setting. The antitrust authority is

aimed to maximize CS and at the same time minimize the rents from collusion, i.e. keeping

PS = 0 equal to competitive pro�t. In other words, the sum of net loss of consumer surplus

and producer surplus will be minimized. This means that the problem can be rewritten to

minimizef�mq(2� q)+ 1
2�

mq2g: This is equivalent to minimize f(2q� 1
2q
2)�mg; which is equal

to the minimization of the total loss from price-�xing for society. Consequently, in the settings

where antitrust authority cares only about CS the social welfare will be maximized when there

is no collusion.

So we can conclude that in the static setting the two problems described above are equivalent

in the sense that antitrust authority should not allow for any collusion irrespective of whether
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it cares about total welfare of the society or only about the consumer surplus. The same holds

in a dynamic setting. The aim of the antitrust authority will thus be to achieve q = 0 in all the

periods of the planning horizon in a dynamic setting as well.

2.2 Description of the dynamic game.

To investigate the interactions between the �rm and the antitrust authority we develop a dif-

ferential game. We consider a �rm (player 2) playing against the antitrust authority (player

1). The probability that the �rm gets caught at time t , F (t), is in�uenced by the degree of

collusion of the �rm, q(t), as well as the law enforcement rate of the antitrust authority p(t),

in the following manner:
:

F (t) = p(t)q(t)[1� F (t)] (1)

Note that �(t) =
:

F (t)[1 � F (t)]�1 is the hazard rate of the process leading to conviction

of the �rm. �(t) is the conditional probability of getting caught at time t provided that the

�rm has not yet been caught. (1) says that the hazard rate � increases linearly with increasing

activities of the �rm and antitrust authority, and F (0) = 0 is the initial condition.

As usual two types of variables appear in the model: a state variable F (t) (the probability

distribution function of the time until the detection of the violation of the �rm) and control

instruments q(t) (degree of collusion of the �rm) and p(t) (law enforcement rate of antitrust

authority). Note that the state constraint 0 � F (t) � 1 is satis�ed automatically. The idea to

use F (t) as a state variable is based on Kamien and Schwartz (1971). Assume also that a once

convicted �rm is not able to collude any more until time T (so if punishment is harsh enough,

the �rm needs a lot of time to recover). Parameter r denotes discount rate.

The objective function for the antitrust authority is given by:

max

TZ
0

e�rt[�(NLCS(t) + C(p(t)))[1� F (t)] + s(t)
:

F (t)]dt� e�rTC1(T )[1� F (T )] (2)

The term C(p(t)) re�ects the costs for the antitrust authority of performing the checking

activities (such as the number of inspections, salaries for auditors, etc.). The analysis of the

game will be conducted for the case when costs of law enforcement are quadratic, i.e. C(p) =

Np2(t)3: The instantaneous consumer surplus, CS(t); is negatively related to q(t) ( the higher

the q, the higher the degree of collusion, the less competition in the market, thus the higher the

3However, the results obtained in the paper hold for costs of law enforcement being any increasing convex

function of p. Solution of the game for linear case C(p) = Np is available from the author upon request.
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price). The term NLCS(t) re�ects the loss in instantaneous consumer surplus due to a price

increase by the �rm. NLCS(t) increases when q(t) increases. The term s(t)
:

F (t) re�ects the

expected revenue for the authority at time t if the cartel is discovered at this particular instant

of time. C1(T ) is the terminal value (disutility) assessed by the antitrust authority if the �rm

is not yet caught at time T: 4 Note also that we assume that no additional costs arise after the

�rm has been caught. This is a reasonable assumption in the context of violations of antitrust

law, since it is assumed that only monetary �ne can be imposed and this , on the contrary to

imprisonment, is costless for the authority.

The objective function for the �rm is given by

J2(q(t)) = max

TZ
0

e�rt[PS(t)[1�F (t)]+PScompF (t)� s(t)
:

F (t)]dt+ e�rTC2(T )[1�F (T )] (3)

Here the term PS(t) re�ects the instantaneous rents from collusion, while �s(t)
:

F (t) denotes

the expected punishment for the �rm at time t, i.e. the �ne times the probability of being caught.

s(t) is the instantaneous penalty at the moment the �rm is caught. For further analysis we

assume it is a function of both control variables and time. Note that the higher the degree

of collusion, q(t), the higher the probability to be caught for the �rm, and, consequently, the

higher the expected punishment. The term PScompF (t) re�ects the pro�ts of the �rm during

the period after the conviction, when there is no price-�xing. Consequently, the expression

PScomp is assumed to be zero. Finally, C2(T ) is the terminal value (utility) of the �rm being

not yet convicted in cartel formation at time T .

The corresponding di¤erential game with two players, one state variable F (t); and two

control variables, q(t) and p(t); is represented by the expressions (1)-(3). The state space is

F (t) 2 [0; 1]; and the set of feasible controls is p(t) 2 [0; 1] for player 1 and q(t) 2 [0; 1] for

player 2.

The major di¤erence with earlier papers on crime control (Feichtinger (1983)) is that we

introduce s(t) being the penalty imposed on the �rm as a function of the degree of o¤ence, which
4From the underlying static microeconomic model of price-�xing ( section 2.1) we derive that CSmax = 2�m:

Taking this into account the maximization of (2) is equivalent to a maximization problem of the following

form:

max
TR
0

e�rt[(PS(t) + CS(t)� C(p(t)))[1� F (t)] + CSmaxF (t) + s(t)
:

F (t)]dt� e�rtC1(T )[1� F (T )]

where the term PS(t) re�ects the instantaneous producer surplus, the term CS(t) re�ects the instanteneous

consumer surplus, and the term CSmaxF (t) re�ects the expected instantaneous consumer surplus in periods after

the conviction.

9



can vary over time. Moreover, the penalty could be a function of both the degree of o¤ence

and the rate of law enforcement by the antitrust authority. This case will be considered in later

sections of the paper. Another extension compared to Feichtinger (1983) is that we determine

explicitly the instantaneous utilities for the antitrust authority and the �rm in the case of

price-�xing, as functions of the degree of o¤ence on the basis of the underling microeconomic

model.

An economically reasonable assumption would be to set salvage values to be nonnegative,

i.e. C1(T ) � 0; C2(T ) � 0: Moreover, further, in order to simplify the calculations, we assume

zero discount rate5 (r = 0).

We also assume that players make their choices simultaneously and that they present the

solutions to their control problems by Markovian strategies or open-loop Nash Equilibrium

strategies (for a reference see ,e.g., Dockner et al. (2000)).

De�nition 1 The tuple (�;  ) of functions �;  : F � [0; T ) 7�! Rm
i
; is called a Markovian

Nash Equilibrium if, for each i 2 f1; 2g; an optimal control path ui(t) of the control problem

exists and is given by the Markovian Strategy u1(t) = �(F (t); t) and u2(t) =  (F (t); t) :

De�nition 2 The tuple (�;  ) of functions �;  : [0; T ) 7�! Rm
i
; is called an open-loop Nash

Equilibrium if, for each i 2 f1; 2g; an optimal control path ui(t) of the control problem exists

and is given by the open-loop Strategy u1(t) = �(t) and u2(t) =  (t):

In the solution of the game described above we will search for the open-loop Nash Equilibria

of the di¤erential game. It can be shown that for this particular game the set of Markovian

(closed-loop) Nash Equilibria will coincide with the set of open-loop Nash Equilibria. The proof

will be provided in Appendix 2.

3 Analysis of the current EU and US penalty schemes.

3.1 Stylized EU penalty scheme.

In this section we consider a penalty scheme, which resembles the current European or Dutch

systems6. We model the main feature of these systems, namely that the base penalty must be
5However, the main results of the paper would not change if we relax this assumption. Except for the results

of Appendix 3 and section 6.1.4. of Appendix 1, where we were not able to �nd closed form solution for the

dynamics of control variables in case r > 0.
6Guidelines on the method of setting �nes imposed for violations of competition law in Europe can be found

in PbEG 1998, while guidelines for the setting of �nes in the Netherlands are described in Section 57(1) of
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proportional to the gravity of infringement or to the turnover involved in the undertaking and

should not depend on the rate of law enforcement. It should be mentioned that the functional

form described in equation (4) below does not capture all the properties of the penalty schemes,

which are determined in the current Guidelines for the setting of �nes (such as bigger duration

of the o¤ence or leading role in the infringement would increase the penalty). That is why

we call this scheme �Stylized EU penalty scheme�. Consequently, the penalty in this case is

modeled as a linear increasing function of the degree of o¤ence, q(t):

s(q(t)) = K�mq(t); (4)

where K is a positive constant and �m is the instantaneous monopoly pro�t to the �rm7.

We �rst �nd an open-loop Nash equilibrium of the game described above. In Appendix 2 we

show that in this di¤erential game candidates for open-loop Nash optimality are also candidates

for closed-loop Nash optimality. To �nd Nash Equilibria in open-loop strategies we �rst �nd

a tuple (�;  ) where � : [0; T ] 7�! [0; 1] and  : [0; T ] 7�! [0; 1] are the �xed strategies for

antitrust authority and �rm respectively. � corresponds to the control variable p(t); and  

corresponds to the control variable q(t):

As the static analysis in section 2.1 suggests, it is reasonable to assume concavity of the

terms �NLCS(t) � C(p(t)) and PS(t): This allows to obtain the expressions for an interior

solution of di¤erential game (1)-(3)8.

The solution of the problem of the �rm gives us the following expression being the reaction

function of the �rm in each period9:

q�(t) =
2�m + �(t)�(t)

2�m + 2�mK�(t)
= B; (5)

q�(t) =

(
0 if B�0
B if 0<B�1
1 if B > 1

: (6)

In (5) �(t) is the shadow price (costate variable) of the state variable F (t) for the �rm.

According to (5) the optimal degree of price-�xing for the �rm decreases with decreasing

shadow price �(t): Moreover the higher the penalty at the instant the �rm is caught, the lower

Competition Act.
7The multiplier K�m is derived from the static optimization problem for the �rm. The �rm decides on the

level of o¤ence given the rate of law enforcement, p, and the functional form of the penalty scheme, which is

linear. And the aim of the antitrust authority is to achieve zero price-�xing outcome.
8However, in general all the results of the model will hold also for arbitrary concave objective functions.
9For a complete derivation of this result see appendix 1.
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the optimal rate of price-�xing. The in�uence of the maximal gains from price-�xing on the

optimal degree of price-�xing is determined by taking the derivative of expression (5) with

respect to �m and, based on the proof in Appendix 1, we set �(t) � 0 for t 2 [0; T ]10: We get

( 2�m+�(t)�(t)
2�m+2�mK�(t))

0
�m � 0: So the optimal degree of price-�xing by the �rm will increase when the

maximal gains from collusion increase. This behavior makes economic sense.

The solution of the problem of the antitrust authority gives us the following expression

being the reaction function of the antitrust authority in each period11:

p�(t) =
(K�m (t)� �(t)) (t)

2N
= D; (7)

p�(t) =

(
0 if D�0
D if 0<D�1
1 if D > 1

: (8)

Where �(t) is the shadow price for the antitrust authority.

The intuition behind the formula (7) is as follows. Since the antitrust authority aims to

minimize the total loss, the adjoint variable �(t) measures the shadow costs of one additional

unit of probability F (t) imputed by the authority. Thus, ��(t) is the shadow price by which

the state variable F is assessed by the authority. From (7) we see that a decrease in �(t)

results in an increase of the rate of law enforcement p. The increase in the absolute value of the

penalty K�m also will cause an increase in the rate of law enforcement, since it becomes more

pro�table for the antitrust authority to discover more violations. At the same time it holds

that the higher the marginal costs of law enforcement N; the lower p.

3.2 Determination of the Nash Equilibrium.

Based on the expressions (7) and (5) we can prove the following proposition.

Proposition 3 The outcome with no collusion q(t) = 0 for all t 2 [0; T ] can not arise as

equilibrium strategy of the �rm , when the penalty schedule has the form s(q(t)) = K�mq(t);

where K is a positive real number, which determines the steepness of the penalty scheme, and

the costs of law enforcement are a quadratic function of p(t).

Proof : (see Appendix 1 (section 6.1.3.)).

10For veri�cation see appendix 1.
11For a complete derivation of this result see appendix 1.
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It should be also mentioned, that the unique steady state of this problem is given by q� = 0

and p� = 012: But considering the phase diagram of this problem in the (p,q)- plane we conclude

that this solution is not stable13.This fact provides an additional argument in favor of rejection

of the linear penalty scheme which does not depend on any other variables of the model, except

for the degree of price-�xing.

The general result of the analysis of the di¤erential game conducted in this subsection

points out the weaknesses of the penalty scheme that is linear in the degree of o¤ence, which

is described in the European sentencing guidelines for violations of antitrust law. One of the

possible improvements would be to change the functional form of the penalty. For example, in

US sentencing guidelines it resembles a convex increasing function of the degree of o¤ence. We

treat this case in the subsection below.

3.3 Stylized US penalty scheme.

In this section we consider a di¤erential game where the penalty schedule is a convex function

of the degree of the o¤ence. This schedule is given by the following expression:

s(q(t)) = K�mq2(t): (9)

This resembles the current US system of penalties for violations of antitrust law, where the

base penalty imposed by court for the �rm convicted in price-�xing will be determined as a

convex increasing function of the degree of o¤ence, assigned to this particular violation, which

is based on the amount of turnover involved in undertaking14. Again, this system does not

exactly capture all the features of the penalties determined in US guidelines manual (such as

dependence on the duration of o¤ence or the role in the infringement). That is why, as in the

previous subsection, we call this scheme �Stylized US penalty scheme�. For the convex penalty

scheme Proposition 4 can be obtained. We refrain from presenting its proof, since it is similar

to the linear case15.
12For the sake of completeness we also give here the exact de�nition of the stationary Markovian Nash equilibria.

Let us consider game with in�nite planning horizon, e.g. T = 1: Assume also that there are two players, and

strategy space for each of them has dimension one. Now The stationary Markovian Nash equilibrium (or steady

state) is the tuple (�;  ) of time independent functions �;  : F 7�! U i for i 2 f1; 2g. Where F is the state

space and U1 and U2 are the strategy spaces for players 1 and 2 respectively. Moreover, U1, U2 2 R:
13See the part on the investigation of stability in Appendix 1.
14US guidelines manual.
15The proof of the proposition 4 and investigation of the stability of the system in the long run are available

from the author upon request. Also here it holds that unique steady state given by p=q=0, is not stable.
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Proposition 4 The outcome with no collusion q(t) = 0 for all t 2 [0; T ] can not arise as

equilibrium strategy of the �rm in the model with �nite horizon, when the penalty schedule is

convex i.e. s(q(t)) = K�mq2(t); where K is a �xed positive real number, and the costs of law

enforcement are a quadratic function of p(t):

The deterrence with convex penalty system works better than the deterrence with a linear

penalty scheme for more grave o¤ences, since when q is su¢ ciently high, it can be shown that

for any given probability of law enforcement it gives a lower degree of price-�xing by the �rm

and, consequently, a lower damage for society. Moreover, this result once again gives support

to the argument in favor of deterrence focused not only on cartel bene�ts but also on the harm

to the consumers caused by price-�xing. Recall that the net losses in consumer surplus were

proportional to the squared degree of o¤ence16.

The main implication of the model discussed in this section is the result that in the frame-

work of a di¤erential game between the �rm and the antitrust authority the penalty schemes

which are used now in the EU and US legislation appear not to be as e¢ cient as desired from

the point of view of minimization of consumer loss from price-�xing activities of the �rm. The

result is that, given this framework, zero collusion (full compliance) behavior is not sustainable

as a Nash Equilibrium in Markovian strategies for all periods of the time horizon, and, more-

over, this equilibrium will never arise as a long run steady state equilibrium of the model. The

reason for this is that the current penalty schemes do not allow the �ne to be high enough to

outweigh the accumulated expected gains from price-�xing for colluding �rms. Another reason

could be that �nes for antitrust violations do not depend in any way on the probability of law

enforcement, which should be an important determinant of the e¢ ciency of penalty schemes

as has been mentioned in Becker (1968) and Leung (1991). In the next section we pursue this

road.
16Section 2: Net Loss of CS = 1

2
�mq2
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4 A penalty schedule that does prevent collusion.

4.1 Solution of the game.

Here the aim is to �nd an open-loop Nash equilibrium, which is also a Markovian Nash Equi-

librium of the game described above, when the penalty schedule is determined as follows 17

s(q(t); p(t)) = K�mq(t) +
G

p(t)
with s(0; 0) = 0; (10)

where G is a positive constant.

The foundation for the penalty schedule determined by expression (10) is based on the

following considerations. Looking at the FOC for the �rm (5) in the case when the penalty is

linear, given �(t) � 0 for all t, we can get q(t) = 0 for all t if and only if there is some additional

strictly negative term in the numerator of the expression (5). By adding the term G
p(t) into

the penalty function we assure the appearance of this additional term in the expression for the

reaction function of the �rm. Note that this result has a lot in common with the well known

result of Becker (1968).

Searching for the open-loop Nash Equilibria of the game we start by solving the optimal

control problem of the �rm. If the antitrust authority chooses to play p(t) = �(t) then the

�rm�s problem is described by

Max
TR
0

e�rt[�mq(t)(2�q(t))[1�F (t)]�(K�mq(t)+ G
�(t))�(t)q(t)(1�F (t))]dt+e

�rTC2(T )[1�

F (T )]

s.t.
:

F (t) = �(t)q(t)[1� F (t)]

The Hamiltonian of this problem equals

H(q; F; �) = �mq(t)(2�q(t))[1�F (t)]�(K�mq(t)+ G
�(t))�(t)q(t)(1�F (t))+�(t)�(t)q(t)(1�

F (t)); where �(t) is the costate variable of the problem of the �rm.

Solving for q(t) and �(t) we get:
:
�(t) = �mq(t)(2� q(t))� s(t)�(t)q(t) + �(t)�(t)q(t)

q�(t) =
2�m + �(t)�(t)�G
2�m + 2�mK�(t)

= B; (11)

q�(t) =

(
0 if B�0
B if 0<B�1
1 if B > 1

: (12)

According to (11) the optimal degree of price-�xing for the �rm decreases with decreasing

shadow price �(t): Moreover, the higher the penalty at the instant the �rm is caught, the lower

17For veri�cation see Appendix 2.
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the optimal rate of price-�xing. The in�uence of the maximal gains from price-�xing on the

optimal degree of price-�xing is determined by taking the derivative of expression (11) with

respect to �m and taking into account �(t) � 0 for t 2 [0; T ]18:We get (2�
m+�(t)�(t)�G

2�m+2�mK�(t) )
0
�m � 0:

So the optimal degree of price-�xing by the �rm will increase when the monopoly pro�ts from

collusion increase. The size of the �xed �ne G negatively in�uences the degree of price �xing.

Now we move to the solution of the optimal control problem of antitrust authority. If �rm

chooses to play q(t) =  (t) then the regulator�s problem can be written as

Min
TR
0

e�rt[(NLCS(t)+C(p(t)))[1�F (t)]�(K�m (t)+ G
p(t))

:

F (t)]dt+e�rTC1(T )[1�F (T )]

s.t.
:

F (t) = p(t) (t)[1� F (t)]

The Hamiltonian of this problem equals

H(p; F; �) = (�m 1
2 

2(t)+Np2(t))[1�F (t)]�(K�m (t)+ G
p(t))p(t) (t)(1�F (t))+�(t) (t)p(t)(1�

F (t)); where �(t) is a costate variable of the problem of player 1.

Solving for the optimal p(t) and �(t); and taking into account that the control region for p

is constrained by the [0; 1]� interval, we get:
:
�(t) = �m 1

2 
2(t)) +Np2(t)� s(t)p(t) (t) + �(t) (t)p(t);

p�(t) =
(K�m (t)� �(t)) (t)

2N
= D; (13)

p�(t) =

(
0 if D�0
D if 0<D�1
1 if D > 1

: (14)

The intuition behind this result is exactly the same as in section 3.2.

Taking into account the assumptions on the terminal values C1(T ) � 0; C2(T ) � 0 we

conclude that the transversality conditions will be as follows:

�(T ) = �C1(T ) � 0 and �(T ) = �C2(T ) � 0: (15)

4.2 Determination of the Nash Equilibrium.

Let us investigate the stability of the system and the properties of the last period solution.

By doing this we are able to establish that, under certain conditions on the parameters of

the model, an equilibrium with zero degree of collusion in all periods can be sustained as an

open-loop or Markovian equilibrium of the game.

From (11)-(14) it can be concluded that the system of equations describing the solution of

the di¤erential game in terms of reaction functions in the �nal period of the game, given that

18For veri�cation see proof of Proposition 5.
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the solution is interior (due to the concavity of the Hamiltonians), has the following form:

p�(T ) =
(K�mq(T )� �(T ))q(T )

2N
(16)

q�(T ) =
2�m + �(T )p(T )�G
2�m + 2�mKp(T )

(17)

Studying the reaction functions of both players at each instant of time, we can conclude

that the following proposition holds:

Proposition 5 If the penalty schedule has the form s(q(t); p(t)) = K�mq(t)+ G
p(t) with s(0; 0) =

0 where K is any positive real number and G � 2�m; then the unique equilibrium has q(t) = 0

for all t 2 [0; T ].

Proof:

From expression (16) it is obtained that p�(T ) = 0 if and only if q(T ) = 0 ;since expression

K�mq(T ) � �(T ) can not be equal to zero due to the transversality condition (15). This can

be situated on an optimal path for the strategy of player 2, given by expression (17) if and

only if G � 2�m: Secondly, given that �(T ) � 0; the best response function q(p) for player 2 is

the constant function passing through the point (0; 0), so q�(p) = 0 for any p 2 [0; 1]:

In Figure 3 we sketch the period T reaction functions of the �rm and antitrust authority.

q µ(T)<0

P(q)

q(p)

Unique equilibrium

 1    p

   1

Figure 3: Determination of the Nash Equilibrium in the model when the penalty schedule is

given by the function s(q(t); p(t)) = K�mq(t) + G
p(t) for parameter values

K = 2;�m = 1; N = 1 and taking � = �1:

We can conclude that q�(T ) = 0 can be sustained as an open-loop or Markovian19 Nash

equilibrium in the last period of the game only if G � 2�m; i.e. the �xed penalty is high enough

to make the reaction curve of the �rm a horizontal line, passing through the point q = 0.
19For the proof of the fact that for this particular game the set of open loop equilibria coincides with the set

of Markovian equilibria see Appendix 2.
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In order to �nd equilibrium values of p�(t) and q�(t) in each period we can draw both

reaction functions in a (p; q) diagram at each instant of time. To �nd analytical expressions

for the Nash Equilibria of the game in terms of open-loop strategies for both players, we have

to �nd Nash Equilibria in each period t and compose the optimal path starting from the last

period.

The problem here is that expression (10) does not de�ne the penalty in case p(t) = 0. The

penalty and, consequently, the objective functions become indeterminate when p(t) = 0: To

overcome this problem we introduce the notion of "� equilibrium (or almost equilibrium):

De�nition 6 An "�equilibrium of any strategic-form game is a combination of randomized

strategies such that no player could expect to gain more than " by switching to any of his

feasible strategies, instead of following the randomized strategy speci�ed for him.20

Obviously, in the equilibrium point with p�(t) = 0 and q�(t) = 0 for all t 2 [0; T ] values of

objective functionals do not exist. Hence, as a candidate for "�equilibrium we consider point

q�(t) = 0 and p�(t) = � > 0 for all t 2 [0; T ] ; where � ! 0 + :

Now we can de�ne the "�equilibrium of the game by q�(t) = 0 and p�(t) ! 0+ for all

t 2 [0; T ] and use this equilibrium in further analysis.

In order to show that p�(t)! 0+ and q�(t) = 0 for all t 2 [0; T ) can be sustained as an open-

loop or Markovian Nash equilibrium of this game, we need to verify that this solution satis�es

the necessary conditions for optimality. Obviously, they are satis�ed. Assuming F (t) 6= 1 we

can rewrite di¤erentiated Hamiltonians as follows21:
@H(p;F;�)

@p = 2Np(t)�K�q2(t) + �(t)q(t)
��
(p=0;q=0)

= 0

@H(q;F;�)
@q = 2�m � 2�mq(t) + �(t)p(t)� 2�mKq(t)p(t)�Gj(p=0;q=0) = 0 i¤ G = 2�m

Next, we prove that q(t) = 0; p(t)! 0+ for all t 2 [0; T ] is a unique equilibrium. The fact

that �(t) � 0 for all t 2 [0; T ]; ensures that q(t) = 0; p(t)! 0+ for all t is a unique solution.

Firstly, �(T ) > 0 can not hold, since according to the transversality condition we have

�(T ) � 0: Hence, the equilibrium with q(T ) = 0; p(T ) ! 0+ is a unique equilibrium in period

T given G � 2�m:

We can show that the equilibrium with q(t) = 0; p(t) ! 0+ will be also unique for all

t 2 [0; T ): In the problem under consideration the necessary condition for uniqueness of the

equilibrium q(t) = 0; p(t)! 0+ for all t is the condition �(t) � 0 for any t 2 [0; T ]: Taking into
20For the reference see Myerson (2002)
21Note that in case F (t) = 1 equalities @H(p;F;�)

@p
= 0 and @H(q;F;�)

@q
= 0 are satis�ed for any values of p and q.
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account the transversality condition �(T ) � 0 above we now show that �(t) � 0 for t 2 [0; T ):

Assume that there is an arbitrary t0 2 [0; T ) such that �(t0) > 0: Then from the optimality

condition we obtain � = �2�m+2�mq+2K�mqp+G
p

22:

And from the costate equation for �(t) we obtain that
:
�(t0) = 2�mq(t0)��mq(t0)2�(K�mq(t0)+ G

p(t0))p(t
0)q(t0)+(�2�

m+2�mq(t0)+2K�mq(t0)p(t0)+G
p(t0) )p(t0)q(t0)

= q2(t0)�m (1 +Kp(t0)) � 0:

Hence , a non-positive terminal value given by �(T ) = �C2(T ) could never be reached.

Thus,

�(t) � 0 for t 2 [0; T )

Hence we can conclude that with G � 2�m the outcome with no collusion q(t) = 0 for all

t 2 [0; T ] can arise as an open-loop or Markovian Nash Equilibrium solution of the game and

this equilibrium is unique23.

End of the proof of the existence and uniqueness of the Nash Equilibrium.

To summarize the analysis we stress that this proposition considers the settings, where we

model the interactions between the �rm and antitrust authority as a di¤erential game. In this

game the antitrust authority imposes a penalty of the form S(q(t); p(t)) = K�mq(t) + 2�m

p(t) at

the moment that the cartel is discovered and zero penalty if it checks and does not discover

any violation. One important feature of this schedule is that when the cartel is discovered the

penalty imposed on the �rm must be at least greater than twice the instantaneous monopoly

pro�ts from price-�xing in the industry under consideration. It turns out that this penalty

scheme is more e¢ cient than the current EU or US penalty schemes, in the sense that this

policy leads to the complete deterrence outcome. In particular, the regulator can achieve the

outcome with no price-�xing in all the periods of the planning horizon at the lowest possible

costs.

Finally consider the in�nite horizon problem and let us investigate the stability of the Nash

Equilibrium solution in the long run. Studying the phase diagram24 we can conclude that the

following proposition holds.

22For a complete derivation see Appendix 3.
23Note that this result also goes through with r > 0. The only di¤erence is that

:
�(t0) = r�(t0) +

q2(t0)�m (1 +Kp(t0)) ; which is also greater or equal than zero given that �(t0) > 0:
24See �gure 6 in Appendix 3.
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Proposition 7 The outcome with q� = 0 and p� ! 0 is the unique long run steady state equi-

librium of the in�nite horizon model, where the penalty is given by the expression S(q(t); p(t)) =

K�mq(t) + 2�m

p(t) and the costs of law enforcement for the antitrust authority are convex.

This proposition states that the equilibrium (q� = 0; p� ! 0+) is also the unique steady

state equilibrium of the di¤erential game with penalty schedule given by S(q; p) = K�mq+ 2�m

p :

Complete proof of this fact will be provided in Appendix 3. Referring to Feichtinger (1983)

we de�ne the game under consideration as a state-separable game, i.e. a game which has the

property that the state variable is absent in the maximization conditions as well as in the

adjoint equations. For such a game the system of di¤erential equations for the Nash-optimal

controls can be derived, as will be shown in Appendix 3. Also, the qualitative behavior of

the optimal solution can be obtained from a phase diagram analysis in the (p; q)- plane, but

a closed-form solution of the system of the di¤erential equations for the Nash equilibrium of

the game under consideration still cannot be calculated due to the complicated structure of

objective functions25.

Here we give a phase portrait in the (p; q)� plane of the system of di¤erential equations

which describes the long run dynamics of the system in terms of control variables. The domain

of the controls is determined by the square [0; 1] � [0; 1] . We also show in Appendix 3, that

the solution (p� ! 0, q� = 0) is the unique stable steady state equilibrium of the game.

q

p
0

1

1

A

Figure 4: Phase portrait in (p,q)-space for the model where penalty schedule is given by

s(q(t); p(t)) = K�mq(t) + G
p(t) for the set of parameters K = 2; N = 1; G = 2, �m = 1:

Considering the dynamics of the system in this domain, we conclude that for certain initial

values of control variables, in particular q > p
p
2 (in the example where K = 2; �m = 1; N =

1; G = 2�m = 2) or q >
q

2N
�m p (in general case) (or simply for the points in the (p; q)-

plane above line OA in the graph above) with arbitrary values of parameters N and �m and
25See Appendix 3.
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Fx = 2�m; the system will always converge to the point (0; 0). Moreover starting in any

point with characteristics q �
q

2N
�m p (below line OA) will bring the system into the point

(1; 1), which is clearly suboptimal compared to the solution (0; 0). So we can conclude that

q� = 0; p� ! 0 is the unique stable steady state solution of the system of di¤erential equations

(26), (27). Moreover, this result is not sensitive to the changes of the values of the parameters

of the model.

5 Conclusions.

In this paper we analyze dynamic interactions between the antitrust authority and a �rm in-

volved in a cartel. We develop a model which can be used to study dynamic optimal enforcement

of competition law. We can summarize the results of the paper as follows.

One main result is that the penalty schemes, which are used now in the EU and US legisla-

tion, appear not to be as e¢ cient as desired from the point of view of minimization of consumer

loss from price-�xing activities of the �rm. In particular, we prove the result that zero collusion

(full compliance) behavior is not sustainable as a Nash Equilibrium in Markovian strategies.

The reason is that the current penalty schemes do not allow the �ne to be high enough to

outweigh the accumulated expected gains from price-�xing for colluding �rms. An additional

reason could be that �nes for antitrust violations do not depend in any way on the probabil-

ity of law enforcement, which should be an important determinant of the e¢ ciency of penalty

schemes. The latter result was obtained by Becker (1968) and also by Leung (1991).

Furthermore, we determine a penalty system, that is e¢ cient from the point of view of the

possibility of complete deterrence of cartel formation in a dynamic setting. We �nd that there

is a possibility to achieve the socially desirable outcome, i.e. the outcome with no price-�xing

in all the periods of planning horizon, only with a very speci�c form of the penalty scheme.

The amount of �ne should be an increasing function of the degree of o¤ence and it should be

negatively related to the probability of law enforcement, which is related to Becker�s (1968)

result. An interesting implication is that in any case, whatever the degree of o¤ence is, the

penalty should be greater than twice the per period maximal gains from price-�xing for the

�rm. This in some sense con�rms the suggestion which has been made in the beginning of the

paper that, indeed, the penalty should be related not only to the gains from price-�xing for the

�rm but also to the loss in consumer surplus due to price-�xing, which is approximately twice

the monopoly pro�ts in case of full collusion.
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There is a number of possible extensions of the model described in this paper. It seems

reasonable to assume that the duration of the game is large. Thus it might be interesting to

consider also the case of an in�nite time horizon in more details and try to �nd a more general

solution for this setting. In this case the salvage values must be equal to zero and the discount

rate must be strictly positive for reasons of convergence of the objective functionals. The

introduction of new state variables such as the o¤ender�s criminal record or the accumulated gain

from cartel formation could give new insights for the determination of optimal penalty schemes

for antitrust law violations. New insights may also be gained by looking at heterogeneity

among the violating �rms and, consequently, di¤erent penalty schedules for o¤ences of di¤erent

gravity and di¤erentiation between industries can also help to improve the deterrence power of

the current penalty schemes for violations of competition law.

6 Appendixes.

6.1 Appendix 1. Complete solution of the di¤erential game with linear

penalty schedule26.

6.1.1 Solution of the problem of player 2 (�rm).

Let�s start by solving the optimal control problem of player 2. If player 1 chooses to play

p(t) = �(t) then player 2�s problem can be written as

Max

TZ
0

e�rt[�mq(t)(2� q(t))[1� F (t)]� s(t)�(t)q(t)(1� F (t))]dt+ C2(T )[1� F (T )]

s:t:
:

F (t) = �(t)q(t)[1� F (t)]

F (t) 2 [0; 1] and F (T ) is free. This implies a transversality condition of the following form:

�(T ) = �C2(T ); where �(t) is the costate variable of the above problem .

F (0) = 0 and q(t) 2 [0; 1]

Now �(t) is assumed to be �xed functions and PS(t) is determined from the subsection 2.2.

The Hamiltonian of this problem equals

H(q; F; �) = �mq(t)(2� q(t))[1� F (t)]� s(t)�(t)q(t)(1� F (t)) + �(t)�(t)q(t)(1� F (t))

Solving for q(t) and �(t) we get:

26For the sake of completeness we solve this game under assumption that r � 0. So, that the results stated in

section 3.1 (under assumption r = 0) will hold automatically.
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(i)
:
�(t)� r�(t) = �@H(q;F;�)

@F : This implies
:
�(t)� r�(t) = �mq(t)(2� q(t))� s(t)�(t)q(t) +

�(t)�(t)q(t)

(ii) q�(t) is such that it maximizes H(q; F; �) on q 2 [0; 1]:

(iii) F (T ) is free, this implies transversality condition of the following form: �(T ) = �C2(T )

Given s(q(t)) = K�mq(t) with K 2 (0;1) i.e. K is any positive real number (ii) implies
@H(q;F;�)

@q = 2�m � 2�mq(t) + �(t)�(t)� 2�mKq(t)�(t):

So equation 2�m � 2�mq + ��� 2�mKq� = 0 gives us � = 2�m�1+q+Kq�
�

Substituting this expression into the costate equation we get:
:
� = r�+�mq(2� q)��mKq�q + 2�m(�1+q+Kq�� )�q = r�+�mq2 +�mKq2�

@H(q;F;�)
@q = 0 implies q�(t) = 2�m+�(t)�(t)

2�m+2�mK�(t) = B and since q(t) 2 [0; 1] we get q�(t) =�
0 if B�0

B if 0<B�1
1 if B>1

Proof of �(t) � 0 for all t 2 [0; T ]:

The transversality conditions are provided by �(T ) = �C1(T ) for player 1 (antitrust-

authority) and by �(T ) = �C2(T ) for player 2 (�rm). Given C1(T ) � 0 and C2(T ) � 0

we have that �(T ) � 0 and �(T ) � 0; where �(T ) and �(T ) are values of the costate variables

of the game in the last period.

Taking into account the conditions above we can show that �(t) � 0 for t 2 [0; T ):

Assume that there is arbitrary t0 2 [0; T ) such that �(t0) > 0: Then, according to the

concavity of PS(q) we obtain from the costate equation for �(t) that
:
�(t0) = �(t0)r+�mq(t0)2+

�mKq(t0)2p(t0) � 0: Hence , a non-positive terminal value given by �(T ) = �C2(T ) could be

never reached. Thus,

�(t) � 0 for t 2 [0; T )

End of the proof.

Note, since the sign of the expression for costate variable of player 1
:
�(t)�r�(t) = 1

2�
mq2�

Np2 is ambiguous, it holds that in general �(t) has no unique sign.

6.1.2 Solution of the problem of player 1 (antitrust authority).

Now we move to the solution of optimal control problem of player 1. If player 2 chooses to play

q(t) =  (t) then player 1�s problem can be written as

Min

TZ
0

e�rt(NLCS(t) +Np2(t))[1� F (t)]� s(t)
:

F (t)]dt+ C1(T )[1� F (T )]

s:t:
:

F (t) = p(t) (t)[1� F (t)]

23



F (t) 2 [0; 1] and F (T ) is free. This implies a transversality condition of the following form:

�(T ) = �C1(T ); where �(t) is the costate variable of the above problem.

F (0) = 0 and p(t) 2 [0; 1]

Now  (t) is assumed to be �xed function.

The Hamiltonian of this problem equals

H(p; F; �) = (�m 1
2 

2(t)+Np2(t))[1�F (t)]�s(t)p(t) (t)(1�F (t))+�(t) (t)p(t)(1�F (t))

Solving for p(t) and �(t) we get:

(i)
:
�(t)�r�(t) = �@H(p;F;�)

@F this implies
:
�(t)�r�(t) = 1

2�
m 2(t)+Np2(t))�s(t)p(t) (t)+

�(t) (t)p(t)

(ii) p�(t) is such that it maximizes H(p; F; �) on p 2 [0; 1]:

(iii) F (T ) is free, this implies transversality condition of the following form: �(T ) = �C1(T )

(ii) and s(q(t)) = K�mq(t) implies
@H(p;F;�)

@p = 2Np(t)�K�m (t) (t)+�(t) (t) = 0 . This implies p�(t) = (K�m (t)��(t)) (t)
2N =

D and taking into account limits of the control region for probability of control p�(t) =�
0 if D�0

D if 0<D�1
1 if D>1

Solution of the equation 2Np�K�m  + � = 0 gives � = �2Np+K�m 2
 :

Substituting this expression into the costate equation we get:
:
�(t)� r�(t) = �m 1

2 
2 +Np2 �K�m p + (�2Np�K�m 2

 ) p = 1
2�

m 2 �Np2

6.1.3 Proof of proposition 3.

Consider the value of the control variable of the antitrust authority in the last period of the game

given by expression (7). It is clear that p�(T ) = 0 if and only if q(T ) = 0: But this contradicts

to the optimal path for the last period strategy of player 2 , which is given by expression (5):

This implies that p�(T ) = 0 and q�(T ) = 0 does not constitute a Nash equilibrium of the game

in the last period for arbitrary salvage value C2(T ). Consequently, strategy q(t) = 0 for all t can

not be sustained as a Nash equilibrium in open-loop or Markovian strategies with C2(T ) � 2�m

p(T )

and �(t) � 2�m

p(t) for all t 2 [0; T ).

We may also notice an interesting argument that follows from the fact that transversality

condition implies that �(T ) = �C2(T ): Then we get q�(T ) � 0 for any p(T ) 2 [0; 1] if and

only if �(T ) = �C2(T ) � �2�m

p(T ) : (Note that this result does not hold in general settings with

arbitrary terminal value of the �rm.) This implies that the reaction function of the �rm in

the last period can pass through origin only when C2(T ) the terminal utility of the �rm being

not yet convicted in cartel formation at time T is greater or equal than 2�m

p(T ) . So the outcome
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with no collusion in the last period and consequently with no price-�xing in all the preceding

periods can arise in equilibrium only under very special circumstances, i.e. when C2(T ) � 2�m

p(T )

and �(t) � �2�m

p(t) for all t 2 [0; T ), which means the terminal utility of the �rm being not yet

convicted in cartel formation at time T must be equal exactly the absolute penalty which could

be imposed on the �rm in the static case in order to block any degree of price-�xing27 and also

the path of the costate variable for the �rm should follow exactly �(t) = �2�m

p(t) or lie below.

So, here we can observe analogies with the static model.

So, we have that q�(t) = 0 for some p(t) 2 [0; 1] if and only if �(t) � �2�m

p(t) for all t 2 [0; T ]:

But in this case the dynamics of the system rules out the result with p(t) = 0 for all t 2 [0; T ]:

This can be shown as follows.

Consider �2�m

p(t) < 0 for all t 2 [0; T ] i¤ p(t) > 0. This implies
:
�(t) = �mq(t)2 +

�mKq(t)2p(t) = 0 for all t 2 [0; T ]. Thus
�

p(t) = 0 and p(t) > 0: This implies p(T ) > 0.

Consequently, the outcome with q(t) = 0 for all t 2 [0; T ] can be sustained in a Nash equilib-

rium of this game with �(T ) = �C2(T ) � �2�m

p(T ) only when p(t) > 0 for some t 2 [0; T ]; which

is clearly suboptimal , since there is unnecessary waste of resources compared to the outcome

with q(t) = 0 and p(t) = 0 for all t 2 [0; T ]:

END OF THE PROOF OF PROPOSITION 3.

6.1.4 Investigation of stability of the system when penalty is given by the expres-

sion s(q) = K�mq:

From the solution of the problem of the �rm (setting r = 0) we obtain

� =
�2�m + 2�mq(t) + 2K�mq(t)p(t)

p(t)
(18)

and
:
�(t) = 2�mq ��mq2 � (K�mq)pq + (�2�

m+2�mq+2K�mqp
p )pq = q2�m (1 +Kp)

From the solution of the problem of player 1 (setting r = 0) we have

� =
�2Np(t) +K�mq2(t)

q(t)
(19)

and
:
�(t) = 1

2�
mq2 +Np2 �K�mq2p+ (�2Np+K�

mq2

q )qp = 1
2�

mq2 �Np2

Di¤erentiating (19) and (18) with respect to time and equalizing it to
:
�(t) and

:
�(t) respec-

tively we obtain following system of equations:

27Recall section 2.2: s0(q) = 2�m

p
: =) s(q) = 2�m

p
q;i.e. the penalty imposed on the �rm colluding with the

degree 1 (earning monopoly pro�ts) must be at least double of monopoly pro�ts.
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2p�mq0 + 2K�mp2q0 + 2p0�m � 2p0�mq
p2

= q2�m (1 +Kp) (20)

�2qNp0 +K�mq2q0 + 2q0Np
q2

=
1

2
�mq2 �Np2 (21)

from (21) it follows p0 = 1
4
2K�mq2q0+4q0Np��mq4+2Np2q2

qN

substituting p0 into (20) and solving for q0 we get q0 = 1
2q
2 �mq2��mq3�2Np2+4qNp2+2Np3qK

2Kp2qN+K�mq2�K�mq3+2Np

from (20) it follows q0 = 1
2
�2p0+2p0q+q2p2+q2p3K

p(1+Kp) ,

substituting q0 into (21) and solving for p0 we get p0 = 1
2q
2pK

2�mq2p2+4Np2+4Np3K��mq2
2Kp2qN+K�mq2�K�mq3+2Np

Solving the system of equations above for p0 = 0 and q0 = 0 we get that solution p = 0,

q = 0 is also a steady state equilibrium of the game described in section 3, i.e. when penalty

is given by expression S(q) = K�mq. But after careful analysis of the phase diagram of this

system we can conclude that the equilibrium p = 0, q = 0 is not stable for some policy relevant

values of the parameters of the system.

Given parameters are �m = 1; N = 2;K = 0:5 and given the domain of the control variables

is [0; 1]� [0; 1] we can represent the system dynamics in Figure 5.

q

p
0

1

1

A

B

Figure 5: Phase portrait in (p,q)-space for the model with linear penalty schedule and convex

costs of law enforcement for the set of parameters K = 0:5; N = 2; �m = 1:

Where OA is the locus where variable p changes its dynamics and OB is the locus where

variable q changes its dynamics.

By studying the phase diagram we can conclude that solution p� = 0, q� = 0 can not be

stable equilibrium, i.e. equilibrium to which system converges in the long run.

6.2 Appendix 2.

In this appendix we show that for the games described in sections 3, 4 and 5 the candidates

for open-loop Nash optimality are also candidates for closed-loop Nash optimality and hence
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the open-loop strategies are also optimal in the set of closed loop strategies.

We have already mentioned, that referring to Feichtinger (1983) we can de�ne the game

under consideration as a state-separable game, i.e. the game which has the property of the

absence of the state variable from the maximum conditions as well as from the adjoint equations.

For such a games the system of di¤erential equations for the Nash-optimal controls can be

derived and also the qualitative behavior of the optimal solution can be obtained from a phase

diagram analysis in the (p; q)- plane.

According to Feichtinger (1983), in state-separable di¤erential games the candidates for

open-loop Nash optimality are also candidates for closed-loop Nash optimality. The strategies

are independent of the state variable because neither the Hamiltonian-maximizing conditions

nor the adjoint equations depend on state variable F . Thus, the open-loop strategies are also

optimal in the set of closed loop strategies. Usually it is shown by verifying the su¢ cient

conditions for closed-loop Nash equilibrium controls as in Leitmann and Stalford (1974).

For the particular game described in section 3 of the paper the procedure of verifying the

su¢ cient conditions will be as follows.

Recall the de�nition of Markovian Nash Equilibria given in section 2.1. So searching for

closed-loop equilibria we assume that the choice of the control variable by each player in the

next period will depend on the realization of state variable and also that both players can

observe this realization. In that case the optimal strategies of player 1 (antitrust authority)

and player2 (�rm) must be respectively p(t) = �(F (t); t) and q(t) =  (F (t); t):

Solving for open-loop Nash equilibria of the game of section 3 we get q�(t) = 2�m+�(t)p(t)
2�m+2�mKp(t)

and p�(t) = (K�mq(t)��(t))q(t)
2N :

Now we substitute q�(t) and p�(t) into H2(q; F; �) and H1(p; F; �): Then the Maximized

Hamiltonians will have the following form:

H2�(q; F; �) = �mq�(t)(2�q�(t))[1�F (t)]�s(t)�(t)q�(t)(1�F (t))+�(t)�(t)q�(t)(1�F (t))

H1�(p; F; �) = (�m 1
2 

2(t)+Np�2(t))[1�F (t)]� s(t)p�(t) (t)(1�F (t))+�(t) (t)p�(t)(1�

F (t))

Recall also that in state-separable game described above adjoint equations do not depend

on state variable and, consequently, costate variables will not depend on state variable as well.

Taking above considerations into account we can notice that the Maximized Hamiltonian

functions of both players are linear ( and hence concave ) with respect to the state variable.

So we can conclude that the candidates characterized by @H1(p;F;�)
@p and @H2(q;F;�)

@q are indeed

nondegenerate Markovian Nash Equilibria of the game in section 2.2. Since q�(t) and p�(t) do
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not depend on F (t) this open-loop Nash equilibrium of this game could be also regarded as a

Nash Equilibrium of a di¤erential game in which both players have full Markovian information.

The same reasoning holds for the model in section 4.

6.3 Appendix 3. Calculation of steady states in the model where penalty is

given by expression s(q; p) = K�mq + 2�m

p
.

In this appendix we verify that the equilibrium (q� = 0; p� = 0) is also unique steady state

equilibrium of the di¤erential game with penalty schedule given by s(q; p) = K�mq + 2�m

p .

Re�ring to Fiechtinger (1983) we de�ne the game under consideration as a state-separable game.

For such a games we generally derive the system of di¤erential equations for the Nash-optimal

controls. But since objective functions of this game are quite complicated expressions in terms

of control variables and co-state variables the stability of the system can not be investigated

with the help of general techniques such as evaluation of the trace and determinant of the

Jacobian matrix. So, to investigate the qualitative behavior of the optimal solution we use a

phase diagram analysis in the (p,q)- plane. Unfortunately, a closed-form solution of the system

of the di¤erential equations for the Nash equilibrium of the game under consideration still can

not be calculated due to the complicated structure of objective functions.

To simplify the calculations we assume that there is no discounting. Unfortunately, we were

not able to obtain closed form expressions even for dynamics of control values in case r > 0.

However, we can presume that if r > 0 the e¤ect of the penalty should be even stronger, since

accumulated expected future gain from price-�xing for the �rm would be less.

The solution of the problem of player 2 gives

� =
�2�m + 2�mq + 2K�mqp+G

p
(22)

and
:
�(t) = 2�mq ��mq2 � (K�mq + G

p )pq + (
�2�m+2�mq+2K�mqp+G

p )pq = q2�m (1 +Kp)

The solution of the problem of player 1 gives

� =
�2Np+K�mq2

q
(23)

and
:
�(t) = 1

2�
mq2 +Np2 �K�mq2p� qG+ (�2Np+K�

mq2

q )qp = 1
2�

mq2 �Np2 � qG

Di¤erentiating (23) and (22) with respect to time and equalizing it to
:
�(t) and

:
�(t) respec-

tively we obtain following system of equations:

2p�mq0 + 2K�mp2q0 + 2p0�m � 2p0�mq � p0G
p2

= q2�m (1 +Kp) (24)
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�2qNp0 +K�mq2q0 + 2q0Np
q2

=
1

2
�mq2 �Np2 � qG (25)

from (25) it follows

q0 =
1

2
q2
2 (�m)2 q2 � 4�mNp2 � 4�mqG� 2 (�m)2 q3 + 8�mqNp2 + 3�mq2G+ 2GNp2 + 2qG2 + 4�mqNp3K

4K�mp2qN + 2K (�m)2 q2 + 4�mNp� 2 (�m)2 q3K �GK�mq2 � 2GNp
(26)

from (24) it follows

p0 = �mq2p
K2�mq2p2 + 4Np2 + 4Np3K ��mq2 + 2qG+ 2qGpK

4K�mp2qN + 2K (�m)2 q2 + 4�mNp� 2 (�m)2 q3K �GK�mq2 � 2GNp
(27)

In order to be able to conduct more transparent analysis we make assumptions about the

parameters of the model. First, we normalize monopoly pro�ts to 1, i.e. �m = 1; then

parameter of the penalty scheme G = 2�m = 2: Moreover the costs of law enforcement should

be proportional to the amounts of extra gains from price-�xing in every particular industry,

since the more the �rm has resources the more e¢ cient it will be in hiding the violation and

if violation is found the more fears will be the battle in the court, consequently the more

resources the antitrust authority has to spend in order to catch and sew the �rm. Taking the

above considerations into account I assume N �= �m = 1: Parameter K can be equal to 2 as

in static settings or less, this does not in�uence neither the location of the steady state, no the

dynamics of the system around steady state.

This is remarkable, that there is one location of steady state which is not in�uenced by the

values of parameters of the system at all , which is in the point p = 0; q = 0. This can be seen

immediately from the system (24), (25).

Given parameters values K = 2; N = 1; F = 2;�m = 1

q0 = 1
4q
2 4q�q2+4p2+4p3

2p2�q2 and p0 = 1
4qp

4q2p2+4p2+8p3�q2+4q+8qp
2p2�q2 :

Considering the partial derivatives of the expressions above we can not infer any information

about the Jacobian matrix of this system. So no conclusion can be given by evaluating the trace

and determinant of the Jacobian matrix. Consequently, another algorithm should be applied.

Constructing the phase diagram of the above system in the (p; q)-plane, we get the Figure

6.
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Figure 6: Complete phase portrait in (p,q)-space for the model where penalty schedule is given

by s(q(t); p(t)) = K�mq(t) + G
p(t) for the set of parameters K = 2; N = 1; F = 2, �m = 1:

In this diagram the locuses where variable q changes sign are

q = 0; q = 2 + 2
p
(1 + p2 + p3); q = 2� 2

p
(1 + p2 + p3); q = 2

p
2p; q = � 2

p
2p:

And the locuses where variable p changes sign are

q = 0; p = 0; p = �0:5, q = 1
2p�1

�
�2 + 2

p
(1� 2p3 + p2)

�
; q = 1

2p�1

�
�2� 2

p
(1� 2p3 + p2)

�
;

q = 2
p
2p; q = � 2

p
2p.

Recall, the domain of the controls is determined as (p; q) 2 [0; 1] � [0; 1]: Considering the

dynamics of the system in this domain, we conclude that for certain initial values of control

variables, in particular q > 2
p
2p (in this example) or q > 2

q
2N
�m p (in general case) with arbitrary

values of parameters N and �m and G = 2�m; the system will always converge to the point

(0; 0). Moreover starting in any point with characteristics q � 2

q
2N
�m p will bring the system into

the point (1; 1), which is clearly suboptimal compared to the solution (0; 0). So we can conclude

that q� = 0; p� = 0 is stable steady state solution of the system of di¤erential equations (26),

(27). Moreover this result is not sensitive to the changes of the values of the parameters of the

system (26), (27).

Consider the values of objective functionals for both players in points (0,0) and (1,1).

in case p(t) = 0; q(t) = 0 for all t2 [0; T ] we get
:

F (t) = p(t)q(t)[1� F (t)]jp=0;q=0 = 0 and F (0) = 0 =) F (t) = 0 for all t 2 [0; T ]

in case p(t) = 1; q(t) = 1 for all t2 [0; T ] we get
:

F (t) = p(t)q(t)[1� F (t)]jp=1;q=1 = 1�F and F (0) = 0 =) F (t) = 1� e�t for all t 2 [0; T ]

Thus, J2j(0;0) = C2(T ) and J2j(1;1) = (K + 1)�m(e�T � 1) + C2(T )[e�T ]
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(K +�m)(e�T � 1) + C2(T )[e�T ] < C2(T )

Now consider the objective function of the authority:

J1j(0;0) =
TR
0

2�mdt = 2�mT

J1j(1;1) = 2�mT � ((32 +K)�
m �N)(e�T � 1)

2�mT � ((32 +K)�
m �N)(e�T � 1) < 2�mT when N > (32 +K)�

m:

So for non-benevolent regulator the result will depend on the magnitude of costs of control

and penalty which can be collected given current penalty scheme. If it is very costly to check,

then the outcome with zero price-�xing is preferred.

In terms of minimization of loss of consumer surplus (the regulator is benevolent and does

not care about the monetary payo¤ from the penalty imposed on the �rm):

J1j(0;0) =
TR
0

1
2�

mq2(t)[1� F (t)]dt
�����
(0;0)

= total loss in CSj(0;0) = 0

J1j(1;1) =
TR
0

1
2�

m[e�t]dt = �1
2�

m(e�T � 1) = total loss in CSj(1;1) > 0

So we can conclude that the outcome (0,0), which is policy target of antitrust authority, will

be also preferred by the �rm when the penalty is given by the expression S(q; p) = K�mq+ 2�m

p :
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