Indicators for the total duration of premenopausal endogenous estrogen exposure in relation to BMD
Published in: Human Reproduction

Publication date: 2004

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Indicators for the total duration of premenopausal endogenous estrogen exposure in relation to BMD

Maria L.C.Hagemans1,2, Yvonne T.van der Schouw1,5, Miriam J.J.de Kleijn1, Wija A.van Staveren1,2, Victor J.M.Pop3, Geraline L.Leusink4 and Diederick E.Grobbee1

1Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Room D 01.335, PO Box 85500, 3508 GA Utrecht, The Netherlands, 2Division of Human Nutrition and Epidemiology, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands, 3Department of Clinical Health Psychology, University of Tilburg, PO Box 90153, 5000 LE Tilburg, The Netherlands and 4Diagnostic Centre Eindhoven, Stratumse Dijk 28a, 5611 NE Eindhoven, The Netherlands

5To whom correspondence should be addressed at: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, HP D01.335, PO Box 85500, 3508 GA Utrecht, The Netherlands. Tel: +31 30 250 9360; Fax: +31 30 250 5485; E-mail: y.t.vanderschouw@umcutrecht.nl

BACKGROUND: Previous studies have shown that age at menopause is an important indicator of duration of endogenous estrogen exposure. The present study investigates whether combining more information on reproductive factors is useful in estimating individual total duration of exposure to endogenous estrogens. METHODS: Bone mineral density (BMD) was used as operational outcome. The study population consisted of 3476 white women living in Eindhoven, The Netherlands, aged 46–57 years, either pre- (n = 2420) or postmenopausal (n = 1056). BMD of the lumbar spine was measured by dual X-ray absorptiometry. Information on reproductive factors was obtained with questionnaires. RESULTS: The number of reproductive years explained 4.8% of the variance in BMD, while age at menopause alone accounted for 3.6%. Duration of lactation or oral contraceptive use did not add to the proportion of variance explained. The effect of reproductive years on BMD was stronger in older women. No significant associations with BMD were found for other reproductive variables. The number of miscarriages in premenopausal women (β = 0.00760, SE = 0.00357, P = 0.03) explained only 0.16% of the variance in BMD. CONCLUSIONS: We conclude that it is not necessary to use more reproductive factors besides age at menopause and menarche in determining total duration of endogenous estrogen exposure.

Key words: bone mineral density/estrogen/premenopausal/postmenopausal/reproductive factors

Introduction

Most of the epidemiologic research on the association between endogenous estrogens and cardiovascular disease (van der Schouw et al., 1996; Jacobsen et al., 1997), breast cancer (Verheul et al., 2000; Zheng et al., 2001), osteoporosis (Cumming and Klineberg 1993, 1998; Eisman, 1998; Jacobsen et al., 1998) and colorectal cancer (Kampman et al., 1997; Slattery et al., 2001) has focused on individual reproductive factors. Age at menopause and age at menarche seem to be of overriding importance in determining total endogenous estrogen exposure, but factors like pregnancy, regularity and duration of the menstrual cycle, lactation and use of oral contraceptives also play a role.

As a measure of endogenous estrogen exposure, sex hormone levels in blood are not easily interpretable, because there is huge variation in hormone levels through the menstrual cycle and it is not clear which menstrual phase most adequately reflects premenopausal hormone exposure (Sowers et al., 2003).

Bone mineral density (BMD) is considered a good outcome parameter, since it is generally accepted that endogenous estrogens and BMD are strongly associated (Zhang et al., 2001).

Consistent associations have been reported between BMD and either age at menarche (Kritz Silverstein and Barrett Connor 1993; Ito et al., 1995), or age at menopause (Kritz Silverstein and Barrett Connor 1993; Ito et al., 1995; Parazzini et al., 1996), or the number of reproductive years (Vico et al., 1992; Kritz Silverstein and Barrett Connor 1993; Ito et al., 1995; Nguyen et al., 1995; Grainge et al., 2001). The combination of age at menopause and age at menarche in one measure appears to explain more of the variance in bone mineral density than either variable individually (Kritz Silverstein and Barrett Connor 1993). However, other reproductive factors are also associated with BMD and may therefore be useful in refining the assessment of endogenous estrogen exposure.

During pregnancy maternal estrogen levels markedly increase (Speroff et al., 1989), which may have a beneficial effect on BMD. However, during pregnancy and lactation the demand of calcium is increased and some loss of bone
calcium is to be expected (Khastgir et al., 1994). Several epidemiologic studies show a significantly increased bone density with increasing parity (Nguyen et al., 1995; Tuppurainen et al., 1995) while others do not (Hamed et al., 1992b; Johansson et al., 1993; Parazzini et al., 1996). During lactation, estrogen production is suppressed (Rolland, 1995). This relative shortage of estrogen during one or more breastfeeding periods could theoretically lead to a lower bone density after the breastfeeding period. During breastfeeding loss of bone mineral has been noted in several sites in the peripheral skeleton. Some studies have shown that the loss in bone mineral is almost completely restored to 12 months after weaning and with the return of normal menses (Eisman, 1998). In other studies a negative effect (Lissner et al., 1991) or no effect (Tuppurainen et al., 1995; Parazzini et al., 1996; Grainge et al., 2001) of lactation on BMD has been found. It is, however, not possible to distinguish between the potential effect of a low estrogen exposure and the effect of an increased demand for calcium.

Studies on the relationship between oral contraceptives and bone density have shown conflicting results (Lindsay et al., 1986; Recker et al., 1992; Murphy et al., 1993; DeCherney, 1996; Vessey et al., 1998; Grainge et al., 2001). As oral contraceptives, like hormone replacement therapy, are a source of exogenous estrogens, one would expect them to have a positive effect on bone density, although the dose and type of estrogens are different from those used in hormone replacement therapy.

The objective of this study is to investigate whether combining information on these reproductive factors is useful in estimating individual total duration of exposure to endogenous estrogen. For this purpose, we investigate to what extent the variation in BMD pre- and post-menopause can be explained by differences in total endogenous estrogen exposure and whether a more refined measure of endogenous estrogen exposure adds to the predictive value for BMD of the single factor ‘age at menopause’.

Subjects and methods

Study population

The screening of women for the Eindhoven Perimenopausal Osteoporosis Study (EPOS) was conducted between September 1994 and September 1995. All responders gave their written informed consent and the study was approved by two medical ethics committees. The study population has been described in detail before (Smeets-Goevaers et al., 1998). For the present study, information was available on 6700 Dutch women living in the city of Eindhoven and born between 1938 and 1948. Two hundred and fifty one women had reported hysterectomy, oophorectomy or both (n = 1608) and those who reported hysterectomy, oophorectomy or both (n = 775). Thirty women were excluded because they did not provide accurate information on reproductive factors and one woman was excluded because BMD could not be measured.

Women who had not had natural menses for 12 months or more at the time of measurement were defined postmenopausal. Age at menopause was defined as age at the last menstrual period. The population for analysis comprised 2420 pre- and 1056 postmenopausal women.

Data collection

BMD of the lumbar spine was measured by dual X-ray absorptiometry (DXA; SA Hologic Europe, Brussels). Height and weight were measured at the screening of women before enrolment. Body mass index was calculated as weight in kilograms divided by the square of height in meters. Information about age at menopause, age at menarche, number of live born children, number of miscarriages and stillborn children, total duration of breastfeeding, length of the menstrual cycle, total duration of oral contraceptive use and smoking habits was assessed by a questionnaire. Information about the duration and regularity of the menstrual cycle was available in only a subset of our data. In the postmenopausal group, the subset was too small (n = 40) to draw any conclusions, but in the premenopausal group the number of subjects was reasonably large (n = 1372). In this subset of the premenopausal group, we examined the length of the menstrual cycle in relation to BMD. Smoking habits were recorded in five categories: never, current ≥10 cigarettes/day, current <10 cigarettes/day, past ≥10 cigarettes/day and past <10 cigarettes/day.

Measures of estrogen exposure

An estimation of the total duration of exposure to endogenous estrogens in the postmenopausal group was obtained as follows: for each woman age at menarche, which indicates the start of endogenous estrogen production, was subtracted from age at menopause, which indicates the end of estrogen production by the ovaries; the total number of reproductive years. As there is negligible exposure to estrogen in a lactating woman, the total duration of breastfeeding was subtracted. Similarly, the total duration of oral contraceptive use was subtracted from the duration of exposure to endogenous estrogens. The oral contraceptives that were used before 1971–1975 contained a very high dose of synthetic estrogen and suppressed endogenous estrogen production.

To investigate the added value of each component of the total duration of endogenous estrogen exposure, we calculated different measures of exposure varying from the most elaborate calculation, containing all components, to a ‘calculation’ consisting only of age at menopause.

In the premenopausal group, it was not possible to design a cumulative measure for estrogen exposure in the same way as we did in the postmenopausal group. The use of age at measurement of BMD instead of menopausal age for the calculation of the number of reproductive years is conceptually not right, as BMD decreases with chronological age and increases with age at last menses. Therefore, age at menarche, adjusted for age, was used as a measure of cumulative exposure to endogenous estrogen in the premenopausal group. The adjustment for age has to be made because older people have been exposed to endogenous estrogen for
a longer period of time, while at the same time age itself has an independent, negative effect on BMD.

Data analysis
BMD measurements were not sufficiently normally distributed to be modeled in a linear regression model and were included after a natural logarithm transformation. Since the observed changes in BMD with the total duration of exposure to endogenous estrogens were not large, the resulting coefficients for the transformed BMD may be interpreted as the relative change in the untransformed BMD.

The associations between the various estimates of premenopausal endogenous estrogen exposure and BMD in the postmenopausal group were studied by means of linear regression analysis in uni- and multivariate models. To determine whether ‘total duration of exposure to endogenous estrogens’ is a better predictor for BMD than ‘age at menopause’ we compared the proportion of variance in BMD explained by the linear regression models. BMD and duration of estrogen exposure were analyzed as continuous variables. In the multivariate analyses, adjustments were made for age, body mass index and smoking. Furthermore, the crude and adjusted relationships between the separate reproductive factors and BMD were determined in both the pre- and the postmenopausal group.

Presence of effect modification of the association between endogenous estrogen exposure and BMD by other variables was assessed by adding interaction terms to the linear regression model. If effect modification was present, the variables were divided in two categories with the median as cut-off point. The adjusted estimates are presented for each category of these variables.

All analyses were performed using the Statistical Analysis System, version 6.11 (SAS Institute, Cary, NC).

Results
General characteristics of the study population are shown in Table I. The average BMD in the premenopausal women was 1.045 g/cm² (SE 0.003) and in the postmenopausal women 0.938 g/cm² (SE 0.004). The mean age at menopause in the postmenopausal women was 48.3 (SE 0.13) years and mean number of reproductive years was 34.9 (SE 0.14) years. There were no differences between age at menarche in the premenopausal group and age at menarche in the postmenopausal group.

Tables II and III show the adjusted estimates of the relationship between the individual reproductive factors, body mass index, age and the time since the menopause and BMD. The adjusted relationship between BMD and age at menarche, which we used as a cumulative measure for endogenous estrogen exposure in the premenopausal group, was not significant. No significant relationships were found between BMD and the number of live born children, the total duration of breastfeeding and the total duration of use of oral contraceptives. The variance in BMD explained by these reproductive factors was extremely small compared to that of age at menopause. In the premenopausal group, but not in

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total group n = 3476</th>
<th>Premenopausal women n = 2420</th>
<th>Postmenopausal women n = 1056</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spine BMD, g/cm²</td>
<td>1.013 (0.002)</td>
<td>1.045 (0.003)</td>
<td>0.938 (0.004)</td>
</tr>
<tr>
<td>Age, years</td>
<td>50.7 (0.04)</td>
<td>49.9 (0.04)</td>
<td>52.5 (0.07)</td>
</tr>
<tr>
<td>Age at menarche, years</td>
<td>13.3 (0.03)</td>
<td>13.3 (0.03)</td>
<td>13.4 (0.05)</td>
</tr>
<tr>
<td>Number of live-born children</td>
<td>1.9 (0.02)</td>
<td>1.9 (0.02)</td>
<td>1.9 (0.04)</td>
</tr>
<tr>
<td>Number of miscarriages/stillborn children</td>
<td>0.3 (0.01)</td>
<td>0.3 (0.01)</td>
<td>0.4 (0.02)</td>
</tr>
<tr>
<td>Total duration of lactation, months</td>
<td>1.7 (0.04)</td>
<td>1.7 (0.05)</td>
<td>1.8 (0.08)</td>
</tr>
<tr>
<td>Use of oral contraceptives ever, %</td>
<td>74.6</td>
<td>77.1</td>
<td>68.8</td>
</tr>
<tr>
<td>Total duration, for users, of oral contraceptive use, months</td>
<td>77.3 (1.11)</td>
<td>75.6 (1.33)</td>
<td>81.8 (2.05)</td>
</tr>
<tr>
<td>Length of the menstrual cycle, days</td>
<td>–</td>
<td>27.2 (0.00)</td>
<td>–</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>25.3 (0.08)</td>
<td>25.5 (0.09)</td>
<td>25.1 (0.13)</td>
</tr>
<tr>
<td>Ever smoked, %</td>
<td>66.6</td>
<td>66.1</td>
<td>67.8</td>
</tr>
<tr>
<td>Age at menopause, years</td>
<td>–</td>
<td>–</td>
<td>48.3 (0.13)</td>
</tr>
<tr>
<td>Number of reproductive years</td>
<td>–</td>
<td>–</td>
<td>34.9 (0.14)</td>
</tr>
<tr>
<td>Time since menopause, years</td>
<td>–</td>
<td>–</td>
<td>4.2 (0.11)</td>
</tr>
</tbody>
</table>

*Mean (SE) or %.

bThe number of women given for each group is the maximum number of observations used in the calculations.

The associations between the various estimates of premenopausal endogenous estrogen exposure and BMD in the postmenopausal group were studied by means of linear regression analysis in uni- and multivariate models. To determine whether ‘total duration of exposure to endogenous estrogens’ is a better predictor for BMD than ‘age at menopause’ we compared the proportion of variance in BMD explained by the linear regression models. BMD and duration of estrogen exposure were analyzed as continuous variables. In the multivariate analyses, adjustments were made for age, body mass index and smoking. Furthermore, the crude and adjusted relationships between the separate reproductive factors and BMD were determined in both the pre- and the postmenopausal group.

Data analysis

BMD measurements were not sufficiently normally distributed to be modeled in a linear regression model and were included after a natural logarithm transformation. Since the observed changes in BMD with the total duration of exposure to endogenous estrogens were not large, the resulting coefficients for the transformed BMD may be interpreted as the relative change in the untransformed BMD.

The associations between the various estimates of premenopausal endogenous estrogen exposure and BMD in the postmenopausal group were studied by means of linear regression analysis in uni- and multivariate models. To determine whether ‘total duration of exposure to endogenous estrogens’ is a better predictor for BMD than ‘age at menopause’ we compared the proportion of variance in BMD explained by the linear regression models. BMD and duration of estrogen exposure were analyzed as continuous variables. In the multivariate analyses, adjustments were made for age, body mass index and smoking. Furthermore, the crude and adjusted relationships between the separate reproductive factors and BMD were determined in both the pre- and the postmenopausal group.

Presence of effect modification of the association between endogenous estrogen exposure and BMD by other variables was assessed by adding interaction terms to the linear regression model. If effect modification was present, the variables were divided in two categories with the median as cut-off point. The adjusted estimates are presented for each category of these variables.

All analyses were performed using the Statistical Analysis System, version 6.11 (SAS Institute, Cary, NC).

Results

General characteristics of the study population are shown in Table I. The average BMD in the premenopausal women was 1.045 g/cm² (SE 0.003) and in the postmenopausal women 0.938 g/cm² (SE 0.004). The mean age at menopause in the postmenopausal women was 48.3 (SE 0.13) years and mean number of reproductive years was 34.9 (SE 0.14) years. There were no differences between age at menarche in the premenopausal group and age at menarche in the postmenopausal group.

Tables II and III show the adjusted estimates of the relationship between the individual reproductive factors, body mass index, age and the time since the menopause and BMD. The adjusted relationship between BMD and age at menarche, which we used as a cumulative measure for endogenous estrogen exposure in the premenopausal group, was not significant. No significant relationships were found between BMD and the number of live born children, the total duration of breastfeeding and the total duration of use of oral contraceptives. The variance in BMD explained by these reproductive factors was extremely small compared to that of age at menopause. In the premenopausal group, but not in
Table III. Adjusted estimates for the relationship between bone mineral density (g/cm²) and several reproductive variables in 1056 Dutch postmenopausal women

<table>
<thead>
<tr>
<th>Variable</th>
<th>β (SE)</th>
<th>P</th>
<th>R² adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index, kg/m²</td>
<td>0.00882 (0.00101)</td>
<td>0.0001*</td>
<td>0.0775</td>
</tr>
<tr>
<td>Age, years</td>
<td>−0.00057 (0.00190)</td>
<td>0.7669</td>
<td>0.0775</td>
</tr>
<tr>
<td>Time since the menopause</td>
<td>−0.00084 (0.00123)</td>
<td>0.0001*</td>
<td>0.1213</td>
</tr>
<tr>
<td>Age at menarche, years</td>
<td>−0.00050 (0.00264)</td>
<td>0.0542</td>
<td>0.0799</td>
</tr>
<tr>
<td>Number of live-born children</td>
<td>−0.000274 (0.00388)</td>
<td>0.4809</td>
<td>0.0771</td>
</tr>
<tr>
<td>Number of miscarriages</td>
<td>0.000230 (0.00555)</td>
<td>0.6793</td>
<td>0.0768</td>
</tr>
<tr>
<td>Total duration of use</td>
<td>0.000307 (0.00079)</td>
<td>0.6422</td>
<td>0.0768</td>
</tr>
<tr>
<td>Total duration of lactation, months</td>
<td>−0.00315 (0.00168)</td>
<td>0.0608</td>
<td>0.0797</td>
</tr>
</tbody>
</table>

*Body mass index adjusted for age and smoking, age adjusted for body mass index and smoking.

The number of women given for each group is the maximum number of observations used in the calculations.

The crude associations between various measures for total duration of endogenous estrogen exposure and BMD in the postmenopausal women are shown in Table IV. The models comprising duration of breastfeeding and/or duration of use of oral contraceptives did not add to the predictive value of the number of reproductive years (β = 0.00708, P = 0.0001, R² = 0.048). The number of reproductive years was a better predictor for BMD after the menopause than age at menopause (β = 0.00645, P = 0.0001, R² = 0.036) or age at menarche (β = −0.00937, P = 0.0001, R² = 0.011; unadjusted, not shown in Table) separately.

In both the pre- and the post-menopausal group, none of the reproductive factors duration of breastfeeding, number of children, number of miscarriages and total duration of oral contraceptive use confounded the relationship between age at menarche, age at menarche or the measures for cumulative endogenous estrogen exposure and BMD.

The effect of the number of reproductive years appeared to increase with chronological age (P for interaction 0.02) and decrease with time since the menopause (P for interaction 0.02). In Table V, the coefficients for the number of reproductive years in the postmenopausal group, adjusted for age, body mass index and smoking, are presented in strata of age and time since the menopause. The relationship between the number of reproductive years and BMD was stronger in the women over 52.6 years of age compared to the women younger than 52.6 years of age. However, this relationship was weaker in the women whose last menses was more than 2.9 years ago compared to the women whose last menses was less than 2.9 years ago.

Discussion

In this population of 3476 Dutch women, total endogenous estrogen exposure predicted BMD levels in pre- and postmenopausal women. However, the inclusion of more reproductive variables in the calculation of duration of exposure to endogenous estrogens did not add to the predictive value for BMD of the number of reproductive years, calculated as age at menopause minus age at menarche. The relationship between the number of reproductive years and BMD in postmenopausal women differed with age and the number of years since the menopause. No significant associations with BMD were found for age at menarche, parity, duration of

Table IV. Associations between different measures of total duration of endogenous estrogen exposure and bone mineral density (g/cm²) in 1056 Dutch postmenopausal women

<table>
<thead>
<tr>
<th>Measure of total duration of endogenous estrogen exposure</th>
<th>Coefficient of linear regression (SE)<sup>a</sup></th>
<th>R² adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at menopause – age at menarche – total duration of lactation – duration of oc use</td>
<td>0.00276 (0.00060)</td>
<td>0.019</td>
</tr>
<tr>
<td>Age at menopause – age at menarche – duration of oc use</td>
<td>0.000275 (0.00060)</td>
<td>0.019</td>
</tr>
<tr>
<td>Age at menopause – age at menarche – total duration of lactation</td>
<td>0.00715 (0.00096)</td>
<td>0.049</td>
</tr>
<tr>
<td>Age at menopause – age at menarche</td>
<td>0.00708 (0.00096)</td>
<td>0.048</td>
</tr>
<tr>
<td>Age at menopause</td>
<td>0.00645 (0.00101)</td>
<td>0.036</td>
</tr>
</tbody>
</table>

^a1056 is the maximum number of observations used in the calculations. Occasionally there are missing data, but this never exceeds 2%.

^bP < 0.001 for all estimates.

oc = oral contraceptive.
breastfeeding, duration of oral contraceptive use and length of
the menstrual cycle.

To appreciate these results, some methodological issues
need to be addressed. The data on reproductive factors were
based on self-report and thus depend on the correctness
of the women’s recollection. Although it has been reported that
women’s recall of their reproductive history is sufficiently
accurate to detect most associations between risk factors and
osteoporosis (Cummings, 1991), the possibility of recall
errors cannot be excluded. However, such recall errors are
likely to be random with respect to BMD and, if present, will
only lead to an underestimation of the effect by biasing esti-
mates towards the null.

As only women who did not use hormone replacement
therapy were included in this study, selection may be present.
The women who did use hormone replacement therapy may
have been the women with a lower than average BMD,
which may have led to a reduced variability in BMD in the
remainder of the population.

The number of reproductive years explained only 4.8% of
the variance in BMD. However, as it has been postulated that
genetic factors may account for up to 80% of the variance in
BMD (Health Council of The Netherlands: Committee on
Osteoporosis, 1998; Rubin et al., 1999), duration of exposure
to endogenous estrogen explains a material proportion of the
remaining 20%. Factors such as physical activity, body mass
index, smoking, and calcium intake may also play a role in
determining BMD (Guthrie et al., 1996; Snelling et al., 2001).

The effect of body mass index on BMD and duration of
exposure to endogenous estrogens in our population is diffi-
cult to interpret. A high body mass index is associated with
more adipose tissue. Adipose tissue is capable of converting
androstendione and testosterone into estrogens and continues
doing so after menopause. At the same time, a high body
mass index means a higher physical load on the bones, which
may increase bone mass (Centraal begeleidingsorgaan voor
de intercollegiale toetsing, 1992). The effect of both pro-
cesses cannot be investigated separately. However, it is likely
that obese people are subject to a lower level of physical
activity (Martinez-Gonzalez et al., 1999), which may
compensate for the increased weight the bones have to carry.
The net effect of these mechanisms is difficult to determine.

To our knowledge, we are the first to examine more
refined models of duration of endogenous estrogen exposure
in relation to BMD. However, a relationship between BMD
and the number of reproductive years has been reported
previously in several studies (Kritz Silverstein and Barrett
Connor 1993; Melton III et al., 1993; Ito et al., 1995; Nguyen
et al., 1995; Grainge et al., 2001). To date, only one study
examined the association between number of reproductive years
and hip fracture mortality. In a prospective study in Norway
with over 60000 women followed up for 29 years, a mortality
rate ratio of 0.5 in women with more than 38 reproductive
years compared to women with fewer than 30 reproductive
years was found (Jacobsen et al., 1998). This finding suggests
that the positive effect of the duration of the reproductive
period on BMD is apparent in the risk of fractures as well.

We found an increase in BMD of 7.4% per 10 years of
endogenous estrogen exposure in women aged <52.6 years
($P = 0.0001$) and 9.3% in women aged ≥52.6 years
($P = 0.0001$). Although other studies reported effects of simi-
lar magnitude, the difference in effect with increasing age has
not been mentioned previously. In our population, higher age
meant a more marked effect of the number of reproductive
years on BMD. However, the strength of the association
decreased with increasing time since the menopause. This is
surprising, for attenuation of the effect both with age and with
the number of years since the menopause, which reflects the
longer time since exposure to high levels of endogenous
estrogens, would be more conceivable. In order to elucidate
these results, we calculated Pearson correlation coefficients for
the two variables. This coefficient was −0.092 ($P = 0.0028$),
indicating that age and the time since menopause were inver-
sely correlated. In this post-menopausal population, it
appeared, the older women were also the ones whose meno-
pause came at an older age. We have to keep in mind,
however, that although the correlation is significant, the coef-
ficient is also very small. Adjustment for both age and the
time since the menopause in one linear regression model is
not possible, as there is a perfect co-linearity between age,
age at menopause, and time since the menopause.

A lack of a clear effect on BMD for age at menarche is
supported by some authors (Johansson et al., 1993; Parazzini
et al., 1996) but not all (Ito et al., 1995; Tuppurainen et al.,
1995). However, in our population the relationship is signifi-
cant when the groups are combined and the number of
women is larger. It seems to be a small effect that can only
be demonstrated in a large group of people.

In the premenopausal group, but not in the postmenopausal
group, a significant relationship with BMD was found for
the number of miscarriages. A possible explanation for the
positive effect of the number of miscarriages is, that a
miscarriage exposes a woman to the same high levels of
dominant estrogen as a successful pregnancy but without
an effect of a negative calcium balance. In two previous
studies that investigated the number of abortions, no effect
was found on BMD (Hamed et al., 1992a) or hip fractures
(Parazzini et al., 1996).

In both the pre- and the post-menopausal group,
no significant relationships with BMD were found in

Table V. Adjusted estimates for the relationship between bone mineral
density and number of reproductive years in 1048 Dutch postmenopausal
women, presented by age and time since the menopause

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>n</th>
<th>β (SE)b for number of reproductive years</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 52.6</td>
<td>523</td>
<td>0.00736 (0.00149)</td>
<td>0.0001</td>
</tr>
<tr>
<td>≥ 52.6</td>
<td>525</td>
<td>0.00934 (0.00171)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Time since the menopause</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2.9</td>
<td>523</td>
<td>0.00682 (0.00351)</td>
<td>0.0524</td>
</tr>
<tr>
<td>≥ 2.9</td>
<td>525</td>
<td>0.00610 (0.00152)</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

bOf the 1056 women in the postmenopausal group, data on number of repro-
ductive years were missing for two observations and data on covariates for
four observations.

bAll estimates are adjusted for age, body mass index and smoking.
uni- and multivariate analyses for the total duration of lactation, the number of live born children and the total duration of use of oral contraceptives. Although the number of children varied between 0 and 9, half of the women in both groups had just one or two children. The absence of effect found in our population may therefore be due to lack of variation in this variable. This might also apply for the duration of lactation. Furthermore, no data on whether breastfeeding was complete or incomplete were available.

The absence of effect for total duration of use of oral contraceptives cannot be attributed to small variation in this variable, as the range was quite wide. However, the effect of oral contraceptives on bone mass may be related to the specific formulation and dose (DeCherney, 1996). The current oral contraceptives have a much lower dose of estrogen and do not fully suppress the menstrual cycle. Considering their age, the women in this study may have been users of first, second or both generations of oral contraceptives. Thus, it is most likely that the suppression of endogenous cycles during the use of oral contraceptives was not complete. Furthermore, the use of oral contraceptives means the (partial) substitution of endogenous by exogenous estrogen exposure. Both are expected to have a positive effect on BMD and therefore it is possible that although oral contraceptives might suppress the endogenous cycle, the net effect on BMD is zero.

In this study we investigated only the effect of the duration of exposure to endogenous estrogens and did not take the intensity of exposure into account, such as during pregnancy, when maternal estrogen levels are much higher than during the normal menstrual cycle. However, the lack of effect found for pregnancy does not support the existence of an intensity effect of endogenous estrogens on BMD. During pregnancy the increased levels of serum estradiol are accompanied by an increased demand for calcium. It is conceivable that this results in a net effect of pregnancy that approaches zero.

Studies on the use of exogenous estrogens do indicate an effect of intensity, as dose-related effects of estrogens on bone density have been reported (DeCherney, 1996; Speroff et al., 1996). In general it appears that the effect of hormone replacement therapy on bone is much larger than that of endogenous estrogen (Speroff et al., 1996; The writing group for the PEPI trial, 1996).

In conclusion, this study showed that it is not necessary to include other reproductive factors than age at menopause and age at menarche in determining the total duration of endogenous estrogen exposure in both pre- and post-menopausal women.

Acknowledgements
We thank Nicole Boekema for her assistance with SAS programming and Rogier Donders for his help in the statistical evaluation of the data. The EPOS study was supported by a grant from the Dutch Praeventiefonds (project no. 002824010).

References

The writing group for the PEPI trial (1996) Effects of hormone therapy on bone mineral density: results from the postmenopausal estrogen/progestin interventions (PEPI) trial. JAMA,1389–1396.

Submitted on October 14, 2003; accepted on May 24, 2004