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Abstract

Associations between multiple discrete measures are often due to collapsing over
other variables. When the variables collapsed over are unobserved and continuous,
log-multiplicative association models, including log-linear models with linear-by-linear
interactions for ordinal categorical data and extensions of Goodman’s (1979, 1985)
RC(M) association model for multiple nominal and/or ordinal categorical variables,
can be used to study the relationship between the observed discrete variables and the
unobserved continuous ones, and to study the unobserved variables. The derivation
and use of log-multipicative models as latent variable models for discrete variables
are presented in this paper. The models are based on two major assumptions: (1)
Observed variables are conditionally independent given the unobserved variables, and
(2) the conditional distribution of the unobserved variables is multivariate normal.
From these assumptions, special cases of a general model are discussed. The models
have many desirable properties, including having schematic or graphical representations
of the system of observed and unobserved variables from which the log-multiplicative
models can be read, providing estimates of the means, variances and covariances of
the latent variables given values on the observed variables, and the models can be fit
by marginal maximum likelihood estimation without the use of multiple, numerical
integrations. To illustrate some of the advantageous aspects of these models, two
examples are presented. In one example, responses to items from the General Social
Survey (Davis & Smith, 1996) are modeled, and in the other example, panel data

(Coleman, 1964) are analyzed.

Keywords: Log-linear models, graphical models, RC(M) association model, condi-

tional Gaussian distribution, marginal maximum likelihood estimation.



1 Introduction

Associations in multivariate categorical data are often due to collapsing over other variables.
When the variables collapsed over are continuous and are either unobserved or not directly
measurable, models that represent the observed associations in terms of the unobserved or
latent variables greatly facilitate the description and interpretation of the multiple, observed
associations. Furthermore, such models allow one to study the underlying structural rela-
tionships between the unobserved variables, because the observed variables act as indicators
of the unobserved ones. Ideally, the latent variable models should permit researchers to
transform their specific theories and hypotheses about the associations between both the
observed and unobserved variables into statistical models, which in turn can be readily fit
to observed data.

The proposed latent variable models belong to a family of “location models” for discrete
and continuous variables (Olkin & Tate, 1960; Afifi & Elashoff, 1969; Kraznowski, 1980, 1983,
1988). The models presented here differ from previously discussed location models in that
the continuous variables are unobserved and we restrict our attention to cases where the dis-
crete (observed) variables are conditionally independent given the continuous (latent) ones.
Adding the assumption that the distribution of the continuous variables given the discrete
ones is multivariate normal, the model implied for the observed data is a log-multiplicative
association model, which is an extension of a log-linear model.

In log-multiplicative models, associations between variables are represented by multiplica-
tive terms. Special cases of these models include many well-known models for categorical
data such as linear-by-linear interaction models, ordinal-by-nominal association models, the

uniform association model for ordinal categorical variables, the RC (M) association model for



two variables, and many generalizations of the RC (M) association model for three or more
variables (e.g, Agresti, 1984; Becker, 1989; Clogg, 1982; Clogg & Shihadeh, 1994; Goodman,
1979, 1985).

A simple case of the models was discussed by Lauritzen and Wermuth (1989; Wermuth
& Lauritzen, 1990), who provided a latent continuous variable interpretation of Goodman’s
(1979) RC association model for two items. Whittaker (1989) extended this to the case of
multiple, uncorrelated latent variables for two and three observed variables. In this paper,
we start with a more general model for multiple correlated latent variables for any number of
observed variables. We also extend the models to allow the covariance matrix of the latent
variables to differ over values of the observed, discrete variables.

The models developed here have many desirable properties, including having schematic
or graphical representations. Not only are the graphs useful pictorial representations of
theories about phenomenon, the corresponding log-multiplicative model can be read from
the graph. In many cases, estimates of the conditional means, variances and covariances
of the latent variables are by-products of the estimation of the log-multiplicative model
parameters. Furthermore, the models can be fit by marginal maximum likelihood estimation
without the use of multiple, numerical integrations.

In Section 2, the general latent variable model is proposed and the corresponding log-
multiplicative model is derived. In Section 3, we discuss special cases of the general model
and develop theory that permits log-multiplicative models to be used as latent variable
models for a variety of underlying structural models. In Section 4, the estimation of log-
multiplicative models is dicussed with a special emphasis on estimating such models with

restrictions. In Section 5, two examples are presented to illustrate some of the advantageous



aspects of these models.

2 Latent Variable Model for Discrete Observations

Our first assumption is that observed, discrete variables are conditionally independent given
the latent, continuous variables. While we do not discuss models that have conditional
dependencies between some of the observed variables, such models can be derived by treating
the observed variables that are conditionally dependent as a single variable whose levels
correspond to combinations of the levels of the individual, conditionally dependent variables.

For our second assumption, consider the table formed by cross-classifying observations
according to the discrete (observed) variables. Individuals within the same cell of a table
typically differ in terms of their values on the continuous variables, but on average have
similar values. To model these individual differences, we assume that within cells of the
table, the continuous variables are multivariate normal where the means differ across cells
of the table and the covariance matrix may also differ. The conditional multivariate nor-
mal assumption for the continuous variables is made in “location models” for discrete and
continuous variables (Olkin & Tate, 1960; Afifi & Elashoff, 1969; Kraznowski, 1980, 1983,
1988); however, in our case, the continuous variables are unobserved. The joint distribution
of the discrete and continuous variables is a conditional Gaussian distribution (Lauritzen &
Wermuth, 1989; Lauritzen, 1996).

With the conditional Gaussian assumption, the marginal distribution of the discrete
variables is multinomial and the marginal distribution of the continuous variables is a mixture

of multivariate normals. This differs from traditional factor analytic and item response



theory models where the marginal distribution of latent variables is typically assumed to be
multivariate normal. In the latter case, the conditional distribution within a cell is a mixture
of multivariate normals. The models proposed here are alternatives to the more traditional
factor analytic models. In some cases, the proposed models may be more appropriate or
at least as appropriate as traditional models. Which is better is both a theoretical and an
empirical question whose answer depends on the particular phenomenon being studied. A
full discussion of the relationships between the latent variable models proposed here and
more traditional models is beyond the scope of this paper.

Let A and © denote sets of I observed (discrete) and M latent (continuous) random
variables, respectively, and the vectors a = (ay(;,), . - -, ar(;)) and @ = (64,...,60y)" denote
realizations of the variables in A and ©. The levels of the discrete variable A; are indexed

by j; where 7, =1,...,J;. The joint distribution of the observed and latent variables is

f(a,0) = exp [g(a) + h(a)6 — 6'S() '8 1)

where g(a) is a function of a, h(a) is an (M x 1) vector valued function of a, and ¥(a) is
the (M x M) covariance matrix of ® which may be a function of a (Lauritzen & Wermuth,
1989; Lauritzen, 1996).

The dependencies among the discrete variables after controlling for the continuous vari-
ables are represented through the function g(a). Since the discrete variables are assumed to

be independent given the continuous ones, g(a) is defined as

9(a) = 3" A 2)

where the \;;,y’s are marginal or main effect terms for the discrete variables.



The dependencies between the discrete and continuous variables are represented through
the function h(a). To keep the model as general as possible, a discrete variable can be related

to any continuous variable; therefore, h(a) is defined as

I I
h(a) = 3 v, - D Vigym)' (3)
=1 =1

where v;(;,)m is the category score or scale value for level j; of variable A; for latent variable
O©n. If A; and ©,, are related, then vy, # 0 for at least one j;, and if A; and ©,, are
unrelated, then vy, = 0 for all j; = 1,...,J;. The scale values may be estimated from
data or specified a priori.

The scale values provide information about the conditional means of the latent variables.
The means are a linear function of the scale values and the variances and covariances of the
latent variables. Specifically, let p(a) equal the (M x 1) mean vector of the latent variables

for cell a, then

p(a) = X(a)h(a) (4)

(Lauritzen, 1996; Lauritzen and Wermuth, 1989). Thus, given estimates of the scale values
and the covariance matrix, we can estimate the conditional means of the latent variables.

To obtain a model for the observed data, we integrate equation (1) over €, which yields
1
P(a) = (27)"*|%(a)|* exp | g(a) + h(a) S(a)h(a) (5)

where P(a) equals the probability of observing a (Lauritzen & Wermuth 1989; Lauritzen,
1996). Since there are many possible models that may be specified for ¥(a), we will em-
phasize the homogeneous case in which the covariance matrix does not depend on a (i.e.,

Y.(a) = X). Much of what is true for the homogeneous models is also true for heterogeneous



ones. In our discussions, we point out aspects of the models that differ for the heterogeneous
case; however, exactly how they differ depends on the specific model assumed for ¥(a).
Additionally, we present a detailed example of a heterogeneous model in Section 5.2 where
3’ depends on the categories of one variable.

Setting X (a) = ¥ and replacing g(a) and h(a) in equation (5) by their definitions in (2)

and (3) yields

log(P(a)) = A+ Z N + 22 D2 D TmmViGGym V(i ym

i k>im
2000 D OmmViGmVi(im (6)
i k#i M m/>m
where A is a normalizing constant and Aj; ) = Xig,) + (1/2) X s O Vi ymVi(giym! - Since
the term (1/2) 3, >, Omm Vigj,ymVigj,yme s only indexed by i, it gets absorbed into the
marginal effect terms. In heterogeneous models, terms such as these are not necessarily
absorbed into the marginal effects. An example of this is given in Section 5.2.
Equation (6) is a log-multiplicative association model with bivariate interactions between
all pairs of variables. The best fit that can be attained using equation (6) is given by the all 2—
way interaction log-linear model (see Becker, 1989). For heterogeneous covariance matrices,
some 3-way or higher—way interactions may be present depending on how ¥ (a) differs over
a. For both homogeneous and heterogeneous cases, there is always some log-linear model

that provides a baseline for a log-multiplicative model®.

For I = 2 and M < min(Jy, Jy) — 1 uncorrelated latent variables, equation (6) reduces

!The converse is also true; that is, a graphical representation of any log-linear model can always be found

provided that one is willing to assume the existence of underlying continuous variables.



to the RC (M) association model,

M
log(le,jz) =A+ /\I(jl) + )‘;(jz) + Z Qb'mVl(jl)mV?(jz)m (7)

m=1
where the association parameter ¢, is the variance of latent variable m. However, if there
are M uncorrelated pairs of correlated latent variables, equation (6) still reduces to the
same form as equation (7), except that m indexes pairs of latent variables and ¢,, is a
covariance (see Anderson & Bockenholt, 1999). When there are more that two observed
variables, models with uncorrelated and correlated latent variables often imply different log-
multiplicative models. The importance of this is that in the social sciences, latent variables
are typically correlated.

The only structural restriction in the latent variable model used to derive equation (6)
is that the discrete variables are conditionally independent given the continuous ones (and

3 (a) = X). Without further restrictions, model (6) is too complex.

3 Restricted Latent Variable Models

Two types of more restrictive (homogeneous) models, which differ in terms of their complex-
ity and the identification constraints needed to estimate their parameters, are presented. In
Section 3.1, models are derived for cases where each observed variable is related to only one
latent variable (i.e., single indicators), and in Section 3.2, we discuss more complex models
where observed variables can be related to multiple latent variables (i.e., multiple indicators).
The single indicator models are special cases of the multiple indicator models.

In Sections 3.1 and 3.2, the models are derived algebraically; however, we also present

their corresponding graphical representations. In the graphs, the observed discrete variables



are represented by squares and the continuous latent variables are represented by circles.
Lines or edges that connect variables indicate that variables are related. The absence of
a line between two variables indicates that the two variables are conditionally independent
given all of the other variables. In Section 3.3, we outline how to read log-multiplicative

models from graphs.

3.1 Single Indicators

In Section 3.1.1, log-multiplicative models are derived for cases of one, two and M (corre-

lated) latent variables, and in Section 3.1.2, identification constraints are discussed .

3.1.1 Models with Single Indicators

The simplest structural model is a one common latent variable model. For I = 4, the graph

of this model is given in Figure 1. Since M =1,

h(a) = (; Vi(ji)1)- (8)

Setting ¥(a) = X and replacing g(a) and h(a) in equation (5) by their definitions in equa-

tions (2) and (8), the log-multiplicative model for the observed data is

log(P(a)) = A+ 3_ A + 22 D oubiGiy Vegun- (9)

i k>t
A slightly more complex structural model is a two latent variable model. Suppose that
there are two, correlated latent variables, ©; and ©,, and that the observed variables can
be partitioned into two mutually exclusive sets A; = {A4;,..., A} and Ay = {A,41,..., Ar}
where the variables in A; are indicators of ©; and those in A, are indicators of ©,. For

I = 4, the graph for an example of this model is given in Figure 2. Given the absence of a

10



direct relationship between ©, and variables in A; and between ©; and A,, Vi1 = 0 for

A; € Ay, and v,y = 0 for A; € A;, which leads to

7 I
a) = (Q_vigy, Y Vi) (10)
=1 i=r+1

Setting X (a) = X and replacing g(a) and h(a) in equation (5) by their definitions in equa-

tions (2) and (10), the model for the observed data is

log(P(a)) = )\+Z%>+Z Z T1Vi(j)1 Yk ()L (11)
i=1 k=1+1
I-1

+ > Z 022”@(72)2V’€(3k)2+z Z T12Vi(j)1 VE(iy)2-

1=r+1 k=1+1 =1 k=r+1

In the most complex, single indicator model, each latent variable has only one indicator;
therefore, M = I and vj(,, = 0 for all j; when 7 # m. For I = 4, the graph of this model

is given in Figure 3. For this model,

h(a) = (viGir, - - - Vignr) - (12)

Setting ¥(a) = X and replacing g(a) and h(a) in equation (5) by their definitions in equa-

tions (2) and (12), the model for the observed data is

log(P(a)) = A + Z Ny T 20 D TikVii )ik )b (13)

k>
Equation (13) is a multivariate generalization of the RC(1) association model, which for
three variables is equivalent to models discussed by Clogg (1982; Agresti, 1984). If category
scores are known, then equation (13) is a log-linear model with linear-by-linear interaction
terms for each pair of the observed variables (i.e., TikTi(j,)iTr(j,)k Where the z’s are known
scores). If scores for some variables are known but not for others, then equation (13) includes

some ordinal-by-nominal interaction terms (e.g., O'ikVi(j,-)il'k(jk)k)- If no partial association

11



between a pair of variables is observed, then the corresponding covariance can be set to zero.
If partial associations between all pairs of variables are present, then restrictions on the latent
variable model can be imposed that correspond to simpler graphs (e.g., Figures 1 and 2). In
these simpler models, equality restrictions are imposed on the association parameters (i.e.,

variances and/or covariances) across multiplicative terms in the equations.

3.1.2 Identification Constraints

Identification constraints are required to estimate the parameters of log-multiplicative mod-
els. The choice of constraints sets the scale of the conditional means of the latent variables.
Adding conditions beyond those needed for identification correspond to more restrictive la-
tent variable models.

For all log-multiplicative models, location constraints are required for the marginal effect

terms, A;F(ji)’ and for the scale values, v; These may be setting one value equal to zero

(gi)m:
(e.g., Vicym = 0), or setting the sum equal to a zero (e.g., >°j, Vi¢j;ym = 0). We use zero sum
constraints in the examples presented in Section 5.

One additional constraint is required for each latent variable. While the variance of each
latent variable could be set to a constant (e.g., 0., = 1 for all m), for reasons that become
clear below and in Section 3.2, it is advantageous to set the scale of the category scores
for one variable that is an indicator of the latent variable. For example, if A; and ©,, are
related, then 3 1/12(j1)m = 1. The rule adopted here is that a scaling condition is imposed
on the scale values of one observed variable per latent variable. For the one common latent

variable model, equation (9), the scale values of one variable need to be scaled, and for

the two correlated latent variable model in equation (11), the category scale values of one

12



variable in .4; and one variable in A, need to be scaled. For model (13), we take this rule
to the limit and impose scaling constraints on the scale values for all the variables.

The category scale values provide two types of information about how the mean of a
latent variable differs over levels of an observed variable. This can be seen by expressing the
scale values as Vi(j)m = WimV;(jm Where winm, = (3, Vf(ji)m)l/ 2and 3, V;‘éi)m = 1. The w;,,’s
can be interpreted as measures of the overall strength of the relationship between variable

A; and latent variable ©,,, and the v},

's represent category specific information about
this relationship. If we impose the scaling condition on the scale values of, for example, A;
where A, is an indicator of ©; (i.e., X, Vf(jl)l = 1), then for ¢ # 1, the w;;’s are free to
vary and the variance of ©; is an estimated parameter. Imposing a scaling condition on the
scale values of more than one variable per latent variable is a restriction. This restriction
can be interpreted as placing equality restrictions on the overall strength of the relationship
between the observed variables and the latent variable (i.e., the w;y,’s).

We can now show that the case of I = 3 is special. The one common latent variable

model for three observed variables implies the following log-multiplicative model

log(P(a)) = A+ Xjgjy) + Ajip) + M) + D2 D 01%ii1 V(i (14)
i k>i
Suppose that for identification, the condition 3~; V%(jl)l = 1 is imposed. Since we can

represent the scale values for the other two variables as vy, = w2V§(j2)1 and v3(j,y1 =
w3V3(j,y1, model (14) is empirically indistinguishable from model (13), which is seen by setting
019 = Wy07;, 013 = wW30;;, and o093 = wawsoy;. This equivalence provides an alternative
interpretation for the partial association model for three variables discussed by Clogg (1982;
Agresti, 1984).

For heterogeneous models, location constraints are required on the marginal effect terms

13



and usually on the scale values. In many cases, the scaling rule will also apply; however, we

cannot make global statements without specifying a model for X(a).

3.2 Multiple Indicators

Observed variables may be related to more than one latent variable. The major difficulty in
using log-multiplicative models as multiple indicator latent variable models is determining
the necessary and sufficient constraints needed to uniquely identify the parameters of the log-
multiplicative models. For all models, the identification constraints adopted in Section 3.1
(i.e., location constraints on the marginal effect terms and the scale values and a scaling
constraint on the category scores of one variable per latent variable) are adopted here as
well. The additional identification constraints (if any) required depend on the complexity of
the model.

Let IN; equal the (J; x M) matrix whose columns contain the scale values for the categories
of variable A;. If A; is not an indicator of a particular latent variable, then the corresponding
column of IN; contains zeros. The interaction term for levels j; and j; of variables A; and A,
equals the (j;, jr) element of the matrix product N; XN/, where X is the covariance matrix of
the latent variables. For each possible observation, the interaction terms in the model equal

the appropriate elements from the matrices in the set
{N;XN,|i < k}. (15)

Determining the additional constraints needed to identify a model consists of determining
whether transformations of the IN;’s and X exist that have no effect on the value of the

elements of the matrix products in (15). Since the number of possible multiple indicator
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models is far too large to consider here, we show how constraints required for three of the
four models that are used in the examples presented in Section 5 are determined. The fourth
model, which has a heterogeneous covariance matrix, is discussed in Section 5.2.2.

In the most complex latent variable model where each observed variable is related to all
of the latent variables (i.e., the general model assumed in Section 2), none of the columns of
the N,’s equals 0. Given any (M x M) non-singular matrix 7', we can always set Nf = N,;T
for all 4 and ¥* = T !XT ! without changing the values of any of the elements of the
matrix products in (15). Given this indeterminacy (and for convenience), we can arbitarily
set all covariances equal to zero and estimate the M variances. Combining this choice with
our other identification constraints pins down a unique solution.

If an observed variable is not an indicator of one latent variable, then restrictions exist
on the set of possible parameters. For example, consider the case of four variables and two
latent variables where A; and A, are indicators of ©; and ©,, respectively, and A; and Aj are
indicators of both ©; and ©3. The graph for this model is given in Figure 4. Let v;,, equal
the (J; x 1) vector of scale values v;(j;ym. The matrices of scale values equal N; = (v1,0),
Ny = (va1,V92), N3 = (v31,v3s) and Ny = (0,v49). The covariance cannot be arbitarily
set equal to zero, because N1 XN} = (012v11V42). Setting 012 = 0 implies that there is no
(partial) association between A; and A,. After imposing location and scaling conditions, we
only need one additional constraint: one variance needs to be set equal to a constant.

The third example consists of a model for four (or more) observed variables where the
observed variables are all related to one common latent variable, and pairs of the discrete
variables may also be related to uncorrelated (pair specific) latent variables. In addition

to whatever constraints are needed for the common part of the model, the scale values for

15



each discrete variable related to a pair specific latent variable must have a scaling condition
imposed on them (just as the scale values for both variables in the RC' association model

for 2-way tables must have a scaling condition imposed on them).

3.3 Reading Models from Graphs

The way that log-multiplicative models are read from graphs is essentially the same for both
homogeneous and heterogeneous models. For all models, marginal effect terms are always
included for each discrete variable, as well as a constant to ensure that the fitted values
sum up to the observed total. In the graphs, the edges connecting the observed and latent
variables have been labeled by the corresponding scale values. The interaction terms in the
log-multiplicative models equal 1/2 times the sum of the products of pairs of scale values and
the covariance between latent variables from all directed paths between observed variables.
There are two types of paths in the graphs: paths from a discrete variable back to itself and
from one discrete variable to another. Both types of paths may involve either one latent
variable or a pair of latent variables.

To illustrate, consider the multiple indicator graph Figure 4. The log-multiplicative

model for this graph is

log(P(a)) = A+ Mg, + &) + A3 + Aig)
o1 1312001 + VG361 T Va()1 V301
o (Va(ia)2Vaga)z + Vatia)2Vaga2 T+ VaGia)2Vagi2] (16)
Foa[ViG)1V20.)2 T V16013002 T V1G1)1Y4G)2 T Va(i2)130)2

+Va(in)1Va0i)2 T V3(js)1V200a)2 T V3(is)1Va(ia)2)

16



where A7 = Aigi) + (1/2) X o Ot Viggi)m Vi) -

With respect to paths from a variable back to itself, when the path goes through a
single latent variable, this results in terms such as (1/ 2)011Vf(j1)1. This term comes from
the directed path A; — ©; — A;. The covariance of a variable with itself is the variance,
so we multiple (1/ 2)V12(j1)1 by the variance of ©;. Paths from a variable back to itself that
involve a pair of latent variables are only found in multiple indicator models. For example,
the directed paths Ay — ©; — Oy — Ay and Ay — Oy — O; — A, result in the term
(1/2)012v5(j5)1V2(50)2H(1/2) T12V5(jn)2V2(i0)1= T12V2(j2)1V2(jz)2- 10 homogeneous models, terms
that arise from paths from a variable back to itself are absorbed into the marginal effects;
however, in heterogeneous models, they are not necessarily absorbed (an example of this is
given in Section 5.2.2).

The second type of path, which connects two different discrete variables, may involve
either one latent variable or a pair of correlated latent variables. In the former case, the
association parameter is the variance of the latent variable, and in the later, the association
parameter is the covariance. For example, the term o11v1(;,)109(j,)1 results from the directed
paths A; — ©; — Ay, and Ay — ©; — A;. The term o19v1(j,)109(j,)2 results from the
directed paths A; — ©; — Oy — Ay and Ay — Oy — O — A;.

/2 in equation (5).

Some heterogeneous models may include extra terms due to |X(a)
For homogenous models, |X(a)|'/? = |X|'/2, which is absorbed into the constant A. In
heterogeneous models, depending on how the covariance matrix differs over cells of the table,
|3(a)|'/? may be absorbed into other terms in the log-multiplicative model or may require

the addition of extra parameters. For example, if the covariance matrix differs over the

categories of just one observed variable, then |X(a)|'/? is absorbed into the corresponding
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marginal effect term for that variable. As another example, if the covariance matrix is
different for a single cell in the table, then there is one value of |X(a)|'/2 for the single cell
and another value of [3(a)|'/2 for the rest of the table. Only one element of X(a) needs to
differ and the single cell will be fit perfectly. In such cases, a parameter needs to be included
in the log-multiplicative model such that the cell is fit perfectly (e.g., 76, where the indicator

0a = 1 if a is the cell with the different covariance matrix, and 0 otherwise).

4 Maximum Likelihood Estimation

The maximum likelihood estimation of the parameters of the log-multiplicative models p-
resented in the previous sections is described here. The starting point is the most general,
homogeneous latent variable model given in equation (6). The restricted latent variable mod-
els can be derived from this model by imposing fixed-value restrictions on some parameters,
for instance, by fixing particular sets of category scores to zero, particular variances to one,
or particular covariances to zero. The heterogeneous models can be estimated by the same
procedure described here. The only difference is that the some of the maximum likelihood
equations will differ slightly.

Assuming either a multinomial or Poisson sampling scheme, the likelihood equations for
the parameters A:(ji)’ Omms Omm’, aNd V(j,ym, Which equal zero at the maximum value of the

likelihood function, are

Odlog L

e = X ln(a) - P,
i(J:) alj;

Odlog L

S T 2. 2.2 VitomVaGom [M(a) — P(a)]
mm a i k>
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Olog L _ 2220 ViGomVGom [n(a) — P(a)],

00 gt a i ki

dlog L

OV s = z Z Z Omm! Vk (i ym! [n(a) - P(a)] )
Vi(ji)m alj; k#i m/

respectively. Here, n(a) denotes an observed cell entry, >, indicates the summation over
all cells, and }_,;, indicates the summation over the cells in which variable A; has the value
Qi(jy)-

A simple algorithm to solve these maximum likelihood equations is the uni-dimensional
Newton algorithm. This iterative method, which has become more or less the standard
method for obtaining ML estimates of log-multiplicative models (see, for instance, Goodman,
1979; Clogg, 1982; Becker, 1989), involves updating one parameter at a time fixing the
other parameters at their current value. A uni-dimensional Newton update of a particular

parameter, say 7y, at the tth iteration cycle is of the form

A0 = -y _ OlogL/Oy
0?log L)%y’
where the derivates are evaluated at the current values of all model parameters. The relevant

second-order derivatives for the parameters appearing in equation (6) are

0?log L
82)\* = - Z P(a) ’

i(J:) alj;

0%log L 2

20 = =22 [Vi(ji)m’/k(jk)m] P(a),
0%log L 2
PIEL S [mtrom] Pl@),
0%log L

o = =YY [ommtiiom] Pa).
9 Vi(giym alj; k#i m!

The location and scaling constraints, which are necessary for identification, can be imposed

at each iteration cycle after updating a particular set of A or v parameters.
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As mentioned in the previous section, we sometimes might want to impose a scaling con-
dition on a particular set of the v parameters that is not necessary for identification. Suppose
that the scaling of the mth set of category scores for variable A; is a model restriction. In
such a situation, we have to work with Lagrange terms to obtain the restricted ML solution.
The Lagrange likelihood equations for the v;;,),, parameters, which equal zero at the saddle

point of the Lagrange likelihood function, are

Odlog L
(91/,-

+ Bim1 + 2 Vi ym Bime -
(Fi)m

Here, (;,1 and B2 are the Lagrange parameters corresponding to the location and scaling
restrictions (i.e., 3, Vijym = 0 and 3=, (Vijym)? = 1).

Only a slight modification of the uni-dimensional Newton method is needed with these
types of restrictions. Setting the Lagrange likelihood equations for the v;(;,),’s equal to zero,
we can compute ;1 and F;,,2 by a simple linear regression. This can be seen by rewriting

the resulting equations as

Odlog L

Wi ym

= Bim1 + 2 Vi(j;ymBim2 -

The provisional values for ;,,; and ;2 can be obtained by regressing the term on the left
hand side of equation (17) on 2v(,)m. After obtaining new Lagrange terms, the v’s are
updated, and subsequently centered and rescaled. A nice feature of the Lagrange terms is
that they converge to zero if the corresponding location or scaling constraint is necessary for
identification. In the models presented in this paper, this is always the case for the location
constraints, but not always for the scaling conditions.

Since the log-likelihood function of log-multiplicative models is not concave, there may

be local maxima. Therefore, models should be estimated multiple times using different sets
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of random starting values to prevent reporting a local solution.

Contrary to multi-dimensional Newton methods, the above simple estimation method
does not provide standard errors or covariances of the parameter estimates as a by-product.
Asymptotic standard errors and covariances of parameter estimates can be obtained by
means of jackknifing, which is a method that has been used by a number of authors for this
purpose in the context log-multiplicative models (e.g., Anderson & Bockenholt, 1998; Clogg

& Shihadeh, 1994; Eliason, 1995).

5 Examples

In Section 5.1, we present an example with multicategory items from the General Social
Survey, and in Section 5.2, we fit models to Coleman’s (1964) panel data for both boys and

girls, including a heterogeneous covariance model.

5.1 Data from the 1994 General Social Survey

For this example, we analyze an (2 x 4 X 5 X 5) cross-classification of 899 responses from the

1994 General Social Survey (Davis & Smith, 1996 ) to the following four items:

A “Do you approve or disapprove of a married woman earning money in business or industry
if she has a husband capable of supporting her?” (approve, disapprove).

B “It is much better for everyone involved if the man is the achiever outside the home
and the woman takes care of the home and family.” (strongly agree, agree, disagree,
strongly disagree).

C “A man’s job is to earn money; a woman’s job is to look after the home and family.”
(strongly agree, agree, neither agree nor disagree, disagree, strongly disagree).

D “It is not good if the man stays at home and cares for the children and the woman goes
out to work.” (strongly agree, agree, neither agree nor disagree, disagree, strongly
disagree).
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Statistics for the models fit to the data are reported in Table 1. Since the data contain
many zeros, to assess model goodness-of-fit, we report dissimilarity indices (D) in addition
to likelihood ratio statistics (G?). For model comparisons (most of which are not nested), we
use the BIC statistic to take into account goodness-of-fit, sample size and model complexity.

As baseline models, the independence and all 2—way interaction log-linear models were
fit. While the all 2-way model fits the data (G? = 117.93, df = 136, p = .87), it is complex
and estimating the parameters is problematic due to zeros in the observed bivariate margins.
While the items appear to measure the same attitude, the one latent variable model, Model
(¢), is unsatisfactory. The two uncorrelated latent variable model where each item is an
indicator of both latent variables, Model (d), fits the data; however, this model is complex
and difficult to interpret.

Given that all the items appear to be indicators of the same attitude, we considered
models with one latent variable and additional uncorrelated latent variables to represent
associations between pairs of items not captured by the common variable. Model (e), which
has six extra latent variables, fits the data; therefore, we sought simpler models by succes-
sively deleting latent variables, Models (f) — (j). We also fit the one common latent variable
model plus one uncorrelated variable for a pair of items, Models (j) — (0). Since Model (j)
has the smallest BIC statistic, fits the data reasonably well?, and it’s interpretation is similar
to Models (c) and (i), we report the results from Model (j).

Model (j) has one common latent variable and a second uncorrelated variable that ac-

counts for extra C'D association. Table 2 contains the estimated association parameters and

2There are two large standardized residuals; however, these were cells where the observed count equals 1

and the fitted values are between .01 and .02.
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their standard errors, as well as @;; computed for each item. The common latent variable
is an attitude variable pertaining to the proper roles of wives and husbands in terms of
employment inside/outside the home. From the @;;’s, items C' and B are most strongly
related to the common latent variable, followed by items D and A. For this model, the
conditional mean of the common latent variable equals ¢;; = 11.294 times the sum of the
scale values corresponding to a given response pattern. The order of category scores for the
common latent variable corresponds to the order of the response options, except for item D
where the scale values for “strongly agree” and “agree” are nearly equal but out of order
(i.e., Upay = —.135 and Upay = —.145). The greater the agreement with a statement, the
greater the value on the mean of the latent variable.

Relative to the common latent variable, the variable for the extra C' D association accounts
for inconsistent extreme responses “strongly agree” to item C but “strongly disagree” to item
D, and overly consistent responses for the more moderate responses. These inconsistencies
and consistencies may be due in part to the location of the items on the survey and to the
wording of item D. Item D immediately follows C', while A and B are from two different
sections of the survey. Item D differs from the other items in that the traditional roles of

husbands and wives are reversed and children are explicitly mentioned.

5.2 The Coleman Panel Data

The Coleman (1964) panel data, which are reported in Table 3, consist of responses made at
two time points by 3398 boys and 3260 girls to two items: their attitude toward (positive,
negative) and their self-perception of membership in (yes, no) the leading or popular crowd.

While the data for the boys have been analyzed extensively (e.g., Agresti, 1997; Andersen,
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1988; Goodman, 1978; Langeheine, 1988; Whittaker, 1990), the data for the girls has not.
After analyzing the boys and girls data separately by fitting models to each, and we fit

models that include gender as a fifth variable.

5.2.1 Separate Analyses

The fit statistics for models fit separately to the boys and girls data are reported in Table 4.
Starting with the boys data, we find that the independence log-linear model fails to fit
(G* = 421.68, df = 11, p < .001), but the all 2-way interaction log-linear model provides
a good fit for the boys (G?> = 1.21, df = 5, p = .94). Given that the all 2-way model
fits, we are justified in fitting homogeneous log-multiplicative models. The simplest model
with one common latent variable fails to fit (G? = 243.59, df = 7, p < .001). We next fit
a multiple indicator, two correlated latent variable model where attitude at time one, A,
is related to one latent variable, membership at time two, B, is related to a second latent
variable, and the remaining two variables, A and B;, are allowed to be related to both
latent variables (i.e., Figure 4 where B; and By correspond to Az and Ay, respectively). For
identification, the category scores for A; and B, are scaled and o;; = 1. This model, Model
(d) in Table 4, has the same fit and degrees of freedom as the all 2-way interaction log-linear
model; however, the log-multiplicative model provides us with information regarding the
structure underlying the data. The estimated scale values for the boys data from Model (d)
are given in Table 5.

The scale values in Table 5 suggest that the two attitude items are indicators of the
same latent variable, “attitude”, and the two membership items are indicators of a second

correlated latent variable, “membership”, (i.e., Figure 2 where B; and B, correspond to As
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and Ay). The corresponding single indicator, two correlated latent variable model, Model
(e), fits the data nearly as well as the multiple indicator, two correlated latent variable
model (G? = 1.21, df = 6, p = .98). Also suggested by the estimates in Table 5 is that
the strength of the relationship between the observed and latent variables may be equal for
all items. Imposing this restriction, Model (f) which is Model (e) with the restriction that
> Vigiym = 1 for all 4, yields G* = 5.43, df = 8, and p = .71. Lastly, to check whether
012 = 0, we fit the uncorrelated latent variable version of Model (f); however this model,
Model (g), fails to fit the data (G* = 97.52, df =9, p < .001).

Our final model for the boys data, Model (f), is a linear by linear interaction model
with restrictions across the association parameters, which can be fit using software that
fits generalized linear models. The estimated variances (and standard errors from multi-
dimensional Netwon-Raphson®) equal 61; = .580(.037) for attitude and G4, = 1.231(.043) for
membership, and the covariance equals 15 = .123(.013). Given the identification constraints
and restrictions on the scale values, the category scores for the two levels of each variable
equal .707 for j = 1 (i.e., “positive” or “yes”) and —.707 for j = 2 (i.e., “negative” or “no”).

For the girls data, we repeat the same analyses performed on the boys data. It is rea-
sonable to expect that the same structural model should fit both the girls and boys data;
however, the simplest latent variable model that fits the girls data is Model (d), the two
correlated, multiple indicator model given in Figure 4. Models (e) and (f), the latter which

was the best one for the boys data, fail to fit the data!; however, the lack-of-fit appears to

3The estimated standard errors from multi-dimensional Newton-Raphson and from the jackknife of the

uni-dimensional Newton procedure are equal to within +.0001.

4We could argue that Model (f) is the best, because taking sample size and model complexity into account

the most parsimonious model is Model (f). The BIC statistics for Models (d), (e) and (f) equal —31.75,
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be due to one cell. The response pattern A; = “positive”, B; = “yes”, Ay = “negative”, and
By = “no”’ (i.e., the (2,2,1,1) cell) has a relatively large residual.

For the girls, the covariance matrix for the (2,2,1,1) cell may not equal that for all
the other response patterns. If so, then as discussed in Section 3.3, we should add a single
parameter, 7, to fit the cell perfectly. Re-fitting all the models adding the term 769911 (Where
82911 = 1 for cell (2,2,1,1) and 0 otherwise) greatly improves the fit of Models (d), (e) and
(f) for the girls data®. Of the models that include the extra term, the best model for the
girls data is Model (f).

It would be desirable to compare the boys and girls conditional mean values on the
attitude and membership perception (latent) variables; however, to make such comparisons
regarding the mean values, gender must be included as an observed variable in the model.
An additional reason to include gender in the model is to test whether 3,,s = Xius. The
estimates of elements of 3 for the girls are slightly larger than those for the boys. The
estimates (and standard errors) for the girls are 611 giris = .760(.040), G292 giris = 1.586(.052)

and 5’12791'”5 = 138(014)

5.2.2 Combined analysis

Given the results from fitting models separately to the boys and girls data, we expect that

A; and A, are related to an unobserved attitude variable, B; and B, are related to an

—31.41 and —41.42, respectively. Furthermore, Model (f) fits well based on the dissimilarity index for models

(d), (e) and (f), which equal .016, .021 and .026, respectively.
SBIC statistics for Models (d), (e) and (f) with the 7 parameter equal —27.92, —35.23 and —46.89,

respectively, and the dissimilarity indices equal .013, .014 and .016, respectively. These again point to Model

(f) as the best
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unobserved membership variable, and scale restrictions can be imposed on the scale values
for Ay, Ay, B; and B;. Furthermore, we would like to permit the values on the unobserved
variables to differ for boys and girls, and possibly ¥ as well. This underlying model is
represented by the graph in Figure 5.

To derive the most general log-multiplicative model for the graph in Figure 5, we define

g(a) as
9(a) = A+ Aa,(5) + Aayi) + Ai) + ABo(i) + Aag) (17)

where A is a constant, and Aa,(j), Aay(j), ABi(j)» ABa(j), and Ag(jy are marginal effect terms
for the observed variables. For simplicity, we have dropped the subscripts on the j indices.

We define h(a) as

VA1 T V()1 + Yag)

h(a) = 1(7) 2(7) () ' (18)
VBi(j)2 + VBy(j)2 T Va2

The first row in equation (18) equals the sum of the scale values for the unobserved attitude

variable and the second row equals the sum of the scale values for the unobserved membership

variable. Lastly, we define a heterogeneous covariance matrix

011G6(5) 912G(j)

ay) = (19)
012G(5) 922G(j)

where this matrix is different for j = 1 (boys) and 2 (girls). For the homogeneous models, we

set Xy = X. Replacing g(a), h(a) and ¥(a) in equation (5) by the defintions in equations
(17), (18) and (19), respectively, yields
log(F(a)) = A+Au() + A0 + Asit) T Asai) + Aag)
1
+§(711G(j) [th(m + yilz(j)l] + 5022G(j)[V12?1(j)2 + Véz(j)ﬂ
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+on160) VA ()1VAx6)1 T VayG)Vain + Vaygnvaeg)i] (20)
+09200) VB, (5)2VBa ()2 T VBi(5)2VG ()2 T VBa()2Va()2)
+01260) VA ()1VB1(G)2 T VAr(1)1VBa()2 T+ VAs()1VB1 ()2 T VAs(3)1VBa(i)2

VA, (G)VGG)2 T Vas()VaG) t VBiGVaGn t VBa(2Va)]

where A%y = Aag) + 10g(1 B %) + (1/2) Tomi Shici OmmcyVagmVagym - While this
log-multiplicative model appears quite complex, its interpretation is greatly facilitated by
the graph in Figure 5. The model can be read from its graph using the method outlined in
Section 3.3.

Given the results from the previous section, rather than estimating v4, ()1, Va,()1, VB1(5)2
and vy(;)2, we set them equal to £.7071. Thus, the only scale values estimated are those for
gender, vg(jym. Other than location constraints on the marginal effects and the scale values
for gender, no additional identification constraints are required on the parameters in either
the homogeneous or heterogeneous versions of equation (20).

The fit statistics for models with gender as a fifth observed variable are reported in
Table 6. While the all 2-way interaction log-linear model is the baseline model for the
homogeneous version of equation (20), the log-linear model with all 3—-way interactions that
involve gender, (A;A>G, A1 B1G, A1 ByG, Ay B1G, A3 ByG, B BoG), is the baseline model for
the heterogeneous version of equation (20). Since the all 2—way interaction log-linear model,
Model (a) in Table 6, fails to fit, the homogeneous model, Model (c), should also fail to
fit. Not only does the homogeneous model fail to fit, but so does the model with an extra
parameter to fit the (2,2,1,1,) cell for the girls (i.e., T02911,6(j) Where 62911 giris = 1 for the

(2,2,1,1) cell for the girls, and 0 otherwise).
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Since the log-linear model with the 3—way interactions, Model (b), fits the data, we
try a heterogeneous model where the covariance matrix differs for boys and girls. The
heterogeneous model nearly fits the data (G? = 30.39, df = 18, p = .03), and when T02211,G(5)
is added to the model, the model fits the data (G? = 19.47, df = 19.47, p = .30). Model (f)
is the most parsimonious model that fits the data, so we select it as our final model.

The estimated parameters for Model (f) are given in Table 7. The estimated covariance
matrices for the boys and girls are similar to those from the model fit separately to the
boys and girls data. Using the scale values and estimated covariance matrix we compute
estimates of the mean values on the latent attitude and membership variables for cell means
using equation (4). Since there are only two levels of the variables A;, As, B; and B, and
their scale values are equal, there are only five unique values of the means for the boys and
five for the girls. Cells that have the same number of positive responses and yes’s have the
same mean (e.g., the conditional mean for the cell (2,2,2,1) is the same as the mean for
(1,2,2,2)). The estimated conditional means for attitude and membership perception are
plotted in Figure 6 against the numbers 0 through 4, which equal the number of positive
responses and yes’s. Separate curves are given for boys and girls.

From Figure 6, we see that for response patterns with more negative responses and no’s,
the boys means are larger than the girls means, while for response patterns with more positive
responses and yes’s, the girls means are larger than the boys. In both figures, the slopes for
the girls are larger than that for the boys. The slopes of the lines for boys and girls differ,
because f]boys #* f]gms. If f]boys = f]gms, then the lines for boys and girls would be parallel
and any difference between them would be due to the scale values for gender. The positive

covariance between attitude and membership is reflected by the fact that the higher a child’s
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perception of being a member of the leading crowd, the more positive his/her attitude is

toward the leading crowd (and visa versa).

6 Discussion

Log-multiplicative models provide a powerful and flexible approach to studying the relation-
ships between nominal and/or ordinal variables in terms of unobserved, continuous variables.
The approach presented here provides a logical way to incorporate substantive knowledge
about a phenomenon into models for studying associations between multiple discrete vari-
ables. Additional possibilities include adding individual level covariates to the model (An-
derson & Bockenholt, 1999) and imposing inequality restrictions on the category scale values
(Vermunt, 1998). Areas for future work include studying the relationship between the log-
multiplicative models and item response theory models, and further exploration of the use

of log-multiplicative models to estimate of individuals’ values on latent variables.
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Table 1: Fit statistics for models fit to four items from the 1994 General Social Survey on

whether wives and/or husbands should work outside of the home.

Model df G? P D BIC
(a) Independence 187 1063.25 < .01 .378 —209
(b) All 2-way log-linear 136 117.93 .87 .089 —807
(¢) One latent variable 175 279.50 < .01 .187 —911
(d) Two uncorrelated latent variables 163 170.61 33 116 —938

One common latent variable with extra latent variables for
(e) AB, AC, AD, BC, BD & CD 145 14360 .52 .100 —843
(f) AB, AC, BC, BD & CD 149 14430 59 .102 —869
(g) AB, AC, BC & CD 155  161.36 35 113 —893
(h) AC, BC & CD 158  164.98 34124 -910
(i) BC & CD 162 168.76 34127 —933
(j) CD 168  194.41 .08 .138 —948
(k) BC 169 24094 < .01 .168 —908
() BD 169 260.16 < .01 .177 —899
(m) AB 172 271.65 < .01 .183 —898
(n) AC 171 27556 < .01 .189 —887
(0) AD 171 275.61 < .01 .189 —887
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Table 2: Estimated parameters (and standard errors) from Model (j) in Table 1 fit to four
items from the 1994 General Social ( see text for the items).

Response Options

strongly agree neither agree disagree strongly
agree (approve)®  nor disagree (disapprove)®  disagree
o171 = 11.294  (4.252)
Gar = 07T Dagjn = 055 (.016) —.055 (.016)
Wp1 = 58T Dp(jn = —.306 (.094) —.211 (.065) .066 (.030)  .450 (.138)
W1 = 1.00 Dogoy = —.679 (.063) —.305 (.074)  .083 (.050) 324 (.024)  .577 (.051)
Opy = 287 Dpgpon = —.135 (.048) —.145 (.034) .020 (.016)  .064 (.032)  .196 (.049)
G2 = 2.642  (1.094)
Doy = 783 (137)  —.333 (.186) —.052 (.163) —.511 (.112) .113 (.233)
Dpg = 108 ((164) —.471 (.104) 097 (.138) —.467 (.119) .734 (.122)

a. The response options for item A were “approve” and “dispprove”.
A 2 1/2
b. Wil = (2]1 Vi(ji)l) / .
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Table 3: Coleman (1964) panel data where A; and B, refer to the attitude and membership
items at time point ¢. Fitted values and standardized residuals are from Model (f) in Table 6
(graph in Figure 5 with heterogeneous variance and 763211,¢(;))-

Boys Girls

std std
B,* A" B, A, count fitted resid count fitted resid
1 1 1 1 458 454.83 .15 484 470.58 .62
1 1 1 2 140 151.39 -.93 93 102.49 -.94
1 1 2 1 110 12146 -1.04 107 103.71 .32
1 1 2 2 49 51.68 -.37 32 29.74 41
1 2 1 1 171 167.63 .26 112 11349 -.14
1 2 1 2 182 177.15 .36 110 112.44 -.23
1 2 2 1 56 57.22 -.16 30 3293 -.51
1 2 2 2 87 77.30 1.10 46  42.96 .46
2 1 1 1 184 171.87 .93 129 146.76 -1.47
2 1 1 2 75 73.13 .22 40 42.09 -.32
2 1 2 1 531 534.85 -.17 768 766.94 .04
2 1 2 2 281 290.89 -.58 321 289.60 1.85
2 2 1 1 85 80.97 .45 74 74.00 .00
2 2 1 2 97 109.38 -1.18 75 60.80 1.82
2 2 2 1 338 322.09 .89 303 320.66 -.99
2 2 2 2 554 556.17 -.09 536 550.80 -.63

a. For items B; and Bj, j =1 for “yes” and j = 2 for “no”.

b. For items A; and As, j =1 for “positive” and j = 2 for “ negative”.
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Table 4: Fit statistics for models fit separately to the boys and girls panel data.

Boys Data Girls Data
with T62211
Model df G? P df G* P df G* P
Baseline models
(a) Independence 11 142168 < .01 11 1845.03 .01 10 1725.65 < .01
(b) All 2-way loglinear 5 1.21 .94 5 8.39 14 4 4.44 .34
Latent variable models
(¢) 1 latent variable 7 24359 < .01 7 314.32 .01 6 307.59 < .01
(d) 2 correlated variables, 5 1.21 .94 5 8.70 12 4 4.44 .35
multiple indicators
(e) 2 correlated variables, 6 1.21 .88 6 17.13 .01 5 5.22 .39
single indicator
(f) Model (e) with scaling 8 5.43 71 8 23.29 .01 7 9.73 .20
restrictions
(g) Model (f) with o1 =0 9  97.52 < .01 9 128.66 < .01 8 11572 < .01

Table 5: Estimated parameters from the multiple indicator, two correlated latent variable
model (Model (d) in Table 4) fit to the boys data. Note: ¢1; = .520, 615 = .076, and

099 = 1.00.

Viggit

Vi(ji)2

Ay
Ay
By

+.707
+.789
+.102

.000

.000
+.009
+.865
+.707
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Table 6: Fit statistics for models fit to Coleman panel data with gender as a variable.

Model df G? P BIC
Baseline loglinear models
(a) All 2-way interactions 16 56.31 < .001 —84.31
(b) (A14,G, A1 B,G, A, ByG, AsB\G, A3 B,G, BiByG) 10 9.60 48  —78.44
Latent variable models (Figure 5 )
(¢) Homogeneous X 21 6341 < .001 —121.47
(d) Model (c) with 78511 () 20 60.90 <.001 —115.17
(e) Heterogeneous X 18 30.39 .03 —128.08
(f) Model (e) with 7'62211,@'(_7') 17 1947 30 —130.19

Table 7: Estimated parameters from Model (f) in Table 6 fit to the Coleman (1964) panel
data with gender as a variable. Due to restrictions on the scale values for variables A, As,

B, and B, the scale values v4,(j)1, Va,(j)1, VBi(j)2, and vp, ;)2 equal .7071 for j = 1 and
—.7071 for 7 = 2.

Value(s) Value(s)

Parameter j=1 j=2 Parameter j=1 j=
A 4.796 AG(j) 276 —.276
A41(5) 134 —.134 AB1(j) —291 291
Ads(5) 185 —.185 ABa(5) —.118 118
et —.125 125 va(5)2 .060 —.060
011,boys 578 O011,girls 157
022,boys 1.228 092, girls 1.583
UlZ,boys 123 0'12,9"13 138

T 462
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Figure 1: One common latent variable model for four observed variables.

012

Va(j4)2

Figure 2: Single indicator, two common correlated latent variable model for four observed
variables.
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Figure 3: The most complex single indicator model for four variables.

Figure 4: Multiple indicator, two common correlated latent variable model for four observed
variables.



Gender

VB2 Membership

Figure 5: Graph corresponding to log-multiplicative Models (c¢)—(f) in Table 6 fit to the
Coleman panel with gender as the fifth variable.



Figure 6: Plot of estimated attitude (left) and membership (right) means for boys (circles)
and girls (dots) using scale values and estimated covariance matrix from Model (f) in Table 6
fit to the Coleman data.



