ServiceCom: A Tool for Service Composition Reuse and Specialization

Bart Orriëns, Jian Yang and Mike P. Papazoglou
Tilburg University, Infolab, PO Box 90153, 5000 LIE, Tilburg Netherlands
{b.orriens, jian, mikep}@uvt.nl

Abstract

Web services are becoming the dominant paradigm for distributed computing and electronic business. This has raised the opportunity for service providers and application developers to create value added services by combining web services. Several web service composition solutions have been proposed, e.g. BPEL4WS. However, these approaches are either not flexible or too complicated as they lack proper support for modularity and reusability. Motivated by the demand of a light-weighted tool of service composition, we developed ServiceCom, a tool for service composition specification, construction and execution. In this paper we discuss how ServiceCom supports reusable web service composition specification, combination, and execution.

1. Introduction

Web services are self-contained, internet-enabled applications capable not only of performing business activities on their own, but also possessing the ability to engage other web services in order to complete higher order business transactions. The platform neutral nature of the web services creates the opportunity for building composite services by using existing elementary or complex services possibly offered by different enterprises. For example, a travel plan service can be developed by combining several elementary services such as hotel reservation, ticket booking, car rental, sightseeing package, etc., based on their WSDL descriptions. By composite service, we mean a service that uses other services. The services that are used by a composite service are called its constituent services. Web service design and composition is a distributed programming activity. It requires software engineering principles and technology support for service specification, reuse, specialization, and extension such as those used, for example, in component based software development. Normally composite services are developed by hard-coding business logic into application programs. The development of business applications would be greatly facilitated if methodologies and tools for supporting the development and delivery of composite services in a coordinated and effectively reusable manner were to be devised. Some preliminary work has been conducted in the area of service composition, mostly in aspects of business process modeling language [2] and composition specification e.g. BPEL4WS [3]. However, these approaches are either not flexible or too complicated as they lack proper support for modularity and reusability. Motivated by the demand of a light-weighted tool of service composition, we developed ServiceCom, a tool for service composition specification, construction and execution. In this paper we provide an overview of ServiceCom, and outline its significance and contributions to the research in service composition.

2. Overview

ServiceCom is a Java based tool for modular and reusable web service composition. The tool is based on the concept of service component [7], which facilitates the idea of web service component reuse, specialization and extension. Service components are a packaging mechanism for developing web-based distributed applications in terms of combining existing (published) web services. Service components have a recursive nature in that they can be composed of published web services while in turn they are also considered to be themselves web services (albeit complex in nature). Once a service component is defined, it can be reused, specialized, and extended.

To support the service component mechanism a Service Composition Specification Language (SCSL) has been developed (see [7] for the syntax). In this language activity, binding, condition and composition type constructs are used (among others) to define a web service composition. Activity constructs represent constituent services through the use of name and description characteristics. To bind activities to particular web service providers binding constructs can be attached to activity constructs. These bindings identify an operation on a port of a service in the WSDL interface of the provider. Alternatively, they may provide search criteria to enable the locating of appropriate providers during runtime. Condition constructs may be used in case of conditional compositions to govern the control flow within the service
component. To express different forms of activity choreographies SCSL utilizes the composition type construct. Supported types include If, IfElse, ParaWithSync, ParaAlt, SeqAlt, SeqNoInt, SeqWithInt and WhileDo patterns.

Based on top of the service component mechanism and SCSL ServiceCom propagates a phased approach to service composition spanning composition description, planning, building and invocation. An overview of this phased approach is provided in Figure 1. In the following we briefly describe the purpose of the Description, Planning, Building and Invocation phase and discuss how ServiceCom implements each phase. We also explain how reuse, extension and specialization are supported.

Extension and specialization is supported through the utilization of base types. When specifying a base type for a construct the characteristics of this base construct are inherited by the sub-construct. Additional information in the sub-construct not present in the base construct extends the base construct. Similarly, in case of information that is present in both the sub and base construct the characteristics of the base construct are overridden. In ServiceCom both references and base types can be made through the selection of composition constructs from the web service composition library. (See Figure 4 in Appendix A for a screenshot)

2.2. Planning phase

The Planning phase is concerned with binding the activities in the service composition to concrete services. For this purpose ServiceCom offers a web service provider library facility. This library facility contains locally known web service providers, which can aid the user in case he does not know an appropriate provider for an activity in a composition. (i.e. the WSDL interfaces are stored on the local system). Web service providers may be added and removed from the library. Also, a search on the Internet can be performed to locate suitable providers, based on user-specified search criteria. Any located providers may then be added to the library, making them locally available. Furthermore, provider functionality may be tested through a quick invocation. As such, the web service provider library is of great help in the planning phase of the web service process model by enabling the reuse of web service providers. For a screenshot of the library see Figure 3 in Appendix A.

In case a user does not want to search and select a service provider manually ServiceCom is capable of selecting appropriate providers automatically during runtime. For this purpose the tool utilizes the search criteria specified in the binding construct(s).

2.3. Building phase

The Building phase is of essence in the web service composition phase model. It crosses the gap between composition specification and actual invocation. In this phase the web service composition specification is used as input to generate the set of Java source and class files required for the invocation of the composition. This set of files comprise of the following:

- Firstly, for each activity in the composition a set of Java source and class files is created for invocation. These files are derived from the WSDL definition of the service provider, specified in the binding construct of the activity. For each service in the
In most cases users will likely want to incorporate the service composition and its corresponding result handling. In this paper we gave a short description of ServiceCom, a light-weighted tool for service composition. This tool covers the complete life cycle of service composition, including the description, planning, building and executing of compositions. To the best of our knowledge there currently do not exist any other tools that provide such an integrated approach to service composition. Most importantly, because ServiceCom is based upon the service component mechanism, it promotes reusability and specialization in the specification of compositions. This sets it apart from other service composition tools based upon more traditional languages, such as BPEL4WS. Furthermore, in the building of service compositions reuse of class files is supported, thus shortening the building process increasing its efficiency.

2.3. Invocation phase

The Invocation phase deals with the execution of a web service composition and its corresponding result handling. In most cases users will likely want to incorporate the composition’s functionality in custom made programs. In these situations the development of nice, user-friendly interfaces are left to the designers of these programs. However, some users may simply want to invoke the service once and are not interested at all in software program development. These users may employ the standard interfaces for the web service composition, which can be generated prior to invocation. Although these interfaces are basic, they provide a means to the user to enter the required inputs and display the received outputs. These interfaces can be reused in a similar fashion as the Java source and class files generated in the Building phase.

3. Demo

We will use a travel-planning scenario to illustrate the features of ServiceCom in the demo. The demo starts with a request from the user about the services he/she wants and the conditions, such as the ticket reservation, hotel booking, the dates, and price ranges, the preferences of the services, etc. The user will be presented with a set of dialog menus to specify, to select, and to modify, and to invoke. We will also demonstrate that the resulting composite web service can be published as a new service and its configuration is stored and can be re-used and extended. In summary we will demonstrate the following features of the tool: supporting an integrated environment for service composition, which includes composition specification, planning, implementation, and execution. Furthermore, we will demonstrate that ServiceCom supports composition publishing, re-use, and extension in a light-weighted manner, which enables it to be executed in different enterprise settings without too much implementation overhead.

4. Contributions

In this paper we gave a short description of ServiceCom, a light-weighted tool for service composition. This tool covers the complete life cycle of service composition, including the description, planning, building and executing of compositions. To the best of our knowledge there currently do not exist any other tools that provide such an integrated approach to service composition. Most importantly, because ServiceCom is based upon the service component mechanism, it promotes reusability and specialization in the specification of compositions. This sets it apart from other service composition tools based upon more traditional languages, such as BPEL4WS. Furthermore, in the building of service compositions reuse of class files is supported, thus shortening the building process increasing its efficiency.
References

Appendix A - ServiceCom screen shots

Figure 2. Main window, composition designer and activity designer

Figure 3. Web service provider library

Figure 4. Web service composition library