BACKTESTING FOR RISK-BASED REGULATORY CAPITAL

By Jeroen Kerkhof, Bertrand Melenberg

December 2002
Backtesting for Risk-Based Regulatory Capital *

Jeroen Kerkhof†and Bertrand Melenberg‡

November 2002

ABSTRACT

In this paper we present a framework for backtesting all currently popular risk measurement methods (including value-at-risk and expected shortfall) using the functional delta method. Estimation risk can be taken explicitly into account. Based on a simulation study we provide evidence that tests for expected shortfall with acceptable low levels have a better performance than tests for value-at-risk in realistic financial sample sizes. We propose a way to determine multiplication factors, and find that the resulting regulatory capital scheme using expected shortfall compares favorably to the current Basle Accord backtesting scheme.

Keywords: Risk management, capital requirements, Basle II, multiplication factors, and model selection.

JEL codes: C12, G18

*We thank John Einmahl, Hans Schumacher, and Bas Werker for constructive and helpful comments. Any remaining errors are ours.

†Corresponding author; Department of Econometrics and Operations Research, and CentER, Tilburg University, and Product Development Group, ABN♦AMRO Bank, Amsterdam. E-mail: F.L.J.Kerkhof@CentER.nl, Phone: +31-13-4662134, Fax: +31-13-4663280.

‡Department of Econometrics and Operations Research, Department of Finance, and CentER, Tilburg University. E-mail: B.Melenberg@CentER.nl.
I. Introduction

Regulators face the important but difficult task of determining appropriate capital requirements for regulated banks. Such capital requirements should protect the banks against adverse market conditions and prevent them from taking extraordinary risks. At the same time, regulators should not prevent banks from practicing one of their core businesses, namely trading risk. The crucial ingredients in the process of risk based capital requirement determination are the use of a risk measurement method, a backtesting procedure, and multiplication factors, based on the outcomes of the backtesting procedure. Regulators apply multiplication factors to the risk measurement method they use in order to determine the capital requirements. The multiplication factors depend on the backtesting results, where a bad performance of the risk measurement method results in a higher multiplication factor. Consequently, to guarantee an appropriate process of capital requirement determination, regulators need an accurate backtesting procedure, combined with a suitable way of determining multiplication factors. Based on these requirements the regulators will assign the risk measurement method.

Since its introduction in the 1996 amendment to the Basle Accord (see Basle Committee on Banking Supervision (1996a) and Basle Committee on Banking Supervision (1996b)) the value-at-risk has become the standard risk measurement method. However, although the value-at-risk may be interesting from a practical point of view, it has a serious drawback: it does not necessarily satisfy the property of subadditivity, which means that one can find examples where the value-at-risk of a portfolio as a whole is higher than that of the sum of the value-at-risks of its mutually exclusive sub-portfolios. An alternative, practically viable risk measurement method that satisfies the subadditivity property (and other desirable properties[1]) is the expected shortfall. Currently, a debate is going on whether the use of expected shortfall should be recommended in Basle II. So far, it is not in Basle II due to the expected difficulties concerning backtesting (see Yamai and Yoshiba (2002)). Thus, although the value-at-risk does not necessarily sat-

\[1\text{Namely, translation invariance, monotonicity, and positive homogeneity. These three properties are also satisfied by value-at-risk.}\]
isfy the subadditivity property, it is still assigned by regulators, because of its perceived superior performance in case of backtesting.

Both the value-at-risk and the expected shortfall (as well as many other risk measurement methods) are level-based methods, meaning that one first has to choose a level; given this level, the risk depends on the corresponding left-hand tail of the profit and loss distribution. For the value-at-risk the Basle Committee chooses a level of 0.01, meaning that the value-at-risk is based on the 1% quantile of the profit and loss distribution. For the sake of comparison, one might be tempted to choose the same level for alternative risk measurement methods, like the expected shortfall, so that they are calculated based on the same left-hand tail of the profit and loss distribution. When the level in both cases equals 0.01 it seems obvious to expect that backtesting expected shortfall will be much harder than backtesting the value-at-risk, even without trying it out. However, comparing alternative risk measurement methods by equating their levels does not seem to be appropriate from the viewpoint of capital reserve determination. From that perspective it seems much better to choose the levels such that the risk measurement methods result in (more or less) the same quantiles of the profit and loss distribution. The 0.01-level of value-at-risk will then correspond to a higher level in case of the expected shortfall. But then it is no longer clear which method will perform better in backtesting. It is the aim of this paper to make this comparison.

The contribution of the paper is threefold. First, we provide a general backtesting procedure for a large class of risk measurement methods, which contains all major risk measurement methods used nowadays. In particular, as a result a test for expected shortfall is derived which appears to be new in the literature. Using the functional delta method we provide a framework that requires the regulator only to determine the influence function of the risk measurement method in order to determine the critical levels of the capital requirements table. We show that the present backtesting methodology in the Basle Accord is a special case. Furthermore, a simple method to incorporate estimation risk is presented. The fact that banks have time-varying portfolio sizes and risk exposures complicates the use of standard statistical techniques. We deal with this
issue using a standardization procedure based on the probability integral transform also used by Diebold et al. (1998) and Berkowitz (2001). The key idea of the standardization procedure is that banks should not only report whether or not the realized profit/loss is beyond the value-at-risk, but also which quantile of the predicted profit and loss distribution is realized. Second, we establish, via simulation experiments, that backtests for expected shortfall have a more promising performance than for the value-at-risk, when the comparison is based on (more or less) equal quantiles instead of equal levels. In this way we provide evidence for a viable risk based regulatory capital scheme using expected shortfall with good backtesting properties. Finally, we suggest a general method to determine multiplication factors for the risk measurement methods using the backtest procedure developed.

The setup of the paper is as follows. In Section II we review the most popular risk measurement methods in current quantitative risk management. In Section III we present the standardization procedure in order to take account of the time-varying portfolio sizes and risk exposures. Section IV treats the backtesting of the Basle Accord, its generalization using the functional delta method, and the incorporation of estimation risk. Simulation experiments are presented in Section V. In Section VI a suggestion for determination of multiplication factors is given. Finally, Section VII concludes.

II. Risk measurement methods

A. Definitions and notation

Though risk profiles contain much relevant information for risk managers, they become unmanageable for large firms with many divisions and portfolios. Therefore, for risk management purposes, risk managers prefer low dimensional characteristics of the risk profiles. In order to compute these low dimensional characteristics they use a financial model $m = (\Omega, \mathcal{F}, \mathbb{P})$, where Ω denotes the states of the world, \mathcal{F} the information available, and \mathbb{P} the probability measure. A risk is defined as follows.

Definition 1 Let a financial model m be given. A *risk* defined on m is an element of
$\mathcal{R}(m)$ defined as the space of all equivalence classes of real-valued measurable functions on (Ω, \mathcal{F}).

This definition, in which a “risk” is a random variable defined on a given probability space, follows the terminology of Artzner et al. (1999) and Delbaen (2000). Artzner et al. (1999) defined a risk measure for a particular financial model.

Definition 2 Let a financial model m be given. A risk measure, ρ, defined on m is a map from $\mathcal{R}(m)$ to $\mathbb{R} \cup \{\infty\}$.

In order to allow for several financial models, we use a class of financial models denoted by \mathcal{M}. Each of these models defines a set of risks $\mathcal{R}(m)$. Following Kerkhof et al. (2002) we denote a mapping defined on \mathcal{M} that assigns a risk measure defined on m for each $m \in \mathcal{M}$ by a risk measurement method defined on \mathcal{M}, RMM. The most well-known risk measurement method nowadays is the value-at-risk method which was supported by the Basle Committee in the 1996 amendment to the Basle Accord (see Basle Committee on Banking Supervision (1996a)).

Before coming to the formal definitions of the popular risk measurement methods we present the quantile definitions.

Definition 3 (Quantiles) Let $X \in \mathcal{R}(m)$ be a risk for model $m = (\Omega, \mathcal{F}, \mathbb{P})$.

1. $Q_p(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(X \leq x) \geq p\}$ is the lower p-quantile of X.

2. $Q^p(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(X \leq x) > p\}$ is the upper p-quantile of X.

The definition of the value-at-risk method can then be given by

Definition 4 (value-at-risk (VaR)) Let a model class \mathcal{M} be given. The value-at-risk method with reference asset N and level $p \in (0, 1)$ assigns to a model $m = (\Omega, \mathcal{F}, \mathbb{P})$ the risk measure VaR_m^p given by

$$\text{VaR}_m^p : \mathcal{R}(m) \ni X \mapsto -Q^p(X/N_m) = Q_{1-p}(-X/N_m) \in \mathbb{R} \cup \{\infty\}, \text{where } N_m \text{ denotes the reference asset in model } m.$$

\[(1) \]

\[^2 \text{Including } \infty \text{ allows risks to be defined on more general probability spaces, see Delbaen (2000).} \]
We use a reference asset N (for example, the money market account) to measure the losses in terms of money lost relative to the reference asset. This allows comparison of risk measures for different time horizons.

Since the introduction of value-at-risk by RiskMetrics (1996), the literature on value-at-risk has surged (see, for example, RISK Magazine (1996), Duffie and Pan (1997), and Jorion (2000) for overviews). Though value-at-risk is an intuitive risk measure, the reasoning behind it was more practical than theoretically grounded. Recently, Artzner et al. (1997) introduced the notion of coherent risk measures having the properties of translation invariance, monotonicity, positive homogeneity, and subadditivity. Their ideas were formalized in Artzner et al. (1999) and Delbaen (2000), amongst others. The value-at-risk method does not necessarily satisfy the relevant subadditivity property. This means that we can find examples where the value-at-risk of a portfolio is higher than that of the sum of the value-at-risks of a set of mutually exclusive sub-portfolios (see, for example, Artzner et al. (1999), Acerbi and Tasche (2002), and Tasche (2002)). A practically usable coherent risk measure is the expected shortfall as given in Acerbi and Tasche (2002).

Definition 5 (expected shortfall (ES)) The *expected shortfall method* with reference asset N and level $p \in (0,1)$ assigns to a model $m = (\Omega, \mathcal{F}, \mathbb{P})$ the risk measure ES_m given by

$$
\text{ES}_m : \mathcal{R}(m) \ni X \mapsto -\frac{1}{p} \left(\mathbb{E} \mathbb{I}_{(-\infty, Q_p(X/N_m))] + Q_p(X/N_m) \left(p - \mathbb{P}(X/N_m \leq Q_p(X/N_m)) \right) \right) \\
\in \mathbb{R} \cup \{\infty\}.
$$

Informally, value-at-risk gives “the minimum potential loss for the worst 100p \% cases”\(^3\) while expected shortfall gives the “expected potential loss for the worst 100p \% cases”. Therefore, the expected shortfall takes the magnitude of the exceeding of the value-at-risk into account, while for value-at-risk the magnitude of exceeding is irrelevant.

\(^3\)Most value-at-risk devotees prefer the alternative formulation of “the maximum loss in the 100(1-p)\% best cases.”
B. Which levels?

Both the value-at-risk and expected shortfall risk measurement method are defined for arbitrary levels $p \in (0, 1)$. This leaves the issue of the choice of p open. Since we are interested in protecting against adverse market conditions it is clear that p should be chosen small. But how small? For value-at-risk the most common choices are $p = 0.05$ or $p = 0.01$ (the level chosen by the Basle Committee). In combination with the current multiplication factors used by the Basle Committee, the 1% value-at-risk results in more or less satisfactory capital reserves. In order to get a risk based capital reserve scheme based on expected shortfall, we need to determine a level p for the expected shortfall.

In most comparisons between value-at-risk and expected shortfall their levels are taken to be equal. This seems to lead to the general opinion that, although expected shortfall has nice theoretical properties, it is much harder to backtest than value-at-risk (see Yamai and Yoshiba (2002)), the main reason why expected shortfall is still absent in Basle II\footnote{We thank Jon Danielsson for pointing this out to us.} However, for capital reserve determination it seems to make sense to look at comparable quantiles instead of levels. For example, take the median shortfall, that is, take the median in the tail instead of the expectation.\footnote{We thank John Einmahl for this example.} The median shortfall with level $2p$ corresponds to value-at-risk with level p. If we would compare the backtest results of the median shortfall and the value-at-risk with the same level, we probably find that value-at-risk has a better performance than median shortfall. But for a valid comparison, we should use the median shortfall with twice the level of value-at-risk, in which case we find equal performance. A similar reasoning applies to expected shortfall. In order to have a valid comparison of the backtest results we should look at the quantiles and not the levels. Doing this for the Gaussian distribution (as a reference distribution), we find $p = 0.025$ for the expected shortfall when $p = 0.01$ for value-at-risk. In case of excess kurtosis we need to take a higher level for the expected shortfall for it to equal the 1% value-at-risk. Since, in practice, we usually encounter distributions with heavier tails than the Gaussian distribution, the level of 2.5% can be seen as a lower bound on
the level for equal capital requirement.

III. Standardization procedure

Let \((h_t)_{t \in T}\) with \(T = \{1, \ldots, T\}\) (the test period) be a time-series of (in our case daily) returns on a profit and loss account (P&L) of a bank. Usually, the sequence \((h_t)_{t \in T}\) cannot be modelled appropriately as a sample from one single distribution, say \(F\), due to the fact that banks change the composition of their portfolio frequently. In general, the risk profile (the distribution of the P&L) of the bank changes over time. Therefore, we allow \((h_t)_{t \in T}\) to be drawn from a different (marginal) distribution each period, that is,

\[h_t \sim F_t \quad t \in T. \quad (3) \]

A bank is required to report the riskiness of its portfolio every day by means of a risk measure \(\rho(h_t)\), where \(\rho(h_t)\) denotes the risk measure for period \(t\) using the information up to time \(t-1\), \(\mathcal{F}_{t-1}\).\(^6\) In order to compute these risk measures the bank uses a sequence of forecast distributions \((P_t)_{t \in T}\), with corresponding densities \((p_t)_{t \in T}\).

Often \(F_t\) is assumed to belong to a location-scale family; that is, it is assumed that the sequence \\(\{(h_t - \mu_t)/\sigma_t\}_{t \in T}\) is identically distributed (see, for example, McNeil and Frey (2000) and Christoffersen et al. (2001)). However, this restricts the way in which the procedure takes portfolio changes of banks into account. In this set-up moments higher than two are only allowed to vary over time through the first two moments. More generally, we can use the probability integral transform (see, for example, Van der Vaart (1998)) to go from a non-identically distributed sequence \((h_t)_{t \in T}\) to an identically distributed sequence \((y_t)_{t \in T}\). This transform is defined as

\[y_t = G^{-1}\left(\int_{-\infty}^{h_t} p_t(u) \, du\right) = G^{-1}(P_t(h_t)) \quad t \in T, \quad (4) \]

In case \(P_t = F_t\) for each \(t \in T\), \(\mathcal{L}(y_t) = G\), otherwise \(\mathcal{L}(y_t) = Q \neq G\). The following

\(^6\)It would be more appropriate to write \(\rho_{t-1}(h_t)\), but we suppress the subscripts for notational convenience.
Lemma (see special cases in Diebold et al. (1998) and Berkowitz (2001)) gives the density q of y_t.

Lemma 1 Let $f_t(\cdot)$ denote the density of h_t, $p_t(\cdot)$ the density corresponding to $P_t(\cdot)$, g the density associated with G, and $y_t = G^{-1}(P_t(h_t))$. If $\frac{dP_t^{-1}(G(y_t))}{dy_t}$ is continuous and nonzero over the support of h_t, y_t has the following density:

$$q(y_t) = \left| \frac{dG^{-1}(P_t(h_t))}{dh_t} \right|^{-1} f_t(h_t) = g(y_t) \frac{p_t(h_t)}{f_t(h_t)}. \quad (5)$$

Proof. Just apply the change of variables transformation to $y_t = G^{-1}(P_t(h_t))$ and the result follows.

In case the forecast distributions of the bank are correct, i.e., $P_t = F_t$, $t \in T_T$, we have that $q(y_t) = g(y_t)$. Thus, under the hypothesis that $P_t = F_t$, $t \in T_T$ we can go from a non-identically distributed sequence $(h_t)_{t \in T_T}$ to an identically distributed sequence $(y_t)_{t \in T_T}$ with distribution G. We denote this procedure as *standardization to G*. For example, Berkowitz (2001), uses $G = \Phi$, the standard normal distribution, in order to use the Gaussian likelihood for his Likelihood Ratio tests.

IV. Backtest procedure

After assigning a risk measurement method the regulator faces the important task of determining the quality of the models that the regulated banks use in order to compute the risk measure. One of the reasons that the value-at-risk approach is often preferred to the coherent risk measures is the fact that the quality of value-at-risk models seems more easily verifiable. Therefore, the choice of risk measurement method by the regulator is based on the tools available to the regulator to verify model quality. In order to motivate the regulated to improve their models, regulators often impose model reserves or multiplication factors (see, for example, the multiplication factors by the Basle
Committee). In Section IV.A we review the backtest procedure of the Basle Committee. Then we provide an alternative and more general procedure, in Section IV.B ignoring estimation risk, and in Section IV.C taking estimation risk into account.

A. Backtest procedure of Basle Committee

In this section we briefly describe the backtest procedure used by the BIS for determining the multiplication factors for capital requirements. A full exposition can be found in the Basle Committee on Banking Supervision (1996b).

Banks need to produce T ($T = 250$ in the current BIS implementation) value-at-risk forecasts (1% value-at-risk in the current BIS implementation) $(\text{VaR}_t)_{t \in T}$, where VaR_t denotes the value-at-risk forecast for day t using \mathcal{F}_{t-1}, the information up to time $t-1$. It is assumed that these value-at-risk forecasts $(\text{VaR}_t)_{t \in T}$ are such that the exceedances sequence $(e_t)_{t \in T}$ consists of independent elements with a Bernoulli distribution with probability p, that is, $\text{Bern}(p)$, where p denotes the quantile relevant to the value-at-risk method employed. The exceedances $(e_t)_{t \in T}$ are defined by

$$
e_t = \mathbf{1}_{(-\infty, -\text{VaR}_t)}(h_t), \quad t \in T.
$$

(6)

By definition we have that

$$
\mathbb{P}(e_t = 1) = \mathbb{P}(h_t < -\text{VaR}_t), \quad t \in T.
$$

(7)

If $-\text{VaR}_t = F^{-1}(p)$, with F the cumulative distribution function of h_t, we have that $\mathbb{P}(e_t = 1) = p$ and, consequently, the distribution of e_t follows a Bernoulli distribution, i.e., $\mathcal{L}(e_t) = \text{Bern}(p)$. Using the cumulative distribution of the binomial distribution one may then compute multiplication factors based on the number of exceedances. For completeness, we present Table 2 from Basle Committee on Banking Supervision (1996b) in Table II.

The capital requirement can then be computed as the product of the value-at-risk at time t, $\text{VaR}_t^{0.01}$, multiplied by a multiplication factor, m_{f_t}, that is determined by the
Table I
BIS multiplication factors

The table shows the plus factors (multiplication factor = 3 + plus factor) used by the BIS for capital requirements based on a sample of 250. Tables for other sample sizes can be constructed by letting the yellow zone start when the cumulative probability exceeds 95% and the red zone when it exceeds 99.99%.

<table>
<thead>
<tr>
<th>zone</th>
<th>Number of exceedances</th>
<th>Plus factor</th>
<th>Cumulative probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>green zone</td>
<td>0</td>
<td>0.00</td>
<td>8.11</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.00</td>
<td>28.58</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.00</td>
<td>54.32</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.00</td>
<td>75.81</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.00</td>
<td>89.22</td>
</tr>
<tr>
<td>yellow zone</td>
<td>5</td>
<td>0.40</td>
<td>95.88</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.50</td>
<td>98.63</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.65</td>
<td>99.60</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.75</td>
<td>99.89</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.85</td>
<td>99.97</td>
</tr>
<tr>
<td>red zone</td>
<td>≥ 10</td>
<td>1.00</td>
<td>99.99</td>
</tr>
</tbody>
</table>

results of a backtest of model m on the previous T ($T = 250$ in Basle Accord) days.\footnote{Actually, the used value-at-risk is $\max \{ \text{VaR}_{t}^{0.01}, \frac{1}{60} \sum_{i=1}^{60} \text{VaR}_{t-i}^{0.01} \}$ instead of $\text{VaR}_{t}^{0.01}$ (see Basle Committee on Banking Supervision (1996b)). Furthermore, the multiplication factors are set every 3 months.}

$$\text{CR}_t = \text{mf}_t \cdot \text{VaR}_{t}^{0.01}. \quad (8)$$

The backtest procedure given by the Basle Committee described above has some serious shortcomings. It assumes that the exceedances $(e_t)_{t=1}^T$ are i.i.d. while empirical evidence shows a clustering phenomenon in the exceedances (see, for example, Berkowitz and O’Brien (2002)). Building on our results in Section [IVB] we show in Appendix [A] how one can perform an (unconditional) test in case of dependence. Another drawback is that the above procedure does not take estimation risk into account which manifests itself in the fact that $\text{VaR}_t = \widehat{F}^{-1}(p)$ which is not necessarily equal to $F^{-1}(p)$. Due to the limited amount of data there is likely some inaccuracy in the estimate for the
value-at-risk which in effect causes an estimation error in the exceedances (compare West (1996)). This issue is treated in Section [IVC]. A final drawback is that by transforming the information of the distribution into one characteristic (exceeding of value-at-risk or not) we lose relevant information of the return distribution (see also Berkowitz (2001)). In Section [V] we see that the power of the test is affected by removing this information.

B. General backtest procedure

We assume given a sample of transformed data \((y_t)_{t \in T} \) standardized to the actual distribution \(Q \), possibly unequal to the postulated standardized distribution \(G \). In this subsection we refrain from possible estimation risk in \(G \) which will be discussed in the next subsection. In Section [II], we defined risk measurement methods as functions of random variables (defined on a financial model \(m = (\Omega, \mathcal{F}, \mathbb{P}) \)) following the quantitative risk measurement literature. For the purpose of testing it is more convenient to define the risk measurement method as a functional, \(\varrho : D_F \to \mathbb{R} \), of a distribution function to \(\mathbb{R} \cup \infty \). Thus, \(\text{RMM}_m (X) = \varrho (F) \) for risk \(X \) if \(F \) is the distribution function of \(X \) associated with model \(m \). The null hypothesis \(H_0 : Q = G \) can be tested against numerous alternatives. For example, Berkowitz (2001) tests this hypothesis using a likelihood ratio (LR) test using the Gaussian likelihood (\(H_1 : Q \neq G = \Phi \)) and a censored Gaussian likelihood (\(H_1 : Q_{(-\infty, Q^{-1}(p)} \neq G_{(-\infty, G^{-1}(p)} \))\). Using the censored Gaussian likelihood has the advantage that it ignores model failures in the interior of the distribution: only the tail behavior matters. Following this line of reasoning, we use risk measurement methods which focus by construction on the tail behavior to evaluate the null hypothesis. We do not directly care about conservative models, that is, the true risk \(\varrho (Q) \) is smaller than or equal to \(\varrho (G) \), the risk expected by our model. Since we do not want that the model underestimates the risk, the alternative is taken to be \(H_1 : \varrho (Q) > \varrho (G) \).

\(\footnote{D_F \text{ denotes the space of all distribution functions, that is, all non-decreasing cadlag functions } F \text{ on } [-\infty, \infty] \text{ with } F(-\infty) \equiv \lim_{x \to -\infty} F(x) = 0 \text{ and } F(\infty) \equiv \lim_{x \to \infty} F(x) = 1. \text{ } D_F \text{ is equipped with the metric induced by the supremum norm.}} \)

\(\footnote{\text{For distribution function } F, \text{ } F_{(-\infty, F^{-1}(p]} \text{ denotes the left tail of the distribution up to the } p^{th} \text{ quantile.}} \)
If \(\varrho : D_F \to \mathbb{R} \) is Hadamard differentiable on \(D_F \), we can apply the functional delta method (see, for example, Van der Vaart (1998) Thm. 20.8)

\[
\sqrt{T} (\varrho (Q_T) - \varrho (Q)) = \sqrt{T} \frac{1}{T} \sum_{t=1}^{T} \psi_t (Q) + o_p (1), \quad \mathbb{E} \psi_t (Q) = 0, \quad \mathbb{E} \psi_t^2 (Q) < \infty, \quad (9)
\]

where \(Q_T \) denotes the empirical distribution of the random sample \((y_t)_{t \in T_T}\) and \(\psi_t (Q) \) denotes the influence function of the risk measurement method \(\varrho \) at observation \(t \). In Appendix [C] we show that common risk measures such as value-at-risk and expected shortfall are Hadamard differentiable. We can then use the following test statistic:\(^{10}\)

\[
S_T = T \frac{((\varrho (Q_T) - \varrho (G))^+)^2}{V} \frac{d}{d_{H_o}} \frac{1}{2} 1_{(0)} + \frac{1}{2} \chi^2, \quad (10)
\]

with \(V = \mathbb{E} \psi_t^2 (G) \) evaluated under the null hypothesis or \(V = \frac{1}{T} \sum_{t=1}^{T} \left(\psi_t (Q_T) - \frac{1}{T} \sum_{t=1}^{T} \psi_t (Q_T) \right)^2 \) estimated under the alternative. Some important examples are:

Example 1 (Value-at-risk) In the case of value-at-risk the influence function \(\psi (Q) \) is given by

\[
\psi_{\text{VaR}} (Q) = \frac{p - 1}{q (Q^{-1} (p))} \left(x \right), \quad (11)
\]

and

\[
\mathbb{E} \psi_{\text{VaR}}^2 (Q) = \frac{p (1 - p)}{q^2 (Q^{-1} (p))} \quad (12)
\]

This leads to the following test statistic

\[
S_{\text{VaR}} = T \tilde{q} (Q_T^{-1} (p)) \frac{((\varrho (Q_T) - \varrho (G))^+)^2}{p (1 - p)} \quad (13)
\]

\(^{10}\) \(\frac{1}{2} 1_{(0)} + \frac{1}{2} \chi^2 \) denotes the distribution with weights one half assigned to the \(\chi^2 \) distribution and one half assigned to the degenerate distribution with probability mass in zero. \((x)^+ \) denotes \(\max (0, x) \).

13
The critical value-at-risk levels for the yellow and red zones are given by

\[
\text{VaR}_{\text{yellow}} = \sqrt{\frac{k_{0.95}}{T} \frac{p(1-p)}{\hat{q}(Q_T^{-1}(p))}} + \text{VaR}(Q_T)
\]

\[
\text{VaR}_{\text{red}} = \sqrt{\frac{k_{0.9999}}{T} \frac{p(1-p)}{\hat{q}(Q_T^{-1}(p))}} + \text{VaR}(Q_T),
\]

where \(k_p\) denotes the \(p^{th}\) quantile of the \(\frac{1}{2} \chi_1^2\) distribution.

Example 2 (Exceedances) In the case of the number of exceedances, the influence function \(\psi(Q)\) is given by

\[
\psi_{\text{exc}}(Q) = p - I_{(-\infty,Q^{-1}(p)]}(x),
\]

and

\[
\mathbb{E}\psi_{\text{exc}}^2(Q) = p(1-p)
\]

This gives the following test

\[
S_{\text{exc}} = T \frac{(\varrho(Q_T) - \varrho(G))^+)^2}{p(1-p)}
\]

The critical numbers of exceedances for the yellow and red zones are given by

\[
\text{Exc}_{\text{yellow}} = \sqrt{k_{0.95}Tp(1-p)} + pT
\]

\[
\text{Exc}_{\text{red}} = \sqrt{k_{0.9999}Tp(1-p)} + pT
\]

For the regular backtest size of 250, these critical values are equal to the exact setting of the binomial distribution used by the BIS.

Example 3 (Expected shortfall) In the case of ES the influence function \(\psi(Q)\) is given
by

\[\psi_{ES}(Q) = -\frac{1}{p} \left[(x - Q^{-1}(p)) I_{(-\infty, Q^{-1}(p)]}(x) \right. \]

\[+ \psi_{VaR}(Q) \left(p - \int_{-\infty}^{Q^{-1}(p)} dQ(x) \right) \] - ES(Q) + VaR(Q) \quad (19) \]

and

\[\mathbb{E}\psi_{ES}^2(Q) = \frac{1}{p} \mathbb{E} \left[X^2 | X \leq Q^{-1}(p) \right] - ES(Q)^2 \]

\[+ 2 \left(1 - \frac{1}{p} \right) ES(Q) VaR(Q) - \left(1 - \frac{1}{p} \right) VaR(Q)^2 \quad (20) \]

This leads to the following test statistic

\[S_{ES} = T \frac{\left((\varrho(Q_T) - \varrho(G))^+ \right)^2}{\frac{1}{T} \sum_{t=1}^{T} \left(\psi_{ES,t}(Q_T) - \frac{1}{T} \sum_{t=1}^{T} \psi_{ES,t}(Q_T) \right)^2} \quad (21) \]

The critical ES levels for the yellow and red zones are given by

\[ES_{yellow} = \frac{1}{T} \sqrt{\frac{z_{0.95} \sum_{t=1}^{T} \left(\psi_{ES,t}(Q_T) - \frac{1}{T} \sum_{t=1}^{T} \psi_{ES,t}(Q_T) \right)^2}{+ ES(Q_T)}} \]

\[ES_{red} = \frac{1}{T} \sqrt{\frac{z_{0.9999} \sum_{t=1}^{T} \left(\psi_{ES,t}(Q_T) - \frac{1}{T} \sum_{t=1}^{T} \psi_{ES,t}(Q_T) \right)^2}{+ ES(Q_T)}} \quad (22) \]

In appendix B, \(\mathbb{E}\psi_{T}^2(G) \) is given for the Gaussian case \(G = \Phi \).

C. Estimation risk

The backtesting procedures described in this section assume that the forecasted distributions \((P_t)_{t \in T} \) of the profit/loss are given. It seems natural to penalize banks with a plus factor for using inappropriate model families, but not for just having to estimate a correctly specified model (assuming that they use their data efficiently). In order to do so, we derive in this section backtest procedures that take estimation risk into account.
Again, we use the standardization procedure described in Section III. We assume given a random estimation sample \((y_t)_{t \in T_e} \), \(T_e = \{-N + 1, ..., 0\} \), and a random testing sample \((y_t)_{t \in T_T} \), \(T_T = \{1, ..., T\} \) with \(\mathcal{L}(y_t) = G \) (under the null). We then have

\[
\sqrt{n} \left(\varphi(G_n) - \varphi(G) \right) \xrightarrow{d} \mathcal{N}(0, \mathbb{E}\psi^2(G)), \quad n = T, N
\]

where \(\psi(\cdot) \) is the influence function of \(\varphi(\cdot) \). This yields (still under the null)

\[
\sqrt{T} \left(\varphi(G_T) - \varphi(G_N) \right) = \sqrt{T} \left(\varphi(G_T) - \varphi(G) \right) - \sqrt{\frac{T}{N}} \sqrt{N} \left(\varphi(G_N) - \varphi(G) \right) \xrightarrow{d} \mathcal{N}(0, (1 + c) \mathbb{E}\psi^2(G)),
\]

when \(\frac{T}{N} \to c \) as \(N \to \infty \) and \(T \to \infty \).

If the estimation period would grow with time, \(c \) would tend to zero. In practice, one usually specifies a finite fixed estimation period (for example, 2 years) and computes the risk measure based on this estimation period. This is a so-called rolling window estimation procedure, which can be approximated in our setting by taking \(c = \frac{T}{N} \) in (23).

For the examples in IV.B we can derive the critical values for the yellow and red zones in the same way by replacing \(V \) by \((1 + c) V \). With the incorporation of estimation risk in the backtesting procedure we introduce an additional degree of freedom for the regulator, namely the choice of \(c \) (or \(N \), since \(T \) could already be chosen by the regulator).

V. Simulation results

In this section we compare the finite sample behavior of the backtest procedures. First, we determine the actual size of the tests for the exceedances ratio, value-at-risk, and expected shortfall. For simplicity, we take \(F_t = \mathcal{L}(h_t) = \mathcal{N}(0, 1), t \in T_T \). To check the performance of the tests for size, we take \(P_t = F_t, t \in T_T \), and set the significance level \(\alpha = 0.05 \). We verify the performance of the tests given in the examples in Section
This table presents the coverage ratios (in percentages) if $F_t = P_t = \mathcal{N}(0, 1)$ for $t \in T_T$ for $T = 125, 250, 500, \text{ and } 1000$. The argument H_0 denotes that the variance used is $\mathbb{E} \psi_t^2 (G)$ and H_1 denotes that the variance used is $V = \frac{1}{T} \sum_{t=1}^{T} \left(\psi_t (Q) - \frac{1}{T} \sum_{t=1}^{T} \psi_t (Q) \right)^2$. Tail$_{0.025}$ denotes Berkowitz tail test. The number of simulations equals 10,000.

<table>
<thead>
<tr>
<th>T</th>
<th>Exceedances</th>
<th>VaR$_{0.01}$ (H_0)</th>
<th>VaR$_{0.01}$ (H_1)</th>
<th>ES$_{0.025}$ (H_0)</th>
<th>ES$_{0.025}$ (H_1)</th>
<th>Tail$_{0.025}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>3.75</td>
<td>2.75</td>
<td>1.81</td>
<td>2.64</td>
<td>3.24</td>
<td>3.05</td>
</tr>
<tr>
<td>250</td>
<td>4.17</td>
<td>4.81</td>
<td>2.87</td>
<td>5.14</td>
<td>4.64</td>
<td>5.42</td>
</tr>
<tr>
<td>500</td>
<td>6.63</td>
<td>2.91</td>
<td>2.27</td>
<td>9.38</td>
<td>8.10</td>
<td>5.16</td>
</tr>
<tr>
<td>1000</td>
<td>4.51</td>
<td>3.87</td>
<td>2.98</td>
<td>4.34</td>
<td>2.63</td>
<td>5.33</td>
</tr>
</tbody>
</table>

The tests are compared to the censored LR test of Berkowitz (2001), which we denote as the Berkowitz tail test. Table II shows the results of the performance of the size of the tests. We see that the size for the three tests (Exceedances, value-at-risk, and expected shortfall) seem reasonable for the common sample size of 250. The Berkowitz tail test seems to converge a bit faster.

Next, we investigate the power of the different tests. In practice, financial time series often exhibit excess kurtosis with respect to the normal distribution and have longer left tails. We consider three alternatives that replicate (parts of) this behavior. First, we use $F_t = \mathcal{L} (h_t) = t_5$, the student t-distribution with 5 degrees of freedom. This distribution has heavier tails than the normal distribution, but is still symmetric. Second, we use two alternatives from the Normal Inverse Gaussian (NIG) family. The NIG distribution allows one to control both the level of excess kurtosis and the skewness. We consider two cases: a symmetric case with a moderately high kurtosis, $\beta = 0, \alpha = \sqrt{\beta^2 + 1}, \delta = 11^{11}$ Using $G = U [0, 1]$ results in very poor results for smaller sample sizes. The reason is that by transforming the data to uniform random numbers the symmetry in the test is lost due to the non-linear shape of F.

12^{12} The density of the NIG ($\alpha, \beta, \mu, \delta$) is given by

$$f_{NIG} (x) = \frac{\alpha \exp \left(\delta \sqrt{\alpha^2 - \beta^2 - \beta \mu} \right)}{\pi q \left(\frac{x - \mu}{\delta} \right)} q \left(\frac{x - \mu}{\delta} \right)^{-1} K_1 \left\{ \delta q \frac{x - \mu}{\delta} \right\} \exp \left\{ \beta (x - \mu) \right\},$$

with $q (x) = \sqrt{1 + x^2}$ and $K_1 (x)$ the modified Bessel function of the third kind.
1/(1 + \beta^2), \mu = 0 and a case where the distribution is very skewed to the left and has a large kurtosis, \beta = -0.25, \alpha = \sqrt{\beta^2 + 1}, \delta = 1/(1 + \beta^2), \mu = 0. Table III contains the results. We see that for both the value-at-risk and the expected shortfall the tests with variance evaluated under the null hypothesis have (far) more power. The difference with the test using the estimated variance under the alternative narrows when the sample size increases. The test for expected shortfall performs best in detecting the misspecification; the number of exceedances test has less power than the value-at-risk test and the expected shortfall test. The Berkowitz tail test also performs well and, therefore, seems a worthwhile auxiliary test, but, in general, trails the test for expected shortfall. Especially for the shorter sample sizes the test for expected shortfall performs better.

Finally, we take estimation risk into account. In Table IV the results are shown for an equal estimation and testing period. It gives the expected result that the longer the samples the better the power of the tests. However, the performance of the test for value-at-risk with the variance evaluated under the alternative is quite bad. In Table V we fixed the testing period to 1 year (250 days) and varied the estimation period. As expected the results improve for longer estimation periods. Again, the performance of the test for value-at-risk with the variance evaluated under the alternative is quite bad.

Concluding, we find that the performances of the tests with the variance evaluated under \(H_0 \) have far more power than the tests with the variance evaluated under \(H_1 \) for sample sizes realistic for financial data. Furthermore, we find that the performance for the size of the tests of the 2.5% expected shortfall is about equal to the 1% value-at-risk. However, the power of the 2.5% expected shortfall test is much better than that of the 1% value-at-risk.

VI. Multiplication factors

In this section we propose a method to compute multiplication factors for capital requirements determination. Our starting point is the test statistic (10). If the test statistic results in rejection of the null hypothesis, then we might conclude that \(\varphi(G) \) is taken
Table III: **Simulation results for power of tests**

This table presents the coverage ratios (in percentages) if $F_t = t_5$, $F_t = NIG(\alpha, 0, \delta, \mu)$, and $F_t = NIG(\alpha, -0.25, \delta, \mu)$; $\alpha = \sqrt{\beta^2 + 1}$, $\delta = 1/(1 + \beta^2)$, $\mu = 0$. $P_t = N(0, 1)$ for $t \in T_T$ for $T = 125, 250, 500, \text{ and } 1000$. The number of simulations equals 10,000.

<table>
<thead>
<tr>
<th>T</th>
<th>Exceedances</th>
<th>VaR$_{0.01}$ (H_0)</th>
<th>VaR$_{0.01}$ (H_1)</th>
<th>ES$_{0.025}$ (H_0)</th>
<th>ES$_{0.025}$ (H_1)</th>
<th>Tail$_{0.025}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_5</td>
<td>125</td>
<td>11.72</td>
<td>22.44</td>
<td>10.41</td>
<td>26.77</td>
<td>6.73</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>17.64</td>
<td>35.98</td>
<td>14.98</td>
<td>45.65</td>
<td>14.22</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>32.86</td>
<td>38.57</td>
<td>17.54</td>
<td>69.86</td>
<td>35.93</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>42.89</td>
<td>57.60</td>
<td>32.68</td>
<td>82.39</td>
<td>52.12</td>
</tr>
<tr>
<td>NIG ($\alpha, 0, \delta, \mu$)</td>
<td>125</td>
<td>16.08</td>
<td>25.08</td>
<td>14.22</td>
<td>30.27</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>25.53</td>
<td>44.73</td>
<td>22.93</td>
<td>52.51</td>
<td>22.72</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>47.06</td>
<td>51.17</td>
<td>29.25</td>
<td>78.51</td>
<td>51.11</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>63.32</td>
<td>74.38</td>
<td>53.43</td>
<td>90.13</td>
<td>71.44</td>
</tr>
<tr>
<td>NIG ($\alpha, -0.25, \delta, \mu$)</td>
<td>125</td>
<td>33.94</td>
<td>45.81</td>
<td>31.03</td>
<td>54.26</td>
<td>21.41</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>52.97</td>
<td>71.94</td>
<td>47.48</td>
<td>81.00</td>
<td>48.41</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>83.40</td>
<td>85.53</td>
<td>67.25</td>
<td>97.15</td>
<td>87.42</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>95.97</td>
<td>97.93</td>
<td>91.87</td>
<td>99.76</td>
<td>98.39</td>
</tr>
</tbody>
</table>
Table IV: **Simulation results for power of tests in case of estimation risk**

This table presents the coverage ratios (in percentages) if $F_t = t_5$, $F_t = NIG (\alpha, 0, \delta, \mu)$, and $F_t = NIG (\alpha, -0.25, \delta, \mu)$: $\alpha = \sqrt{\beta^2 + 1}$, $\delta = 1 / (1 + \beta^2)$, $\mu = 0$. $P_t = N (0,1)$ for $t \in T_T$ and \mathcal{T}_T for $T = 125, 250, 500$, and 1000. The number of simulations equals 10,000.

<table>
<thead>
<tr>
<th>$N = T$</th>
<th>Exceedances</th>
<th>VaR$_{0.01}$ (H_0)</th>
<th>VaR$_{0.01}$ (H_1)</th>
<th>ES$_{0.025}$ (H_0)</th>
<th>ES$_{0.025}$ (H_1)</th>
<th>Tail$_{0.025}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>18.40</td>
<td>15.49</td>
<td>0.34</td>
<td>22.91</td>
<td>4.87</td>
<td>15.93</td>
</tr>
<tr>
<td>250</td>
<td>13.51</td>
<td>22.84</td>
<td>0.38</td>
<td>37.81</td>
<td>6.69</td>
<td>27.49</td>
</tr>
<tr>
<td>500</td>
<td>19.25</td>
<td>21.30</td>
<td>0.27</td>
<td>59.23</td>
<td>15.85</td>
<td>47.79</td>
</tr>
<tr>
<td>1000</td>
<td>28.50</td>
<td>30.91</td>
<td>1.40</td>
<td>72.24</td>
<td>23.92</td>
<td>74.94</td>
</tr>
<tr>
<td>$NIG (\alpha, 0, \delta, \mu)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>21.85</td>
<td>17.07</td>
<td>0.23</td>
<td>24.79</td>
<td>6.66</td>
<td>15.84</td>
</tr>
<tr>
<td>250</td>
<td>18.11</td>
<td>25.00</td>
<td>0.38</td>
<td>41.62</td>
<td>10.68</td>
<td>26.15</td>
</tr>
<tr>
<td>500</td>
<td>27.89</td>
<td>26.99</td>
<td>0.63</td>
<td>66.16</td>
<td>25.62</td>
<td>48.37</td>
</tr>
<tr>
<td>1000</td>
<td>45.44</td>
<td>41.88</td>
<td>3.66</td>
<td>80.08</td>
<td>40.71</td>
<td>76.80</td>
</tr>
<tr>
<td>$NIG (\alpha, -0.25, \delta, \mu)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>38.36</td>
<td>31.03</td>
<td>0.85</td>
<td>45.10</td>
<td>12.81</td>
<td>33.55</td>
</tr>
<tr>
<td>250</td>
<td>41.01</td>
<td>47.08</td>
<td>1.95</td>
<td>69.98</td>
<td>24.90</td>
<td>54.97</td>
</tr>
<tr>
<td>500</td>
<td>61.90</td>
<td>57.61</td>
<td>4.67</td>
<td>91.94</td>
<td>58.48</td>
<td>81.22</td>
</tr>
<tr>
<td>1000</td>
<td>86.61</td>
<td>81.47</td>
<td>20.17</td>
<td>98.71</td>
<td>85.74</td>
<td>97.86</td>
</tr>
</tbody>
</table>
Table V: Simulation results for power of tests in case of estimation risk
This table presents the coverage ratios (in percentages) if $F_t = t_5$, $F_t = NIG (\alpha, 0, \delta, \mu)$, and $F_t = NIG (\alpha, -0.25, \delta, \mu)$; $\alpha = \sqrt{\beta^2 + 1}$, $\delta = 1 / (1 + \beta^2)$, $\mu = 0$. $P_t = N (0, 1)$ for $t \in T_T$ and T_T for $T = 125, 250, 500, and 1000$. The number of simulations equals 10,000.

<table>
<thead>
<tr>
<th>(N, T)</th>
<th>Exceedances</th>
<th>VaR$_{0.01}$ (H_0)</th>
<th>VaR$_{0.01}$ (H_1)</th>
<th>ES$_{0.025}$ (H_0)</th>
<th>ES$_{0.025}$ (H_1)</th>
<th>Tail$_{0.025}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(125, 250)</td>
<td>17.58</td>
<td>16.71</td>
<td>0.02</td>
<td>33.06</td>
<td>4.46</td>
<td>43.28</td>
</tr>
<tr>
<td>(250, 250)</td>
<td>13.56</td>
<td>22.91</td>
<td>0.33</td>
<td>37.53</td>
<td>6.51</td>
<td>55.80</td>
</tr>
<tr>
<td>(500, 250)</td>
<td>21.46</td>
<td>28.14</td>
<td>0.92</td>
<td>42.29</td>
<td>9.18</td>
<td>63.21</td>
</tr>
<tr>
<td>(1000, 250)</td>
<td>20.17</td>
<td>31.37</td>
<td>1.34</td>
<td>44.09</td>
<td>12.26</td>
<td>68.02</td>
</tr>
<tr>
<td>$NIG (\alpha, 0, \delta, \mu)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(125, 250)</td>
<td>18.31</td>
<td>13.33</td>
<td>0.10</td>
<td>33.01</td>
<td>5.03</td>
<td>18.60</td>
</tr>
<tr>
<td>(250, 250)</td>
<td>18.00</td>
<td>25.00</td>
<td>0.36</td>
<td>42.75</td>
<td>10.19</td>
<td>27.00</td>
</tr>
<tr>
<td>(500, 250)</td>
<td>29.45</td>
<td>34.51</td>
<td>1.30</td>
<td>47.71</td>
<td>16.56</td>
<td>34.48</td>
</tr>
<tr>
<td>(1000, 250)</td>
<td>29.61</td>
<td>40.17</td>
<td>2.35</td>
<td>50.37</td>
<td>20.21</td>
<td>39.54</td>
</tr>
<tr>
<td>$NIG (\alpha, -0.25, \delta, \mu)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(125, 250)</td>
<td>41.32</td>
<td>30.37</td>
<td>0.52</td>
<td>62.26</td>
<td>13.57</td>
<td>9.52</td>
</tr>
<tr>
<td>(250, 250)</td>
<td>41.17</td>
<td>47.10</td>
<td>1.83</td>
<td>70.38</td>
<td>24.84</td>
<td>27.49</td>
</tr>
<tr>
<td>(500, 250)</td>
<td>55.13</td>
<td>57.11</td>
<td>5.31</td>
<td>74.50</td>
<td>35.27</td>
<td>57.55</td>
</tr>
<tr>
<td>(1000, 250)</td>
<td>54.40</td>
<td>62.11</td>
<td>7.87</td>
<td>76.06</td>
<td>41.90</td>
<td>85.70</td>
</tr>
</tbody>
</table>
too low. The question then is by which multiplication factor \(\varrho(G) \) at least should be increased, such that the test statistic does no longer result in rejection of the null. Let \(\varrho^*(Q_T) \) the realized value of \(\varrho(Q) \). Then the minimum multiplication factor, \(mf \), for which the null hypothesis would not be rejected follows from setting \(T(\varrho(Q_T) - mf(s_T^*)\varrho(G)) + 1 \) equal to \(k_\alpha \), the critical value of the test at the significance level \(\alpha \).

\[
T\left(\frac{\varrho(Q_T) - mf(s_T^*)\varrho(G)}{\sqrt{V}}\right)^2 = k_\alpha.
\] (24)

More generally, we may want to use a basis multiplication factor (bmf) and we may want to cap the multiplication factor at some upper value (limit). Using the fact that \(\varrho(Q_T) = \varrho(G) + \sqrt{\frac{V s_T^*}{T}} \) our proposal for the multiplication factor becomes

\[
mf(s_T^*) = \min\left\{\left(1 + \frac{\sqrt{V s_T^*}}{\varrho(G)} - \frac{\sqrt{V k_\alpha}}{\varrho(G)}\right), \text{limit}\right\},
\] (25)

We show the results for our proposed multiplication factor applied to value-at-risk, and expected shortfall in Figure 1 where we use \(G = \Phi, \alpha = 0.05, \text{bmf} = 3, \text{and limit} = 4. \) On the horizontal axis we plot the quantiles of the distribution of the test statistic in under the null hypothesis and on the vertical axis the resulting multiplication factors. As a benchmark we also plot the multiplication factors when using the current Basle procedure (now case as a function of the quantiles of the corresponding test under the null). We see that the multiplication factors according to our proposal seem to compare favorably with those according to the Basle procedure. Moreover, the multiplication factors for expected shortfall are slightly lower than for value-at-risk. This has to do with the result that expected shortfall is more accurately estimated under the null than value-at-risk, i.e., the variance \(V \) in case of expected shortfall is smaller than in case of value-at-risk.

In Figure 2 we report the results of applying the multiplication factors from (25) to value-at-risk and expected shortfall, using again the outcomes of the Basle procedure as a benchmark. We consider two cases: first, we look at the case where the model

\({\text{13}}k_\alpha \text{ denotes the } \alpha^{th} \text{ quantile of the } \frac{1}{2} \chi^2(0) + \frac{1}{2} \chi^2 \text{ distribution.} \)
Figure 1. Multiplication factors
This figure shows the multiplication factors on the vertical axis against the quantiles of the test statistic on the horizontal axis. We used \(G = \Phi \), \(\alpha = 0.05 \), and a basic multiplication factor \(\text{bfm}=3 \).

![Figure 1](image)

Figure 2. Multiplication factors (size, power)
This figure shows the simulated cdf of the multiplication factors. In the upper panel the case of \(F_t = \mathcal{N}(\mu, \sigma^2) \) is shown. In the lower panel we have the case where \(F_t = \text{NIG}(\alpha, -0.25, \delta, \mu) \). In both panels \(P_t = \mathcal{N}(\mu, \sigma^2) \). The number of days equals 250 and the number of simulations equals 10,000.

![Figure 2](image)
is correct, $P_t = F_t = \mathcal{N}(\mu, \sigma^2)$; second, the case of a seriously misspecified model, $P_t = \mathcal{N}(\mu, \sigma^2)$ and $F_t = \text{NIG}(\alpha, -0.25, \delta, \mu)$ with α, δ, μ as before, being the case where the distribution is very skewed to the left and has a large kurtosis.

The results of the correctly specified case reflect the outcomes presented in the previous figure: expected shortfall, having the lowest multiplication factors, performs best. Notice that the multiplication factor scheme from the current Basle Accord results in (too) large multiplication factors. In the second case of a misspecified model we see that the test using expected shortfall results in higher factors in more cases (due to the higher power) than the test using value-at-risk. For both expected shortfall and value-at-risk the punishment depends smoothly on the outcome of the test. The multiplication factors according to the current Basle Accord more or less correspond to those of value-at-risk and expected shortfall, but in a heavily non-smooth way.

Concluding, in the case that the bank uses a correctly specified model, we find that the capital requirement scheme using expected shortfall leads to the least severe punishments. On the basis of the current Basle Accord banks would be punished more often and then also severely. Furthermore, in case of a misspecified model, we find that the capital requirement scheme using expected shortfall rejects the misspecified models most often, the multiplication factor depends smoothly on the size of the misspecification found and the variance in the multiplication factors is low.

VII. Conclusions

In this paper we suggested a backtest framework for a large and relevant group of risk measurement methods using the functional delta method. We showed that, for a large group of risk measurement methods containing all currently used risk measurement methods, the backtest procedure can readily be found after computing the appropriate influence function of the risk measurement method. The influence functions for value-at-risk and expected shortfall are provided. Since this general framework is based on asymptotic results, we investigated whether the procedure is appropriate for realistic finite samples sizes. The results indicate that this is indeed the case, and that, contrary
to common belief, expected shortfall is not harder to backtest than value-at-risk if we adjust the level of expected shortfall. Furthermore, the power of the test for expected shortfall is considerably higher than that of value-at-risk. Since the probability of detecting a misspecified model is higher for a given value of the test statistic, this allows the regulator to set lower multiplication factors. We suggested a scheme for determining multiplication factors. This scheme results in less severe penalties for the backtest based on expected shortfall compared to backtests based on value-at-risk, and the current Basle Accord backtesting scheme in case the test incorrectly rejects the model. In case of a misspecified model the multiplication factors are on average about the same for all tests. However, the multiplication factors based on the expected shortfall test are smooth and have low variance.

Thus, the prospects for setting up viable capital determination schemes based on expected shortfall seem promising.
A. Dependent observations

In this appendix we indicate how we can perform an unconditional test in case of dependent observations. Recall

$$\sqrt{T} (\varrho (G_T) - \varrho (G)) = \sqrt{T} \frac{1}{T} \sum_{t=1}^{T} \psi_t (G) + o_p (1), \quad \mathbb{E} \psi_t (G) = 0, \quad \mathbb{E} \psi_t^2 (G) < \infty.$$

The dependence is in the sequence $\{\psi_t (G)\}_{t \in T}$. We have

$$\sqrt{T} (\varrho (G_T) - \varrho (G)) \overset{d}{\to} \mathcal{N} (0, V),$$

where V denotes the spectral density of $\psi_t (G)$ at frequency zero,

$$V = \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} \psi_t (G) \psi_t (G)' \right] = \Gamma_0 (G) + \sum_{j=1}^{\infty} \Gamma_j (G) + \Gamma'_j (G),$$

(26)

where

$$\Gamma_j (G) = \mathbb{E} \left[\psi_t (G) \psi_{t+1-j} (G)' \right].$$

V can be estimated consistently in a number of ways. A popular method is the estimator of Newey and West (1987). Some alternatives are provided by Andrews (1991) and Andrews and Monahan (1992). The test statistic S_T becomes

$$S_T = T (\varrho (G_T) - \varrho (G))^2 \frac{\hat{V}}{V},$$

where \hat{V} denotes an estimator of V.

B. The Gaussian case

Let $\phi (x)$ denote the density function of the standard normal $\mathcal{N} (0, 1)$ distribution and z_p the p^{th} quantile of the standard normal distribution. The value-at-risk in case of a
normal distribution $\mathcal{N}(0, 1)$ is given by

$$\text{VaR}_p(X) = \mu + z_p \sigma, \quad (27)$$

and the expected shortfall is given by

$$\text{ES}_p(X) = \mu - \frac{\sigma}{p} \phi(z_p). \quad (28)$$

$\mathbb{E}\psi^2_t(\Phi)$ for value-at-risk and expected shortfall are given by

value-at-risk:

$$\mathbb{E}\psi^2_t(\Phi) = \frac{p(1-p)}{\phi(z_p)}$$

expected shortfall:

$$\mathbb{E}\psi^2_t(\Phi) = \mu^2 + \sigma^2 - \sigma (z_p \sigma + 2\mu) \frac{\phi(z_p)}{p} \left[- \left(\mu - \frac{\sigma \phi(z_p)}{p} \right)^2 + 2 \left(1 - \frac{1}{p} \right) \left(\mu - \frac{\sigma \phi(z_p)}{p} \right) (\mu + \sigma z_p) \right]$$

$$- \left(1 - \frac{1}{p} \right) (\mu + \sigma z_p)^2.$$

C. Hadamard differentiability

Proposition 1 VaR_p is Hadamard differentiable and its influence function is given by

$$\psi_{\text{VaR}}(Q) = \frac{p - \mathbf{1}_{(-\infty,Q^{-1}(p)]}(x)}{q(Q^{-1}(p))}.$$

Proof. See, for example, Van der Vaart and Wellner (1996) Lemma 3.9.20.
Proposition 2 \(\text{ES}_p \) is Hadamard differentiable with influence function

\[
\psi_{\text{ES}}(Q) = -\frac{1}{p} \left[(x - Q^{-1}(p)) I_{(-\infty, Q^{-1}(p)]}(x) \right.
\]
\[
+ \psi_{\text{VaR}}(Q) \left(p - \int_{-\infty}^{Q^{-1}(p)} dQ(x) \right) \left] - \text{ES}(Q) + \text{VaR}(Q) . \right.
\]

Proof.

Apply the chain rule for Hadamard differentiable functions (see, for example, Van der Vaart and Wellner (1996) Lemma 3.9.3) to the quantile function and the mean. \(\blacksquare \)
References

